• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23 
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25 
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/string.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/slab.h>
41 #include <linux/clk.h>
42 #include <linux/cpufreq.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include <plat/regs-nand.h>
50 #include <linux/platform_data/mtd-nand-s3c2410.h>
51 
52 /* new oob placement block for use with hardware ecc generation
53  */
54 
55 static struct nand_ecclayout nand_hw_eccoob = {
56 	.eccbytes = 3,
57 	.eccpos = {0, 1, 2},
58 	.oobfree = {{8, 8}}
59 };
60 
61 /* controller and mtd information */
62 
63 struct s3c2410_nand_info;
64 
65 /**
66  * struct s3c2410_nand_mtd - driver MTD structure
67  * @mtd: The MTD instance to pass to the MTD layer.
68  * @chip: The NAND chip information.
69  * @set: The platform information supplied for this set of NAND chips.
70  * @info: Link back to the hardware information.
71  * @scan_res: The result from calling nand_scan_ident().
72 */
73 struct s3c2410_nand_mtd {
74 	struct mtd_info			mtd;
75 	struct nand_chip		chip;
76 	struct s3c2410_nand_set		*set;
77 	struct s3c2410_nand_info	*info;
78 	int				scan_res;
79 };
80 
81 enum s3c_cpu_type {
82 	TYPE_S3C2410,
83 	TYPE_S3C2412,
84 	TYPE_S3C2440,
85 };
86 
87 enum s3c_nand_clk_state {
88 	CLOCK_DISABLE	= 0,
89 	CLOCK_ENABLE,
90 	CLOCK_SUSPEND,
91 };
92 
93 /* overview of the s3c2410 nand state */
94 
95 /**
96  * struct s3c2410_nand_info - NAND controller state.
97  * @mtds: An array of MTD instances on this controoler.
98  * @platform: The platform data for this board.
99  * @device: The platform device we bound to.
100  * @clk: The clock resource for this controller.
101  * @regs: The area mapped for the hardware registers.
102  * @sel_reg: Pointer to the register controlling the NAND selection.
103  * @sel_bit: The bit in @sel_reg to select the NAND chip.
104  * @mtd_count: The number of MTDs created from this controller.
105  * @save_sel: The contents of @sel_reg to be saved over suspend.
106  * @clk_rate: The clock rate from @clk.
107  * @clk_state: The current clock state.
108  * @cpu_type: The exact type of this controller.
109  */
110 struct s3c2410_nand_info {
111 	/* mtd info */
112 	struct nand_hw_control		controller;
113 	struct s3c2410_nand_mtd		*mtds;
114 	struct s3c2410_platform_nand	*platform;
115 
116 	/* device info */
117 	struct device			*device;
118 	struct clk			*clk;
119 	void __iomem			*regs;
120 	void __iomem			*sel_reg;
121 	int				sel_bit;
122 	int				mtd_count;
123 	unsigned long			save_sel;
124 	unsigned long			clk_rate;
125 	enum s3c_nand_clk_state		clk_state;
126 
127 	enum s3c_cpu_type		cpu_type;
128 
129 #ifdef CONFIG_CPU_FREQ
130 	struct notifier_block	freq_transition;
131 #endif
132 };
133 
134 /* conversion functions */
135 
s3c2410_nand_mtd_toours(struct mtd_info * mtd)136 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
137 {
138 	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
139 }
140 
s3c2410_nand_mtd_toinfo(struct mtd_info * mtd)141 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
142 {
143 	return s3c2410_nand_mtd_toours(mtd)->info;
144 }
145 
to_nand_info(struct platform_device * dev)146 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
147 {
148 	return platform_get_drvdata(dev);
149 }
150 
to_nand_plat(struct platform_device * dev)151 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
152 {
153 	return dev->dev.platform_data;
154 }
155 
allow_clk_suspend(struct s3c2410_nand_info * info)156 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
157 {
158 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
159 	return 1;
160 #else
161 	return 0;
162 #endif
163 }
164 
165 /**
166  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
167  * @info: The controller instance.
168  * @new_state: State to which clock should be set.
169  */
s3c2410_nand_clk_set_state(struct s3c2410_nand_info * info,enum s3c_nand_clk_state new_state)170 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
171 		enum s3c_nand_clk_state new_state)
172 {
173 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
174 		return;
175 
176 	if (info->clk_state == CLOCK_ENABLE) {
177 		if (new_state != CLOCK_ENABLE)
178 			clk_disable(info->clk);
179 	} else {
180 		if (new_state == CLOCK_ENABLE)
181 			clk_enable(info->clk);
182 	}
183 
184 	info->clk_state = new_state;
185 }
186 
187 /* timing calculations */
188 
189 #define NS_IN_KHZ 1000000
190 
191 /**
192  * s3c_nand_calc_rate - calculate timing data.
193  * @wanted: The cycle time in nanoseconds.
194  * @clk: The clock rate in kHz.
195  * @max: The maximum divider value.
196  *
197  * Calculate the timing value from the given parameters.
198  */
s3c_nand_calc_rate(int wanted,unsigned long clk,int max)199 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
200 {
201 	int result;
202 
203 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
204 
205 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
206 
207 	if (result > max) {
208 		pr_err("%d ns is too big for current clock rate %ld\n",
209 			wanted, clk);
210 		return -1;
211 	}
212 
213 	if (result < 1)
214 		result = 1;
215 
216 	return result;
217 }
218 
219 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
220 
221 /* controller setup */
222 
223 /**
224  * s3c2410_nand_setrate - setup controller timing information.
225  * @info: The controller instance.
226  *
227  * Given the information supplied by the platform, calculate and set
228  * the necessary timing registers in the hardware to generate the
229  * necessary timing cycles to the hardware.
230  */
s3c2410_nand_setrate(struct s3c2410_nand_info * info)231 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
232 {
233 	struct s3c2410_platform_nand *plat = info->platform;
234 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
235 	int tacls, twrph0, twrph1;
236 	unsigned long clkrate = clk_get_rate(info->clk);
237 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
238 	unsigned long flags;
239 
240 	/* calculate the timing information for the controller */
241 
242 	info->clk_rate = clkrate;
243 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
244 
245 	if (plat != NULL) {
246 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
247 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
248 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
249 	} else {
250 		/* default timings */
251 		tacls = tacls_max;
252 		twrph0 = 8;
253 		twrph1 = 8;
254 	}
255 
256 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
257 		dev_err(info->device, "cannot get suitable timings\n");
258 		return -EINVAL;
259 	}
260 
261 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
262 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
263 						twrph1, to_ns(twrph1, clkrate));
264 
265 	switch (info->cpu_type) {
266 	case TYPE_S3C2410:
267 		mask = (S3C2410_NFCONF_TACLS(3) |
268 			S3C2410_NFCONF_TWRPH0(7) |
269 			S3C2410_NFCONF_TWRPH1(7));
270 		set = S3C2410_NFCONF_EN;
271 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
272 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
273 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
274 		break;
275 
276 	case TYPE_S3C2440:
277 	case TYPE_S3C2412:
278 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
279 			S3C2440_NFCONF_TWRPH0(7) |
280 			S3C2440_NFCONF_TWRPH1(7));
281 
282 		set = S3C2440_NFCONF_TACLS(tacls - 1);
283 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
284 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
285 		break;
286 
287 	default:
288 		BUG();
289 	}
290 
291 	local_irq_save(flags);
292 
293 	cfg = readl(info->regs + S3C2410_NFCONF);
294 	cfg &= ~mask;
295 	cfg |= set;
296 	writel(cfg, info->regs + S3C2410_NFCONF);
297 
298 	local_irq_restore(flags);
299 
300 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
301 
302 	return 0;
303 }
304 
305 /**
306  * s3c2410_nand_inithw - basic hardware initialisation
307  * @info: The hardware state.
308  *
309  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
310  * to setup the hardware access speeds and set the controller to be enabled.
311 */
s3c2410_nand_inithw(struct s3c2410_nand_info * info)312 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
313 {
314 	int ret;
315 
316 	ret = s3c2410_nand_setrate(info);
317 	if (ret < 0)
318 		return ret;
319 
320 	switch (info->cpu_type) {
321 	case TYPE_S3C2410:
322 	default:
323 		break;
324 
325 	case TYPE_S3C2440:
326 	case TYPE_S3C2412:
327 		/* enable the controller and de-assert nFCE */
328 
329 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
330 	}
331 
332 	return 0;
333 }
334 
335 /**
336  * s3c2410_nand_select_chip - select the given nand chip
337  * @mtd: The MTD instance for this chip.
338  * @chip: The chip number.
339  *
340  * This is called by the MTD layer to either select a given chip for the
341  * @mtd instance, or to indicate that the access has finished and the
342  * chip can be de-selected.
343  *
344  * The routine ensures that the nFCE line is correctly setup, and any
345  * platform specific selection code is called to route nFCE to the specific
346  * chip.
347  */
s3c2410_nand_select_chip(struct mtd_info * mtd,int chip)348 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
349 {
350 	struct s3c2410_nand_info *info;
351 	struct s3c2410_nand_mtd *nmtd;
352 	struct nand_chip *this = mtd->priv;
353 	unsigned long cur;
354 
355 	nmtd = this->priv;
356 	info = nmtd->info;
357 
358 	if (chip != -1)
359 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
360 
361 	cur = readl(info->sel_reg);
362 
363 	if (chip == -1) {
364 		cur |= info->sel_bit;
365 	} else {
366 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
367 			dev_err(info->device, "invalid chip %d\n", chip);
368 			return;
369 		}
370 
371 		if (info->platform != NULL) {
372 			if (info->platform->select_chip != NULL)
373 				(info->platform->select_chip) (nmtd->set, chip);
374 		}
375 
376 		cur &= ~info->sel_bit;
377 	}
378 
379 	writel(cur, info->sel_reg);
380 
381 	if (chip == -1)
382 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
383 }
384 
385 /* s3c2410_nand_hwcontrol
386  *
387  * Issue command and address cycles to the chip
388 */
389 
s3c2410_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)390 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
391 				   unsigned int ctrl)
392 {
393 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
394 
395 	if (cmd == NAND_CMD_NONE)
396 		return;
397 
398 	if (ctrl & NAND_CLE)
399 		writeb(cmd, info->regs + S3C2410_NFCMD);
400 	else
401 		writeb(cmd, info->regs + S3C2410_NFADDR);
402 }
403 
404 /* command and control functions */
405 
s3c2440_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)406 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
407 				   unsigned int ctrl)
408 {
409 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
410 
411 	if (cmd == NAND_CMD_NONE)
412 		return;
413 
414 	if (ctrl & NAND_CLE)
415 		writeb(cmd, info->regs + S3C2440_NFCMD);
416 	else
417 		writeb(cmd, info->regs + S3C2440_NFADDR);
418 }
419 
420 /* s3c2410_nand_devready()
421  *
422  * returns 0 if the nand is busy, 1 if it is ready
423 */
424 
s3c2410_nand_devready(struct mtd_info * mtd)425 static int s3c2410_nand_devready(struct mtd_info *mtd)
426 {
427 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
428 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
429 }
430 
s3c2440_nand_devready(struct mtd_info * mtd)431 static int s3c2440_nand_devready(struct mtd_info *mtd)
432 {
433 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
434 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
435 }
436 
s3c2412_nand_devready(struct mtd_info * mtd)437 static int s3c2412_nand_devready(struct mtd_info *mtd)
438 {
439 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
441 }
442 
443 /* ECC handling functions */
444 
445 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
s3c2410_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)446 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
447 				     u_char *read_ecc, u_char *calc_ecc)
448 {
449 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
450 	unsigned int diff0, diff1, diff2;
451 	unsigned int bit, byte;
452 
453 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
454 
455 	diff0 = read_ecc[0] ^ calc_ecc[0];
456 	diff1 = read_ecc[1] ^ calc_ecc[1];
457 	diff2 = read_ecc[2] ^ calc_ecc[2];
458 
459 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
460 		 __func__, 3, read_ecc, 3, calc_ecc,
461 		 diff0, diff1, diff2);
462 
463 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
464 		return 0;		/* ECC is ok */
465 
466 	/* sometimes people do not think about using the ECC, so check
467 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
468 	 * the error, on the assumption that this is an un-eccd page.
469 	 */
470 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
471 	    && info->platform->ignore_unset_ecc)
472 		return 0;
473 
474 	/* Can we correct this ECC (ie, one row and column change).
475 	 * Note, this is similar to the 256 error code on smartmedia */
476 
477 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
478 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
479 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
480 		/* calculate the bit position of the error */
481 
482 		bit  = ((diff2 >> 3) & 1) |
483 		       ((diff2 >> 4) & 2) |
484 		       ((diff2 >> 5) & 4);
485 
486 		/* calculate the byte position of the error */
487 
488 		byte = ((diff2 << 7) & 0x100) |
489 		       ((diff1 << 0) & 0x80)  |
490 		       ((diff1 << 1) & 0x40)  |
491 		       ((diff1 << 2) & 0x20)  |
492 		       ((diff1 << 3) & 0x10)  |
493 		       ((diff0 >> 4) & 0x08)  |
494 		       ((diff0 >> 3) & 0x04)  |
495 		       ((diff0 >> 2) & 0x02)  |
496 		       ((diff0 >> 1) & 0x01);
497 
498 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
499 			bit, byte);
500 
501 		dat[byte] ^= (1 << bit);
502 		return 1;
503 	}
504 
505 	/* if there is only one bit difference in the ECC, then
506 	 * one of only a row or column parity has changed, which
507 	 * means the error is most probably in the ECC itself */
508 
509 	diff0 |= (diff1 << 8);
510 	diff0 |= (diff2 << 16);
511 
512 	if ((diff0 & ~(1<<fls(diff0))) == 0)
513 		return 1;
514 
515 	return -1;
516 }
517 
518 /* ECC functions
519  *
520  * These allow the s3c2410 and s3c2440 to use the controller's ECC
521  * generator block to ECC the data as it passes through]
522 */
523 
s3c2410_nand_enable_hwecc(struct mtd_info * mtd,int mode)524 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
525 {
526 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
527 	unsigned long ctrl;
528 
529 	ctrl = readl(info->regs + S3C2410_NFCONF);
530 	ctrl |= S3C2410_NFCONF_INITECC;
531 	writel(ctrl, info->regs + S3C2410_NFCONF);
532 }
533 
s3c2412_nand_enable_hwecc(struct mtd_info * mtd,int mode)534 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
535 {
536 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
537 	unsigned long ctrl;
538 
539 	ctrl = readl(info->regs + S3C2440_NFCONT);
540 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
541 	       info->regs + S3C2440_NFCONT);
542 }
543 
s3c2440_nand_enable_hwecc(struct mtd_info * mtd,int mode)544 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545 {
546 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
547 	unsigned long ctrl;
548 
549 	ctrl = readl(info->regs + S3C2440_NFCONT);
550 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
551 }
552 
s3c2410_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)553 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
554 				      u_char *ecc_code)
555 {
556 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
557 
558 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
559 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
560 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
561 
562 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
563 
564 	return 0;
565 }
566 
s3c2412_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)567 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
568 				      u_char *ecc_code)
569 {
570 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
572 
573 	ecc_code[0] = ecc;
574 	ecc_code[1] = ecc >> 8;
575 	ecc_code[2] = ecc >> 16;
576 
577 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
578 
579 	return 0;
580 }
581 
s3c2440_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)582 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
583 				      u_char *ecc_code)
584 {
585 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
587 
588 	ecc_code[0] = ecc;
589 	ecc_code[1] = ecc >> 8;
590 	ecc_code[2] = ecc >> 16;
591 
592 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
593 
594 	return 0;
595 }
596 #endif
597 
598 /* over-ride the standard functions for a little more speed. We can
599  * use read/write block to move the data buffers to/from the controller
600 */
601 
s3c2410_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)602 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
603 {
604 	struct nand_chip *this = mtd->priv;
605 	readsb(this->IO_ADDR_R, buf, len);
606 }
607 
s3c2440_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)608 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
609 {
610 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
611 
612 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
613 
614 	/* cleanup if we've got less than a word to do */
615 	if (len & 3) {
616 		buf += len & ~3;
617 
618 		for (; len & 3; len--)
619 			*buf++ = readb(info->regs + S3C2440_NFDATA);
620 	}
621 }
622 
s3c2410_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)623 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
624 				   int len)
625 {
626 	struct nand_chip *this = mtd->priv;
627 	writesb(this->IO_ADDR_W, buf, len);
628 }
629 
s3c2440_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)630 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
631 				   int len)
632 {
633 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
634 
635 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
636 
637 	/* cleanup any fractional write */
638 	if (len & 3) {
639 		buf += len & ~3;
640 
641 		for (; len & 3; len--, buf++)
642 			writeb(*buf, info->regs + S3C2440_NFDATA);
643 	}
644 }
645 
646 /* cpufreq driver support */
647 
648 #ifdef CONFIG_CPU_FREQ
649 
s3c2410_nand_cpufreq_transition(struct notifier_block * nb,unsigned long val,void * data)650 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
651 					  unsigned long val, void *data)
652 {
653 	struct s3c2410_nand_info *info;
654 	unsigned long newclk;
655 
656 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
657 	newclk = clk_get_rate(info->clk);
658 
659 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
660 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
661 		s3c2410_nand_setrate(info);
662 	}
663 
664 	return 0;
665 }
666 
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)667 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
668 {
669 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
670 
671 	return cpufreq_register_notifier(&info->freq_transition,
672 					 CPUFREQ_TRANSITION_NOTIFIER);
673 }
674 
675 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)676 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
677 {
678 	cpufreq_unregister_notifier(&info->freq_transition,
679 				    CPUFREQ_TRANSITION_NOTIFIER);
680 }
681 
682 #else
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)683 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
684 {
685 	return 0;
686 }
687 
688 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)689 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
690 {
691 }
692 #endif
693 
694 /* device management functions */
695 
s3c24xx_nand_remove(struct platform_device * pdev)696 static int s3c24xx_nand_remove(struct platform_device *pdev)
697 {
698 	struct s3c2410_nand_info *info = to_nand_info(pdev);
699 
700 	platform_set_drvdata(pdev, NULL);
701 
702 	if (info == NULL)
703 		return 0;
704 
705 	s3c2410_nand_cpufreq_deregister(info);
706 
707 	/* Release all our mtds  and their partitions, then go through
708 	 * freeing the resources used
709 	 */
710 
711 	if (info->mtds != NULL) {
712 		struct s3c2410_nand_mtd *ptr = info->mtds;
713 		int mtdno;
714 
715 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
716 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
717 			nand_release(&ptr->mtd);
718 		}
719 	}
720 
721 	/* free the common resources */
722 
723 	if (!IS_ERR(info->clk))
724 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
725 
726 	return 0;
727 }
728 
s3c2410_nand_add_partition(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * mtd,struct s3c2410_nand_set * set)729 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
730 				      struct s3c2410_nand_mtd *mtd,
731 				      struct s3c2410_nand_set *set)
732 {
733 	if (set) {
734 		mtd->mtd.name = set->name;
735 
736 		return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
737 					 set->partitions, set->nr_partitions);
738 	}
739 
740 	return -ENODEV;
741 }
742 
743 /**
744  * s3c2410_nand_init_chip - initialise a single instance of an chip
745  * @info: The base NAND controller the chip is on.
746  * @nmtd: The new controller MTD instance to fill in.
747  * @set: The information passed from the board specific platform data.
748  *
749  * Initialise the given @nmtd from the information in @info and @set. This
750  * readies the structure for use with the MTD layer functions by ensuring
751  * all pointers are setup and the necessary control routines selected.
752  */
s3c2410_nand_init_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd,struct s3c2410_nand_set * set)753 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
754 				   struct s3c2410_nand_mtd *nmtd,
755 				   struct s3c2410_nand_set *set)
756 {
757 	struct nand_chip *chip = &nmtd->chip;
758 	void __iomem *regs = info->regs;
759 
760 	chip->write_buf    = s3c2410_nand_write_buf;
761 	chip->read_buf     = s3c2410_nand_read_buf;
762 	chip->select_chip  = s3c2410_nand_select_chip;
763 	chip->chip_delay   = 50;
764 	chip->priv	   = nmtd;
765 	chip->options	   = set->options;
766 	chip->controller   = &info->controller;
767 
768 	switch (info->cpu_type) {
769 	case TYPE_S3C2410:
770 		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
771 		info->sel_reg   = regs + S3C2410_NFCONF;
772 		info->sel_bit	= S3C2410_NFCONF_nFCE;
773 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
774 		chip->dev_ready = s3c2410_nand_devready;
775 		break;
776 
777 	case TYPE_S3C2440:
778 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
779 		info->sel_reg   = regs + S3C2440_NFCONT;
780 		info->sel_bit	= S3C2440_NFCONT_nFCE;
781 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
782 		chip->dev_ready = s3c2440_nand_devready;
783 		chip->read_buf  = s3c2440_nand_read_buf;
784 		chip->write_buf	= s3c2440_nand_write_buf;
785 		break;
786 
787 	case TYPE_S3C2412:
788 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
789 		info->sel_reg   = regs + S3C2440_NFCONT;
790 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
791 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
792 		chip->dev_ready = s3c2412_nand_devready;
793 
794 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
795 			dev_info(info->device, "System booted from NAND\n");
796 
797 		break;
798 	}
799 
800 	chip->IO_ADDR_R = chip->IO_ADDR_W;
801 
802 	nmtd->info	   = info;
803 	nmtd->mtd.priv	   = chip;
804 	nmtd->mtd.owner    = THIS_MODULE;
805 	nmtd->set	   = set;
806 
807 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
808 	chip->ecc.calculate = s3c2410_nand_calculate_ecc;
809 	chip->ecc.correct   = s3c2410_nand_correct_data;
810 	chip->ecc.mode	    = NAND_ECC_HW;
811 	chip->ecc.strength  = 1;
812 
813 	switch (info->cpu_type) {
814 	case TYPE_S3C2410:
815 		chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
816 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
817 		break;
818 
819 	case TYPE_S3C2412:
820 		chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
821 		chip->ecc.calculate = s3c2412_nand_calculate_ecc;
822 		break;
823 
824 	case TYPE_S3C2440:
825 		chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
826 		chip->ecc.calculate = s3c2440_nand_calculate_ecc;
827 		break;
828 	}
829 #else
830 	chip->ecc.mode	    = NAND_ECC_SOFT;
831 #endif
832 
833 	if (set->ecc_layout != NULL)
834 		chip->ecc.layout = set->ecc_layout;
835 
836 	if (set->disable_ecc)
837 		chip->ecc.mode	= NAND_ECC_NONE;
838 
839 	switch (chip->ecc.mode) {
840 	case NAND_ECC_NONE:
841 		dev_info(info->device, "NAND ECC disabled\n");
842 		break;
843 	case NAND_ECC_SOFT:
844 		dev_info(info->device, "NAND soft ECC\n");
845 		break;
846 	case NAND_ECC_HW:
847 		dev_info(info->device, "NAND hardware ECC\n");
848 		break;
849 	default:
850 		dev_info(info->device, "NAND ECC UNKNOWN\n");
851 		break;
852 	}
853 
854 	/* If you use u-boot BBT creation code, specifying this flag will
855 	 * let the kernel fish out the BBT from the NAND, and also skip the
856 	 * full NAND scan that can take 1/2s or so. Little things... */
857 	if (set->flash_bbt) {
858 		chip->bbt_options |= NAND_BBT_USE_FLASH;
859 		chip->options |= NAND_SKIP_BBTSCAN;
860 	}
861 }
862 
863 /**
864  * s3c2410_nand_update_chip - post probe update
865  * @info: The controller instance.
866  * @nmtd: The driver version of the MTD instance.
867  *
868  * This routine is called after the chip probe has successfully completed
869  * and the relevant per-chip information updated. This call ensure that
870  * we update the internal state accordingly.
871  *
872  * The internal state is currently limited to the ECC state information.
873 */
s3c2410_nand_update_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd)874 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
875 				     struct s3c2410_nand_mtd *nmtd)
876 {
877 	struct nand_chip *chip = &nmtd->chip;
878 
879 	dev_dbg(info->device, "chip %p => page shift %d\n",
880 		chip, chip->page_shift);
881 
882 	if (chip->ecc.mode != NAND_ECC_HW)
883 		return;
884 
885 		/* change the behaviour depending on whether we are using
886 		 * the large or small page nand device */
887 
888 	if (chip->page_shift > 10) {
889 		chip->ecc.size	    = 256;
890 		chip->ecc.bytes	    = 3;
891 	} else {
892 		chip->ecc.size	    = 512;
893 		chip->ecc.bytes	    = 3;
894 		chip->ecc.layout    = &nand_hw_eccoob;
895 	}
896 }
897 
898 /* s3c24xx_nand_probe
899  *
900  * called by device layer when it finds a device matching
901  * one our driver can handled. This code checks to see if
902  * it can allocate all necessary resources then calls the
903  * nand layer to look for devices
904 */
s3c24xx_nand_probe(struct platform_device * pdev)905 static int s3c24xx_nand_probe(struct platform_device *pdev)
906 {
907 	struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
908 	enum s3c_cpu_type cpu_type;
909 	struct s3c2410_nand_info *info;
910 	struct s3c2410_nand_mtd *nmtd;
911 	struct s3c2410_nand_set *sets;
912 	struct resource *res;
913 	int err = 0;
914 	int size;
915 	int nr_sets;
916 	int setno;
917 
918 	cpu_type = platform_get_device_id(pdev)->driver_data;
919 
920 	pr_debug("s3c2410_nand_probe(%p)\n", pdev);
921 
922 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
923 	if (info == NULL) {
924 		dev_err(&pdev->dev, "no memory for flash info\n");
925 		err = -ENOMEM;
926 		goto exit_error;
927 	}
928 
929 	platform_set_drvdata(pdev, info);
930 
931 	spin_lock_init(&info->controller.lock);
932 	init_waitqueue_head(&info->controller.wq);
933 
934 	/* get the clock source and enable it */
935 
936 	info->clk = devm_clk_get(&pdev->dev, "nand");
937 	if (IS_ERR(info->clk)) {
938 		dev_err(&pdev->dev, "failed to get clock\n");
939 		err = -ENOENT;
940 		goto exit_error;
941 	}
942 
943 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
944 
945 	/* allocate and map the resource */
946 
947 	/* currently we assume we have the one resource */
948 	res = pdev->resource;
949 	size = resource_size(res);
950 
951 	info->device	= &pdev->dev;
952 	info->platform	= plat;
953 	info->cpu_type	= cpu_type;
954 
955 	info->regs = devm_ioremap_resource(&pdev->dev, res);
956 	if (IS_ERR(info->regs)) {
957 		err = PTR_ERR(info->regs);
958 		goto exit_error;
959 	}
960 
961 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
962 
963 	/* initialise the hardware */
964 
965 	err = s3c2410_nand_inithw(info);
966 	if (err != 0)
967 		goto exit_error;
968 
969 	sets = (plat != NULL) ? plat->sets : NULL;
970 	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
971 
972 	info->mtd_count = nr_sets;
973 
974 	/* allocate our information */
975 
976 	size = nr_sets * sizeof(*info->mtds);
977 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
978 	if (info->mtds == NULL) {
979 		dev_err(&pdev->dev, "failed to allocate mtd storage\n");
980 		err = -ENOMEM;
981 		goto exit_error;
982 	}
983 
984 	/* initialise all possible chips */
985 
986 	nmtd = info->mtds;
987 
988 	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
989 		pr_debug("initialising set %d (%p, info %p)\n",
990 			 setno, nmtd, info);
991 
992 		s3c2410_nand_init_chip(info, nmtd, sets);
993 
994 		nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
995 						 (sets) ? sets->nr_chips : 1,
996 						 NULL);
997 
998 		if (nmtd->scan_res == 0) {
999 			s3c2410_nand_update_chip(info, nmtd);
1000 			nand_scan_tail(&nmtd->mtd);
1001 			s3c2410_nand_add_partition(info, nmtd, sets);
1002 		}
1003 
1004 		if (sets != NULL)
1005 			sets++;
1006 	}
1007 
1008 	err = s3c2410_nand_cpufreq_register(info);
1009 	if (err < 0) {
1010 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1011 		goto exit_error;
1012 	}
1013 
1014 	if (allow_clk_suspend(info)) {
1015 		dev_info(&pdev->dev, "clock idle support enabled\n");
1016 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1017 	}
1018 
1019 	pr_debug("initialised ok\n");
1020 	return 0;
1021 
1022  exit_error:
1023 	s3c24xx_nand_remove(pdev);
1024 
1025 	if (err == 0)
1026 		err = -EINVAL;
1027 	return err;
1028 }
1029 
1030 /* PM Support */
1031 #ifdef CONFIG_PM
1032 
s3c24xx_nand_suspend(struct platform_device * dev,pm_message_t pm)1033 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1034 {
1035 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1036 
1037 	if (info) {
1038 		info->save_sel = readl(info->sel_reg);
1039 
1040 		/* For the moment, we must ensure nFCE is high during
1041 		 * the time we are suspended. This really should be
1042 		 * handled by suspending the MTDs we are using, but
1043 		 * that is currently not the case. */
1044 
1045 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1046 
1047 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
s3c24xx_nand_resume(struct platform_device * dev)1053 static int s3c24xx_nand_resume(struct platform_device *dev)
1054 {
1055 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1056 	unsigned long sel;
1057 
1058 	if (info) {
1059 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1060 		s3c2410_nand_inithw(info);
1061 
1062 		/* Restore the state of the nFCE line. */
1063 
1064 		sel = readl(info->sel_reg);
1065 		sel &= ~info->sel_bit;
1066 		sel |= info->save_sel & info->sel_bit;
1067 		writel(sel, info->sel_reg);
1068 
1069 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 #else
1076 #define s3c24xx_nand_suspend NULL
1077 #define s3c24xx_nand_resume NULL
1078 #endif
1079 
1080 /* driver device registration */
1081 
1082 static struct platform_device_id s3c24xx_driver_ids[] = {
1083 	{
1084 		.name		= "s3c2410-nand",
1085 		.driver_data	= TYPE_S3C2410,
1086 	}, {
1087 		.name		= "s3c2440-nand",
1088 		.driver_data	= TYPE_S3C2440,
1089 	}, {
1090 		.name		= "s3c2412-nand",
1091 		.driver_data	= TYPE_S3C2412,
1092 	}, {
1093 		.name		= "s3c6400-nand",
1094 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1095 	},
1096 	{ }
1097 };
1098 
1099 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1100 
1101 static struct platform_driver s3c24xx_nand_driver = {
1102 	.probe		= s3c24xx_nand_probe,
1103 	.remove		= s3c24xx_nand_remove,
1104 	.suspend	= s3c24xx_nand_suspend,
1105 	.resume		= s3c24xx_nand_resume,
1106 	.id_table	= s3c24xx_driver_ids,
1107 	.driver		= {
1108 		.name	= "s3c24xx-nand",
1109 		.owner	= THIS_MODULE,
1110 	},
1111 };
1112 
1113 module_platform_driver(s3c24xx_nand_driver);
1114 
1115 MODULE_LICENSE("GPL");
1116 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1117 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1118