• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_platform.h>
35 
36 #include <asm/irq.h>
37 #include <asm/uaccess.h>
38 
39 #ifdef CONFIG_8xx
40 #include <asm/8xx_immap.h>
41 #include <asm/pgtable.h>
42 #include <asm/mpc8xx.h>
43 #include <asm/cpm1.h>
44 #endif
45 
46 #include "fs_enet.h"
47 
48 /*************************************************/
49 #if defined(CONFIG_CPM1)
50 /* for a 8xx __raw_xxx's are sufficient */
51 #define __fs_out32(addr, x)	__raw_writel(x, addr)
52 #define __fs_out16(addr, x)	__raw_writew(x, addr)
53 #define __fs_out8(addr, x)	__raw_writeb(x, addr)
54 #define __fs_in32(addr)	__raw_readl(addr)
55 #define __fs_in16(addr)	__raw_readw(addr)
56 #define __fs_in8(addr)	__raw_readb(addr)
57 #else
58 /* for others play it safe */
59 #define __fs_out32(addr, x)	out_be32(addr, x)
60 #define __fs_out16(addr, x)	out_be16(addr, x)
61 #define __fs_in32(addr)	in_be32(addr)
62 #define __fs_in16(addr)	in_be16(addr)
63 #define __fs_out8(addr, x)	out_8(addr, x)
64 #define __fs_in8(addr)	in_8(addr)
65 #endif
66 
67 /* write, read, set bits, clear bits */
68 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
69 #define R32(_p, _m)     __fs_in32(&(_p)->_m)
70 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
71 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
72 
73 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
74 #define R16(_p, _m)     __fs_in16(&(_p)->_m)
75 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
76 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
77 
78 #define W8(_p, _m, _v)  __fs_out8(&(_p)->_m, (_v))
79 #define R8(_p, _m)      __fs_in8(&(_p)->_m)
80 #define S8(_p, _m, _v)  W8(_p, _m, R8(_p, _m) | (_v))
81 #define C8(_p, _m, _v)  W8(_p, _m, R8(_p, _m) & ~(_v))
82 
83 #define SCC_MAX_MULTICAST_ADDRS	64
84 
85 /*
86  * Delay to wait for SCC reset command to complete (in us)
87  */
88 #define SCC_RESET_DELAY		50
89 
scc_cr_cmd(struct fs_enet_private * fep,u32 op)90 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
91 {
92 	const struct fs_platform_info *fpi = fep->fpi;
93 
94 	return cpm_command(fpi->cp_command, op);
95 }
96 
do_pd_setup(struct fs_enet_private * fep)97 static int do_pd_setup(struct fs_enet_private *fep)
98 {
99 	struct platform_device *ofdev = to_platform_device(fep->dev);
100 
101 	fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
102 	if (fep->interrupt == NO_IRQ)
103 		return -EINVAL;
104 
105 	fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
106 	if (!fep->scc.sccp)
107 		return -EINVAL;
108 
109 	fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
110 	if (!fep->scc.ep) {
111 		iounmap(fep->scc.sccp);
112 		return -EINVAL;
113 	}
114 
115 	return 0;
116 }
117 
118 #define SCC_NAPI_RX_EVENT_MSK	(SCCE_ENET_RXF | SCCE_ENET_RXB)
119 #define SCC_RX_EVENT		(SCCE_ENET_RXF)
120 #define SCC_TX_EVENT		(SCCE_ENET_TXB)
121 #define SCC_ERR_EVENT_MSK	(SCCE_ENET_TXE | SCCE_ENET_BSY)
122 
setup_data(struct net_device * dev)123 static int setup_data(struct net_device *dev)
124 {
125 	struct fs_enet_private *fep = netdev_priv(dev);
126 
127 	do_pd_setup(fep);
128 
129 	fep->scc.hthi = 0;
130 	fep->scc.htlo = 0;
131 
132 	fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK;
133 	fep->ev_rx = SCC_RX_EVENT;
134 	fep->ev_tx = SCC_TX_EVENT | SCCE_ENET_TXE;
135 	fep->ev_err = SCC_ERR_EVENT_MSK;
136 
137 	return 0;
138 }
139 
allocate_bd(struct net_device * dev)140 static int allocate_bd(struct net_device *dev)
141 {
142 	struct fs_enet_private *fep = netdev_priv(dev);
143 	const struct fs_platform_info *fpi = fep->fpi;
144 
145 	fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
146 					 sizeof(cbd_t), 8);
147 	if (IS_ERR_VALUE(fep->ring_mem_addr))
148 		return -ENOMEM;
149 
150 	fep->ring_base = (void __iomem __force*)
151 		cpm_dpram_addr(fep->ring_mem_addr);
152 
153 	return 0;
154 }
155 
free_bd(struct net_device * dev)156 static void free_bd(struct net_device *dev)
157 {
158 	struct fs_enet_private *fep = netdev_priv(dev);
159 
160 	if (fep->ring_base)
161 		cpm_dpfree(fep->ring_mem_addr);
162 }
163 
cleanup_data(struct net_device * dev)164 static void cleanup_data(struct net_device *dev)
165 {
166 	/* nothing */
167 }
168 
set_promiscuous_mode(struct net_device * dev)169 static void set_promiscuous_mode(struct net_device *dev)
170 {
171 	struct fs_enet_private *fep = netdev_priv(dev);
172 	scc_t __iomem *sccp = fep->scc.sccp;
173 
174 	S16(sccp, scc_psmr, SCC_PSMR_PRO);
175 }
176 
set_multicast_start(struct net_device * dev)177 static void set_multicast_start(struct net_device *dev)
178 {
179 	struct fs_enet_private *fep = netdev_priv(dev);
180 	scc_enet_t __iomem *ep = fep->scc.ep;
181 
182 	W16(ep, sen_gaddr1, 0);
183 	W16(ep, sen_gaddr2, 0);
184 	W16(ep, sen_gaddr3, 0);
185 	W16(ep, sen_gaddr4, 0);
186 }
187 
set_multicast_one(struct net_device * dev,const u8 * mac)188 static void set_multicast_one(struct net_device *dev, const u8 * mac)
189 {
190 	struct fs_enet_private *fep = netdev_priv(dev);
191 	scc_enet_t __iomem *ep = fep->scc.ep;
192 	u16 taddrh, taddrm, taddrl;
193 
194 	taddrh = ((u16) mac[5] << 8) | mac[4];
195 	taddrm = ((u16) mac[3] << 8) | mac[2];
196 	taddrl = ((u16) mac[1] << 8) | mac[0];
197 
198 	W16(ep, sen_taddrh, taddrh);
199 	W16(ep, sen_taddrm, taddrm);
200 	W16(ep, sen_taddrl, taddrl);
201 	scc_cr_cmd(fep, CPM_CR_SET_GADDR);
202 }
203 
set_multicast_finish(struct net_device * dev)204 static void set_multicast_finish(struct net_device *dev)
205 {
206 	struct fs_enet_private *fep = netdev_priv(dev);
207 	scc_t __iomem *sccp = fep->scc.sccp;
208 	scc_enet_t __iomem *ep = fep->scc.ep;
209 
210 	/* clear promiscuous always */
211 	C16(sccp, scc_psmr, SCC_PSMR_PRO);
212 
213 	/* if all multi or too many multicasts; just enable all */
214 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
215 	    netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
216 
217 		W16(ep, sen_gaddr1, 0xffff);
218 		W16(ep, sen_gaddr2, 0xffff);
219 		W16(ep, sen_gaddr3, 0xffff);
220 		W16(ep, sen_gaddr4, 0xffff);
221 	}
222 }
223 
set_multicast_list(struct net_device * dev)224 static void set_multicast_list(struct net_device *dev)
225 {
226 	struct netdev_hw_addr *ha;
227 
228 	if ((dev->flags & IFF_PROMISC) == 0) {
229 		set_multicast_start(dev);
230 		netdev_for_each_mc_addr(ha, dev)
231 			set_multicast_one(dev, ha->addr);
232 		set_multicast_finish(dev);
233 	} else
234 		set_promiscuous_mode(dev);
235 }
236 
237 /*
238  * This function is called to start or restart the FEC during a link
239  * change.  This only happens when switching between half and full
240  * duplex.
241  */
restart(struct net_device * dev)242 static void restart(struct net_device *dev)
243 {
244 	struct fs_enet_private *fep = netdev_priv(dev);
245 	scc_t __iomem *sccp = fep->scc.sccp;
246 	scc_enet_t __iomem *ep = fep->scc.ep;
247 	const struct fs_platform_info *fpi = fep->fpi;
248 	u16 paddrh, paddrm, paddrl;
249 	const unsigned char *mac;
250 	int i;
251 
252 	C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
253 
254 	/* clear everything (slow & steady does it) */
255 	for (i = 0; i < sizeof(*ep); i++)
256 		__fs_out8((u8 __iomem *)ep + i, 0);
257 
258 	/* point to bds */
259 	W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
260 	W16(ep, sen_genscc.scc_tbase,
261 	    fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
262 
263 	/* Initialize function code registers for big-endian.
264 	 */
265 #ifndef CONFIG_NOT_COHERENT_CACHE
266 	W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
267 	W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
268 #else
269 	W8(ep, sen_genscc.scc_rfcr, SCC_EB);
270 	W8(ep, sen_genscc.scc_tfcr, SCC_EB);
271 #endif
272 
273 	/* Set maximum bytes per receive buffer.
274 	 * This appears to be an Ethernet frame size, not the buffer
275 	 * fragment size.  It must be a multiple of four.
276 	 */
277 	W16(ep, sen_genscc.scc_mrblr, 0x5f0);
278 
279 	/* Set CRC preset and mask.
280 	 */
281 	W32(ep, sen_cpres, 0xffffffff);
282 	W32(ep, sen_cmask, 0xdebb20e3);
283 
284 	W32(ep, sen_crcec, 0);	/* CRC Error counter */
285 	W32(ep, sen_alec, 0);	/* alignment error counter */
286 	W32(ep, sen_disfc, 0);	/* discard frame counter */
287 
288 	W16(ep, sen_pads, 0x8888);	/* Tx short frame pad character */
289 	W16(ep, sen_retlim, 15);	/* Retry limit threshold */
290 
291 	W16(ep, sen_maxflr, 0x5ee);	/* maximum frame length register */
292 
293 	W16(ep, sen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
294 
295 	W16(ep, sen_maxd1, 0x000005f0);	/* maximum DMA1 length */
296 	W16(ep, sen_maxd2, 0x000005f0);	/* maximum DMA2 length */
297 
298 	/* Clear hash tables.
299 	 */
300 	W16(ep, sen_gaddr1, 0);
301 	W16(ep, sen_gaddr2, 0);
302 	W16(ep, sen_gaddr3, 0);
303 	W16(ep, sen_gaddr4, 0);
304 	W16(ep, sen_iaddr1, 0);
305 	W16(ep, sen_iaddr2, 0);
306 	W16(ep, sen_iaddr3, 0);
307 	W16(ep, sen_iaddr4, 0);
308 
309 	/* set address
310 	 */
311 	mac = dev->dev_addr;
312 	paddrh = ((u16) mac[5] << 8) | mac[4];
313 	paddrm = ((u16) mac[3] << 8) | mac[2];
314 	paddrl = ((u16) mac[1] << 8) | mac[0];
315 
316 	W16(ep, sen_paddrh, paddrh);
317 	W16(ep, sen_paddrm, paddrm);
318 	W16(ep, sen_paddrl, paddrl);
319 
320 	W16(ep, sen_pper, 0);
321 	W16(ep, sen_taddrl, 0);
322 	W16(ep, sen_taddrm, 0);
323 	W16(ep, sen_taddrh, 0);
324 
325 	fs_init_bds(dev);
326 
327 	scc_cr_cmd(fep, CPM_CR_INIT_TRX);
328 
329 	W16(sccp, scc_scce, 0xffff);
330 
331 	/* Enable interrupts we wish to service.
332 	 */
333 	W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
334 
335 	/* Set GSMR_H to enable all normal operating modes.
336 	 * Set GSMR_L to enable Ethernet to MC68160.
337 	 */
338 	W32(sccp, scc_gsmrh, 0);
339 	W32(sccp, scc_gsmrl,
340 	    SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
341 	    SCC_GSMRL_MODE_ENET);
342 
343 	/* Set sync/delimiters.
344 	 */
345 	W16(sccp, scc_dsr, 0xd555);
346 
347 	/* Set processing mode.  Use Ethernet CRC, catch broadcast, and
348 	 * start frame search 22 bit times after RENA.
349 	 */
350 	W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
351 
352 	/* Set full duplex mode if needed */
353 	if (fep->phydev->duplex)
354 		S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
355 
356 	S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
357 }
358 
stop(struct net_device * dev)359 static void stop(struct net_device *dev)
360 {
361 	struct fs_enet_private *fep = netdev_priv(dev);
362 	scc_t __iomem *sccp = fep->scc.sccp;
363 	int i;
364 
365 	for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
366 		udelay(1);
367 
368 	if (i == SCC_RESET_DELAY)
369 		dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
370 
371 	W16(sccp, scc_sccm, 0);
372 	C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
373 
374 	fs_cleanup_bds(dev);
375 }
376 
napi_clear_rx_event(struct net_device * dev)377 static void napi_clear_rx_event(struct net_device *dev)
378 {
379 	struct fs_enet_private *fep = netdev_priv(dev);
380 	scc_t __iomem *sccp = fep->scc.sccp;
381 
382 	W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK);
383 }
384 
napi_enable_rx(struct net_device * dev)385 static void napi_enable_rx(struct net_device *dev)
386 {
387 	struct fs_enet_private *fep = netdev_priv(dev);
388 	scc_t __iomem *sccp = fep->scc.sccp;
389 
390 	S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
391 }
392 
napi_disable_rx(struct net_device * dev)393 static void napi_disable_rx(struct net_device *dev)
394 {
395 	struct fs_enet_private *fep = netdev_priv(dev);
396 	scc_t __iomem *sccp = fep->scc.sccp;
397 
398 	C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
399 }
400 
rx_bd_done(struct net_device * dev)401 static void rx_bd_done(struct net_device *dev)
402 {
403 	/* nothing */
404 }
405 
tx_kickstart(struct net_device * dev)406 static void tx_kickstart(struct net_device *dev)
407 {
408 	/* nothing */
409 }
410 
get_int_events(struct net_device * dev)411 static u32 get_int_events(struct net_device *dev)
412 {
413 	struct fs_enet_private *fep = netdev_priv(dev);
414 	scc_t __iomem *sccp = fep->scc.sccp;
415 
416 	return (u32) R16(sccp, scc_scce);
417 }
418 
clear_int_events(struct net_device * dev,u32 int_events)419 static void clear_int_events(struct net_device *dev, u32 int_events)
420 {
421 	struct fs_enet_private *fep = netdev_priv(dev);
422 	scc_t __iomem *sccp = fep->scc.sccp;
423 
424 	W16(sccp, scc_scce, int_events & 0xffff);
425 }
426 
ev_error(struct net_device * dev,u32 int_events)427 static void ev_error(struct net_device *dev, u32 int_events)
428 {
429 	struct fs_enet_private *fep = netdev_priv(dev);
430 
431 	dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
432 }
433 
get_regs(struct net_device * dev,void * p,int * sizep)434 static int get_regs(struct net_device *dev, void *p, int *sizep)
435 {
436 	struct fs_enet_private *fep = netdev_priv(dev);
437 
438 	if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
439 		return -EINVAL;
440 
441 	memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
442 	p = (char *)p + sizeof(scc_t);
443 
444 	memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
445 
446 	return 0;
447 }
448 
get_regs_len(struct net_device * dev)449 static int get_regs_len(struct net_device *dev)
450 {
451 	return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
452 }
453 
tx_restart(struct net_device * dev)454 static void tx_restart(struct net_device *dev)
455 {
456 	struct fs_enet_private *fep = netdev_priv(dev);
457 
458 	scc_cr_cmd(fep, CPM_CR_RESTART_TX);
459 }
460 
461 
462 
463 /*************************************************************************/
464 
465 const struct fs_ops fs_scc_ops = {
466 	.setup_data		= setup_data,
467 	.cleanup_data		= cleanup_data,
468 	.set_multicast_list	= set_multicast_list,
469 	.restart		= restart,
470 	.stop			= stop,
471 	.napi_clear_rx_event	= napi_clear_rx_event,
472 	.napi_enable_rx		= napi_enable_rx,
473 	.napi_disable_rx	= napi_disable_rx,
474 	.rx_bd_done		= rx_bd_done,
475 	.tx_kickstart		= tx_kickstart,
476 	.get_int_events		= get_int_events,
477 	.clear_int_events	= clear_int_events,
478 	.ev_error		= ev_error,
479 	.get_regs		= get_regs,
480 	.get_regs_len		= get_regs_len,
481 	.tx_restart		= tx_restart,
482 	.allocate_bd		= allocate_bd,
483 	.free_bd		= free_bd,
484 };
485