• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 
39 #include <linux/can.h>
40 #include <linux/can/dev.h>
41 #include <linux/can/error.h>
42 #include <linux/can/led.h>
43 
44 #include "c_can.h"
45 
46 /* Number of interface registers */
47 #define IF_ENUM_REG_LEN		11
48 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49 
50 /* control extension register D_CAN specific */
51 #define CONTROL_EX_PDR		BIT(8)
52 
53 /* control register */
54 #define CONTROL_TEST		BIT(7)
55 #define CONTROL_CCE		BIT(6)
56 #define CONTROL_DISABLE_AR	BIT(5)
57 #define CONTROL_ENABLE_AR	(0 << 5)
58 #define CONTROL_EIE		BIT(3)
59 #define CONTROL_SIE		BIT(2)
60 #define CONTROL_IE		BIT(1)
61 #define CONTROL_INIT		BIT(0)
62 
63 /* test register */
64 #define TEST_RX			BIT(7)
65 #define TEST_TX1		BIT(6)
66 #define TEST_TX2		BIT(5)
67 #define TEST_LBACK		BIT(4)
68 #define TEST_SILENT		BIT(3)
69 #define TEST_BASIC		BIT(2)
70 
71 /* status register */
72 #define STATUS_PDA		BIT(10)
73 #define STATUS_BOFF		BIT(7)
74 #define STATUS_EWARN		BIT(6)
75 #define STATUS_EPASS		BIT(5)
76 #define STATUS_RXOK		BIT(4)
77 #define STATUS_TXOK		BIT(3)
78 
79 /* error counter register */
80 #define ERR_CNT_TEC_MASK	0xff
81 #define ERR_CNT_TEC_SHIFT	0
82 #define ERR_CNT_REC_SHIFT	8
83 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
84 #define ERR_CNT_RP_SHIFT	15
85 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
86 
87 /* bit-timing register */
88 #define BTR_BRP_MASK		0x3f
89 #define BTR_BRP_SHIFT		0
90 #define BTR_SJW_SHIFT		6
91 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
92 #define BTR_TSEG1_SHIFT		8
93 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
94 #define BTR_TSEG2_SHIFT		12
95 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
96 
97 /* brp extension register */
98 #define BRP_EXT_BRPE_MASK	0x0f
99 #define BRP_EXT_BRPE_SHIFT	0
100 
101 /* IFx command request */
102 #define IF_COMR_BUSY		BIT(15)
103 
104 /* IFx command mask */
105 #define IF_COMM_WR		BIT(7)
106 #define IF_COMM_MASK		BIT(6)
107 #define IF_COMM_ARB		BIT(5)
108 #define IF_COMM_CONTROL		BIT(4)
109 #define IF_COMM_CLR_INT_PND	BIT(3)
110 #define IF_COMM_TXRQST		BIT(2)
111 #define IF_COMM_DATAA		BIT(1)
112 #define IF_COMM_DATAB		BIT(0)
113 #define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
114 				IF_COMM_CONTROL | IF_COMM_TXRQST | \
115 				IF_COMM_DATAA | IF_COMM_DATAB)
116 
117 /* IFx arbitration */
118 #define IF_ARB_MSGVAL		BIT(15)
119 #define IF_ARB_MSGXTD		BIT(14)
120 #define IF_ARB_TRANSMIT		BIT(13)
121 
122 /* IFx message control */
123 #define IF_MCONT_NEWDAT		BIT(15)
124 #define IF_MCONT_MSGLST		BIT(14)
125 #define IF_MCONT_CLR_MSGLST	(0 << 14)
126 #define IF_MCONT_INTPND		BIT(13)
127 #define IF_MCONT_UMASK		BIT(12)
128 #define IF_MCONT_TXIE		BIT(11)
129 #define IF_MCONT_RXIE		BIT(10)
130 #define IF_MCONT_RMTEN		BIT(9)
131 #define IF_MCONT_TXRQST		BIT(8)
132 #define IF_MCONT_EOB		BIT(7)
133 #define IF_MCONT_DLC_MASK	0xf
134 
135 /*
136  * IFx register masks:
137  * allow easy operation on 16-bit registers when the
138  * argument is 32-bit instead
139  */
140 #define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
141 #define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
142 
143 /* message object split */
144 #define C_CAN_NO_OF_OBJECTS	32
145 #define C_CAN_MSG_OBJ_RX_NUM	16
146 #define C_CAN_MSG_OBJ_TX_NUM	16
147 
148 #define C_CAN_MSG_OBJ_RX_FIRST	1
149 #define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
150 				C_CAN_MSG_OBJ_RX_NUM - 1)
151 
152 #define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
153 #define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
154 				C_CAN_MSG_OBJ_TX_NUM - 1)
155 
156 #define C_CAN_MSG_OBJ_RX_SPLIT	9
157 #define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
158 
159 #define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
160 #define RECEIVE_OBJECT_BITS	0x0000ffff
161 
162 /* status interrupt */
163 #define STATUS_INTERRUPT	0x8000
164 
165 /* global interrupt masks */
166 #define ENABLE_ALL_INTERRUPTS	1
167 #define DISABLE_ALL_INTERRUPTS	0
168 
169 /* minimum timeout for checking BUSY status */
170 #define MIN_TIMEOUT_VALUE	6
171 
172 /* Wait for ~1 sec for INIT bit */
173 #define INIT_WAIT_MS		1000
174 
175 /* napi related */
176 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
177 
178 /* c_can lec values */
179 enum c_can_lec_type {
180 	LEC_NO_ERROR = 0,
181 	LEC_STUFF_ERROR,
182 	LEC_FORM_ERROR,
183 	LEC_ACK_ERROR,
184 	LEC_BIT1_ERROR,
185 	LEC_BIT0_ERROR,
186 	LEC_CRC_ERROR,
187 	LEC_UNUSED,
188 };
189 
190 /*
191  * c_can error types:
192  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
193  */
194 enum c_can_bus_error_types {
195 	C_CAN_NO_ERROR = 0,
196 	C_CAN_BUS_OFF,
197 	C_CAN_ERROR_WARNING,
198 	C_CAN_ERROR_PASSIVE,
199 };
200 
201 static const struct can_bittiming_const c_can_bittiming_const = {
202 	.name = KBUILD_MODNAME,
203 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
204 	.tseg1_max = 16,
205 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
206 	.tseg2_max = 8,
207 	.sjw_max = 4,
208 	.brp_min = 1,
209 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
210 	.brp_inc = 1,
211 };
212 
c_can_pm_runtime_enable(const struct c_can_priv * priv)213 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
214 {
215 	if (priv->device)
216 		pm_runtime_enable(priv->device);
217 }
218 
c_can_pm_runtime_disable(const struct c_can_priv * priv)219 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
220 {
221 	if (priv->device)
222 		pm_runtime_disable(priv->device);
223 }
224 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)225 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
226 {
227 	if (priv->device)
228 		pm_runtime_get_sync(priv->device);
229 }
230 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)231 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
232 {
233 	if (priv->device)
234 		pm_runtime_put_sync(priv->device);
235 }
236 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)237 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
238 {
239 	if (priv->raminit)
240 		priv->raminit(priv, enable);
241 }
242 
get_tx_next_msg_obj(const struct c_can_priv * priv)243 static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
244 {
245 	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
246 			C_CAN_MSG_OBJ_TX_FIRST;
247 }
248 
get_tx_echo_msg_obj(const struct c_can_priv * priv)249 static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
250 {
251 	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
252 			C_CAN_MSG_OBJ_TX_FIRST;
253 }
254 
c_can_read_reg32(struct c_can_priv * priv,enum reg index)255 static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
256 {
257 	u32 val = priv->read_reg(priv, index);
258 	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
259 	return val;
260 }
261 
c_can_enable_all_interrupts(struct c_can_priv * priv,int enable)262 static void c_can_enable_all_interrupts(struct c_can_priv *priv,
263 						int enable)
264 {
265 	unsigned int cntrl_save = priv->read_reg(priv,
266 						C_CAN_CTRL_REG);
267 
268 	if (enable)
269 		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
270 	else
271 		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
272 
273 	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
274 }
275 
c_can_msg_obj_is_busy(struct c_can_priv * priv,int iface)276 static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
277 {
278 	int count = MIN_TIMEOUT_VALUE;
279 
280 	while (count && priv->read_reg(priv,
281 				C_CAN_IFACE(COMREQ_REG, iface)) &
282 				IF_COMR_BUSY) {
283 		count--;
284 		udelay(1);
285 	}
286 
287 	if (!count)
288 		return 1;
289 
290 	return 0;
291 }
292 
c_can_object_get(struct net_device * dev,int iface,int objno,int mask)293 static inline void c_can_object_get(struct net_device *dev,
294 					int iface, int objno, int mask)
295 {
296 	struct c_can_priv *priv = netdev_priv(dev);
297 
298 	/*
299 	 * As per specs, after writting the message object number in the
300 	 * IF command request register the transfer b/w interface
301 	 * register and message RAM must be complete in 6 CAN-CLK
302 	 * period.
303 	 */
304 	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
305 			IFX_WRITE_LOW_16BIT(mask));
306 	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
307 			IFX_WRITE_LOW_16BIT(objno));
308 
309 	if (c_can_msg_obj_is_busy(priv, iface))
310 		netdev_err(dev, "timed out in object get\n");
311 }
312 
c_can_object_put(struct net_device * dev,int iface,int objno,int mask)313 static inline void c_can_object_put(struct net_device *dev,
314 					int iface, int objno, int mask)
315 {
316 	struct c_can_priv *priv = netdev_priv(dev);
317 
318 	/*
319 	 * As per specs, after writting the message object number in the
320 	 * IF command request register the transfer b/w interface
321 	 * register and message RAM must be complete in 6 CAN-CLK
322 	 * period.
323 	 */
324 	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
325 			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
326 	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
327 			IFX_WRITE_LOW_16BIT(objno));
328 
329 	if (c_can_msg_obj_is_busy(priv, iface))
330 		netdev_err(dev, "timed out in object put\n");
331 }
332 
c_can_write_msg_object(struct net_device * dev,int iface,struct can_frame * frame,int objno)333 static void c_can_write_msg_object(struct net_device *dev,
334 			int iface, struct can_frame *frame, int objno)
335 {
336 	int i;
337 	u16 flags = 0;
338 	unsigned int id;
339 	struct c_can_priv *priv = netdev_priv(dev);
340 
341 	if (!(frame->can_id & CAN_RTR_FLAG))
342 		flags |= IF_ARB_TRANSMIT;
343 
344 	if (frame->can_id & CAN_EFF_FLAG) {
345 		id = frame->can_id & CAN_EFF_MASK;
346 		flags |= IF_ARB_MSGXTD;
347 	} else
348 		id = ((frame->can_id & CAN_SFF_MASK) << 18);
349 
350 	flags |= IF_ARB_MSGVAL;
351 
352 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
353 				IFX_WRITE_LOW_16BIT(id));
354 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
355 				IFX_WRITE_HIGH_16BIT(id));
356 
357 	for (i = 0; i < frame->can_dlc; i += 2) {
358 		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
359 				frame->data[i] | (frame->data[i + 1] << 8));
360 	}
361 
362 	/* enable interrupt for this message object */
363 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
364 			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
365 			frame->can_dlc);
366 	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
367 }
368 
c_can_mark_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)369 static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
370 						int iface, int ctrl_mask,
371 						int obj)
372 {
373 	struct c_can_priv *priv = netdev_priv(dev);
374 
375 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
376 			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
377 	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
378 
379 }
380 
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask)381 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
382 						int iface,
383 						int ctrl_mask)
384 {
385 	int i;
386 	struct c_can_priv *priv = netdev_priv(dev);
387 
388 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
389 		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
390 				ctrl_mask & ~(IF_MCONT_MSGLST |
391 					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
392 		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
393 	}
394 }
395 
c_can_activate_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)396 static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
397 						int iface, int ctrl_mask,
398 						int obj)
399 {
400 	struct c_can_priv *priv = netdev_priv(dev);
401 
402 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
403 			ctrl_mask & ~(IF_MCONT_MSGLST |
404 				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
405 	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
406 }
407 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno)408 static void c_can_handle_lost_msg_obj(struct net_device *dev,
409 					int iface, int objno)
410 {
411 	struct c_can_priv *priv = netdev_priv(dev);
412 	struct net_device_stats *stats = &dev->stats;
413 	struct sk_buff *skb;
414 	struct can_frame *frame;
415 
416 	netdev_err(dev, "msg lost in buffer %d\n", objno);
417 
418 	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
419 
420 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
421 			IF_MCONT_CLR_MSGLST);
422 
423 	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
424 
425 	/* create an error msg */
426 	skb = alloc_can_err_skb(dev, &frame);
427 	if (unlikely(!skb))
428 		return;
429 
430 	frame->can_id |= CAN_ERR_CRTL;
431 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
432 	stats->rx_errors++;
433 	stats->rx_over_errors++;
434 
435 	netif_receive_skb(skb);
436 }
437 
c_can_read_msg_object(struct net_device * dev,int iface,int ctrl)438 static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
439 {
440 	u16 flags, data;
441 	int i;
442 	unsigned int val;
443 	struct c_can_priv *priv = netdev_priv(dev);
444 	struct net_device_stats *stats = &dev->stats;
445 	struct sk_buff *skb;
446 	struct can_frame *frame;
447 
448 	skb = alloc_can_skb(dev, &frame);
449 	if (!skb) {
450 		stats->rx_dropped++;
451 		return -ENOMEM;
452 	}
453 
454 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
455 
456 	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
457 	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
458 		(flags << 16);
459 
460 	if (flags & IF_ARB_MSGXTD)
461 		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
462 	else
463 		frame->can_id = (val >> 18) & CAN_SFF_MASK;
464 
465 	if (flags & IF_ARB_TRANSMIT)
466 		frame->can_id |= CAN_RTR_FLAG;
467 	else {
468 		for (i = 0; i < frame->can_dlc; i += 2) {
469 			data = priv->read_reg(priv,
470 				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
471 			frame->data[i] = data;
472 			frame->data[i + 1] = data >> 8;
473 		}
474 	}
475 
476 	netif_receive_skb(skb);
477 
478 	stats->rx_packets++;
479 	stats->rx_bytes += frame->can_dlc;
480 
481 	can_led_event(dev, CAN_LED_EVENT_RX);
482 
483 	return 0;
484 }
485 
c_can_setup_receive_object(struct net_device * dev,int iface,int objno,unsigned int mask,unsigned int id,unsigned int mcont)486 static void c_can_setup_receive_object(struct net_device *dev, int iface,
487 					int objno, unsigned int mask,
488 					unsigned int id, unsigned int mcont)
489 {
490 	struct c_can_priv *priv = netdev_priv(dev);
491 
492 	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
493 			IFX_WRITE_LOW_16BIT(mask));
494 
495 	/* According to C_CAN documentation, the reserved bit
496 	 * in IFx_MASK2 register is fixed 1
497 	 */
498 	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
499 			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
500 
501 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
502 			IFX_WRITE_LOW_16BIT(id));
503 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
504 			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
505 
506 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
507 	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
508 
509 	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
510 			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
511 }
512 
c_can_inval_msg_object(struct net_device * dev,int iface,int objno)513 static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
514 {
515 	struct c_can_priv *priv = netdev_priv(dev);
516 
517 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
518 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
519 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
520 
521 	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
522 
523 	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
524 			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
525 }
526 
c_can_is_next_tx_obj_busy(struct c_can_priv * priv,int objno)527 static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
528 {
529 	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
530 
531 	/*
532 	 * as transmission request register's bit n-1 corresponds to
533 	 * message object n, we need to handle the same properly.
534 	 */
535 	if (val & (1 << (objno - 1)))
536 		return 1;
537 
538 	return 0;
539 }
540 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)541 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
542 					struct net_device *dev)
543 {
544 	u32 msg_obj_no;
545 	struct c_can_priv *priv = netdev_priv(dev);
546 	struct can_frame *frame = (struct can_frame *)skb->data;
547 
548 	if (can_dropped_invalid_skb(dev, skb))
549 		return NETDEV_TX_OK;
550 
551 	msg_obj_no = get_tx_next_msg_obj(priv);
552 
553 	/* prepare message object for transmission */
554 	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
555 	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
556 
557 	/*
558 	 * we have to stop the queue in case of a wrap around or
559 	 * if the next TX message object is still in use
560 	 */
561 	priv->tx_next++;
562 	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
563 			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
564 		netif_stop_queue(dev);
565 
566 	return NETDEV_TX_OK;
567 }
568 
c_can_set_bittiming(struct net_device * dev)569 static int c_can_set_bittiming(struct net_device *dev)
570 {
571 	unsigned int reg_btr, reg_brpe, ctrl_save;
572 	u8 brp, brpe, sjw, tseg1, tseg2;
573 	u32 ten_bit_brp;
574 	struct c_can_priv *priv = netdev_priv(dev);
575 	const struct can_bittiming *bt = &priv->can.bittiming;
576 
577 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
578 	ten_bit_brp = bt->brp - 1;
579 	brp = ten_bit_brp & BTR_BRP_MASK;
580 	brpe = ten_bit_brp >> 6;
581 
582 	sjw = bt->sjw - 1;
583 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
584 	tseg2 = bt->phase_seg2 - 1;
585 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
586 			(tseg2 << BTR_TSEG2_SHIFT);
587 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
588 
589 	netdev_info(dev,
590 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
591 
592 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
593 	priv->write_reg(priv, C_CAN_CTRL_REG,
594 			ctrl_save | CONTROL_CCE | CONTROL_INIT);
595 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
596 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
597 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
598 
599 	return 0;
600 }
601 
602 /*
603  * Configure C_CAN message objects for Tx and Rx purposes:
604  * C_CAN provides a total of 32 message objects that can be configured
605  * either for Tx or Rx purposes. Here the first 16 message objects are used as
606  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
607  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
608  * See user guide document for further details on configuring message
609  * objects.
610  */
c_can_configure_msg_objects(struct net_device * dev)611 static void c_can_configure_msg_objects(struct net_device *dev)
612 {
613 	int i;
614 
615 	/* first invalidate all message objects */
616 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
617 		c_can_inval_msg_object(dev, 0, i);
618 
619 	/* setup receive message objects */
620 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
621 		c_can_setup_receive_object(dev, 0, i, 0, 0,
622 			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
623 
624 	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
625 			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
626 }
627 
628 /*
629  * Configure C_CAN chip:
630  * - enable/disable auto-retransmission
631  * - set operating mode
632  * - configure message objects
633  */
c_can_chip_config(struct net_device * dev)634 static void c_can_chip_config(struct net_device *dev)
635 {
636 	struct c_can_priv *priv = netdev_priv(dev);
637 
638 	/* enable automatic retransmission */
639 	priv->write_reg(priv, C_CAN_CTRL_REG,
640 			CONTROL_ENABLE_AR);
641 
642 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
643 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
644 		/* loopback + silent mode : useful for hot self-test */
645 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
646 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
647 		priv->write_reg(priv, C_CAN_TEST_REG,
648 				TEST_LBACK | TEST_SILENT);
649 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
650 		/* loopback mode : useful for self-test function */
651 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
652 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
653 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
654 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
655 		/* silent mode : bus-monitoring mode */
656 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
657 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
658 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
659 	} else
660 		/* normal mode*/
661 		priv->write_reg(priv, C_CAN_CTRL_REG,
662 				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
663 
664 	/* configure message objects */
665 	c_can_configure_msg_objects(dev);
666 
667 	/* set a `lec` value so that we can check for updates later */
668 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
669 
670 	/* set bittiming params */
671 	c_can_set_bittiming(dev);
672 }
673 
c_can_start(struct net_device * dev)674 static void c_can_start(struct net_device *dev)
675 {
676 	struct c_can_priv *priv = netdev_priv(dev);
677 
678 	/* basic c_can configuration */
679 	c_can_chip_config(dev);
680 
681 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
682 
683 	/* reset tx helper pointers */
684 	priv->tx_next = priv->tx_echo = 0;
685 
686 	/* enable status change, error and module interrupts */
687 	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
688 }
689 
c_can_stop(struct net_device * dev)690 static void c_can_stop(struct net_device *dev)
691 {
692 	struct c_can_priv *priv = netdev_priv(dev);
693 
694 	/* disable all interrupts */
695 	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
696 
697 	/* set the state as STOPPED */
698 	priv->can.state = CAN_STATE_STOPPED;
699 }
700 
c_can_set_mode(struct net_device * dev,enum can_mode mode)701 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
702 {
703 	switch (mode) {
704 	case CAN_MODE_START:
705 		c_can_start(dev);
706 		netif_wake_queue(dev);
707 		break;
708 	default:
709 		return -EOPNOTSUPP;
710 	}
711 
712 	return 0;
713 }
714 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)715 static int c_can_get_berr_counter(const struct net_device *dev,
716 					struct can_berr_counter *bec)
717 {
718 	unsigned int reg_err_counter;
719 	struct c_can_priv *priv = netdev_priv(dev);
720 
721 	c_can_pm_runtime_get_sync(priv);
722 
723 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
724 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
725 				ERR_CNT_REC_SHIFT;
726 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
727 
728 	c_can_pm_runtime_put_sync(priv);
729 
730 	return 0;
731 }
732 
733 /*
734  * theory of operation:
735  *
736  * priv->tx_echo holds the number of the oldest can_frame put for
737  * transmission into the hardware, but not yet ACKed by the CAN tx
738  * complete IRQ.
739  *
740  * We iterate from priv->tx_echo to priv->tx_next and check if the
741  * packet has been transmitted, echo it back to the CAN framework.
742  * If we discover a not yet transmitted packet, stop looking for more.
743  */
c_can_do_tx(struct net_device * dev)744 static void c_can_do_tx(struct net_device *dev)
745 {
746 	u32 val;
747 	u32 msg_obj_no;
748 	struct c_can_priv *priv = netdev_priv(dev);
749 	struct net_device_stats *stats = &dev->stats;
750 
751 	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
752 		msg_obj_no = get_tx_echo_msg_obj(priv);
753 		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
754 		if (!(val & (1 << (msg_obj_no - 1)))) {
755 			can_get_echo_skb(dev,
756 					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
757 			stats->tx_bytes += priv->read_reg(priv,
758 					C_CAN_IFACE(MSGCTRL_REG, 0))
759 					& IF_MCONT_DLC_MASK;
760 			stats->tx_packets++;
761 			can_led_event(dev, CAN_LED_EVENT_TX);
762 			c_can_inval_msg_object(dev, 0, msg_obj_no);
763 		} else {
764 			break;
765 		}
766 	}
767 
768 	/* restart queue if wrap-up or if queue stalled on last pkt */
769 	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
770 			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
771 		netif_wake_queue(dev);
772 }
773 
774 /*
775  * theory of operation:
776  *
777  * c_can core saves a received CAN message into the first free message
778  * object it finds free (starting with the lowest). Bits NEWDAT and
779  * INTPND are set for this message object indicating that a new message
780  * has arrived. To work-around this issue, we keep two groups of message
781  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
782  *
783  * To ensure in-order frame reception we use the following
784  * approach while re-activating a message object to receive further
785  * frames:
786  * - if the current message object number is lower than
787  *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
788  *   the INTPND bit.
789  * - if the current message object number is equal to
790  *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
791  *   receive message objects.
792  * - if the current message object number is greater than
793  *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
794  *   only this message object.
795  */
c_can_do_rx_poll(struct net_device * dev,int quota)796 static int c_can_do_rx_poll(struct net_device *dev, int quota)
797 {
798 	u32 num_rx_pkts = 0;
799 	unsigned int msg_obj, msg_ctrl_save;
800 	struct c_can_priv *priv = netdev_priv(dev);
801 	u32 val = c_can_read_reg32(priv, C_CAN_INTPND1_REG);
802 
803 	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
804 			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
805 			val = c_can_read_reg32(priv, C_CAN_INTPND1_REG),
806 			msg_obj++) {
807 		/*
808 		 * as interrupt pending register's bit n-1 corresponds to
809 		 * message object n, we need to handle the same properly.
810 		 */
811 		if (val & (1 << (msg_obj - 1))) {
812 			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
813 					~IF_COMM_TXRQST);
814 			msg_ctrl_save = priv->read_reg(priv,
815 					C_CAN_IFACE(MSGCTRL_REG, 0));
816 
817 			if (msg_ctrl_save & IF_MCONT_EOB)
818 				return num_rx_pkts;
819 
820 			if (msg_ctrl_save & IF_MCONT_MSGLST) {
821 				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
822 				num_rx_pkts++;
823 				quota--;
824 				continue;
825 			}
826 
827 			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
828 				continue;
829 
830 			/* read the data from the message object */
831 			c_can_read_msg_object(dev, 0, msg_ctrl_save);
832 
833 			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
834 				c_can_mark_rx_msg_obj(dev, 0,
835 						msg_ctrl_save, msg_obj);
836 			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
837 				/* activate this msg obj */
838 				c_can_activate_rx_msg_obj(dev, 0,
839 						msg_ctrl_save, msg_obj);
840 			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
841 				/* activate all lower message objects */
842 				c_can_activate_all_lower_rx_msg_obj(dev,
843 						0, msg_ctrl_save);
844 
845 			num_rx_pkts++;
846 			quota--;
847 		}
848 	}
849 
850 	return num_rx_pkts;
851 }
852 
c_can_has_and_handle_berr(struct c_can_priv * priv)853 static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
854 {
855 	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
856 		(priv->current_status & LEC_UNUSED);
857 }
858 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)859 static int c_can_handle_state_change(struct net_device *dev,
860 				enum c_can_bus_error_types error_type)
861 {
862 	unsigned int reg_err_counter;
863 	unsigned int rx_err_passive;
864 	struct c_can_priv *priv = netdev_priv(dev);
865 	struct net_device_stats *stats = &dev->stats;
866 	struct can_frame *cf;
867 	struct sk_buff *skb;
868 	struct can_berr_counter bec;
869 
870 	/* propagate the error condition to the CAN stack */
871 	skb = alloc_can_err_skb(dev, &cf);
872 	if (unlikely(!skb))
873 		return 0;
874 
875 	c_can_get_berr_counter(dev, &bec);
876 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
877 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
878 				ERR_CNT_RP_SHIFT;
879 
880 	switch (error_type) {
881 	case C_CAN_ERROR_WARNING:
882 		/* error warning state */
883 		priv->can.can_stats.error_warning++;
884 		priv->can.state = CAN_STATE_ERROR_WARNING;
885 		cf->can_id |= CAN_ERR_CRTL;
886 		cf->data[1] = (bec.txerr > bec.rxerr) ?
887 			CAN_ERR_CRTL_TX_WARNING :
888 			CAN_ERR_CRTL_RX_WARNING;
889 		cf->data[6] = bec.txerr;
890 		cf->data[7] = bec.rxerr;
891 
892 		break;
893 	case C_CAN_ERROR_PASSIVE:
894 		/* error passive state */
895 		priv->can.can_stats.error_passive++;
896 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
897 		cf->can_id |= CAN_ERR_CRTL;
898 		if (rx_err_passive)
899 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
900 		if (bec.txerr > 127)
901 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
902 
903 		cf->data[6] = bec.txerr;
904 		cf->data[7] = bec.rxerr;
905 		break;
906 	case C_CAN_BUS_OFF:
907 		/* bus-off state */
908 		priv->can.state = CAN_STATE_BUS_OFF;
909 		cf->can_id |= CAN_ERR_BUSOFF;
910 		/*
911 		 * disable all interrupts in bus-off mode to ensure that
912 		 * the CPU is not hogged down
913 		 */
914 		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
915 		can_bus_off(dev);
916 		break;
917 	default:
918 		break;
919 	}
920 
921 	netif_receive_skb(skb);
922 	stats->rx_packets++;
923 	stats->rx_bytes += cf->can_dlc;
924 
925 	return 1;
926 }
927 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)928 static int c_can_handle_bus_err(struct net_device *dev,
929 				enum c_can_lec_type lec_type)
930 {
931 	struct c_can_priv *priv = netdev_priv(dev);
932 	struct net_device_stats *stats = &dev->stats;
933 	struct can_frame *cf;
934 	struct sk_buff *skb;
935 
936 	/*
937 	 * early exit if no lec update or no error.
938 	 * no lec update means that no CAN bus event has been detected
939 	 * since CPU wrote 0x7 value to status reg.
940 	 */
941 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
942 		return 0;
943 
944 	/* propagate the error condition to the CAN stack */
945 	skb = alloc_can_err_skb(dev, &cf);
946 	if (unlikely(!skb))
947 		return 0;
948 
949 	/*
950 	 * check for 'last error code' which tells us the
951 	 * type of the last error to occur on the CAN bus
952 	 */
953 
954 	/* common for all type of bus errors */
955 	priv->can.can_stats.bus_error++;
956 	stats->rx_errors++;
957 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
958 	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
959 
960 	switch (lec_type) {
961 	case LEC_STUFF_ERROR:
962 		netdev_dbg(dev, "stuff error\n");
963 		cf->data[2] |= CAN_ERR_PROT_STUFF;
964 		break;
965 	case LEC_FORM_ERROR:
966 		netdev_dbg(dev, "form error\n");
967 		cf->data[2] |= CAN_ERR_PROT_FORM;
968 		break;
969 	case LEC_ACK_ERROR:
970 		netdev_dbg(dev, "ack error\n");
971 		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
972 				CAN_ERR_PROT_LOC_ACK_DEL);
973 		break;
974 	case LEC_BIT1_ERROR:
975 		netdev_dbg(dev, "bit1 error\n");
976 		cf->data[2] |= CAN_ERR_PROT_BIT1;
977 		break;
978 	case LEC_BIT0_ERROR:
979 		netdev_dbg(dev, "bit0 error\n");
980 		cf->data[2] |= CAN_ERR_PROT_BIT0;
981 		break;
982 	case LEC_CRC_ERROR:
983 		netdev_dbg(dev, "CRC error\n");
984 		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
985 				CAN_ERR_PROT_LOC_CRC_DEL);
986 		break;
987 	default:
988 		break;
989 	}
990 
991 	/* set a `lec` value so that we can check for updates later */
992 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
993 
994 	netif_receive_skb(skb);
995 	stats->rx_packets++;
996 	stats->rx_bytes += cf->can_dlc;
997 
998 	return 1;
999 }
1000 
c_can_poll(struct napi_struct * napi,int quota)1001 static int c_can_poll(struct napi_struct *napi, int quota)
1002 {
1003 	u16 irqstatus;
1004 	int lec_type = 0;
1005 	int work_done = 0;
1006 	struct net_device *dev = napi->dev;
1007 	struct c_can_priv *priv = netdev_priv(dev);
1008 
1009 	irqstatus = priv->irqstatus;
1010 	if (!irqstatus)
1011 		goto end;
1012 
1013 	/* status events have the highest priority */
1014 	if (irqstatus == STATUS_INTERRUPT) {
1015 		priv->current_status = priv->read_reg(priv,
1016 					C_CAN_STS_REG);
1017 
1018 		/* handle Tx/Rx events */
1019 		if (priv->current_status & STATUS_TXOK)
1020 			priv->write_reg(priv, C_CAN_STS_REG,
1021 					priv->current_status & ~STATUS_TXOK);
1022 
1023 		if (priv->current_status & STATUS_RXOK)
1024 			priv->write_reg(priv, C_CAN_STS_REG,
1025 					priv->current_status & ~STATUS_RXOK);
1026 
1027 		/* handle state changes */
1028 		if ((priv->current_status & STATUS_EWARN) &&
1029 				(!(priv->last_status & STATUS_EWARN))) {
1030 			netdev_dbg(dev, "entered error warning state\n");
1031 			work_done += c_can_handle_state_change(dev,
1032 						C_CAN_ERROR_WARNING);
1033 		}
1034 		if ((priv->current_status & STATUS_EPASS) &&
1035 				(!(priv->last_status & STATUS_EPASS))) {
1036 			netdev_dbg(dev, "entered error passive state\n");
1037 			work_done += c_can_handle_state_change(dev,
1038 						C_CAN_ERROR_PASSIVE);
1039 		}
1040 		if ((priv->current_status & STATUS_BOFF) &&
1041 				(!(priv->last_status & STATUS_BOFF))) {
1042 			netdev_dbg(dev, "entered bus off state\n");
1043 			work_done += c_can_handle_state_change(dev,
1044 						C_CAN_BUS_OFF);
1045 		}
1046 
1047 		/* handle bus recovery events */
1048 		if ((!(priv->current_status & STATUS_BOFF)) &&
1049 				(priv->last_status & STATUS_BOFF)) {
1050 			netdev_dbg(dev, "left bus off state\n");
1051 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1052 		}
1053 		if ((!(priv->current_status & STATUS_EPASS)) &&
1054 				(priv->last_status & STATUS_EPASS)) {
1055 			netdev_dbg(dev, "left error passive state\n");
1056 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1057 		}
1058 
1059 		priv->last_status = priv->current_status;
1060 
1061 		/* handle lec errors on the bus */
1062 		lec_type = c_can_has_and_handle_berr(priv);
1063 		if (lec_type)
1064 			work_done += c_can_handle_bus_err(dev, lec_type);
1065 	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1066 			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1067 		/* handle events corresponding to receive message objects */
1068 		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1069 	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1070 			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1071 		/* handle events corresponding to transmit message objects */
1072 		c_can_do_tx(dev);
1073 	}
1074 
1075 end:
1076 	if (work_done < quota) {
1077 		napi_complete(napi);
1078 		/* enable all IRQs */
1079 		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1080 	}
1081 
1082 	return work_done;
1083 }
1084 
c_can_isr(int irq,void * dev_id)1085 static irqreturn_t c_can_isr(int irq, void *dev_id)
1086 {
1087 	struct net_device *dev = (struct net_device *)dev_id;
1088 	struct c_can_priv *priv = netdev_priv(dev);
1089 
1090 	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1091 	if (!priv->irqstatus)
1092 		return IRQ_NONE;
1093 
1094 	/* disable all interrupts and schedule the NAPI */
1095 	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1096 	napi_schedule(&priv->napi);
1097 
1098 	return IRQ_HANDLED;
1099 }
1100 
c_can_open(struct net_device * dev)1101 static int c_can_open(struct net_device *dev)
1102 {
1103 	int err;
1104 	struct c_can_priv *priv = netdev_priv(dev);
1105 
1106 	c_can_pm_runtime_get_sync(priv);
1107 	c_can_reset_ram(priv, true);
1108 
1109 	/* open the can device */
1110 	err = open_candev(dev);
1111 	if (err) {
1112 		netdev_err(dev, "failed to open can device\n");
1113 		goto exit_open_fail;
1114 	}
1115 
1116 	/* register interrupt handler */
1117 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1118 				dev);
1119 	if (err < 0) {
1120 		netdev_err(dev, "failed to request interrupt\n");
1121 		goto exit_irq_fail;
1122 	}
1123 
1124 	napi_enable(&priv->napi);
1125 
1126 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1127 
1128 	/* start the c_can controller */
1129 	c_can_start(dev);
1130 
1131 	netif_start_queue(dev);
1132 
1133 	return 0;
1134 
1135 exit_irq_fail:
1136 	close_candev(dev);
1137 exit_open_fail:
1138 	c_can_reset_ram(priv, false);
1139 	c_can_pm_runtime_put_sync(priv);
1140 	return err;
1141 }
1142 
c_can_close(struct net_device * dev)1143 static int c_can_close(struct net_device *dev)
1144 {
1145 	struct c_can_priv *priv = netdev_priv(dev);
1146 
1147 	netif_stop_queue(dev);
1148 	napi_disable(&priv->napi);
1149 	c_can_stop(dev);
1150 	free_irq(dev->irq, dev);
1151 	close_candev(dev);
1152 
1153 	c_can_reset_ram(priv, false);
1154 	c_can_pm_runtime_put_sync(priv);
1155 
1156 	can_led_event(dev, CAN_LED_EVENT_STOP);
1157 
1158 	return 0;
1159 }
1160 
alloc_c_can_dev(void)1161 struct net_device *alloc_c_can_dev(void)
1162 {
1163 	struct net_device *dev;
1164 	struct c_can_priv *priv;
1165 
1166 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1167 	if (!dev)
1168 		return NULL;
1169 
1170 	priv = netdev_priv(dev);
1171 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1172 
1173 	priv->dev = dev;
1174 	priv->can.bittiming_const = &c_can_bittiming_const;
1175 	priv->can.do_set_mode = c_can_set_mode;
1176 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1177 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1178 					CAN_CTRLMODE_LISTENONLY |
1179 					CAN_CTRLMODE_BERR_REPORTING;
1180 
1181 	return dev;
1182 }
1183 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1184 
1185 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1186 int c_can_power_down(struct net_device *dev)
1187 {
1188 	u32 val;
1189 	unsigned long time_out;
1190 	struct c_can_priv *priv = netdev_priv(dev);
1191 
1192 	if (!(dev->flags & IFF_UP))
1193 		return 0;
1194 
1195 	WARN_ON(priv->type != BOSCH_D_CAN);
1196 
1197 	/* set PDR value so the device goes to power down mode */
1198 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1199 	val |= CONTROL_EX_PDR;
1200 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1201 
1202 	/* Wait for the PDA bit to get set */
1203 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1204 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1205 				time_after(time_out, jiffies))
1206 		cpu_relax();
1207 
1208 	if (time_after(jiffies, time_out))
1209 		return -ETIMEDOUT;
1210 
1211 	c_can_stop(dev);
1212 
1213 	c_can_reset_ram(priv, false);
1214 	c_can_pm_runtime_put_sync(priv);
1215 
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(c_can_power_down);
1219 
c_can_power_up(struct net_device * dev)1220 int c_can_power_up(struct net_device *dev)
1221 {
1222 	u32 val;
1223 	unsigned long time_out;
1224 	struct c_can_priv *priv = netdev_priv(dev);
1225 
1226 	if (!(dev->flags & IFF_UP))
1227 		return 0;
1228 
1229 	WARN_ON(priv->type != BOSCH_D_CAN);
1230 
1231 	c_can_pm_runtime_get_sync(priv);
1232 	c_can_reset_ram(priv, true);
1233 
1234 	/* Clear PDR and INIT bits */
1235 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1236 	val &= ~CONTROL_EX_PDR;
1237 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1238 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1239 	val &= ~CONTROL_INIT;
1240 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1241 
1242 	/* Wait for the PDA bit to get clear */
1243 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1244 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1245 				time_after(time_out, jiffies))
1246 		cpu_relax();
1247 
1248 	if (time_after(jiffies, time_out))
1249 		return -ETIMEDOUT;
1250 
1251 	c_can_start(dev);
1252 
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(c_can_power_up);
1256 #endif
1257 
free_c_can_dev(struct net_device * dev)1258 void free_c_can_dev(struct net_device *dev)
1259 {
1260 	free_candev(dev);
1261 }
1262 EXPORT_SYMBOL_GPL(free_c_can_dev);
1263 
1264 static const struct net_device_ops c_can_netdev_ops = {
1265 	.ndo_open = c_can_open,
1266 	.ndo_stop = c_can_close,
1267 	.ndo_start_xmit = c_can_start_xmit,
1268 };
1269 
register_c_can_dev(struct net_device * dev)1270 int register_c_can_dev(struct net_device *dev)
1271 {
1272 	struct c_can_priv *priv = netdev_priv(dev);
1273 	int err;
1274 
1275 	c_can_pm_runtime_enable(priv);
1276 
1277 	dev->flags |= IFF_ECHO;	/* we support local echo */
1278 	dev->netdev_ops = &c_can_netdev_ops;
1279 
1280 	err = register_candev(dev);
1281 	if (err)
1282 		c_can_pm_runtime_disable(priv);
1283 	else
1284 		devm_can_led_init(dev);
1285 
1286 	return err;
1287 }
1288 EXPORT_SYMBOL_GPL(register_c_can_dev);
1289 
unregister_c_can_dev(struct net_device * dev)1290 void unregister_c_can_dev(struct net_device *dev)
1291 {
1292 	struct c_can_priv *priv = netdev_priv(dev);
1293 
1294 	unregister_candev(dev);
1295 
1296 	c_can_pm_runtime_disable(priv);
1297 }
1298 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1299 
1300 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1301 MODULE_LICENSE("GPL v2");
1302 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1303