• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_mtd.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/mtd/sh_flctl.h>
45 
46 static struct nand_ecclayout flctl_4secc_oob_16 = {
47 	.eccbytes = 10,
48 	.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
49 	.oobfree = {
50 		{.offset = 12,
51 		. length = 4} },
52 };
53 
54 static struct nand_ecclayout flctl_4secc_oob_64 = {
55 	.eccbytes = 4 * 10,
56 	.eccpos = {
57 		 6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
58 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
61 	.oobfree = {
62 		{.offset =  2, .length = 4},
63 		{.offset = 16, .length = 6},
64 		{.offset = 32, .length = 6},
65 		{.offset = 48, .length = 6} },
66 };
67 
68 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
69 
70 static struct nand_bbt_descr flctl_4secc_smallpage = {
71 	.options = NAND_BBT_SCAN2NDPAGE,
72 	.offs = 11,
73 	.len = 1,
74 	.pattern = scan_ff_pattern,
75 };
76 
77 static struct nand_bbt_descr flctl_4secc_largepage = {
78 	.options = NAND_BBT_SCAN2NDPAGE,
79 	.offs = 0,
80 	.len = 2,
81 	.pattern = scan_ff_pattern,
82 };
83 
empty_fifo(struct sh_flctl * flctl)84 static void empty_fifo(struct sh_flctl *flctl)
85 {
86 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
87 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
88 }
89 
start_translation(struct sh_flctl * flctl)90 static void start_translation(struct sh_flctl *flctl)
91 {
92 	writeb(TRSTRT, FLTRCR(flctl));
93 }
94 
timeout_error(struct sh_flctl * flctl,const char * str)95 static void timeout_error(struct sh_flctl *flctl, const char *str)
96 {
97 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
98 }
99 
wait_completion(struct sh_flctl * flctl)100 static void wait_completion(struct sh_flctl *flctl)
101 {
102 	uint32_t timeout = LOOP_TIMEOUT_MAX;
103 
104 	while (timeout--) {
105 		if (readb(FLTRCR(flctl)) & TREND) {
106 			writeb(0x0, FLTRCR(flctl));
107 			return;
108 		}
109 		udelay(1);
110 	}
111 
112 	timeout_error(flctl, __func__);
113 	writeb(0x0, FLTRCR(flctl));
114 }
115 
flctl_dma_complete(void * param)116 static void flctl_dma_complete(void *param)
117 {
118 	struct sh_flctl *flctl = param;
119 
120 	complete(&flctl->dma_complete);
121 }
122 
flctl_release_dma(struct sh_flctl * flctl)123 static void flctl_release_dma(struct sh_flctl *flctl)
124 {
125 	if (flctl->chan_fifo0_rx) {
126 		dma_release_channel(flctl->chan_fifo0_rx);
127 		flctl->chan_fifo0_rx = NULL;
128 	}
129 	if (flctl->chan_fifo0_tx) {
130 		dma_release_channel(flctl->chan_fifo0_tx);
131 		flctl->chan_fifo0_tx = NULL;
132 	}
133 }
134 
flctl_setup_dma(struct sh_flctl * flctl)135 static void flctl_setup_dma(struct sh_flctl *flctl)
136 {
137 	dma_cap_mask_t mask;
138 	struct dma_slave_config cfg;
139 	struct platform_device *pdev = flctl->pdev;
140 	struct sh_flctl_platform_data *pdata = pdev->dev.platform_data;
141 	int ret;
142 
143 	if (!pdata)
144 		return;
145 
146 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
147 		return;
148 
149 	/* We can only either use DMA for both Tx and Rx or not use it at all */
150 	dma_cap_zero(mask);
151 	dma_cap_set(DMA_SLAVE, mask);
152 
153 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
154 					    (void *)pdata->slave_id_fifo0_tx);
155 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
156 		flctl->chan_fifo0_tx);
157 
158 	if (!flctl->chan_fifo0_tx)
159 		return;
160 
161 	memset(&cfg, 0, sizeof(cfg));
162 	cfg.slave_id = pdata->slave_id_fifo0_tx;
163 	cfg.direction = DMA_MEM_TO_DEV;
164 	cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl);
165 	cfg.src_addr = 0;
166 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
167 	if (ret < 0)
168 		goto err;
169 
170 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
171 					    (void *)pdata->slave_id_fifo0_rx);
172 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
173 		flctl->chan_fifo0_rx);
174 
175 	if (!flctl->chan_fifo0_rx)
176 		goto err;
177 
178 	cfg.slave_id = pdata->slave_id_fifo0_rx;
179 	cfg.direction = DMA_DEV_TO_MEM;
180 	cfg.dst_addr = 0;
181 	cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl);
182 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
183 	if (ret < 0)
184 		goto err;
185 
186 	init_completion(&flctl->dma_complete);
187 
188 	return;
189 
190 err:
191 	flctl_release_dma(flctl);
192 }
193 
set_addr(struct mtd_info * mtd,int column,int page_addr)194 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
195 {
196 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
197 	uint32_t addr = 0;
198 
199 	if (column == -1) {
200 		addr = page_addr;	/* ERASE1 */
201 	} else if (page_addr != -1) {
202 		/* SEQIN, READ0, etc.. */
203 		if (flctl->chip.options & NAND_BUSWIDTH_16)
204 			column >>= 1;
205 		if (flctl->page_size) {
206 			addr = column & 0x0FFF;
207 			addr |= (page_addr & 0xff) << 16;
208 			addr |= ((page_addr >> 8) & 0xff) << 24;
209 			/* big than 128MB */
210 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
211 				uint32_t 	addr2;
212 				addr2 = (page_addr >> 16) & 0xff;
213 				writel(addr2, FLADR2(flctl));
214 			}
215 		} else {
216 			addr = column;
217 			addr |= (page_addr & 0xff) << 8;
218 			addr |= ((page_addr >> 8) & 0xff) << 16;
219 			addr |= ((page_addr >> 16) & 0xff) << 24;
220 		}
221 	}
222 	writel(addr, FLADR(flctl));
223 }
224 
wait_rfifo_ready(struct sh_flctl * flctl)225 static void wait_rfifo_ready(struct sh_flctl *flctl)
226 {
227 	uint32_t timeout = LOOP_TIMEOUT_MAX;
228 
229 	while (timeout--) {
230 		uint32_t val;
231 		/* check FIFO */
232 		val = readl(FLDTCNTR(flctl)) >> 16;
233 		if (val & 0xFF)
234 			return;
235 		udelay(1);
236 	}
237 	timeout_error(flctl, __func__);
238 }
239 
wait_wfifo_ready(struct sh_flctl * flctl)240 static void wait_wfifo_ready(struct sh_flctl *flctl)
241 {
242 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
243 
244 	while (timeout--) {
245 		/* check FIFO */
246 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
247 		if (len >= 4)
248 			return;
249 		udelay(1);
250 	}
251 	timeout_error(flctl, __func__);
252 }
253 
wait_recfifo_ready(struct sh_flctl * flctl,int sector_number)254 static enum flctl_ecc_res_t wait_recfifo_ready
255 		(struct sh_flctl *flctl, int sector_number)
256 {
257 	uint32_t timeout = LOOP_TIMEOUT_MAX;
258 	void __iomem *ecc_reg[4];
259 	int i;
260 	int state = FL_SUCCESS;
261 	uint32_t data, size;
262 
263 	/*
264 	 * First this loops checks in FLDTCNTR if we are ready to read out the
265 	 * oob data. This is the case if either all went fine without errors or
266 	 * if the bottom part of the loop corrected the errors or marked them as
267 	 * uncorrectable and the controller is given time to push the data into
268 	 * the FIFO.
269 	 */
270 	while (timeout--) {
271 		/* check if all is ok and we can read out the OOB */
272 		size = readl(FLDTCNTR(flctl)) >> 24;
273 		if ((size & 0xFF) == 4)
274 			return state;
275 
276 		/* check if a correction code has been calculated */
277 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
278 			/*
279 			 * either we wait for the fifo to be filled or a
280 			 * correction pattern is being generated
281 			 */
282 			udelay(1);
283 			continue;
284 		}
285 
286 		/* check for an uncorrectable error */
287 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
288 			/* check if we face a non-empty page */
289 			for (i = 0; i < 512; i++) {
290 				if (flctl->done_buff[i] != 0xff) {
291 					state = FL_ERROR; /* can't correct */
292 					break;
293 				}
294 			}
295 
296 			if (state == FL_SUCCESS)
297 				dev_dbg(&flctl->pdev->dev,
298 				"reading empty sector %d, ecc error ignored\n",
299 				sector_number);
300 
301 			writel(0, FL4ECCCR(flctl));
302 			continue;
303 		}
304 
305 		/* start error correction */
306 		ecc_reg[0] = FL4ECCRESULT0(flctl);
307 		ecc_reg[1] = FL4ECCRESULT1(flctl);
308 		ecc_reg[2] = FL4ECCRESULT2(flctl);
309 		ecc_reg[3] = FL4ECCRESULT3(flctl);
310 
311 		for (i = 0; i < 3; i++) {
312 			uint8_t org;
313 			unsigned int index;
314 
315 			data = readl(ecc_reg[i]);
316 
317 			if (flctl->page_size)
318 				index = (512 * sector_number) +
319 					(data >> 16);
320 			else
321 				index = data >> 16;
322 
323 			org = flctl->done_buff[index];
324 			flctl->done_buff[index] = org ^ (data & 0xFF);
325 		}
326 		state = FL_REPAIRABLE;
327 		writel(0, FL4ECCCR(flctl));
328 	}
329 
330 	timeout_error(flctl, __func__);
331 	return FL_TIMEOUT;	/* timeout */
332 }
333 
wait_wecfifo_ready(struct sh_flctl * flctl)334 static void wait_wecfifo_ready(struct sh_flctl *flctl)
335 {
336 	uint32_t timeout = LOOP_TIMEOUT_MAX;
337 	uint32_t len;
338 
339 	while (timeout--) {
340 		/* check FLECFIFO */
341 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
342 		if (len >= 4)
343 			return;
344 		udelay(1);
345 	}
346 	timeout_error(flctl, __func__);
347 }
348 
flctl_dma_fifo0_transfer(struct sh_flctl * flctl,unsigned long * buf,int len,enum dma_data_direction dir)349 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
350 					int len, enum dma_data_direction dir)
351 {
352 	struct dma_async_tx_descriptor *desc = NULL;
353 	struct dma_chan *chan;
354 	enum dma_transfer_direction tr_dir;
355 	dma_addr_t dma_addr;
356 	dma_cookie_t cookie = -EINVAL;
357 	uint32_t reg;
358 	int ret;
359 
360 	if (dir == DMA_FROM_DEVICE) {
361 		chan = flctl->chan_fifo0_rx;
362 		tr_dir = DMA_DEV_TO_MEM;
363 	} else {
364 		chan = flctl->chan_fifo0_tx;
365 		tr_dir = DMA_MEM_TO_DEV;
366 	}
367 
368 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
369 
370 	if (dma_addr)
371 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
372 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
373 
374 	if (desc) {
375 		reg = readl(FLINTDMACR(flctl));
376 		reg |= DREQ0EN;
377 		writel(reg, FLINTDMACR(flctl));
378 
379 		desc->callback = flctl_dma_complete;
380 		desc->callback_param = flctl;
381 		cookie = dmaengine_submit(desc);
382 
383 		dma_async_issue_pending(chan);
384 	} else {
385 		/* DMA failed, fall back to PIO */
386 		flctl_release_dma(flctl);
387 		dev_warn(&flctl->pdev->dev,
388 			 "DMA failed, falling back to PIO\n");
389 		ret = -EIO;
390 		goto out;
391 	}
392 
393 	ret =
394 	wait_for_completion_timeout(&flctl->dma_complete,
395 				msecs_to_jiffies(3000));
396 
397 	if (ret <= 0) {
398 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
399 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
400 	}
401 
402 out:
403 	reg = readl(FLINTDMACR(flctl));
404 	reg &= ~DREQ0EN;
405 	writel(reg, FLINTDMACR(flctl));
406 
407 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
408 
409 	/* ret > 0 is success */
410 	return ret;
411 }
412 
read_datareg(struct sh_flctl * flctl,int offset)413 static void read_datareg(struct sh_flctl *flctl, int offset)
414 {
415 	unsigned long data;
416 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
417 
418 	wait_completion(flctl);
419 
420 	data = readl(FLDATAR(flctl));
421 	*buf = le32_to_cpu(data);
422 }
423 
read_fiforeg(struct sh_flctl * flctl,int rlen,int offset)424 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
425 {
426 	int i, len_4align;
427 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
428 
429 	len_4align = (rlen + 3) / 4;
430 
431 	/* initiate DMA transfer */
432 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
433 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
434 			goto convert;	/* DMA success */
435 
436 	/* do polling transfer */
437 	for (i = 0; i < len_4align; i++) {
438 		wait_rfifo_ready(flctl);
439 		buf[i] = readl(FLDTFIFO(flctl));
440 	}
441 
442 convert:
443 	for (i = 0; i < len_4align; i++)
444 		buf[i] = be32_to_cpu(buf[i]);
445 }
446 
read_ecfiforeg(struct sh_flctl * flctl,uint8_t * buff,int sector)447 static enum flctl_ecc_res_t read_ecfiforeg
448 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
449 {
450 	int i;
451 	enum flctl_ecc_res_t res;
452 	unsigned long *ecc_buf = (unsigned long *)buff;
453 
454 	res = wait_recfifo_ready(flctl , sector);
455 
456 	if (res != FL_ERROR) {
457 		for (i = 0; i < 4; i++) {
458 			ecc_buf[i] = readl(FLECFIFO(flctl));
459 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
460 		}
461 	}
462 
463 	return res;
464 }
465 
write_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)466 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
467 						unsigned int offset)
468 {
469 	int i, len_4align;
470 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
471 
472 	len_4align = (rlen + 3) / 4;
473 	for (i = 0; i < len_4align; i++) {
474 		wait_wfifo_ready(flctl);
475 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
476 	}
477 }
478 
write_ec_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)479 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
480 						unsigned int offset)
481 {
482 	int i, len_4align;
483 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
484 
485 	len_4align = (rlen + 3) / 4;
486 
487 	for (i = 0; i < len_4align; i++)
488 		buf[i] = cpu_to_be32(buf[i]);
489 
490 	/* initiate DMA transfer */
491 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
492 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
493 			return;	/* DMA success */
494 
495 	/* do polling transfer */
496 	for (i = 0; i < len_4align; i++) {
497 		wait_wecfifo_ready(flctl);
498 		writel(buf[i], FLECFIFO(flctl));
499 	}
500 }
501 
set_cmd_regs(struct mtd_info * mtd,uint32_t cmd,uint32_t flcmcdr_val)502 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
503 {
504 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
505 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
506 	uint32_t flcmdcr_val, addr_len_bytes = 0;
507 
508 	/* Set SNAND bit if page size is 2048byte */
509 	if (flctl->page_size)
510 		flcmncr_val |= SNAND_E;
511 	else
512 		flcmncr_val &= ~SNAND_E;
513 
514 	/* default FLCMDCR val */
515 	flcmdcr_val = DOCMD1_E | DOADR_E;
516 
517 	/* Set for FLCMDCR */
518 	switch (cmd) {
519 	case NAND_CMD_ERASE1:
520 		addr_len_bytes = flctl->erase_ADRCNT;
521 		flcmdcr_val |= DOCMD2_E;
522 		break;
523 	case NAND_CMD_READ0:
524 	case NAND_CMD_READOOB:
525 	case NAND_CMD_RNDOUT:
526 		addr_len_bytes = flctl->rw_ADRCNT;
527 		flcmdcr_val |= CDSRC_E;
528 		if (flctl->chip.options & NAND_BUSWIDTH_16)
529 			flcmncr_val |= SEL_16BIT;
530 		break;
531 	case NAND_CMD_SEQIN:
532 		/* This case is that cmd is READ0 or READ1 or READ00 */
533 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
534 		break;
535 	case NAND_CMD_PAGEPROG:
536 		addr_len_bytes = flctl->rw_ADRCNT;
537 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
538 		if (flctl->chip.options & NAND_BUSWIDTH_16)
539 			flcmncr_val |= SEL_16BIT;
540 		break;
541 	case NAND_CMD_READID:
542 		flcmncr_val &= ~SNAND_E;
543 		flcmdcr_val |= CDSRC_E;
544 		addr_len_bytes = ADRCNT_1;
545 		break;
546 	case NAND_CMD_STATUS:
547 	case NAND_CMD_RESET:
548 		flcmncr_val &= ~SNAND_E;
549 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
550 		break;
551 	default:
552 		break;
553 	}
554 
555 	/* Set address bytes parameter */
556 	flcmdcr_val |= addr_len_bytes;
557 
558 	/* Now actually write */
559 	writel(flcmncr_val, FLCMNCR(flctl));
560 	writel(flcmdcr_val, FLCMDCR(flctl));
561 	writel(flcmcdr_val, FLCMCDR(flctl));
562 }
563 
flctl_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)564 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
565 				uint8_t *buf, int oob_required, int page)
566 {
567 	chip->read_buf(mtd, buf, mtd->writesize);
568 	if (oob_required)
569 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
570 	return 0;
571 }
572 
flctl_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)573 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
574 				   const uint8_t *buf, int oob_required)
575 {
576 	chip->write_buf(mtd, buf, mtd->writesize);
577 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
578 	return 0;
579 }
580 
execmd_read_page_sector(struct mtd_info * mtd,int page_addr)581 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
582 {
583 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
584 	int sector, page_sectors;
585 	enum flctl_ecc_res_t ecc_result;
586 
587 	page_sectors = flctl->page_size ? 4 : 1;
588 
589 	set_cmd_regs(mtd, NAND_CMD_READ0,
590 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
591 
592 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
593 		 FLCMNCR(flctl));
594 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
595 	writel(page_addr << 2, FLADR(flctl));
596 
597 	empty_fifo(flctl);
598 	start_translation(flctl);
599 
600 	for (sector = 0; sector < page_sectors; sector++) {
601 		read_fiforeg(flctl, 512, 512 * sector);
602 
603 		ecc_result = read_ecfiforeg(flctl,
604 			&flctl->done_buff[mtd->writesize + 16 * sector],
605 			sector);
606 
607 		switch (ecc_result) {
608 		case FL_REPAIRABLE:
609 			dev_info(&flctl->pdev->dev,
610 				"applied ecc on page 0x%x", page_addr);
611 			flctl->mtd.ecc_stats.corrected++;
612 			break;
613 		case FL_ERROR:
614 			dev_warn(&flctl->pdev->dev,
615 				"page 0x%x contains corrupted data\n",
616 				page_addr);
617 			flctl->mtd.ecc_stats.failed++;
618 			break;
619 		default:
620 			;
621 		}
622 	}
623 
624 	wait_completion(flctl);
625 
626 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
627 			FLCMNCR(flctl));
628 }
629 
execmd_read_oob(struct mtd_info * mtd,int page_addr)630 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
631 {
632 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
633 	int page_sectors = flctl->page_size ? 4 : 1;
634 	int i;
635 
636 	set_cmd_regs(mtd, NAND_CMD_READ0,
637 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
638 
639 	empty_fifo(flctl);
640 
641 	for (i = 0; i < page_sectors; i++) {
642 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
643 		writel(16, FLDTCNTR(flctl));
644 
645 		start_translation(flctl);
646 		read_fiforeg(flctl, 16, 16 * i);
647 		wait_completion(flctl);
648 	}
649 }
650 
execmd_write_page_sector(struct mtd_info * mtd)651 static void execmd_write_page_sector(struct mtd_info *mtd)
652 {
653 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
654 	int page_addr = flctl->seqin_page_addr;
655 	int sector, page_sectors;
656 
657 	page_sectors = flctl->page_size ? 4 : 1;
658 
659 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
660 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
661 
662 	empty_fifo(flctl);
663 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
664 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
665 	writel(page_addr << 2, FLADR(flctl));
666 	start_translation(flctl);
667 
668 	for (sector = 0; sector < page_sectors; sector++) {
669 		write_fiforeg(flctl, 512, 512 * sector);
670 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
671 	}
672 
673 	wait_completion(flctl);
674 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
675 }
676 
execmd_write_oob(struct mtd_info * mtd)677 static void execmd_write_oob(struct mtd_info *mtd)
678 {
679 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
680 	int page_addr = flctl->seqin_page_addr;
681 	int sector, page_sectors;
682 
683 	page_sectors = flctl->page_size ? 4 : 1;
684 
685 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
686 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
687 
688 	for (sector = 0; sector < page_sectors; sector++) {
689 		empty_fifo(flctl);
690 		set_addr(mtd, sector * 528 + 512, page_addr);
691 		writel(16, FLDTCNTR(flctl));	/* set read size */
692 
693 		start_translation(flctl);
694 		write_fiforeg(flctl, 16, 16 * sector);
695 		wait_completion(flctl);
696 	}
697 }
698 
flctl_cmdfunc(struct mtd_info * mtd,unsigned int command,int column,int page_addr)699 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
700 			int column, int page_addr)
701 {
702 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
703 	uint32_t read_cmd = 0;
704 
705 	pm_runtime_get_sync(&flctl->pdev->dev);
706 
707 	flctl->read_bytes = 0;
708 	if (command != NAND_CMD_PAGEPROG)
709 		flctl->index = 0;
710 
711 	switch (command) {
712 	case NAND_CMD_READ1:
713 	case NAND_CMD_READ0:
714 		if (flctl->hwecc) {
715 			/* read page with hwecc */
716 			execmd_read_page_sector(mtd, page_addr);
717 			break;
718 		}
719 		if (flctl->page_size)
720 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
721 				| command);
722 		else
723 			set_cmd_regs(mtd, command, command);
724 
725 		set_addr(mtd, 0, page_addr);
726 
727 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
728 		if (flctl->chip.options & NAND_BUSWIDTH_16)
729 			column >>= 1;
730 		flctl->index += column;
731 		goto read_normal_exit;
732 
733 	case NAND_CMD_READOOB:
734 		if (flctl->hwecc) {
735 			/* read page with hwecc */
736 			execmd_read_oob(mtd, page_addr);
737 			break;
738 		}
739 
740 		if (flctl->page_size) {
741 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
742 				| NAND_CMD_READ0);
743 			set_addr(mtd, mtd->writesize, page_addr);
744 		} else {
745 			set_cmd_regs(mtd, command, command);
746 			set_addr(mtd, 0, page_addr);
747 		}
748 		flctl->read_bytes = mtd->oobsize;
749 		goto read_normal_exit;
750 
751 	case NAND_CMD_RNDOUT:
752 		if (flctl->hwecc)
753 			break;
754 
755 		if (flctl->page_size)
756 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
757 				| command);
758 		else
759 			set_cmd_regs(mtd, command, command);
760 
761 		set_addr(mtd, column, 0);
762 
763 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
764 		goto read_normal_exit;
765 
766 	case NAND_CMD_READID:
767 		set_cmd_regs(mtd, command, command);
768 
769 		/* READID is always performed using an 8-bit bus */
770 		if (flctl->chip.options & NAND_BUSWIDTH_16)
771 			column <<= 1;
772 		set_addr(mtd, column, 0);
773 
774 		flctl->read_bytes = 8;
775 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
776 		empty_fifo(flctl);
777 		start_translation(flctl);
778 		read_fiforeg(flctl, flctl->read_bytes, 0);
779 		wait_completion(flctl);
780 		break;
781 
782 	case NAND_CMD_ERASE1:
783 		flctl->erase1_page_addr = page_addr;
784 		break;
785 
786 	case NAND_CMD_ERASE2:
787 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
788 			(command << 8) | NAND_CMD_ERASE1);
789 		set_addr(mtd, -1, flctl->erase1_page_addr);
790 		start_translation(flctl);
791 		wait_completion(flctl);
792 		break;
793 
794 	case NAND_CMD_SEQIN:
795 		if (!flctl->page_size) {
796 			/* output read command */
797 			if (column >= mtd->writesize) {
798 				column -= mtd->writesize;
799 				read_cmd = NAND_CMD_READOOB;
800 			} else if (column < 256) {
801 				read_cmd = NAND_CMD_READ0;
802 			} else {
803 				column -= 256;
804 				read_cmd = NAND_CMD_READ1;
805 			}
806 		}
807 		flctl->seqin_column = column;
808 		flctl->seqin_page_addr = page_addr;
809 		flctl->seqin_read_cmd = read_cmd;
810 		break;
811 
812 	case NAND_CMD_PAGEPROG:
813 		empty_fifo(flctl);
814 		if (!flctl->page_size) {
815 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
816 					flctl->seqin_read_cmd);
817 			set_addr(mtd, -1, -1);
818 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
819 			start_translation(flctl);
820 			wait_completion(flctl);
821 		}
822 		if (flctl->hwecc) {
823 			/* write page with hwecc */
824 			if (flctl->seqin_column == mtd->writesize)
825 				execmd_write_oob(mtd);
826 			else if (!flctl->seqin_column)
827 				execmd_write_page_sector(mtd);
828 			else
829 				printk(KERN_ERR "Invalid address !?\n");
830 			break;
831 		}
832 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
833 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
834 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
835 		start_translation(flctl);
836 		write_fiforeg(flctl, flctl->index, 0);
837 		wait_completion(flctl);
838 		break;
839 
840 	case NAND_CMD_STATUS:
841 		set_cmd_regs(mtd, command, command);
842 		set_addr(mtd, -1, -1);
843 
844 		flctl->read_bytes = 1;
845 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
846 		start_translation(flctl);
847 		read_datareg(flctl, 0); /* read and end */
848 		break;
849 
850 	case NAND_CMD_RESET:
851 		set_cmd_regs(mtd, command, command);
852 		set_addr(mtd, -1, -1);
853 
854 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
855 		start_translation(flctl);
856 		wait_completion(flctl);
857 		break;
858 
859 	default:
860 		break;
861 	}
862 	goto runtime_exit;
863 
864 read_normal_exit:
865 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
866 	empty_fifo(flctl);
867 	start_translation(flctl);
868 	read_fiforeg(flctl, flctl->read_bytes, 0);
869 	wait_completion(flctl);
870 runtime_exit:
871 	pm_runtime_put_sync(&flctl->pdev->dev);
872 	return;
873 }
874 
flctl_select_chip(struct mtd_info * mtd,int chipnr)875 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
876 {
877 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
878 	int ret;
879 
880 	switch (chipnr) {
881 	case -1:
882 		flctl->flcmncr_base &= ~CE0_ENABLE;
883 
884 		pm_runtime_get_sync(&flctl->pdev->dev);
885 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
886 
887 		if (flctl->qos_request) {
888 			dev_pm_qos_remove_request(&flctl->pm_qos);
889 			flctl->qos_request = 0;
890 		}
891 
892 		pm_runtime_put_sync(&flctl->pdev->dev);
893 		break;
894 	case 0:
895 		flctl->flcmncr_base |= CE0_ENABLE;
896 
897 		if (!flctl->qos_request) {
898 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
899 							&flctl->pm_qos,
900 							DEV_PM_QOS_LATENCY,
901 							100);
902 			if (ret < 0)
903 				dev_err(&flctl->pdev->dev,
904 					"PM QoS request failed: %d\n", ret);
905 			flctl->qos_request = 1;
906 		}
907 
908 		if (flctl->holden) {
909 			pm_runtime_get_sync(&flctl->pdev->dev);
910 			writel(HOLDEN, FLHOLDCR(flctl));
911 			pm_runtime_put_sync(&flctl->pdev->dev);
912 		}
913 		break;
914 	default:
915 		BUG();
916 	}
917 }
918 
flctl_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)919 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
920 {
921 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
922 
923 	memcpy(&flctl->done_buff[flctl->index], buf, len);
924 	flctl->index += len;
925 }
926 
flctl_read_byte(struct mtd_info * mtd)927 static uint8_t flctl_read_byte(struct mtd_info *mtd)
928 {
929 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
930 	uint8_t data;
931 
932 	data = flctl->done_buff[flctl->index];
933 	flctl->index++;
934 	return data;
935 }
936 
flctl_read_word(struct mtd_info * mtd)937 static uint16_t flctl_read_word(struct mtd_info *mtd)
938 {
939 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
940 	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
941 
942 	flctl->index += 2;
943 	return *buf;
944 }
945 
flctl_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)946 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
947 {
948 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
949 
950 	memcpy(buf, &flctl->done_buff[flctl->index], len);
951 	flctl->index += len;
952 }
953 
flctl_chip_init_tail(struct mtd_info * mtd)954 static int flctl_chip_init_tail(struct mtd_info *mtd)
955 {
956 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
957 	struct nand_chip *chip = &flctl->chip;
958 
959 	if (mtd->writesize == 512) {
960 		flctl->page_size = 0;
961 		if (chip->chipsize > (32 << 20)) {
962 			/* big than 32MB */
963 			flctl->rw_ADRCNT = ADRCNT_4;
964 			flctl->erase_ADRCNT = ADRCNT_3;
965 		} else if (chip->chipsize > (2 << 16)) {
966 			/* big than 128KB */
967 			flctl->rw_ADRCNT = ADRCNT_3;
968 			flctl->erase_ADRCNT = ADRCNT_2;
969 		} else {
970 			flctl->rw_ADRCNT = ADRCNT_2;
971 			flctl->erase_ADRCNT = ADRCNT_1;
972 		}
973 	} else {
974 		flctl->page_size = 1;
975 		if (chip->chipsize > (128 << 20)) {
976 			/* big than 128MB */
977 			flctl->rw_ADRCNT = ADRCNT2_E;
978 			flctl->erase_ADRCNT = ADRCNT_3;
979 		} else if (chip->chipsize > (8 << 16)) {
980 			/* big than 512KB */
981 			flctl->rw_ADRCNT = ADRCNT_4;
982 			flctl->erase_ADRCNT = ADRCNT_2;
983 		} else {
984 			flctl->rw_ADRCNT = ADRCNT_3;
985 			flctl->erase_ADRCNT = ADRCNT_1;
986 		}
987 	}
988 
989 	if (flctl->hwecc) {
990 		if (mtd->writesize == 512) {
991 			chip->ecc.layout = &flctl_4secc_oob_16;
992 			chip->badblock_pattern = &flctl_4secc_smallpage;
993 		} else {
994 			chip->ecc.layout = &flctl_4secc_oob_64;
995 			chip->badblock_pattern = &flctl_4secc_largepage;
996 		}
997 
998 		chip->ecc.size = 512;
999 		chip->ecc.bytes = 10;
1000 		chip->ecc.strength = 4;
1001 		chip->ecc.read_page = flctl_read_page_hwecc;
1002 		chip->ecc.write_page = flctl_write_page_hwecc;
1003 		chip->ecc.mode = NAND_ECC_HW;
1004 
1005 		/* 4 symbols ECC enabled */
1006 		flctl->flcmncr_base |= _4ECCEN;
1007 	} else {
1008 		chip->ecc.mode = NAND_ECC_SOFT;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
flctl_handle_flste(int irq,void * dev_id)1014 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1015 {
1016 	struct sh_flctl *flctl = dev_id;
1017 
1018 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1019 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1020 
1021 	return IRQ_HANDLED;
1022 }
1023 
1024 #ifdef CONFIG_OF
1025 struct flctl_soc_config {
1026 	unsigned long flcmncr_val;
1027 	unsigned has_hwecc:1;
1028 	unsigned use_holden:1;
1029 };
1030 
1031 static struct flctl_soc_config flctl_sh7372_config = {
1032 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1033 	.has_hwecc = 1,
1034 	.use_holden = 1,
1035 };
1036 
1037 static const struct of_device_id of_flctl_match[] = {
1038 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1039 				.data = &flctl_sh7372_config },
1040 	{},
1041 };
1042 MODULE_DEVICE_TABLE(of, of_flctl_match);
1043 
flctl_parse_dt(struct device * dev)1044 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1045 {
1046 	const struct of_device_id *match;
1047 	struct flctl_soc_config *config;
1048 	struct sh_flctl_platform_data *pdata;
1049 	struct device_node *dn = dev->of_node;
1050 	int ret;
1051 
1052 	match = of_match_device(of_flctl_match, dev);
1053 	if (match)
1054 		config = (struct flctl_soc_config *)match->data;
1055 	else {
1056 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1057 		return NULL;
1058 	}
1059 
1060 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1061 								GFP_KERNEL);
1062 	if (!pdata) {
1063 		dev_err(dev, "%s: failed to allocate config data\n", __func__);
1064 		return NULL;
1065 	}
1066 
1067 	/* set SoC specific options */
1068 	pdata->flcmncr_val = config->flcmncr_val;
1069 	pdata->has_hwecc = config->has_hwecc;
1070 	pdata->use_holden = config->use_holden;
1071 
1072 	/* parse user defined options */
1073 	ret = of_get_nand_bus_width(dn);
1074 	if (ret == 16)
1075 		pdata->flcmncr_val |= SEL_16BIT;
1076 	else if (ret != 8) {
1077 		dev_err(dev, "%s: invalid bus width\n", __func__);
1078 		return NULL;
1079 	}
1080 
1081 	return pdata;
1082 }
1083 #else /* CONFIG_OF */
flctl_parse_dt(struct device * dev)1084 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1085 {
1086 	return NULL;
1087 }
1088 #endif /* CONFIG_OF */
1089 
flctl_probe(struct platform_device * pdev)1090 static int flctl_probe(struct platform_device *pdev)
1091 {
1092 	struct resource *res;
1093 	struct sh_flctl *flctl;
1094 	struct mtd_info *flctl_mtd;
1095 	struct nand_chip *nand;
1096 	struct sh_flctl_platform_data *pdata;
1097 	int ret = -ENXIO;
1098 	int irq;
1099 	struct mtd_part_parser_data ppdata = {};
1100 
1101 	flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
1102 	if (!flctl) {
1103 		dev_err(&pdev->dev, "failed to allocate driver data\n");
1104 		return -ENOMEM;
1105 	}
1106 
1107 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108 	if (!res) {
1109 		dev_err(&pdev->dev, "failed to get I/O memory\n");
1110 		goto err_iomap;
1111 	}
1112 
1113 	flctl->reg = ioremap(res->start, resource_size(res));
1114 	if (flctl->reg == NULL) {
1115 		dev_err(&pdev->dev, "failed to remap I/O memory\n");
1116 		goto err_iomap;
1117 	}
1118 
1119 	irq = platform_get_irq(pdev, 0);
1120 	if (irq < 0) {
1121 		dev_err(&pdev->dev, "failed to get flste irq data\n");
1122 		goto err_flste;
1123 	}
1124 
1125 	ret = request_irq(irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl);
1126 	if (ret) {
1127 		dev_err(&pdev->dev, "request interrupt failed.\n");
1128 		goto err_flste;
1129 	}
1130 
1131 	if (pdev->dev.of_node)
1132 		pdata = flctl_parse_dt(&pdev->dev);
1133 	else
1134 		pdata = pdev->dev.platform_data;
1135 
1136 	if (!pdata) {
1137 		dev_err(&pdev->dev, "no setup data defined\n");
1138 		ret = -EINVAL;
1139 		goto err_pdata;
1140 	}
1141 
1142 	platform_set_drvdata(pdev, flctl);
1143 	flctl_mtd = &flctl->mtd;
1144 	nand = &flctl->chip;
1145 	flctl_mtd->priv = nand;
1146 	flctl->pdev = pdev;
1147 	flctl->hwecc = pdata->has_hwecc;
1148 	flctl->holden = pdata->use_holden;
1149 	flctl->flcmncr_base = pdata->flcmncr_val;
1150 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1151 
1152 	/* Set address of hardware control function */
1153 	/* 20 us command delay time */
1154 	nand->chip_delay = 20;
1155 
1156 	nand->read_byte = flctl_read_byte;
1157 	nand->write_buf = flctl_write_buf;
1158 	nand->read_buf = flctl_read_buf;
1159 	nand->select_chip = flctl_select_chip;
1160 	nand->cmdfunc = flctl_cmdfunc;
1161 
1162 	if (pdata->flcmncr_val & SEL_16BIT) {
1163 		nand->options |= NAND_BUSWIDTH_16;
1164 		nand->read_word = flctl_read_word;
1165 	}
1166 
1167 	pm_runtime_enable(&pdev->dev);
1168 	pm_runtime_resume(&pdev->dev);
1169 
1170 	flctl_setup_dma(flctl);
1171 
1172 	ret = nand_scan_ident(flctl_mtd, 1, NULL);
1173 	if (ret)
1174 		goto err_chip;
1175 
1176 	ret = flctl_chip_init_tail(flctl_mtd);
1177 	if (ret)
1178 		goto err_chip;
1179 
1180 	ret = nand_scan_tail(flctl_mtd);
1181 	if (ret)
1182 		goto err_chip;
1183 
1184 	ppdata.of_node = pdev->dev.of_node;
1185 	ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts,
1186 			pdata->nr_parts);
1187 
1188 	return 0;
1189 
1190 err_chip:
1191 	flctl_release_dma(flctl);
1192 	pm_runtime_disable(&pdev->dev);
1193 err_pdata:
1194 	free_irq(irq, flctl);
1195 err_flste:
1196 	iounmap(flctl->reg);
1197 err_iomap:
1198 	kfree(flctl);
1199 	return ret;
1200 }
1201 
flctl_remove(struct platform_device * pdev)1202 static int flctl_remove(struct platform_device *pdev)
1203 {
1204 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1205 
1206 	flctl_release_dma(flctl);
1207 	nand_release(&flctl->mtd);
1208 	pm_runtime_disable(&pdev->dev);
1209 	free_irq(platform_get_irq(pdev, 0), flctl);
1210 	iounmap(flctl->reg);
1211 	kfree(flctl);
1212 
1213 	return 0;
1214 }
1215 
1216 static struct platform_driver flctl_driver = {
1217 	.remove		= flctl_remove,
1218 	.driver = {
1219 		.name	= "sh_flctl",
1220 		.owner	= THIS_MODULE,
1221 		.of_match_table = of_match_ptr(of_flctl_match),
1222 	},
1223 };
1224 
1225 module_platform_driver_probe(flctl_driver, flctl_probe);
1226 
1227 MODULE_LICENSE("GPL");
1228 MODULE_AUTHOR("Yoshihiro Shimoda");
1229 MODULE_DESCRIPTION("SuperH FLCTL driver");
1230 MODULE_ALIAS("platform:sh_flctl");
1231