1 /*
2 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3 *
4 * Author: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 *
7 * Description:
8 * QE UCC Gigabit Ethernet Driver
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_platform.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/immap_qe.h>
42 #include <asm/qe.h>
43 #include <asm/ucc.h>
44 #include <asm/ucc_fast.h>
45 #include <asm/machdep.h>
46
47 #include "ucc_geth.h"
48
49 #undef DEBUG
50
51 #define ugeth_printk(level, format, arg...) \
52 printk(level format "\n", ## arg)
53
54 #define ugeth_dbg(format, arg...) \
55 ugeth_printk(KERN_DEBUG , format , ## arg)
56
57 #ifdef UGETH_VERBOSE_DEBUG
58 #define ugeth_vdbg ugeth_dbg
59 #else
60 #define ugeth_vdbg(fmt, args...) do { } while (0)
61 #endif /* UGETH_VERBOSE_DEBUG */
62 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
63
64
65 static DEFINE_SPINLOCK(ugeth_lock);
66
67 static struct {
68 u32 msg_enable;
69 } debug = { -1 };
70
71 module_param_named(debug, debug.msg_enable, int, 0);
72 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
73
74 static struct ucc_geth_info ugeth_primary_info = {
75 .uf_info = {
76 .bd_mem_part = MEM_PART_SYSTEM,
77 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
78 .max_rx_buf_length = 1536,
79 /* adjusted at startup if max-speed 1000 */
80 .urfs = UCC_GETH_URFS_INIT,
81 .urfet = UCC_GETH_URFET_INIT,
82 .urfset = UCC_GETH_URFSET_INIT,
83 .utfs = UCC_GETH_UTFS_INIT,
84 .utfet = UCC_GETH_UTFET_INIT,
85 .utftt = UCC_GETH_UTFTT_INIT,
86 .ufpt = 256,
87 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
88 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
89 .tenc = UCC_FAST_TX_ENCODING_NRZ,
90 .renc = UCC_FAST_RX_ENCODING_NRZ,
91 .tcrc = UCC_FAST_16_BIT_CRC,
92 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
93 },
94 .numQueuesTx = 1,
95 .numQueuesRx = 1,
96 .extendedFilteringChainPointer = ((uint32_t) NULL),
97 .typeorlen = 3072 /*1536 */ ,
98 .nonBackToBackIfgPart1 = 0x40,
99 .nonBackToBackIfgPart2 = 0x60,
100 .miminumInterFrameGapEnforcement = 0x50,
101 .backToBackInterFrameGap = 0x60,
102 .mblinterval = 128,
103 .nortsrbytetime = 5,
104 .fracsiz = 1,
105 .strictpriorityq = 0xff,
106 .altBebTruncation = 0xa,
107 .excessDefer = 1,
108 .maxRetransmission = 0xf,
109 .collisionWindow = 0x37,
110 .receiveFlowControl = 1,
111 .transmitFlowControl = 1,
112 .maxGroupAddrInHash = 4,
113 .maxIndAddrInHash = 4,
114 .prel = 7,
115 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
116 .minFrameLength = 64,
117 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
118 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
119 .vlantype = 0x8100,
120 .ecamptr = ((uint32_t) NULL),
121 .eventRegMask = UCCE_OTHER,
122 .pausePeriod = 0xf000,
123 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
124 .bdRingLenTx = {
125 TX_BD_RING_LEN,
126 TX_BD_RING_LEN,
127 TX_BD_RING_LEN,
128 TX_BD_RING_LEN,
129 TX_BD_RING_LEN,
130 TX_BD_RING_LEN,
131 TX_BD_RING_LEN,
132 TX_BD_RING_LEN},
133
134 .bdRingLenRx = {
135 RX_BD_RING_LEN,
136 RX_BD_RING_LEN,
137 RX_BD_RING_LEN,
138 RX_BD_RING_LEN,
139 RX_BD_RING_LEN,
140 RX_BD_RING_LEN,
141 RX_BD_RING_LEN,
142 RX_BD_RING_LEN},
143
144 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
145 .largestexternallookupkeysize =
146 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
147 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
148 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
149 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
150 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
151 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
152 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
153 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
154 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
155 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
156 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
157 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
158 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
159 };
160
161 static struct ucc_geth_info ugeth_info[8];
162
163 #ifdef DEBUG
mem_disp(u8 * addr,int size)164 static void mem_disp(u8 *addr, int size)
165 {
166 u8 *i;
167 int size16Aling = (size >> 4) << 4;
168 int size4Aling = (size >> 2) << 2;
169 int notAlign = 0;
170 if (size % 16)
171 notAlign = 1;
172
173 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
174 printk("0x%08x: %08x %08x %08x %08x\r\n",
175 (u32) i,
176 *((u32 *) (i)),
177 *((u32 *) (i + 4)),
178 *((u32 *) (i + 8)), *((u32 *) (i + 12)));
179 if (notAlign == 1)
180 printk("0x%08x: ", (u32) i);
181 for (; (u32) i < (u32) addr + size4Aling; i += 4)
182 printk("%08x ", *((u32 *) (i)));
183 for (; (u32) i < (u32) addr + size; i++)
184 printk("%02x", *((i)));
185 if (notAlign == 1)
186 printk("\r\n");
187 }
188 #endif /* DEBUG */
189
dequeue(struct list_head * lh)190 static struct list_head *dequeue(struct list_head *lh)
191 {
192 unsigned long flags;
193
194 spin_lock_irqsave(&ugeth_lock, flags);
195 if (!list_empty(lh)) {
196 struct list_head *node = lh->next;
197 list_del(node);
198 spin_unlock_irqrestore(&ugeth_lock, flags);
199 return node;
200 } else {
201 spin_unlock_irqrestore(&ugeth_lock, flags);
202 return NULL;
203 }
204 }
205
get_new_skb(struct ucc_geth_private * ugeth,u8 __iomem * bd)206 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
207 u8 __iomem *bd)
208 {
209 struct sk_buff *skb;
210
211 skb = netdev_alloc_skb(ugeth->ndev,
212 ugeth->ug_info->uf_info.max_rx_buf_length +
213 UCC_GETH_RX_DATA_BUF_ALIGNMENT);
214 if (!skb)
215 return NULL;
216
217 /* We need the data buffer to be aligned properly. We will reserve
218 * as many bytes as needed to align the data properly
219 */
220 skb_reserve(skb,
221 UCC_GETH_RX_DATA_BUF_ALIGNMENT -
222 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
223 1)));
224
225 out_be32(&((struct qe_bd __iomem *)bd)->buf,
226 dma_map_single(ugeth->dev,
227 skb->data,
228 ugeth->ug_info->uf_info.max_rx_buf_length +
229 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
230 DMA_FROM_DEVICE));
231
232 out_be32((u32 __iomem *)bd,
233 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
234
235 return skb;
236 }
237
rx_bd_buffer_set(struct ucc_geth_private * ugeth,u8 rxQ)238 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
239 {
240 u8 __iomem *bd;
241 u32 bd_status;
242 struct sk_buff *skb;
243 int i;
244
245 bd = ugeth->p_rx_bd_ring[rxQ];
246 i = 0;
247
248 do {
249 bd_status = in_be32((u32 __iomem *)bd);
250 skb = get_new_skb(ugeth, bd);
251
252 if (!skb) /* If can not allocate data buffer,
253 abort. Cleanup will be elsewhere */
254 return -ENOMEM;
255
256 ugeth->rx_skbuff[rxQ][i] = skb;
257
258 /* advance the BD pointer */
259 bd += sizeof(struct qe_bd);
260 i++;
261 } while (!(bd_status & R_W));
262
263 return 0;
264 }
265
fill_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,u32 thread_size,u32 thread_alignment,unsigned int risc,int skip_page_for_first_entry)266 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
267 u32 *p_start,
268 u8 num_entries,
269 u32 thread_size,
270 u32 thread_alignment,
271 unsigned int risc,
272 int skip_page_for_first_entry)
273 {
274 u32 init_enet_offset;
275 u8 i;
276 int snum;
277
278 for (i = 0; i < num_entries; i++) {
279 if ((snum = qe_get_snum()) < 0) {
280 if (netif_msg_ifup(ugeth))
281 pr_err("Can not get SNUM\n");
282 return snum;
283 }
284 if ((i == 0) && skip_page_for_first_entry)
285 /* First entry of Rx does not have page */
286 init_enet_offset = 0;
287 else {
288 init_enet_offset =
289 qe_muram_alloc(thread_size, thread_alignment);
290 if (IS_ERR_VALUE(init_enet_offset)) {
291 if (netif_msg_ifup(ugeth))
292 pr_err("Can not allocate DPRAM memory\n");
293 qe_put_snum((u8) snum);
294 return -ENOMEM;
295 }
296 }
297 *(p_start++) =
298 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
299 | risc;
300 }
301
302 return 0;
303 }
304
return_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,unsigned int risc,int skip_page_for_first_entry)305 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
306 u32 *p_start,
307 u8 num_entries,
308 unsigned int risc,
309 int skip_page_for_first_entry)
310 {
311 u32 init_enet_offset;
312 u8 i;
313 int snum;
314
315 for (i = 0; i < num_entries; i++) {
316 u32 val = *p_start;
317
318 /* Check that this entry was actually valid --
319 needed in case failed in allocations */
320 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
321 snum =
322 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
323 ENET_INIT_PARAM_SNUM_SHIFT;
324 qe_put_snum((u8) snum);
325 if (!((i == 0) && skip_page_for_first_entry)) {
326 /* First entry of Rx does not have page */
327 init_enet_offset =
328 (val & ENET_INIT_PARAM_PTR_MASK);
329 qe_muram_free(init_enet_offset);
330 }
331 *p_start++ = 0;
332 }
333 }
334
335 return 0;
336 }
337
338 #ifdef DEBUG
dump_init_enet_entries(struct ucc_geth_private * ugeth,u32 __iomem * p_start,u8 num_entries,u32 thread_size,unsigned int risc,int skip_page_for_first_entry)339 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
340 u32 __iomem *p_start,
341 u8 num_entries,
342 u32 thread_size,
343 unsigned int risc,
344 int skip_page_for_first_entry)
345 {
346 u32 init_enet_offset;
347 u8 i;
348 int snum;
349
350 for (i = 0; i < num_entries; i++) {
351 u32 val = in_be32(p_start);
352
353 /* Check that this entry was actually valid --
354 needed in case failed in allocations */
355 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
356 snum =
357 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
358 ENET_INIT_PARAM_SNUM_SHIFT;
359 qe_put_snum((u8) snum);
360 if (!((i == 0) && skip_page_for_first_entry)) {
361 /* First entry of Rx does not have page */
362 init_enet_offset =
363 (in_be32(p_start) &
364 ENET_INIT_PARAM_PTR_MASK);
365 pr_info("Init enet entry %d:\n", i);
366 pr_info("Base address: 0x%08x\n",
367 (u32)qe_muram_addr(init_enet_offset));
368 mem_disp(qe_muram_addr(init_enet_offset),
369 thread_size);
370 }
371 p_start++;
372 }
373 }
374
375 return 0;
376 }
377 #endif
378
put_enet_addr_container(struct enet_addr_container * enet_addr_cont)379 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
380 {
381 kfree(enet_addr_cont);
382 }
383
set_mac_addr(__be16 __iomem * reg,u8 * mac)384 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
385 {
386 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]);
387 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]);
388 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]);
389 }
390
hw_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)391 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
392 {
393 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
394
395 if (paddr_num >= NUM_OF_PADDRS) {
396 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
397 return -EINVAL;
398 }
399
400 p_82xx_addr_filt =
401 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
402 addressfiltering;
403
404 /* Writing address ff.ff.ff.ff.ff.ff disables address
405 recognition for this register */
406 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
407 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
408 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
409
410 return 0;
411 }
412
hw_add_addr_in_hash(struct ucc_geth_private * ugeth,u8 * p_enet_addr)413 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
414 u8 *p_enet_addr)
415 {
416 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
417 u32 cecr_subblock;
418
419 p_82xx_addr_filt =
420 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
421 addressfiltering;
422
423 cecr_subblock =
424 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
425
426 /* Ethernet frames are defined in Little Endian mode,
427 therefore to insert */
428 /* the address to the hash (Big Endian mode), we reverse the bytes.*/
429
430 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
431
432 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
433 QE_CR_PROTOCOL_ETHERNET, 0);
434 }
435
compare_addr(u8 ** addr1,u8 ** addr2)436 static inline int compare_addr(u8 **addr1, u8 **addr2)
437 {
438 return memcmp(addr1, addr2, ETH_ALEN);
439 }
440
441 #ifdef DEBUG
get_statistics(struct ucc_geth_private * ugeth,struct ucc_geth_tx_firmware_statistics * tx_firmware_statistics,struct ucc_geth_rx_firmware_statistics * rx_firmware_statistics,struct ucc_geth_hardware_statistics * hardware_statistics)442 static void get_statistics(struct ucc_geth_private *ugeth,
443 struct ucc_geth_tx_firmware_statistics *
444 tx_firmware_statistics,
445 struct ucc_geth_rx_firmware_statistics *
446 rx_firmware_statistics,
447 struct ucc_geth_hardware_statistics *hardware_statistics)
448 {
449 struct ucc_fast __iomem *uf_regs;
450 struct ucc_geth __iomem *ug_regs;
451 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
452 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
453
454 ug_regs = ugeth->ug_regs;
455 uf_regs = (struct ucc_fast __iomem *) ug_regs;
456 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
457 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
458
459 /* Tx firmware only if user handed pointer and driver actually
460 gathers Tx firmware statistics */
461 if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
462 tx_firmware_statistics->sicoltx =
463 in_be32(&p_tx_fw_statistics_pram->sicoltx);
464 tx_firmware_statistics->mulcoltx =
465 in_be32(&p_tx_fw_statistics_pram->mulcoltx);
466 tx_firmware_statistics->latecoltxfr =
467 in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
468 tx_firmware_statistics->frabortduecol =
469 in_be32(&p_tx_fw_statistics_pram->frabortduecol);
470 tx_firmware_statistics->frlostinmactxer =
471 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
472 tx_firmware_statistics->carriersenseertx =
473 in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
474 tx_firmware_statistics->frtxok =
475 in_be32(&p_tx_fw_statistics_pram->frtxok);
476 tx_firmware_statistics->txfrexcessivedefer =
477 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
478 tx_firmware_statistics->txpkts256 =
479 in_be32(&p_tx_fw_statistics_pram->txpkts256);
480 tx_firmware_statistics->txpkts512 =
481 in_be32(&p_tx_fw_statistics_pram->txpkts512);
482 tx_firmware_statistics->txpkts1024 =
483 in_be32(&p_tx_fw_statistics_pram->txpkts1024);
484 tx_firmware_statistics->txpktsjumbo =
485 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
486 }
487
488 /* Rx firmware only if user handed pointer and driver actually
489 * gathers Rx firmware statistics */
490 if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
491 int i;
492 rx_firmware_statistics->frrxfcser =
493 in_be32(&p_rx_fw_statistics_pram->frrxfcser);
494 rx_firmware_statistics->fraligner =
495 in_be32(&p_rx_fw_statistics_pram->fraligner);
496 rx_firmware_statistics->inrangelenrxer =
497 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
498 rx_firmware_statistics->outrangelenrxer =
499 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
500 rx_firmware_statistics->frtoolong =
501 in_be32(&p_rx_fw_statistics_pram->frtoolong);
502 rx_firmware_statistics->runt =
503 in_be32(&p_rx_fw_statistics_pram->runt);
504 rx_firmware_statistics->verylongevent =
505 in_be32(&p_rx_fw_statistics_pram->verylongevent);
506 rx_firmware_statistics->symbolerror =
507 in_be32(&p_rx_fw_statistics_pram->symbolerror);
508 rx_firmware_statistics->dropbsy =
509 in_be32(&p_rx_fw_statistics_pram->dropbsy);
510 for (i = 0; i < 0x8; i++)
511 rx_firmware_statistics->res0[i] =
512 p_rx_fw_statistics_pram->res0[i];
513 rx_firmware_statistics->mismatchdrop =
514 in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
515 rx_firmware_statistics->underpkts =
516 in_be32(&p_rx_fw_statistics_pram->underpkts);
517 rx_firmware_statistics->pkts256 =
518 in_be32(&p_rx_fw_statistics_pram->pkts256);
519 rx_firmware_statistics->pkts512 =
520 in_be32(&p_rx_fw_statistics_pram->pkts512);
521 rx_firmware_statistics->pkts1024 =
522 in_be32(&p_rx_fw_statistics_pram->pkts1024);
523 rx_firmware_statistics->pktsjumbo =
524 in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
525 rx_firmware_statistics->frlossinmacer =
526 in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
527 rx_firmware_statistics->pausefr =
528 in_be32(&p_rx_fw_statistics_pram->pausefr);
529 for (i = 0; i < 0x4; i++)
530 rx_firmware_statistics->res1[i] =
531 p_rx_fw_statistics_pram->res1[i];
532 rx_firmware_statistics->removevlan =
533 in_be32(&p_rx_fw_statistics_pram->removevlan);
534 rx_firmware_statistics->replacevlan =
535 in_be32(&p_rx_fw_statistics_pram->replacevlan);
536 rx_firmware_statistics->insertvlan =
537 in_be32(&p_rx_fw_statistics_pram->insertvlan);
538 }
539
540 /* Hardware only if user handed pointer and driver actually
541 gathers hardware statistics */
542 if (hardware_statistics &&
543 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
544 hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
545 hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
546 hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
547 hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
548 hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
549 hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
550 hardware_statistics->txok = in_be32(&ug_regs->txok);
551 hardware_statistics->txcf = in_be16(&ug_regs->txcf);
552 hardware_statistics->tmca = in_be32(&ug_regs->tmca);
553 hardware_statistics->tbca = in_be32(&ug_regs->tbca);
554 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
555 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
556 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
557 hardware_statistics->rmca = in_be32(&ug_regs->rmca);
558 hardware_statistics->rbca = in_be32(&ug_regs->rbca);
559 }
560 }
561
dump_bds(struct ucc_geth_private * ugeth)562 static void dump_bds(struct ucc_geth_private *ugeth)
563 {
564 int i;
565 int length;
566
567 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
568 if (ugeth->p_tx_bd_ring[i]) {
569 length =
570 (ugeth->ug_info->bdRingLenTx[i] *
571 sizeof(struct qe_bd));
572 pr_info("TX BDs[%d]\n", i);
573 mem_disp(ugeth->p_tx_bd_ring[i], length);
574 }
575 }
576 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
577 if (ugeth->p_rx_bd_ring[i]) {
578 length =
579 (ugeth->ug_info->bdRingLenRx[i] *
580 sizeof(struct qe_bd));
581 pr_info("RX BDs[%d]\n", i);
582 mem_disp(ugeth->p_rx_bd_ring[i], length);
583 }
584 }
585 }
586
dump_regs(struct ucc_geth_private * ugeth)587 static void dump_regs(struct ucc_geth_private *ugeth)
588 {
589 int i;
590
591 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
592 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
593
594 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n",
595 (u32)&ugeth->ug_regs->maccfg1,
596 in_be32(&ugeth->ug_regs->maccfg1));
597 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n",
598 (u32)&ugeth->ug_regs->maccfg2,
599 in_be32(&ugeth->ug_regs->maccfg2));
600 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n",
601 (u32)&ugeth->ug_regs->ipgifg,
602 in_be32(&ugeth->ug_regs->ipgifg));
603 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n",
604 (u32)&ugeth->ug_regs->hafdup,
605 in_be32(&ugeth->ug_regs->hafdup));
606 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n",
607 (u32)&ugeth->ug_regs->ifctl,
608 in_be32(&ugeth->ug_regs->ifctl));
609 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n",
610 (u32)&ugeth->ug_regs->ifstat,
611 in_be32(&ugeth->ug_regs->ifstat));
612 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
613 (u32)&ugeth->ug_regs->macstnaddr1,
614 in_be32(&ugeth->ug_regs->macstnaddr1));
615 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
616 (u32)&ugeth->ug_regs->macstnaddr2,
617 in_be32(&ugeth->ug_regs->macstnaddr2));
618 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n",
619 (u32)&ugeth->ug_regs->uempr,
620 in_be32(&ugeth->ug_regs->uempr));
621 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n",
622 (u32)&ugeth->ug_regs->utbipar,
623 in_be32(&ugeth->ug_regs->utbipar));
624 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n",
625 (u32)&ugeth->ug_regs->uescr,
626 in_be16(&ugeth->ug_regs->uescr));
627 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n",
628 (u32)&ugeth->ug_regs->tx64,
629 in_be32(&ugeth->ug_regs->tx64));
630 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n",
631 (u32)&ugeth->ug_regs->tx127,
632 in_be32(&ugeth->ug_regs->tx127));
633 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n",
634 (u32)&ugeth->ug_regs->tx255,
635 in_be32(&ugeth->ug_regs->tx255));
636 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n",
637 (u32)&ugeth->ug_regs->rx64,
638 in_be32(&ugeth->ug_regs->rx64));
639 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n",
640 (u32)&ugeth->ug_regs->rx127,
641 in_be32(&ugeth->ug_regs->rx127));
642 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n",
643 (u32)&ugeth->ug_regs->rx255,
644 in_be32(&ugeth->ug_regs->rx255));
645 pr_info("txok : addr - 0x%08x, val - 0x%08x\n",
646 (u32)&ugeth->ug_regs->txok,
647 in_be32(&ugeth->ug_regs->txok));
648 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n",
649 (u32)&ugeth->ug_regs->txcf,
650 in_be16(&ugeth->ug_regs->txcf));
651 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n",
652 (u32)&ugeth->ug_regs->tmca,
653 in_be32(&ugeth->ug_regs->tmca));
654 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n",
655 (u32)&ugeth->ug_regs->tbca,
656 in_be32(&ugeth->ug_regs->tbca));
657 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n",
658 (u32)&ugeth->ug_regs->rxfok,
659 in_be32(&ugeth->ug_regs->rxfok));
660 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n",
661 (u32)&ugeth->ug_regs->rxbok,
662 in_be32(&ugeth->ug_regs->rxbok));
663 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n",
664 (u32)&ugeth->ug_regs->rbyt,
665 in_be32(&ugeth->ug_regs->rbyt));
666 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n",
667 (u32)&ugeth->ug_regs->rmca,
668 in_be32(&ugeth->ug_regs->rmca));
669 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n",
670 (u32)&ugeth->ug_regs->rbca,
671 in_be32(&ugeth->ug_regs->rbca));
672 pr_info("scar : addr - 0x%08x, val - 0x%08x\n",
673 (u32)&ugeth->ug_regs->scar,
674 in_be32(&ugeth->ug_regs->scar));
675 pr_info("scam : addr - 0x%08x, val - 0x%08x\n",
676 (u32)&ugeth->ug_regs->scam,
677 in_be32(&ugeth->ug_regs->scam));
678
679 if (ugeth->p_thread_data_tx) {
680 int numThreadsTxNumerical;
681 switch (ugeth->ug_info->numThreadsTx) {
682 case UCC_GETH_NUM_OF_THREADS_1:
683 numThreadsTxNumerical = 1;
684 break;
685 case UCC_GETH_NUM_OF_THREADS_2:
686 numThreadsTxNumerical = 2;
687 break;
688 case UCC_GETH_NUM_OF_THREADS_4:
689 numThreadsTxNumerical = 4;
690 break;
691 case UCC_GETH_NUM_OF_THREADS_6:
692 numThreadsTxNumerical = 6;
693 break;
694 case UCC_GETH_NUM_OF_THREADS_8:
695 numThreadsTxNumerical = 8;
696 break;
697 default:
698 numThreadsTxNumerical = 0;
699 break;
700 }
701
702 pr_info("Thread data TXs:\n");
703 pr_info("Base address: 0x%08x\n",
704 (u32)ugeth->p_thread_data_tx);
705 for (i = 0; i < numThreadsTxNumerical; i++) {
706 pr_info("Thread data TX[%d]:\n", i);
707 pr_info("Base address: 0x%08x\n",
708 (u32)&ugeth->p_thread_data_tx[i]);
709 mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
710 sizeof(struct ucc_geth_thread_data_tx));
711 }
712 }
713 if (ugeth->p_thread_data_rx) {
714 int numThreadsRxNumerical;
715 switch (ugeth->ug_info->numThreadsRx) {
716 case UCC_GETH_NUM_OF_THREADS_1:
717 numThreadsRxNumerical = 1;
718 break;
719 case UCC_GETH_NUM_OF_THREADS_2:
720 numThreadsRxNumerical = 2;
721 break;
722 case UCC_GETH_NUM_OF_THREADS_4:
723 numThreadsRxNumerical = 4;
724 break;
725 case UCC_GETH_NUM_OF_THREADS_6:
726 numThreadsRxNumerical = 6;
727 break;
728 case UCC_GETH_NUM_OF_THREADS_8:
729 numThreadsRxNumerical = 8;
730 break;
731 default:
732 numThreadsRxNumerical = 0;
733 break;
734 }
735
736 pr_info("Thread data RX:\n");
737 pr_info("Base address: 0x%08x\n",
738 (u32)ugeth->p_thread_data_rx);
739 for (i = 0; i < numThreadsRxNumerical; i++) {
740 pr_info("Thread data RX[%d]:\n", i);
741 pr_info("Base address: 0x%08x\n",
742 (u32)&ugeth->p_thread_data_rx[i]);
743 mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
744 sizeof(struct ucc_geth_thread_data_rx));
745 }
746 }
747 if (ugeth->p_exf_glbl_param) {
748 pr_info("EXF global param:\n");
749 pr_info("Base address: 0x%08x\n",
750 (u32)ugeth->p_exf_glbl_param);
751 mem_disp((u8 *) ugeth->p_exf_glbl_param,
752 sizeof(*ugeth->p_exf_glbl_param));
753 }
754 if (ugeth->p_tx_glbl_pram) {
755 pr_info("TX global param:\n");
756 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
757 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n",
758 (u32)&ugeth->p_tx_glbl_pram->temoder,
759 in_be16(&ugeth->p_tx_glbl_pram->temoder));
760 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n",
761 (u32)&ugeth->p_tx_glbl_pram->sqptr,
762 in_be32(&ugeth->p_tx_glbl_pram->sqptr));
763 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
764 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
765 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
766 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
767 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
768 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
769 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n",
770 (u32)&ugeth->p_tx_glbl_pram->tstate,
771 in_be32(&ugeth->p_tx_glbl_pram->tstate));
772 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
773 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
774 ugeth->p_tx_glbl_pram->iphoffset[0]);
775 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
776 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
777 ugeth->p_tx_glbl_pram->iphoffset[1]);
778 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
779 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
780 ugeth->p_tx_glbl_pram->iphoffset[2]);
781 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
782 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
783 ugeth->p_tx_glbl_pram->iphoffset[3]);
784 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
785 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
786 ugeth->p_tx_glbl_pram->iphoffset[4]);
787 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
788 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
789 ugeth->p_tx_glbl_pram->iphoffset[5]);
790 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
791 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
792 ugeth->p_tx_glbl_pram->iphoffset[6]);
793 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
794 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
795 ugeth->p_tx_glbl_pram->iphoffset[7]);
796 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
797 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
798 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
799 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
800 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
801 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
802 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
803 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
804 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
805 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
806 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
807 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
808 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
809 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
810 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
811 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
812 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
813 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
814 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
815 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
816 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
817 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
818 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
819 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
820 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n",
821 (u32)&ugeth->p_tx_glbl_pram->tqptr,
822 in_be32(&ugeth->p_tx_glbl_pram->tqptr));
823 }
824 if (ugeth->p_rx_glbl_pram) {
825 pr_info("RX global param:\n");
826 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
827 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n",
828 (u32)&ugeth->p_rx_glbl_pram->remoder,
829 in_be32(&ugeth->p_rx_glbl_pram->remoder));
830 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n",
831 (u32)&ugeth->p_rx_glbl_pram->rqptr,
832 in_be32(&ugeth->p_rx_glbl_pram->rqptr));
833 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n",
834 (u32)&ugeth->p_rx_glbl_pram->typeorlen,
835 in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
836 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n",
837 (u32)&ugeth->p_rx_glbl_pram->rxgstpack,
838 ugeth->p_rx_glbl_pram->rxgstpack);
839 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n",
840 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
841 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
842 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
843 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
844 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
845 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n",
846 (u32)&ugeth->p_rx_glbl_pram->rstate,
847 ugeth->p_rx_glbl_pram->rstate);
848 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n",
849 (u32)&ugeth->p_rx_glbl_pram->mrblr,
850 in_be16(&ugeth->p_rx_glbl_pram->mrblr));
851 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n",
852 (u32)&ugeth->p_rx_glbl_pram->rbdqptr,
853 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
854 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n",
855 (u32)&ugeth->p_rx_glbl_pram->mflr,
856 in_be16(&ugeth->p_rx_glbl_pram->mflr));
857 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n",
858 (u32)&ugeth->p_rx_glbl_pram->minflr,
859 in_be16(&ugeth->p_rx_glbl_pram->minflr));
860 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n",
861 (u32)&ugeth->p_rx_glbl_pram->maxd1,
862 in_be16(&ugeth->p_rx_glbl_pram->maxd1));
863 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n",
864 (u32)&ugeth->p_rx_glbl_pram->maxd2,
865 in_be16(&ugeth->p_rx_glbl_pram->maxd2));
866 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n",
867 (u32)&ugeth->p_rx_glbl_pram->ecamptr,
868 in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
869 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n",
870 (u32)&ugeth->p_rx_glbl_pram->l2qt,
871 in_be32(&ugeth->p_rx_glbl_pram->l2qt));
872 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n",
873 (u32)&ugeth->p_rx_glbl_pram->l3qt[0],
874 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
875 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n",
876 (u32)&ugeth->p_rx_glbl_pram->l3qt[1],
877 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
878 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n",
879 (u32)&ugeth->p_rx_glbl_pram->l3qt[2],
880 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
881 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n",
882 (u32)&ugeth->p_rx_glbl_pram->l3qt[3],
883 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
884 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n",
885 (u32)&ugeth->p_rx_glbl_pram->l3qt[4],
886 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
887 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n",
888 (u32)&ugeth->p_rx_glbl_pram->l3qt[5],
889 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
890 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n",
891 (u32)&ugeth->p_rx_glbl_pram->l3qt[6],
892 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
893 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n",
894 (u32)&ugeth->p_rx_glbl_pram->l3qt[7],
895 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
896 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n",
897 (u32)&ugeth->p_rx_glbl_pram->vlantype,
898 in_be16(&ugeth->p_rx_glbl_pram->vlantype));
899 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n",
900 (u32)&ugeth->p_rx_glbl_pram->vlantci,
901 in_be16(&ugeth->p_rx_glbl_pram->vlantci));
902 for (i = 0; i < 64; i++)
903 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
904 i,
905 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
906 ugeth->p_rx_glbl_pram->addressfiltering[i]);
907 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n",
908 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
909 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
910 }
911 if (ugeth->p_send_q_mem_reg) {
912 pr_info("Send Q memory registers:\n");
913 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
914 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
915 pr_info("SQQD[%d]:\n", i);
916 pr_info("Base address: 0x%08x\n",
917 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
918 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
919 sizeof(struct ucc_geth_send_queue_qd));
920 }
921 }
922 if (ugeth->p_scheduler) {
923 pr_info("Scheduler:\n");
924 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
925 mem_disp((u8 *) ugeth->p_scheduler,
926 sizeof(*ugeth->p_scheduler));
927 }
928 if (ugeth->p_tx_fw_statistics_pram) {
929 pr_info("TX FW statistics pram:\n");
930 pr_info("Base address: 0x%08x\n",
931 (u32)ugeth->p_tx_fw_statistics_pram);
932 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
933 sizeof(*ugeth->p_tx_fw_statistics_pram));
934 }
935 if (ugeth->p_rx_fw_statistics_pram) {
936 pr_info("RX FW statistics pram:\n");
937 pr_info("Base address: 0x%08x\n",
938 (u32)ugeth->p_rx_fw_statistics_pram);
939 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
940 sizeof(*ugeth->p_rx_fw_statistics_pram));
941 }
942 if (ugeth->p_rx_irq_coalescing_tbl) {
943 pr_info("RX IRQ coalescing tables:\n");
944 pr_info("Base address: 0x%08x\n",
945 (u32)ugeth->p_rx_irq_coalescing_tbl);
946 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
947 pr_info("RX IRQ coalescing table entry[%d]:\n", i);
948 pr_info("Base address: 0x%08x\n",
949 (u32)&ugeth->p_rx_irq_coalescing_tbl->
950 coalescingentry[i]);
951 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
952 (u32)&ugeth->p_rx_irq_coalescing_tbl->
953 coalescingentry[i].interruptcoalescingmaxvalue,
954 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
955 coalescingentry[i].
956 interruptcoalescingmaxvalue));
957 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
958 (u32)&ugeth->p_rx_irq_coalescing_tbl->
959 coalescingentry[i].interruptcoalescingcounter,
960 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
961 coalescingentry[i].
962 interruptcoalescingcounter));
963 }
964 }
965 if (ugeth->p_rx_bd_qs_tbl) {
966 pr_info("RX BD QS tables:\n");
967 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
968 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
969 pr_info("RX BD QS table[%d]:\n", i);
970 pr_info("Base address: 0x%08x\n",
971 (u32)&ugeth->p_rx_bd_qs_tbl[i]);
972 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n",
973 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
974 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
975 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n",
976 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
977 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
978 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
979 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
980 in_be32(&ugeth->p_rx_bd_qs_tbl[i].
981 externalbdbaseptr));
982 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n",
983 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
984 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
985 pr_info("ucode RX Prefetched BDs:\n");
986 pr_info("Base address: 0x%08x\n",
987 (u32)qe_muram_addr(in_be32
988 (&ugeth->p_rx_bd_qs_tbl[i].
989 bdbaseptr)));
990 mem_disp((u8 *)
991 qe_muram_addr(in_be32
992 (&ugeth->p_rx_bd_qs_tbl[i].
993 bdbaseptr)),
994 sizeof(struct ucc_geth_rx_prefetched_bds));
995 }
996 }
997 if (ugeth->p_init_enet_param_shadow) {
998 int size;
999 pr_info("Init enet param shadow:\n");
1000 pr_info("Base address: 0x%08x\n",
1001 (u32) ugeth->p_init_enet_param_shadow);
1002 mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1003 sizeof(*ugeth->p_init_enet_param_shadow));
1004
1005 size = sizeof(struct ucc_geth_thread_rx_pram);
1006 if (ugeth->ug_info->rxExtendedFiltering) {
1007 size +=
1008 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1009 if (ugeth->ug_info->largestexternallookupkeysize ==
1010 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1011 size +=
1012 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1013 if (ugeth->ug_info->largestexternallookupkeysize ==
1014 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1015 size +=
1016 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1017 }
1018
1019 dump_init_enet_entries(ugeth,
1020 &(ugeth->p_init_enet_param_shadow->
1021 txthread[0]),
1022 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1023 sizeof(struct ucc_geth_thread_tx_pram),
1024 ugeth->ug_info->riscTx, 0);
1025 dump_init_enet_entries(ugeth,
1026 &(ugeth->p_init_enet_param_shadow->
1027 rxthread[0]),
1028 ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1029 ugeth->ug_info->riscRx, 1);
1030 }
1031 }
1032 #endif /* DEBUG */
1033
init_default_reg_vals(u32 __iomem * upsmr_register,u32 __iomem * maccfg1_register,u32 __iomem * maccfg2_register)1034 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1035 u32 __iomem *maccfg1_register,
1036 u32 __iomem *maccfg2_register)
1037 {
1038 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1039 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1040 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1041 }
1042
init_half_duplex_params(int alt_beb,int back_pressure_no_backoff,int no_backoff,int excess_defer,u8 alt_beb_truncation,u8 max_retransmissions,u8 collision_window,u32 __iomem * hafdup_register)1043 static int init_half_duplex_params(int alt_beb,
1044 int back_pressure_no_backoff,
1045 int no_backoff,
1046 int excess_defer,
1047 u8 alt_beb_truncation,
1048 u8 max_retransmissions,
1049 u8 collision_window,
1050 u32 __iomem *hafdup_register)
1051 {
1052 u32 value = 0;
1053
1054 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1055 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1056 (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1057 return -EINVAL;
1058
1059 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1060
1061 if (alt_beb)
1062 value |= HALFDUP_ALT_BEB;
1063 if (back_pressure_no_backoff)
1064 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1065 if (no_backoff)
1066 value |= HALFDUP_NO_BACKOFF;
1067 if (excess_defer)
1068 value |= HALFDUP_EXCESSIVE_DEFER;
1069
1070 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1071
1072 value |= collision_window;
1073
1074 out_be32(hafdup_register, value);
1075 return 0;
1076 }
1077
init_inter_frame_gap_params(u8 non_btb_cs_ipg,u8 non_btb_ipg,u8 min_ifg,u8 btb_ipg,u32 __iomem * ipgifg_register)1078 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1079 u8 non_btb_ipg,
1080 u8 min_ifg,
1081 u8 btb_ipg,
1082 u32 __iomem *ipgifg_register)
1083 {
1084 u32 value = 0;
1085
1086 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1087 IPG part 2 */
1088 if (non_btb_cs_ipg > non_btb_ipg)
1089 return -EINVAL;
1090
1091 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1092 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1093 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1094 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1095 return -EINVAL;
1096
1097 value |=
1098 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1099 IPGIFG_NBTB_CS_IPG_MASK);
1100 value |=
1101 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1102 IPGIFG_NBTB_IPG_MASK);
1103 value |=
1104 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1105 IPGIFG_MIN_IFG_MASK);
1106 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1107
1108 out_be32(ipgifg_register, value);
1109 return 0;
1110 }
1111
init_flow_control_params(u32 automatic_flow_control_mode,int rx_flow_control_enable,int tx_flow_control_enable,u16 pause_period,u16 extension_field,u32 __iomem * upsmr_register,u32 __iomem * uempr_register,u32 __iomem * maccfg1_register)1112 int init_flow_control_params(u32 automatic_flow_control_mode,
1113 int rx_flow_control_enable,
1114 int tx_flow_control_enable,
1115 u16 pause_period,
1116 u16 extension_field,
1117 u32 __iomem *upsmr_register,
1118 u32 __iomem *uempr_register,
1119 u32 __iomem *maccfg1_register)
1120 {
1121 u32 value = 0;
1122
1123 /* Set UEMPR register */
1124 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1125 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1126 out_be32(uempr_register, value);
1127
1128 /* Set UPSMR register */
1129 setbits32(upsmr_register, automatic_flow_control_mode);
1130
1131 value = in_be32(maccfg1_register);
1132 if (rx_flow_control_enable)
1133 value |= MACCFG1_FLOW_RX;
1134 if (tx_flow_control_enable)
1135 value |= MACCFG1_FLOW_TX;
1136 out_be32(maccfg1_register, value);
1137
1138 return 0;
1139 }
1140
init_hw_statistics_gathering_mode(int enable_hardware_statistics,int auto_zero_hardware_statistics,u32 __iomem * upsmr_register,u16 __iomem * uescr_register)1141 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1142 int auto_zero_hardware_statistics,
1143 u32 __iomem *upsmr_register,
1144 u16 __iomem *uescr_register)
1145 {
1146 u16 uescr_value = 0;
1147
1148 /* Enable hardware statistics gathering if requested */
1149 if (enable_hardware_statistics)
1150 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1151
1152 /* Clear hardware statistics counters */
1153 uescr_value = in_be16(uescr_register);
1154 uescr_value |= UESCR_CLRCNT;
1155 /* Automatically zero hardware statistics counters on read,
1156 if requested */
1157 if (auto_zero_hardware_statistics)
1158 uescr_value |= UESCR_AUTOZ;
1159 out_be16(uescr_register, uescr_value);
1160
1161 return 0;
1162 }
1163
init_firmware_statistics_gathering_mode(int enable_tx_firmware_statistics,int enable_rx_firmware_statistics,u32 __iomem * tx_rmon_base_ptr,u32 tx_firmware_statistics_structure_address,u32 __iomem * rx_rmon_base_ptr,u32 rx_firmware_statistics_structure_address,u16 __iomem * temoder_register,u32 __iomem * remoder_register)1164 static int init_firmware_statistics_gathering_mode(int
1165 enable_tx_firmware_statistics,
1166 int enable_rx_firmware_statistics,
1167 u32 __iomem *tx_rmon_base_ptr,
1168 u32 tx_firmware_statistics_structure_address,
1169 u32 __iomem *rx_rmon_base_ptr,
1170 u32 rx_firmware_statistics_structure_address,
1171 u16 __iomem *temoder_register,
1172 u32 __iomem *remoder_register)
1173 {
1174 /* Note: this function does not check if */
1175 /* the parameters it receives are NULL */
1176
1177 if (enable_tx_firmware_statistics) {
1178 out_be32(tx_rmon_base_ptr,
1179 tx_firmware_statistics_structure_address);
1180 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1181 }
1182
1183 if (enable_rx_firmware_statistics) {
1184 out_be32(rx_rmon_base_ptr,
1185 rx_firmware_statistics_structure_address);
1186 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1187 }
1188
1189 return 0;
1190 }
1191
init_mac_station_addr_regs(u8 address_byte_0,u8 address_byte_1,u8 address_byte_2,u8 address_byte_3,u8 address_byte_4,u8 address_byte_5,u32 __iomem * macstnaddr1_register,u32 __iomem * macstnaddr2_register)1192 static int init_mac_station_addr_regs(u8 address_byte_0,
1193 u8 address_byte_1,
1194 u8 address_byte_2,
1195 u8 address_byte_3,
1196 u8 address_byte_4,
1197 u8 address_byte_5,
1198 u32 __iomem *macstnaddr1_register,
1199 u32 __iomem *macstnaddr2_register)
1200 {
1201 u32 value = 0;
1202
1203 /* Example: for a station address of 0x12345678ABCD, */
1204 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1205
1206 /* MACSTNADDR1 Register: */
1207
1208 /* 0 7 8 15 */
1209 /* station address byte 5 station address byte 4 */
1210 /* 16 23 24 31 */
1211 /* station address byte 3 station address byte 2 */
1212 value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1213 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1214 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1215 value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1216
1217 out_be32(macstnaddr1_register, value);
1218
1219 /* MACSTNADDR2 Register: */
1220
1221 /* 0 7 8 15 */
1222 /* station address byte 1 station address byte 0 */
1223 /* 16 23 24 31 */
1224 /* reserved reserved */
1225 value = 0;
1226 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1227 value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1228
1229 out_be32(macstnaddr2_register, value);
1230
1231 return 0;
1232 }
1233
init_check_frame_length_mode(int length_check,u32 __iomem * maccfg2_register)1234 static int init_check_frame_length_mode(int length_check,
1235 u32 __iomem *maccfg2_register)
1236 {
1237 u32 value = 0;
1238
1239 value = in_be32(maccfg2_register);
1240
1241 if (length_check)
1242 value |= MACCFG2_LC;
1243 else
1244 value &= ~MACCFG2_LC;
1245
1246 out_be32(maccfg2_register, value);
1247 return 0;
1248 }
1249
init_preamble_length(u8 preamble_length,u32 __iomem * maccfg2_register)1250 static int init_preamble_length(u8 preamble_length,
1251 u32 __iomem *maccfg2_register)
1252 {
1253 if ((preamble_length < 3) || (preamble_length > 7))
1254 return -EINVAL;
1255
1256 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1257 preamble_length << MACCFG2_PREL_SHIFT);
1258
1259 return 0;
1260 }
1261
init_rx_parameters(int reject_broadcast,int receive_short_frames,int promiscuous,u32 __iomem * upsmr_register)1262 static int init_rx_parameters(int reject_broadcast,
1263 int receive_short_frames,
1264 int promiscuous, u32 __iomem *upsmr_register)
1265 {
1266 u32 value = 0;
1267
1268 value = in_be32(upsmr_register);
1269
1270 if (reject_broadcast)
1271 value |= UCC_GETH_UPSMR_BRO;
1272 else
1273 value &= ~UCC_GETH_UPSMR_BRO;
1274
1275 if (receive_short_frames)
1276 value |= UCC_GETH_UPSMR_RSH;
1277 else
1278 value &= ~UCC_GETH_UPSMR_RSH;
1279
1280 if (promiscuous)
1281 value |= UCC_GETH_UPSMR_PRO;
1282 else
1283 value &= ~UCC_GETH_UPSMR_PRO;
1284
1285 out_be32(upsmr_register, value);
1286
1287 return 0;
1288 }
1289
init_max_rx_buff_len(u16 max_rx_buf_len,u16 __iomem * mrblr_register)1290 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1291 u16 __iomem *mrblr_register)
1292 {
1293 /* max_rx_buf_len value must be a multiple of 128 */
1294 if ((max_rx_buf_len == 0) ||
1295 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1296 return -EINVAL;
1297
1298 out_be16(mrblr_register, max_rx_buf_len);
1299 return 0;
1300 }
1301
init_min_frame_len(u16 min_frame_length,u16 __iomem * minflr_register,u16 __iomem * mrblr_register)1302 static int init_min_frame_len(u16 min_frame_length,
1303 u16 __iomem *minflr_register,
1304 u16 __iomem *mrblr_register)
1305 {
1306 u16 mrblr_value = 0;
1307
1308 mrblr_value = in_be16(mrblr_register);
1309 if (min_frame_length >= (mrblr_value - 4))
1310 return -EINVAL;
1311
1312 out_be16(minflr_register, min_frame_length);
1313 return 0;
1314 }
1315
adjust_enet_interface(struct ucc_geth_private * ugeth)1316 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1317 {
1318 struct ucc_geth_info *ug_info;
1319 struct ucc_geth __iomem *ug_regs;
1320 struct ucc_fast __iomem *uf_regs;
1321 int ret_val;
1322 u32 upsmr, maccfg2;
1323 u16 value;
1324
1325 ugeth_vdbg("%s: IN", __func__);
1326
1327 ug_info = ugeth->ug_info;
1328 ug_regs = ugeth->ug_regs;
1329 uf_regs = ugeth->uccf->uf_regs;
1330
1331 /* Set MACCFG2 */
1332 maccfg2 = in_be32(&ug_regs->maccfg2);
1333 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1334 if ((ugeth->max_speed == SPEED_10) ||
1335 (ugeth->max_speed == SPEED_100))
1336 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1337 else if (ugeth->max_speed == SPEED_1000)
1338 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1339 maccfg2 |= ug_info->padAndCrc;
1340 out_be32(&ug_regs->maccfg2, maccfg2);
1341
1342 /* Set UPSMR */
1343 upsmr = in_be32(&uf_regs->upsmr);
1344 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1345 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1346 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1347 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1348 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1349 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1350 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1351 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1352 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1353 upsmr |= UCC_GETH_UPSMR_RPM;
1354 switch (ugeth->max_speed) {
1355 case SPEED_10:
1356 upsmr |= UCC_GETH_UPSMR_R10M;
1357 /* FALLTHROUGH */
1358 case SPEED_100:
1359 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1360 upsmr |= UCC_GETH_UPSMR_RMM;
1361 }
1362 }
1363 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1364 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1365 upsmr |= UCC_GETH_UPSMR_TBIM;
1366 }
1367 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1368 upsmr |= UCC_GETH_UPSMR_SGMM;
1369
1370 out_be32(&uf_regs->upsmr, upsmr);
1371
1372 /* Disable autonegotiation in tbi mode, because by default it
1373 comes up in autonegotiation mode. */
1374 /* Note that this depends on proper setting in utbipar register. */
1375 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1376 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1377 struct ucc_geth_info *ug_info = ugeth->ug_info;
1378 struct phy_device *tbiphy;
1379
1380 if (!ug_info->tbi_node)
1381 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1382
1383 tbiphy = of_phy_find_device(ug_info->tbi_node);
1384 if (!tbiphy)
1385 pr_warn("Could not get TBI device\n");
1386
1387 value = phy_read(tbiphy, ENET_TBI_MII_CR);
1388 value &= ~0x1000; /* Turn off autonegotiation */
1389 phy_write(tbiphy, ENET_TBI_MII_CR, value);
1390 }
1391
1392 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1393
1394 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1395 if (ret_val != 0) {
1396 if (netif_msg_probe(ugeth))
1397 pr_err("Preamble length must be between 3 and 7 inclusive\n");
1398 return ret_val;
1399 }
1400
1401 return 0;
1402 }
1403
ugeth_graceful_stop_tx(struct ucc_geth_private * ugeth)1404 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1405 {
1406 struct ucc_fast_private *uccf;
1407 u32 cecr_subblock;
1408 u32 temp;
1409 int i = 10;
1410
1411 uccf = ugeth->uccf;
1412
1413 /* Mask GRACEFUL STOP TX interrupt bit and clear it */
1414 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1415 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
1416
1417 /* Issue host command */
1418 cecr_subblock =
1419 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1420 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1421 QE_CR_PROTOCOL_ETHERNET, 0);
1422
1423 /* Wait for command to complete */
1424 do {
1425 msleep(10);
1426 temp = in_be32(uccf->p_ucce);
1427 } while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1428
1429 uccf->stopped_tx = 1;
1430
1431 return 0;
1432 }
1433
ugeth_graceful_stop_rx(struct ucc_geth_private * ugeth)1434 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1435 {
1436 struct ucc_fast_private *uccf;
1437 u32 cecr_subblock;
1438 u8 temp;
1439 int i = 10;
1440
1441 uccf = ugeth->uccf;
1442
1443 /* Clear acknowledge bit */
1444 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1445 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1446 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1447
1448 /* Keep issuing command and checking acknowledge bit until
1449 it is asserted, according to spec */
1450 do {
1451 /* Issue host command */
1452 cecr_subblock =
1453 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1454 ucc_num);
1455 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1456 QE_CR_PROTOCOL_ETHERNET, 0);
1457 msleep(10);
1458 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1459 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1460
1461 uccf->stopped_rx = 1;
1462
1463 return 0;
1464 }
1465
ugeth_restart_tx(struct ucc_geth_private * ugeth)1466 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1467 {
1468 struct ucc_fast_private *uccf;
1469 u32 cecr_subblock;
1470
1471 uccf = ugeth->uccf;
1472
1473 cecr_subblock =
1474 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1475 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1476 uccf->stopped_tx = 0;
1477
1478 return 0;
1479 }
1480
ugeth_restart_rx(struct ucc_geth_private * ugeth)1481 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1482 {
1483 struct ucc_fast_private *uccf;
1484 u32 cecr_subblock;
1485
1486 uccf = ugeth->uccf;
1487
1488 cecr_subblock =
1489 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1490 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1491 0);
1492 uccf->stopped_rx = 0;
1493
1494 return 0;
1495 }
1496
ugeth_enable(struct ucc_geth_private * ugeth,enum comm_dir mode)1497 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1498 {
1499 struct ucc_fast_private *uccf;
1500 int enabled_tx, enabled_rx;
1501
1502 uccf = ugeth->uccf;
1503
1504 /* check if the UCC number is in range. */
1505 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1506 if (netif_msg_probe(ugeth))
1507 pr_err("ucc_num out of range\n");
1508 return -EINVAL;
1509 }
1510
1511 enabled_tx = uccf->enabled_tx;
1512 enabled_rx = uccf->enabled_rx;
1513
1514 /* Get Tx and Rx going again, in case this channel was actively
1515 disabled. */
1516 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1517 ugeth_restart_tx(ugeth);
1518 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1519 ugeth_restart_rx(ugeth);
1520
1521 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
1522
1523 return 0;
1524
1525 }
1526
ugeth_disable(struct ucc_geth_private * ugeth,enum comm_dir mode)1527 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1528 {
1529 struct ucc_fast_private *uccf;
1530
1531 uccf = ugeth->uccf;
1532
1533 /* check if the UCC number is in range. */
1534 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1535 if (netif_msg_probe(ugeth))
1536 pr_err("ucc_num out of range\n");
1537 return -EINVAL;
1538 }
1539
1540 /* Stop any transmissions */
1541 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1542 ugeth_graceful_stop_tx(ugeth);
1543
1544 /* Stop any receptions */
1545 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1546 ugeth_graceful_stop_rx(ugeth);
1547
1548 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1549
1550 return 0;
1551 }
1552
ugeth_quiesce(struct ucc_geth_private * ugeth)1553 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1554 {
1555 /* Prevent any further xmits, plus detach the device. */
1556 netif_device_detach(ugeth->ndev);
1557
1558 /* Wait for any current xmits to finish. */
1559 netif_tx_disable(ugeth->ndev);
1560
1561 /* Disable the interrupt to avoid NAPI rescheduling. */
1562 disable_irq(ugeth->ug_info->uf_info.irq);
1563
1564 /* Stop NAPI, and possibly wait for its completion. */
1565 napi_disable(&ugeth->napi);
1566 }
1567
ugeth_activate(struct ucc_geth_private * ugeth)1568 static void ugeth_activate(struct ucc_geth_private *ugeth)
1569 {
1570 napi_enable(&ugeth->napi);
1571 enable_irq(ugeth->ug_info->uf_info.irq);
1572 netif_device_attach(ugeth->ndev);
1573 }
1574
1575 /* Called every time the controller might need to be made
1576 * aware of new link state. The PHY code conveys this
1577 * information through variables in the ugeth structure, and this
1578 * function converts those variables into the appropriate
1579 * register values, and can bring down the device if needed.
1580 */
1581
adjust_link(struct net_device * dev)1582 static void adjust_link(struct net_device *dev)
1583 {
1584 struct ucc_geth_private *ugeth = netdev_priv(dev);
1585 struct ucc_geth __iomem *ug_regs;
1586 struct ucc_fast __iomem *uf_regs;
1587 struct phy_device *phydev = ugeth->phydev;
1588 int new_state = 0;
1589
1590 ug_regs = ugeth->ug_regs;
1591 uf_regs = ugeth->uccf->uf_regs;
1592
1593 if (phydev->link) {
1594 u32 tempval = in_be32(&ug_regs->maccfg2);
1595 u32 upsmr = in_be32(&uf_regs->upsmr);
1596 /* Now we make sure that we can be in full duplex mode.
1597 * If not, we operate in half-duplex mode. */
1598 if (phydev->duplex != ugeth->oldduplex) {
1599 new_state = 1;
1600 if (!(phydev->duplex))
1601 tempval &= ~(MACCFG2_FDX);
1602 else
1603 tempval |= MACCFG2_FDX;
1604 ugeth->oldduplex = phydev->duplex;
1605 }
1606
1607 if (phydev->speed != ugeth->oldspeed) {
1608 new_state = 1;
1609 switch (phydev->speed) {
1610 case SPEED_1000:
1611 tempval = ((tempval &
1612 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1613 MACCFG2_INTERFACE_MODE_BYTE);
1614 break;
1615 case SPEED_100:
1616 case SPEED_10:
1617 tempval = ((tempval &
1618 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1619 MACCFG2_INTERFACE_MODE_NIBBLE);
1620 /* if reduced mode, re-set UPSMR.R10M */
1621 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1623 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1624 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1625 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1626 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1627 if (phydev->speed == SPEED_10)
1628 upsmr |= UCC_GETH_UPSMR_R10M;
1629 else
1630 upsmr &= ~UCC_GETH_UPSMR_R10M;
1631 }
1632 break;
1633 default:
1634 if (netif_msg_link(ugeth))
1635 pr_warn(
1636 "%s: Ack! Speed (%d) is not 10/100/1000!",
1637 dev->name, phydev->speed);
1638 break;
1639 }
1640 ugeth->oldspeed = phydev->speed;
1641 }
1642
1643 if (!ugeth->oldlink) {
1644 new_state = 1;
1645 ugeth->oldlink = 1;
1646 }
1647
1648 if (new_state) {
1649 /*
1650 * To change the MAC configuration we need to disable
1651 * the controller. To do so, we have to either grab
1652 * ugeth->lock, which is a bad idea since 'graceful
1653 * stop' commands might take quite a while, or we can
1654 * quiesce driver's activity.
1655 */
1656 ugeth_quiesce(ugeth);
1657 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1658
1659 out_be32(&ug_regs->maccfg2, tempval);
1660 out_be32(&uf_regs->upsmr, upsmr);
1661
1662 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1663 ugeth_activate(ugeth);
1664 }
1665 } else if (ugeth->oldlink) {
1666 new_state = 1;
1667 ugeth->oldlink = 0;
1668 ugeth->oldspeed = 0;
1669 ugeth->oldduplex = -1;
1670 }
1671
1672 if (new_state && netif_msg_link(ugeth))
1673 phy_print_status(phydev);
1674 }
1675
1676 /* Initialize TBI PHY interface for communicating with the
1677 * SERDES lynx PHY on the chip. We communicate with this PHY
1678 * through the MDIO bus on each controller, treating it as a
1679 * "normal" PHY at the address found in the UTBIPA register. We assume
1680 * that the UTBIPA register is valid. Either the MDIO bus code will set
1681 * it to a value that doesn't conflict with other PHYs on the bus, or the
1682 * value doesn't matter, as there are no other PHYs on the bus.
1683 */
uec_configure_serdes(struct net_device * dev)1684 static void uec_configure_serdes(struct net_device *dev)
1685 {
1686 struct ucc_geth_private *ugeth = netdev_priv(dev);
1687 struct ucc_geth_info *ug_info = ugeth->ug_info;
1688 struct phy_device *tbiphy;
1689
1690 if (!ug_info->tbi_node) {
1691 dev_warn(&dev->dev, "SGMII mode requires that the device "
1692 "tree specify a tbi-handle\n");
1693 return;
1694 }
1695
1696 tbiphy = of_phy_find_device(ug_info->tbi_node);
1697 if (!tbiphy) {
1698 dev_err(&dev->dev, "error: Could not get TBI device\n");
1699 return;
1700 }
1701
1702 /*
1703 * If the link is already up, we must already be ok, and don't need to
1704 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1705 * everything for us? Resetting it takes the link down and requires
1706 * several seconds for it to come back.
1707 */
1708 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1709 return;
1710
1711 /* Single clk mode, mii mode off(for serdes communication) */
1712 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1713
1714 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1715
1716 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1717 }
1718
1719 /* Configure the PHY for dev.
1720 * returns 0 if success. -1 if failure
1721 */
init_phy(struct net_device * dev)1722 static int init_phy(struct net_device *dev)
1723 {
1724 struct ucc_geth_private *priv = netdev_priv(dev);
1725 struct ucc_geth_info *ug_info = priv->ug_info;
1726 struct phy_device *phydev;
1727
1728 priv->oldlink = 0;
1729 priv->oldspeed = 0;
1730 priv->oldduplex = -1;
1731
1732 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1733 priv->phy_interface);
1734 if (!phydev)
1735 phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1736 priv->phy_interface);
1737 if (!phydev) {
1738 dev_err(&dev->dev, "Could not attach to PHY\n");
1739 return -ENODEV;
1740 }
1741
1742 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1743 uec_configure_serdes(dev);
1744
1745 phydev->supported &= (SUPPORTED_MII |
1746 SUPPORTED_Autoneg |
1747 ADVERTISED_10baseT_Half |
1748 ADVERTISED_10baseT_Full |
1749 ADVERTISED_100baseT_Half |
1750 ADVERTISED_100baseT_Full);
1751
1752 if (priv->max_speed == SPEED_1000)
1753 phydev->supported |= ADVERTISED_1000baseT_Full;
1754
1755 phydev->advertising = phydev->supported;
1756
1757 priv->phydev = phydev;
1758
1759 return 0;
1760 }
1761
ugeth_dump_regs(struct ucc_geth_private * ugeth)1762 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1763 {
1764 #ifdef DEBUG
1765 ucc_fast_dump_regs(ugeth->uccf);
1766 dump_regs(ugeth);
1767 dump_bds(ugeth);
1768 #endif
1769 }
1770
ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * ugeth,enum enet_addr_type enet_addr_type)1771 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1772 ugeth,
1773 enum enet_addr_type
1774 enet_addr_type)
1775 {
1776 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1777 struct ucc_fast_private *uccf;
1778 enum comm_dir comm_dir;
1779 struct list_head *p_lh;
1780 u16 i, num;
1781 u32 __iomem *addr_h;
1782 u32 __iomem *addr_l;
1783 u8 *p_counter;
1784
1785 uccf = ugeth->uccf;
1786
1787 p_82xx_addr_filt =
1788 (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1789 ugeth->p_rx_glbl_pram->addressfiltering;
1790
1791 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1792 addr_h = &(p_82xx_addr_filt->gaddr_h);
1793 addr_l = &(p_82xx_addr_filt->gaddr_l);
1794 p_lh = &ugeth->group_hash_q;
1795 p_counter = &(ugeth->numGroupAddrInHash);
1796 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1797 addr_h = &(p_82xx_addr_filt->iaddr_h);
1798 addr_l = &(p_82xx_addr_filt->iaddr_l);
1799 p_lh = &ugeth->ind_hash_q;
1800 p_counter = &(ugeth->numIndAddrInHash);
1801 } else
1802 return -EINVAL;
1803
1804 comm_dir = 0;
1805 if (uccf->enabled_tx)
1806 comm_dir |= COMM_DIR_TX;
1807 if (uccf->enabled_rx)
1808 comm_dir |= COMM_DIR_RX;
1809 if (comm_dir)
1810 ugeth_disable(ugeth, comm_dir);
1811
1812 /* Clear the hash table. */
1813 out_be32(addr_h, 0x00000000);
1814 out_be32(addr_l, 0x00000000);
1815
1816 if (!p_lh)
1817 return 0;
1818
1819 num = *p_counter;
1820
1821 /* Delete all remaining CQ elements */
1822 for (i = 0; i < num; i++)
1823 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1824
1825 *p_counter = 0;
1826
1827 if (comm_dir)
1828 ugeth_enable(ugeth, comm_dir);
1829
1830 return 0;
1831 }
1832
ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)1833 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1834 u8 paddr_num)
1835 {
1836 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1837 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1838 }
1839
ucc_geth_free_rx(struct ucc_geth_private * ugeth)1840 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1841 {
1842 struct ucc_geth_info *ug_info;
1843 struct ucc_fast_info *uf_info;
1844 u16 i, j;
1845 u8 __iomem *bd;
1846
1847
1848 ug_info = ugeth->ug_info;
1849 uf_info = &ug_info->uf_info;
1850
1851 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1852 if (ugeth->p_rx_bd_ring[i]) {
1853 /* Return existing data buffers in ring */
1854 bd = ugeth->p_rx_bd_ring[i];
1855 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1856 if (ugeth->rx_skbuff[i][j]) {
1857 dma_unmap_single(ugeth->dev,
1858 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1859 ugeth->ug_info->
1860 uf_info.max_rx_buf_length +
1861 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1862 DMA_FROM_DEVICE);
1863 dev_kfree_skb_any(
1864 ugeth->rx_skbuff[i][j]);
1865 ugeth->rx_skbuff[i][j] = NULL;
1866 }
1867 bd += sizeof(struct qe_bd);
1868 }
1869
1870 kfree(ugeth->rx_skbuff[i]);
1871
1872 if (ugeth->ug_info->uf_info.bd_mem_part ==
1873 MEM_PART_SYSTEM)
1874 kfree((void *)ugeth->rx_bd_ring_offset[i]);
1875 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1876 MEM_PART_MURAM)
1877 qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1878 ugeth->p_rx_bd_ring[i] = NULL;
1879 }
1880 }
1881
1882 }
1883
ucc_geth_free_tx(struct ucc_geth_private * ugeth)1884 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1885 {
1886 struct ucc_geth_info *ug_info;
1887 struct ucc_fast_info *uf_info;
1888 u16 i, j;
1889 u8 __iomem *bd;
1890
1891 ug_info = ugeth->ug_info;
1892 uf_info = &ug_info->uf_info;
1893
1894 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1895 bd = ugeth->p_tx_bd_ring[i];
1896 if (!bd)
1897 continue;
1898 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1899 if (ugeth->tx_skbuff[i][j]) {
1900 dma_unmap_single(ugeth->dev,
1901 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1902 (in_be32((u32 __iomem *)bd) &
1903 BD_LENGTH_MASK),
1904 DMA_TO_DEVICE);
1905 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1906 ugeth->tx_skbuff[i][j] = NULL;
1907 }
1908 }
1909
1910 kfree(ugeth->tx_skbuff[i]);
1911
1912 if (ugeth->p_tx_bd_ring[i]) {
1913 if (ugeth->ug_info->uf_info.bd_mem_part ==
1914 MEM_PART_SYSTEM)
1915 kfree((void *)ugeth->tx_bd_ring_offset[i]);
1916 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1917 MEM_PART_MURAM)
1918 qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1919 ugeth->p_tx_bd_ring[i] = NULL;
1920 }
1921 }
1922
1923 }
1924
ucc_geth_memclean(struct ucc_geth_private * ugeth)1925 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1926 {
1927 if (!ugeth)
1928 return;
1929
1930 if (ugeth->uccf) {
1931 ucc_fast_free(ugeth->uccf);
1932 ugeth->uccf = NULL;
1933 }
1934
1935 if (ugeth->p_thread_data_tx) {
1936 qe_muram_free(ugeth->thread_dat_tx_offset);
1937 ugeth->p_thread_data_tx = NULL;
1938 }
1939 if (ugeth->p_thread_data_rx) {
1940 qe_muram_free(ugeth->thread_dat_rx_offset);
1941 ugeth->p_thread_data_rx = NULL;
1942 }
1943 if (ugeth->p_exf_glbl_param) {
1944 qe_muram_free(ugeth->exf_glbl_param_offset);
1945 ugeth->p_exf_glbl_param = NULL;
1946 }
1947 if (ugeth->p_rx_glbl_pram) {
1948 qe_muram_free(ugeth->rx_glbl_pram_offset);
1949 ugeth->p_rx_glbl_pram = NULL;
1950 }
1951 if (ugeth->p_tx_glbl_pram) {
1952 qe_muram_free(ugeth->tx_glbl_pram_offset);
1953 ugeth->p_tx_glbl_pram = NULL;
1954 }
1955 if (ugeth->p_send_q_mem_reg) {
1956 qe_muram_free(ugeth->send_q_mem_reg_offset);
1957 ugeth->p_send_q_mem_reg = NULL;
1958 }
1959 if (ugeth->p_scheduler) {
1960 qe_muram_free(ugeth->scheduler_offset);
1961 ugeth->p_scheduler = NULL;
1962 }
1963 if (ugeth->p_tx_fw_statistics_pram) {
1964 qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1965 ugeth->p_tx_fw_statistics_pram = NULL;
1966 }
1967 if (ugeth->p_rx_fw_statistics_pram) {
1968 qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1969 ugeth->p_rx_fw_statistics_pram = NULL;
1970 }
1971 if (ugeth->p_rx_irq_coalescing_tbl) {
1972 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1973 ugeth->p_rx_irq_coalescing_tbl = NULL;
1974 }
1975 if (ugeth->p_rx_bd_qs_tbl) {
1976 qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1977 ugeth->p_rx_bd_qs_tbl = NULL;
1978 }
1979 if (ugeth->p_init_enet_param_shadow) {
1980 return_init_enet_entries(ugeth,
1981 &(ugeth->p_init_enet_param_shadow->
1982 rxthread[0]),
1983 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1984 ugeth->ug_info->riscRx, 1);
1985 return_init_enet_entries(ugeth,
1986 &(ugeth->p_init_enet_param_shadow->
1987 txthread[0]),
1988 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1989 ugeth->ug_info->riscTx, 0);
1990 kfree(ugeth->p_init_enet_param_shadow);
1991 ugeth->p_init_enet_param_shadow = NULL;
1992 }
1993 ucc_geth_free_tx(ugeth);
1994 ucc_geth_free_rx(ugeth);
1995 while (!list_empty(&ugeth->group_hash_q))
1996 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1997 (dequeue(&ugeth->group_hash_q)));
1998 while (!list_empty(&ugeth->ind_hash_q))
1999 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2000 (dequeue(&ugeth->ind_hash_q)));
2001 if (ugeth->ug_regs) {
2002 iounmap(ugeth->ug_regs);
2003 ugeth->ug_regs = NULL;
2004 }
2005 }
2006
ucc_geth_set_multi(struct net_device * dev)2007 static void ucc_geth_set_multi(struct net_device *dev)
2008 {
2009 struct ucc_geth_private *ugeth;
2010 struct netdev_hw_addr *ha;
2011 struct ucc_fast __iomem *uf_regs;
2012 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2013
2014 ugeth = netdev_priv(dev);
2015
2016 uf_regs = ugeth->uccf->uf_regs;
2017
2018 if (dev->flags & IFF_PROMISC) {
2019 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2020 } else {
2021 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2022
2023 p_82xx_addr_filt =
2024 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2025 p_rx_glbl_pram->addressfiltering;
2026
2027 if (dev->flags & IFF_ALLMULTI) {
2028 /* Catch all multicast addresses, so set the
2029 * filter to all 1's.
2030 */
2031 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2032 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2033 } else {
2034 /* Clear filter and add the addresses in the list.
2035 */
2036 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2037 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2038
2039 netdev_for_each_mc_addr(ha, dev) {
2040 /* Ask CPM to run CRC and set bit in
2041 * filter mask.
2042 */
2043 hw_add_addr_in_hash(ugeth, ha->addr);
2044 }
2045 }
2046 }
2047 }
2048
ucc_geth_stop(struct ucc_geth_private * ugeth)2049 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2050 {
2051 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2052 struct phy_device *phydev = ugeth->phydev;
2053
2054 ugeth_vdbg("%s: IN", __func__);
2055
2056 /*
2057 * Tell the kernel the link is down.
2058 * Must be done before disabling the controller
2059 * or deadlock may happen.
2060 */
2061 phy_stop(phydev);
2062
2063 /* Disable the controller */
2064 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2065
2066 /* Mask all interrupts */
2067 out_be32(ugeth->uccf->p_uccm, 0x00000000);
2068
2069 /* Clear all interrupts */
2070 out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2071
2072 /* Disable Rx and Tx */
2073 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2074
2075 ucc_geth_memclean(ugeth);
2076 }
2077
ucc_struct_init(struct ucc_geth_private * ugeth)2078 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2079 {
2080 struct ucc_geth_info *ug_info;
2081 struct ucc_fast_info *uf_info;
2082 int i;
2083
2084 ug_info = ugeth->ug_info;
2085 uf_info = &ug_info->uf_info;
2086
2087 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2088 (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2089 if (netif_msg_probe(ugeth))
2090 pr_err("Bad memory partition value\n");
2091 return -EINVAL;
2092 }
2093
2094 /* Rx BD lengths */
2095 for (i = 0; i < ug_info->numQueuesRx; i++) {
2096 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2097 (ug_info->bdRingLenRx[i] %
2098 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2099 if (netif_msg_probe(ugeth))
2100 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2101 return -EINVAL;
2102 }
2103 }
2104
2105 /* Tx BD lengths */
2106 for (i = 0; i < ug_info->numQueuesTx; i++) {
2107 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2108 if (netif_msg_probe(ugeth))
2109 pr_err("Tx BD ring length must be no smaller than 2\n");
2110 return -EINVAL;
2111 }
2112 }
2113
2114 /* mrblr */
2115 if ((uf_info->max_rx_buf_length == 0) ||
2116 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2117 if (netif_msg_probe(ugeth))
2118 pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2119 return -EINVAL;
2120 }
2121
2122 /* num Tx queues */
2123 if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2124 if (netif_msg_probe(ugeth))
2125 pr_err("number of tx queues too large\n");
2126 return -EINVAL;
2127 }
2128
2129 /* num Rx queues */
2130 if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2131 if (netif_msg_probe(ugeth))
2132 pr_err("number of rx queues too large\n");
2133 return -EINVAL;
2134 }
2135
2136 /* l2qt */
2137 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2138 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2139 if (netif_msg_probe(ugeth))
2140 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2141 return -EINVAL;
2142 }
2143 }
2144
2145 /* l3qt */
2146 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2147 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2148 if (netif_msg_probe(ugeth))
2149 pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2150 return -EINVAL;
2151 }
2152 }
2153
2154 if (ug_info->cam && !ug_info->ecamptr) {
2155 if (netif_msg_probe(ugeth))
2156 pr_err("If cam mode is chosen, must supply cam ptr\n");
2157 return -EINVAL;
2158 }
2159
2160 if ((ug_info->numStationAddresses !=
2161 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2162 ug_info->rxExtendedFiltering) {
2163 if (netif_msg_probe(ugeth))
2164 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2165 return -EINVAL;
2166 }
2167
2168 /* Generate uccm_mask for receive */
2169 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2170 for (i = 0; i < ug_info->numQueuesRx; i++)
2171 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2172
2173 for (i = 0; i < ug_info->numQueuesTx; i++)
2174 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2175 /* Initialize the general fast UCC block. */
2176 if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2177 if (netif_msg_probe(ugeth))
2178 pr_err("Failed to init uccf\n");
2179 return -ENOMEM;
2180 }
2181
2182 /* read the number of risc engines, update the riscTx and riscRx
2183 * if there are 4 riscs in QE
2184 */
2185 if (qe_get_num_of_risc() == 4) {
2186 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2187 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2188 }
2189
2190 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2191 if (!ugeth->ug_regs) {
2192 if (netif_msg_probe(ugeth))
2193 pr_err("Failed to ioremap regs\n");
2194 return -ENOMEM;
2195 }
2196
2197 return 0;
2198 }
2199
ucc_geth_alloc_tx(struct ucc_geth_private * ugeth)2200 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2201 {
2202 struct ucc_geth_info *ug_info;
2203 struct ucc_fast_info *uf_info;
2204 int length;
2205 u16 i, j;
2206 u8 __iomem *bd;
2207
2208 ug_info = ugeth->ug_info;
2209 uf_info = &ug_info->uf_info;
2210
2211 /* Allocate Tx bds */
2212 for (j = 0; j < ug_info->numQueuesTx; j++) {
2213 /* Allocate in multiple of
2214 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2215 according to spec */
2216 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2217 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2218 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2219 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2220 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2221 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2222 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2223 u32 align = 4;
2224 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2225 align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2226 ugeth->tx_bd_ring_offset[j] =
2227 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2228
2229 if (ugeth->tx_bd_ring_offset[j] != 0)
2230 ugeth->p_tx_bd_ring[j] =
2231 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2232 align) & ~(align - 1));
2233 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2234 ugeth->tx_bd_ring_offset[j] =
2235 qe_muram_alloc(length,
2236 UCC_GETH_TX_BD_RING_ALIGNMENT);
2237 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2238 ugeth->p_tx_bd_ring[j] =
2239 (u8 __iomem *) qe_muram_addr(ugeth->
2240 tx_bd_ring_offset[j]);
2241 }
2242 if (!ugeth->p_tx_bd_ring[j]) {
2243 if (netif_msg_ifup(ugeth))
2244 pr_err("Can not allocate memory for Tx bd rings\n");
2245 return -ENOMEM;
2246 }
2247 /* Zero unused end of bd ring, according to spec */
2248 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2249 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2250 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2251 }
2252
2253 /* Init Tx bds */
2254 for (j = 0; j < ug_info->numQueuesTx; j++) {
2255 /* Setup the skbuff rings */
2256 ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2257 ugeth->ug_info->bdRingLenTx[j],
2258 GFP_KERNEL);
2259
2260 if (ugeth->tx_skbuff[j] == NULL) {
2261 if (netif_msg_ifup(ugeth))
2262 pr_err("Could not allocate tx_skbuff\n");
2263 return -ENOMEM;
2264 }
2265
2266 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2267 ugeth->tx_skbuff[j][i] = NULL;
2268
2269 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2270 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2271 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2272 /* clear bd buffer */
2273 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2274 /* set bd status and length */
2275 out_be32((u32 __iomem *)bd, 0);
2276 bd += sizeof(struct qe_bd);
2277 }
2278 bd -= sizeof(struct qe_bd);
2279 /* set bd status and length */
2280 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2281 }
2282
2283 return 0;
2284 }
2285
ucc_geth_alloc_rx(struct ucc_geth_private * ugeth)2286 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2287 {
2288 struct ucc_geth_info *ug_info;
2289 struct ucc_fast_info *uf_info;
2290 int length;
2291 u16 i, j;
2292 u8 __iomem *bd;
2293
2294 ug_info = ugeth->ug_info;
2295 uf_info = &ug_info->uf_info;
2296
2297 /* Allocate Rx bds */
2298 for (j = 0; j < ug_info->numQueuesRx; j++) {
2299 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2300 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2301 u32 align = 4;
2302 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2303 align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2304 ugeth->rx_bd_ring_offset[j] =
2305 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2306 if (ugeth->rx_bd_ring_offset[j] != 0)
2307 ugeth->p_rx_bd_ring[j] =
2308 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2309 align) & ~(align - 1));
2310 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2311 ugeth->rx_bd_ring_offset[j] =
2312 qe_muram_alloc(length,
2313 UCC_GETH_RX_BD_RING_ALIGNMENT);
2314 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2315 ugeth->p_rx_bd_ring[j] =
2316 (u8 __iomem *) qe_muram_addr(ugeth->
2317 rx_bd_ring_offset[j]);
2318 }
2319 if (!ugeth->p_rx_bd_ring[j]) {
2320 if (netif_msg_ifup(ugeth))
2321 pr_err("Can not allocate memory for Rx bd rings\n");
2322 return -ENOMEM;
2323 }
2324 }
2325
2326 /* Init Rx bds */
2327 for (j = 0; j < ug_info->numQueuesRx; j++) {
2328 /* Setup the skbuff rings */
2329 ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2330 ugeth->ug_info->bdRingLenRx[j],
2331 GFP_KERNEL);
2332
2333 if (ugeth->rx_skbuff[j] == NULL) {
2334 if (netif_msg_ifup(ugeth))
2335 pr_err("Could not allocate rx_skbuff\n");
2336 return -ENOMEM;
2337 }
2338
2339 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2340 ugeth->rx_skbuff[j][i] = NULL;
2341
2342 ugeth->skb_currx[j] = 0;
2343 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2344 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2345 /* set bd status and length */
2346 out_be32((u32 __iomem *)bd, R_I);
2347 /* clear bd buffer */
2348 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2349 bd += sizeof(struct qe_bd);
2350 }
2351 bd -= sizeof(struct qe_bd);
2352 /* set bd status and length */
2353 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2354 }
2355
2356 return 0;
2357 }
2358
ucc_geth_startup(struct ucc_geth_private * ugeth)2359 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2360 {
2361 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2362 struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2363 struct ucc_fast_private *uccf;
2364 struct ucc_geth_info *ug_info;
2365 struct ucc_fast_info *uf_info;
2366 struct ucc_fast __iomem *uf_regs;
2367 struct ucc_geth __iomem *ug_regs;
2368 int ret_val = -EINVAL;
2369 u32 remoder = UCC_GETH_REMODER_INIT;
2370 u32 init_enet_pram_offset, cecr_subblock, command;
2371 u32 ifstat, i, j, size, l2qt, l3qt;
2372 u16 temoder = UCC_GETH_TEMODER_INIT;
2373 u16 test;
2374 u8 function_code = 0;
2375 u8 __iomem *endOfRing;
2376 u8 numThreadsRxNumerical, numThreadsTxNumerical;
2377
2378 ugeth_vdbg("%s: IN", __func__);
2379 uccf = ugeth->uccf;
2380 ug_info = ugeth->ug_info;
2381 uf_info = &ug_info->uf_info;
2382 uf_regs = uccf->uf_regs;
2383 ug_regs = ugeth->ug_regs;
2384
2385 switch (ug_info->numThreadsRx) {
2386 case UCC_GETH_NUM_OF_THREADS_1:
2387 numThreadsRxNumerical = 1;
2388 break;
2389 case UCC_GETH_NUM_OF_THREADS_2:
2390 numThreadsRxNumerical = 2;
2391 break;
2392 case UCC_GETH_NUM_OF_THREADS_4:
2393 numThreadsRxNumerical = 4;
2394 break;
2395 case UCC_GETH_NUM_OF_THREADS_6:
2396 numThreadsRxNumerical = 6;
2397 break;
2398 case UCC_GETH_NUM_OF_THREADS_8:
2399 numThreadsRxNumerical = 8;
2400 break;
2401 default:
2402 if (netif_msg_ifup(ugeth))
2403 pr_err("Bad number of Rx threads value\n");
2404 return -EINVAL;
2405 break;
2406 }
2407
2408 switch (ug_info->numThreadsTx) {
2409 case UCC_GETH_NUM_OF_THREADS_1:
2410 numThreadsTxNumerical = 1;
2411 break;
2412 case UCC_GETH_NUM_OF_THREADS_2:
2413 numThreadsTxNumerical = 2;
2414 break;
2415 case UCC_GETH_NUM_OF_THREADS_4:
2416 numThreadsTxNumerical = 4;
2417 break;
2418 case UCC_GETH_NUM_OF_THREADS_6:
2419 numThreadsTxNumerical = 6;
2420 break;
2421 case UCC_GETH_NUM_OF_THREADS_8:
2422 numThreadsTxNumerical = 8;
2423 break;
2424 default:
2425 if (netif_msg_ifup(ugeth))
2426 pr_err("Bad number of Tx threads value\n");
2427 return -EINVAL;
2428 break;
2429 }
2430
2431 /* Calculate rx_extended_features */
2432 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2433 ug_info->ipAddressAlignment ||
2434 (ug_info->numStationAddresses !=
2435 UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2436
2437 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2438 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2439 (ug_info->vlanOperationNonTagged !=
2440 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2441
2442 init_default_reg_vals(&uf_regs->upsmr,
2443 &ug_regs->maccfg1, &ug_regs->maccfg2);
2444
2445 /* Set UPSMR */
2446 /* For more details see the hardware spec. */
2447 init_rx_parameters(ug_info->bro,
2448 ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2449
2450 /* We're going to ignore other registers for now, */
2451 /* except as needed to get up and running */
2452
2453 /* Set MACCFG1 */
2454 /* For more details see the hardware spec. */
2455 init_flow_control_params(ug_info->aufc,
2456 ug_info->receiveFlowControl,
2457 ug_info->transmitFlowControl,
2458 ug_info->pausePeriod,
2459 ug_info->extensionField,
2460 &uf_regs->upsmr,
2461 &ug_regs->uempr, &ug_regs->maccfg1);
2462
2463 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2464
2465 /* Set IPGIFG */
2466 /* For more details see the hardware spec. */
2467 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2468 ug_info->nonBackToBackIfgPart2,
2469 ug_info->
2470 miminumInterFrameGapEnforcement,
2471 ug_info->backToBackInterFrameGap,
2472 &ug_regs->ipgifg);
2473 if (ret_val != 0) {
2474 if (netif_msg_ifup(ugeth))
2475 pr_err("IPGIFG initialization parameter too large\n");
2476 return ret_val;
2477 }
2478
2479 /* Set HAFDUP */
2480 /* For more details see the hardware spec. */
2481 ret_val = init_half_duplex_params(ug_info->altBeb,
2482 ug_info->backPressureNoBackoff,
2483 ug_info->noBackoff,
2484 ug_info->excessDefer,
2485 ug_info->altBebTruncation,
2486 ug_info->maxRetransmission,
2487 ug_info->collisionWindow,
2488 &ug_regs->hafdup);
2489 if (ret_val != 0) {
2490 if (netif_msg_ifup(ugeth))
2491 pr_err("Half Duplex initialization parameter too large\n");
2492 return ret_val;
2493 }
2494
2495 /* Set IFSTAT */
2496 /* For more details see the hardware spec. */
2497 /* Read only - resets upon read */
2498 ifstat = in_be32(&ug_regs->ifstat);
2499
2500 /* Clear UEMPR */
2501 /* For more details see the hardware spec. */
2502 out_be32(&ug_regs->uempr, 0);
2503
2504 /* Set UESCR */
2505 /* For more details see the hardware spec. */
2506 init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2507 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2508 0, &uf_regs->upsmr, &ug_regs->uescr);
2509
2510 ret_val = ucc_geth_alloc_tx(ugeth);
2511 if (ret_val != 0)
2512 return ret_val;
2513
2514 ret_val = ucc_geth_alloc_rx(ugeth);
2515 if (ret_val != 0)
2516 return ret_val;
2517
2518 /*
2519 * Global PRAM
2520 */
2521 /* Tx global PRAM */
2522 /* Allocate global tx parameter RAM page */
2523 ugeth->tx_glbl_pram_offset =
2524 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2525 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2526 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2527 if (netif_msg_ifup(ugeth))
2528 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2529 return -ENOMEM;
2530 }
2531 ugeth->p_tx_glbl_pram =
2532 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2533 tx_glbl_pram_offset);
2534 /* Zero out p_tx_glbl_pram */
2535 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2536
2537 /* Fill global PRAM */
2538
2539 /* TQPTR */
2540 /* Size varies with number of Tx threads */
2541 ugeth->thread_dat_tx_offset =
2542 qe_muram_alloc(numThreadsTxNumerical *
2543 sizeof(struct ucc_geth_thread_data_tx) +
2544 32 * (numThreadsTxNumerical == 1),
2545 UCC_GETH_THREAD_DATA_ALIGNMENT);
2546 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2547 if (netif_msg_ifup(ugeth))
2548 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2549 return -ENOMEM;
2550 }
2551
2552 ugeth->p_thread_data_tx =
2553 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2554 thread_dat_tx_offset);
2555 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2556
2557 /* vtagtable */
2558 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2559 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2560 ug_info->vtagtable[i]);
2561
2562 /* iphoffset */
2563 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2564 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2565 ug_info->iphoffset[i]);
2566
2567 /* SQPTR */
2568 /* Size varies with number of Tx queues */
2569 ugeth->send_q_mem_reg_offset =
2570 qe_muram_alloc(ug_info->numQueuesTx *
2571 sizeof(struct ucc_geth_send_queue_qd),
2572 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2573 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2574 if (netif_msg_ifup(ugeth))
2575 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2576 return -ENOMEM;
2577 }
2578
2579 ugeth->p_send_q_mem_reg =
2580 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2581 send_q_mem_reg_offset);
2582 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2583
2584 /* Setup the table */
2585 /* Assume BD rings are already established */
2586 for (i = 0; i < ug_info->numQueuesTx; i++) {
2587 endOfRing =
2588 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2589 1) * sizeof(struct qe_bd);
2590 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2591 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2592 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2593 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2594 last_bd_completed_address,
2595 (u32) virt_to_phys(endOfRing));
2596 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2597 MEM_PART_MURAM) {
2598 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2599 (u32) immrbar_virt_to_phys(ugeth->
2600 p_tx_bd_ring[i]));
2601 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2602 last_bd_completed_address,
2603 (u32) immrbar_virt_to_phys(endOfRing));
2604 }
2605 }
2606
2607 /* schedulerbasepointer */
2608
2609 if (ug_info->numQueuesTx > 1) {
2610 /* scheduler exists only if more than 1 tx queue */
2611 ugeth->scheduler_offset =
2612 qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2613 UCC_GETH_SCHEDULER_ALIGNMENT);
2614 if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2615 if (netif_msg_ifup(ugeth))
2616 pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2617 return -ENOMEM;
2618 }
2619
2620 ugeth->p_scheduler =
2621 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2622 scheduler_offset);
2623 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2624 ugeth->scheduler_offset);
2625 /* Zero out p_scheduler */
2626 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2627
2628 /* Set values in scheduler */
2629 out_be32(&ugeth->p_scheduler->mblinterval,
2630 ug_info->mblinterval);
2631 out_be16(&ugeth->p_scheduler->nortsrbytetime,
2632 ug_info->nortsrbytetime);
2633 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2634 out_8(&ugeth->p_scheduler->strictpriorityq,
2635 ug_info->strictpriorityq);
2636 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2637 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2638 for (i = 0; i < NUM_TX_QUEUES; i++)
2639 out_8(&ugeth->p_scheduler->weightfactor[i],
2640 ug_info->weightfactor[i]);
2641
2642 /* Set pointers to cpucount registers in scheduler */
2643 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2644 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2645 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2646 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2647 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2648 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2649 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2650 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2651 }
2652
2653 /* schedulerbasepointer */
2654 /* TxRMON_PTR (statistics) */
2655 if (ug_info->
2656 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2657 ugeth->tx_fw_statistics_pram_offset =
2658 qe_muram_alloc(sizeof
2659 (struct ucc_geth_tx_firmware_statistics_pram),
2660 UCC_GETH_TX_STATISTICS_ALIGNMENT);
2661 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2662 if (netif_msg_ifup(ugeth))
2663 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2664 return -ENOMEM;
2665 }
2666 ugeth->p_tx_fw_statistics_pram =
2667 (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2668 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2669 /* Zero out p_tx_fw_statistics_pram */
2670 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2671 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2672 }
2673
2674 /* temoder */
2675 /* Already has speed set */
2676
2677 if (ug_info->numQueuesTx > 1)
2678 temoder |= TEMODER_SCHEDULER_ENABLE;
2679 if (ug_info->ipCheckSumGenerate)
2680 temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2681 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2682 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2683
2684 test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2685
2686 /* Function code register value to be used later */
2687 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2688 /* Required for QE */
2689
2690 /* function code register */
2691 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2692
2693 /* Rx global PRAM */
2694 /* Allocate global rx parameter RAM page */
2695 ugeth->rx_glbl_pram_offset =
2696 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2697 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2698 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2699 if (netif_msg_ifup(ugeth))
2700 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2701 return -ENOMEM;
2702 }
2703 ugeth->p_rx_glbl_pram =
2704 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2705 rx_glbl_pram_offset);
2706 /* Zero out p_rx_glbl_pram */
2707 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2708
2709 /* Fill global PRAM */
2710
2711 /* RQPTR */
2712 /* Size varies with number of Rx threads */
2713 ugeth->thread_dat_rx_offset =
2714 qe_muram_alloc(numThreadsRxNumerical *
2715 sizeof(struct ucc_geth_thread_data_rx),
2716 UCC_GETH_THREAD_DATA_ALIGNMENT);
2717 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2718 if (netif_msg_ifup(ugeth))
2719 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2720 return -ENOMEM;
2721 }
2722
2723 ugeth->p_thread_data_rx =
2724 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2725 thread_dat_rx_offset);
2726 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2727
2728 /* typeorlen */
2729 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2730
2731 /* rxrmonbaseptr (statistics) */
2732 if (ug_info->
2733 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2734 ugeth->rx_fw_statistics_pram_offset =
2735 qe_muram_alloc(sizeof
2736 (struct ucc_geth_rx_firmware_statistics_pram),
2737 UCC_GETH_RX_STATISTICS_ALIGNMENT);
2738 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2739 if (netif_msg_ifup(ugeth))
2740 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2741 return -ENOMEM;
2742 }
2743 ugeth->p_rx_fw_statistics_pram =
2744 (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2745 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2746 /* Zero out p_rx_fw_statistics_pram */
2747 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2748 sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2749 }
2750
2751 /* intCoalescingPtr */
2752
2753 /* Size varies with number of Rx queues */
2754 ugeth->rx_irq_coalescing_tbl_offset =
2755 qe_muram_alloc(ug_info->numQueuesRx *
2756 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2757 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2758 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2759 if (netif_msg_ifup(ugeth))
2760 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2761 return -ENOMEM;
2762 }
2763
2764 ugeth->p_rx_irq_coalescing_tbl =
2765 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2766 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2767 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2768 ugeth->rx_irq_coalescing_tbl_offset);
2769
2770 /* Fill interrupt coalescing table */
2771 for (i = 0; i < ug_info->numQueuesRx; i++) {
2772 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2773 interruptcoalescingmaxvalue,
2774 ug_info->interruptcoalescingmaxvalue[i]);
2775 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2776 interruptcoalescingcounter,
2777 ug_info->interruptcoalescingmaxvalue[i]);
2778 }
2779
2780 /* MRBLR */
2781 init_max_rx_buff_len(uf_info->max_rx_buf_length,
2782 &ugeth->p_rx_glbl_pram->mrblr);
2783 /* MFLR */
2784 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2785 /* MINFLR */
2786 init_min_frame_len(ug_info->minFrameLength,
2787 &ugeth->p_rx_glbl_pram->minflr,
2788 &ugeth->p_rx_glbl_pram->mrblr);
2789 /* MAXD1 */
2790 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2791 /* MAXD2 */
2792 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2793
2794 /* l2qt */
2795 l2qt = 0;
2796 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2797 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2798 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2799
2800 /* l3qt */
2801 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2802 l3qt = 0;
2803 for (i = 0; i < 8; i++)
2804 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2805 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2806 }
2807
2808 /* vlantype */
2809 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2810
2811 /* vlantci */
2812 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2813
2814 /* ecamptr */
2815 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2816
2817 /* RBDQPTR */
2818 /* Size varies with number of Rx queues */
2819 ugeth->rx_bd_qs_tbl_offset =
2820 qe_muram_alloc(ug_info->numQueuesRx *
2821 (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2822 sizeof(struct ucc_geth_rx_prefetched_bds)),
2823 UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2824 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2825 if (netif_msg_ifup(ugeth))
2826 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2827 return -ENOMEM;
2828 }
2829
2830 ugeth->p_rx_bd_qs_tbl =
2831 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2832 rx_bd_qs_tbl_offset);
2833 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2834 /* Zero out p_rx_bd_qs_tbl */
2835 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2836 0,
2837 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2838 sizeof(struct ucc_geth_rx_prefetched_bds)));
2839
2840 /* Setup the table */
2841 /* Assume BD rings are already established */
2842 for (i = 0; i < ug_info->numQueuesRx; i++) {
2843 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2844 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2845 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2846 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2847 MEM_PART_MURAM) {
2848 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2849 (u32) immrbar_virt_to_phys(ugeth->
2850 p_rx_bd_ring[i]));
2851 }
2852 /* rest of fields handled by QE */
2853 }
2854
2855 /* remoder */
2856 /* Already has speed set */
2857
2858 if (ugeth->rx_extended_features)
2859 remoder |= REMODER_RX_EXTENDED_FEATURES;
2860 if (ug_info->rxExtendedFiltering)
2861 remoder |= REMODER_RX_EXTENDED_FILTERING;
2862 if (ug_info->dynamicMaxFrameLength)
2863 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2864 if (ug_info->dynamicMinFrameLength)
2865 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2866 remoder |=
2867 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2868 remoder |=
2869 ug_info->
2870 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2871 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2872 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2873 if (ug_info->ipCheckSumCheck)
2874 remoder |= REMODER_IP_CHECKSUM_CHECK;
2875 if (ug_info->ipAddressAlignment)
2876 remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2877 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2878
2879 /* Note that this function must be called */
2880 /* ONLY AFTER p_tx_fw_statistics_pram */
2881 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2882 init_firmware_statistics_gathering_mode((ug_info->
2883 statisticsMode &
2884 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2885 (ug_info->statisticsMode &
2886 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2887 &ugeth->p_tx_glbl_pram->txrmonbaseptr,
2888 ugeth->tx_fw_statistics_pram_offset,
2889 &ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2890 ugeth->rx_fw_statistics_pram_offset,
2891 &ugeth->p_tx_glbl_pram->temoder,
2892 &ugeth->p_rx_glbl_pram->remoder);
2893
2894 /* function code register */
2895 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2896
2897 /* initialize extended filtering */
2898 if (ug_info->rxExtendedFiltering) {
2899 if (!ug_info->extendedFilteringChainPointer) {
2900 if (netif_msg_ifup(ugeth))
2901 pr_err("Null Extended Filtering Chain Pointer\n");
2902 return -EINVAL;
2903 }
2904
2905 /* Allocate memory for extended filtering Mode Global
2906 Parameters */
2907 ugeth->exf_glbl_param_offset =
2908 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2909 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2910 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2911 if (netif_msg_ifup(ugeth))
2912 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2913 return -ENOMEM;
2914 }
2915
2916 ugeth->p_exf_glbl_param =
2917 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2918 exf_glbl_param_offset);
2919 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2920 ugeth->exf_glbl_param_offset);
2921 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2922 (u32) ug_info->extendedFilteringChainPointer);
2923
2924 } else { /* initialize 82xx style address filtering */
2925
2926 /* Init individual address recognition registers to disabled */
2927
2928 for (j = 0; j < NUM_OF_PADDRS; j++)
2929 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2930
2931 p_82xx_addr_filt =
2932 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2933 p_rx_glbl_pram->addressfiltering;
2934
2935 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2936 ENET_ADDR_TYPE_GROUP);
2937 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2938 ENET_ADDR_TYPE_INDIVIDUAL);
2939 }
2940
2941 /*
2942 * Initialize UCC at QE level
2943 */
2944
2945 command = QE_INIT_TX_RX;
2946
2947 /* Allocate shadow InitEnet command parameter structure.
2948 * This is needed because after the InitEnet command is executed,
2949 * the structure in DPRAM is released, because DPRAM is a premium
2950 * resource.
2951 * This shadow structure keeps a copy of what was done so that the
2952 * allocated resources can be released when the channel is freed.
2953 */
2954 if (!(ugeth->p_init_enet_param_shadow =
2955 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2956 if (netif_msg_ifup(ugeth))
2957 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2958 return -ENOMEM;
2959 }
2960 /* Zero out *p_init_enet_param_shadow */
2961 memset((char *)ugeth->p_init_enet_param_shadow,
2962 0, sizeof(struct ucc_geth_init_pram));
2963
2964 /* Fill shadow InitEnet command parameter structure */
2965
2966 ugeth->p_init_enet_param_shadow->resinit1 =
2967 ENET_INIT_PARAM_MAGIC_RES_INIT1;
2968 ugeth->p_init_enet_param_shadow->resinit2 =
2969 ENET_INIT_PARAM_MAGIC_RES_INIT2;
2970 ugeth->p_init_enet_param_shadow->resinit3 =
2971 ENET_INIT_PARAM_MAGIC_RES_INIT3;
2972 ugeth->p_init_enet_param_shadow->resinit4 =
2973 ENET_INIT_PARAM_MAGIC_RES_INIT4;
2974 ugeth->p_init_enet_param_shadow->resinit5 =
2975 ENET_INIT_PARAM_MAGIC_RES_INIT5;
2976 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2977 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2978 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2979 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2980
2981 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2982 ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2983 if ((ug_info->largestexternallookupkeysize !=
2984 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2985 (ug_info->largestexternallookupkeysize !=
2986 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2987 (ug_info->largestexternallookupkeysize !=
2988 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2989 if (netif_msg_ifup(ugeth))
2990 pr_err("Invalid largest External Lookup Key Size\n");
2991 return -EINVAL;
2992 }
2993 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2994 ug_info->largestexternallookupkeysize;
2995 size = sizeof(struct ucc_geth_thread_rx_pram);
2996 if (ug_info->rxExtendedFiltering) {
2997 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2998 if (ug_info->largestexternallookupkeysize ==
2999 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3000 size +=
3001 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
3002 if (ug_info->largestexternallookupkeysize ==
3003 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3004 size +=
3005 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3006 }
3007
3008 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3009 p_init_enet_param_shadow->rxthread[0]),
3010 (u8) (numThreadsRxNumerical + 1)
3011 /* Rx needs one extra for terminator */
3012 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3013 ug_info->riscRx, 1)) != 0) {
3014 if (netif_msg_ifup(ugeth))
3015 pr_err("Can not fill p_init_enet_param_shadow\n");
3016 return ret_val;
3017 }
3018
3019 ugeth->p_init_enet_param_shadow->txglobal =
3020 ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3021 if ((ret_val =
3022 fill_init_enet_entries(ugeth,
3023 &(ugeth->p_init_enet_param_shadow->
3024 txthread[0]), numThreadsTxNumerical,
3025 sizeof(struct ucc_geth_thread_tx_pram),
3026 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3027 ug_info->riscTx, 0)) != 0) {
3028 if (netif_msg_ifup(ugeth))
3029 pr_err("Can not fill p_init_enet_param_shadow\n");
3030 return ret_val;
3031 }
3032
3033 /* Load Rx bds with buffers */
3034 for (i = 0; i < ug_info->numQueuesRx; i++) {
3035 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3036 if (netif_msg_ifup(ugeth))
3037 pr_err("Can not fill Rx bds with buffers\n");
3038 return ret_val;
3039 }
3040 }
3041
3042 /* Allocate InitEnet command parameter structure */
3043 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3044 if (IS_ERR_VALUE(init_enet_pram_offset)) {
3045 if (netif_msg_ifup(ugeth))
3046 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3047 return -ENOMEM;
3048 }
3049 p_init_enet_pram =
3050 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3051
3052 /* Copy shadow InitEnet command parameter structure into PRAM */
3053 out_8(&p_init_enet_pram->resinit1,
3054 ugeth->p_init_enet_param_shadow->resinit1);
3055 out_8(&p_init_enet_pram->resinit2,
3056 ugeth->p_init_enet_param_shadow->resinit2);
3057 out_8(&p_init_enet_pram->resinit3,
3058 ugeth->p_init_enet_param_shadow->resinit3);
3059 out_8(&p_init_enet_pram->resinit4,
3060 ugeth->p_init_enet_param_shadow->resinit4);
3061 out_be16(&p_init_enet_pram->resinit5,
3062 ugeth->p_init_enet_param_shadow->resinit5);
3063 out_8(&p_init_enet_pram->largestexternallookupkeysize,
3064 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3065 out_be32(&p_init_enet_pram->rgftgfrxglobal,
3066 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3067 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3068 out_be32(&p_init_enet_pram->rxthread[i],
3069 ugeth->p_init_enet_param_shadow->rxthread[i]);
3070 out_be32(&p_init_enet_pram->txglobal,
3071 ugeth->p_init_enet_param_shadow->txglobal);
3072 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3073 out_be32(&p_init_enet_pram->txthread[i],
3074 ugeth->p_init_enet_param_shadow->txthread[i]);
3075
3076 /* Issue QE command */
3077 cecr_subblock =
3078 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3079 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3080 init_enet_pram_offset);
3081
3082 /* Free InitEnet command parameter */
3083 qe_muram_free(init_enet_pram_offset);
3084
3085 return 0;
3086 }
3087
3088 /* This is called by the kernel when a frame is ready for transmission. */
3089 /* It is pointed to by the dev->hard_start_xmit function pointer */
ucc_geth_start_xmit(struct sk_buff * skb,struct net_device * dev)3090 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3091 {
3092 struct ucc_geth_private *ugeth = netdev_priv(dev);
3093 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3094 struct ucc_fast_private *uccf;
3095 #endif
3096 u8 __iomem *bd; /* BD pointer */
3097 u32 bd_status;
3098 u8 txQ = 0;
3099 unsigned long flags;
3100
3101 ugeth_vdbg("%s: IN", __func__);
3102
3103 spin_lock_irqsave(&ugeth->lock, flags);
3104
3105 dev->stats.tx_bytes += skb->len;
3106
3107 /* Start from the next BD that should be filled */
3108 bd = ugeth->txBd[txQ];
3109 bd_status = in_be32((u32 __iomem *)bd);
3110 /* Save the skb pointer so we can free it later */
3111 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3112
3113 /* Update the current skb pointer (wrapping if this was the last) */
3114 ugeth->skb_curtx[txQ] =
3115 (ugeth->skb_curtx[txQ] +
3116 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3117
3118 /* set up the buffer descriptor */
3119 out_be32(&((struct qe_bd __iomem *)bd)->buf,
3120 dma_map_single(ugeth->dev, skb->data,
3121 skb->len, DMA_TO_DEVICE));
3122
3123 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3124
3125 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3126
3127 /* set bd status and length */
3128 out_be32((u32 __iomem *)bd, bd_status);
3129
3130 /* Move to next BD in the ring */
3131 if (!(bd_status & T_W))
3132 bd += sizeof(struct qe_bd);
3133 else
3134 bd = ugeth->p_tx_bd_ring[txQ];
3135
3136 /* If the next BD still needs to be cleaned up, then the bds
3137 are full. We need to tell the kernel to stop sending us stuff. */
3138 if (bd == ugeth->confBd[txQ]) {
3139 if (!netif_queue_stopped(dev))
3140 netif_stop_queue(dev);
3141 }
3142
3143 ugeth->txBd[txQ] = bd;
3144
3145 skb_tx_timestamp(skb);
3146
3147 if (ugeth->p_scheduler) {
3148 ugeth->cpucount[txQ]++;
3149 /* Indicate to QE that there are more Tx bds ready for
3150 transmission */
3151 /* This is done by writing a running counter of the bd
3152 count to the scheduler PRAM. */
3153 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3154 }
3155
3156 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3157 uccf = ugeth->uccf;
3158 out_be16(uccf->p_utodr, UCC_FAST_TOD);
3159 #endif
3160 spin_unlock_irqrestore(&ugeth->lock, flags);
3161
3162 return NETDEV_TX_OK;
3163 }
3164
ucc_geth_rx(struct ucc_geth_private * ugeth,u8 rxQ,int rx_work_limit)3165 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3166 {
3167 struct sk_buff *skb;
3168 u8 __iomem *bd;
3169 u16 length, howmany = 0;
3170 u32 bd_status;
3171 u8 *bdBuffer;
3172 struct net_device *dev;
3173
3174 ugeth_vdbg("%s: IN", __func__);
3175
3176 dev = ugeth->ndev;
3177
3178 /* collect received buffers */
3179 bd = ugeth->rxBd[rxQ];
3180
3181 bd_status = in_be32((u32 __iomem *)bd);
3182
3183 /* while there are received buffers and BD is full (~R_E) */
3184 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3185 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3186 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3187 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3188
3189 /* determine whether buffer is first, last, first and last
3190 (single buffer frame) or middle (not first and not last) */
3191 if (!skb ||
3192 (!(bd_status & (R_F | R_L))) ||
3193 (bd_status & R_ERRORS_FATAL)) {
3194 if (netif_msg_rx_err(ugeth))
3195 pr_err("%d: ERROR!!! skb - 0x%08x\n",
3196 __LINE__, (u32)skb);
3197 dev_kfree_skb(skb);
3198
3199 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3200 dev->stats.rx_dropped++;
3201 } else {
3202 dev->stats.rx_packets++;
3203 howmany++;
3204
3205 /* Prep the skb for the packet */
3206 skb_put(skb, length);
3207
3208 /* Tell the skb what kind of packet this is */
3209 skb->protocol = eth_type_trans(skb, ugeth->ndev);
3210
3211 dev->stats.rx_bytes += length;
3212 /* Send the packet up the stack */
3213 netif_receive_skb(skb);
3214 }
3215
3216 skb = get_new_skb(ugeth, bd);
3217 if (!skb) {
3218 if (netif_msg_rx_err(ugeth))
3219 pr_warn("No Rx Data Buffer\n");
3220 dev->stats.rx_dropped++;
3221 break;
3222 }
3223
3224 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3225
3226 /* update to point at the next skb */
3227 ugeth->skb_currx[rxQ] =
3228 (ugeth->skb_currx[rxQ] +
3229 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3230
3231 if (bd_status & R_W)
3232 bd = ugeth->p_rx_bd_ring[rxQ];
3233 else
3234 bd += sizeof(struct qe_bd);
3235
3236 bd_status = in_be32((u32 __iomem *)bd);
3237 }
3238
3239 ugeth->rxBd[rxQ] = bd;
3240 return howmany;
3241 }
3242
ucc_geth_tx(struct net_device * dev,u8 txQ)3243 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3244 {
3245 /* Start from the next BD that should be filled */
3246 struct ucc_geth_private *ugeth = netdev_priv(dev);
3247 u8 __iomem *bd; /* BD pointer */
3248 u32 bd_status;
3249
3250 bd = ugeth->confBd[txQ];
3251 bd_status = in_be32((u32 __iomem *)bd);
3252
3253 /* Normal processing. */
3254 while ((bd_status & T_R) == 0) {
3255 struct sk_buff *skb;
3256
3257 /* BD contains already transmitted buffer. */
3258 /* Handle the transmitted buffer and release */
3259 /* the BD to be used with the current frame */
3260
3261 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3262 if (!skb)
3263 break;
3264
3265 dev->stats.tx_packets++;
3266
3267 dev_kfree_skb(skb);
3268
3269 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3270 ugeth->skb_dirtytx[txQ] =
3271 (ugeth->skb_dirtytx[txQ] +
3272 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3273
3274 /* We freed a buffer, so now we can restart transmission */
3275 if (netif_queue_stopped(dev))
3276 netif_wake_queue(dev);
3277
3278 /* Advance the confirmation BD pointer */
3279 if (!(bd_status & T_W))
3280 bd += sizeof(struct qe_bd);
3281 else
3282 bd = ugeth->p_tx_bd_ring[txQ];
3283 bd_status = in_be32((u32 __iomem *)bd);
3284 }
3285 ugeth->confBd[txQ] = bd;
3286 return 0;
3287 }
3288
ucc_geth_poll(struct napi_struct * napi,int budget)3289 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3290 {
3291 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3292 struct ucc_geth_info *ug_info;
3293 int howmany, i;
3294
3295 ug_info = ugeth->ug_info;
3296
3297 /* Tx event processing */
3298 spin_lock(&ugeth->lock);
3299 for (i = 0; i < ug_info->numQueuesTx; i++)
3300 ucc_geth_tx(ugeth->ndev, i);
3301 spin_unlock(&ugeth->lock);
3302
3303 howmany = 0;
3304 for (i = 0; i < ug_info->numQueuesRx; i++)
3305 howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3306
3307 if (howmany < budget) {
3308 napi_complete(napi);
3309 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3310 }
3311
3312 return howmany;
3313 }
3314
ucc_geth_irq_handler(int irq,void * info)3315 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3316 {
3317 struct net_device *dev = info;
3318 struct ucc_geth_private *ugeth = netdev_priv(dev);
3319 struct ucc_fast_private *uccf;
3320 struct ucc_geth_info *ug_info;
3321 register u32 ucce;
3322 register u32 uccm;
3323
3324 ugeth_vdbg("%s: IN", __func__);
3325
3326 uccf = ugeth->uccf;
3327 ug_info = ugeth->ug_info;
3328
3329 /* read and clear events */
3330 ucce = (u32) in_be32(uccf->p_ucce);
3331 uccm = (u32) in_be32(uccf->p_uccm);
3332 ucce &= uccm;
3333 out_be32(uccf->p_ucce, ucce);
3334
3335 /* check for receive events that require processing */
3336 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3337 if (napi_schedule_prep(&ugeth->napi)) {
3338 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3339 out_be32(uccf->p_uccm, uccm);
3340 __napi_schedule(&ugeth->napi);
3341 }
3342 }
3343
3344 /* Errors and other events */
3345 if (ucce & UCCE_OTHER) {
3346 if (ucce & UCC_GETH_UCCE_BSY)
3347 dev->stats.rx_errors++;
3348 if (ucce & UCC_GETH_UCCE_TXE)
3349 dev->stats.tx_errors++;
3350 }
3351
3352 return IRQ_HANDLED;
3353 }
3354
3355 #ifdef CONFIG_NET_POLL_CONTROLLER
3356 /*
3357 * Polling 'interrupt' - used by things like netconsole to send skbs
3358 * without having to re-enable interrupts. It's not called while
3359 * the interrupt routine is executing.
3360 */
ucc_netpoll(struct net_device * dev)3361 static void ucc_netpoll(struct net_device *dev)
3362 {
3363 struct ucc_geth_private *ugeth = netdev_priv(dev);
3364 int irq = ugeth->ug_info->uf_info.irq;
3365
3366 disable_irq(irq);
3367 ucc_geth_irq_handler(irq, dev);
3368 enable_irq(irq);
3369 }
3370 #endif /* CONFIG_NET_POLL_CONTROLLER */
3371
ucc_geth_set_mac_addr(struct net_device * dev,void * p)3372 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3373 {
3374 struct ucc_geth_private *ugeth = netdev_priv(dev);
3375 struct sockaddr *addr = p;
3376
3377 if (!is_valid_ether_addr(addr->sa_data))
3378 return -EADDRNOTAVAIL;
3379
3380 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3381
3382 /*
3383 * If device is not running, we will set mac addr register
3384 * when opening the device.
3385 */
3386 if (!netif_running(dev))
3387 return 0;
3388
3389 spin_lock_irq(&ugeth->lock);
3390 init_mac_station_addr_regs(dev->dev_addr[0],
3391 dev->dev_addr[1],
3392 dev->dev_addr[2],
3393 dev->dev_addr[3],
3394 dev->dev_addr[4],
3395 dev->dev_addr[5],
3396 &ugeth->ug_regs->macstnaddr1,
3397 &ugeth->ug_regs->macstnaddr2);
3398 spin_unlock_irq(&ugeth->lock);
3399
3400 return 0;
3401 }
3402
ucc_geth_init_mac(struct ucc_geth_private * ugeth)3403 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3404 {
3405 struct net_device *dev = ugeth->ndev;
3406 int err;
3407
3408 err = ucc_struct_init(ugeth);
3409 if (err) {
3410 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3411 goto err;
3412 }
3413
3414 err = ucc_geth_startup(ugeth);
3415 if (err) {
3416 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3417 goto err;
3418 }
3419
3420 err = adjust_enet_interface(ugeth);
3421 if (err) {
3422 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3423 goto err;
3424 }
3425
3426 /* Set MACSTNADDR1, MACSTNADDR2 */
3427 /* For more details see the hardware spec. */
3428 init_mac_station_addr_regs(dev->dev_addr[0],
3429 dev->dev_addr[1],
3430 dev->dev_addr[2],
3431 dev->dev_addr[3],
3432 dev->dev_addr[4],
3433 dev->dev_addr[5],
3434 &ugeth->ug_regs->macstnaddr1,
3435 &ugeth->ug_regs->macstnaddr2);
3436
3437 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3438 if (err) {
3439 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3440 goto err;
3441 }
3442
3443 return 0;
3444 err:
3445 ucc_geth_stop(ugeth);
3446 return err;
3447 }
3448
3449 /* Called when something needs to use the ethernet device */
3450 /* Returns 0 for success. */
ucc_geth_open(struct net_device * dev)3451 static int ucc_geth_open(struct net_device *dev)
3452 {
3453 struct ucc_geth_private *ugeth = netdev_priv(dev);
3454 int err;
3455
3456 ugeth_vdbg("%s: IN", __func__);
3457
3458 /* Test station address */
3459 if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3460 netif_err(ugeth, ifup, dev,
3461 "Multicast address used for station address - is this what you wanted?\n");
3462 return -EINVAL;
3463 }
3464
3465 err = init_phy(dev);
3466 if (err) {
3467 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3468 return err;
3469 }
3470
3471 err = ucc_geth_init_mac(ugeth);
3472 if (err) {
3473 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3474 goto err;
3475 }
3476
3477 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3478 0, "UCC Geth", dev);
3479 if (err) {
3480 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3481 goto err;
3482 }
3483
3484 phy_start(ugeth->phydev);
3485 napi_enable(&ugeth->napi);
3486 netif_start_queue(dev);
3487
3488 device_set_wakeup_capable(&dev->dev,
3489 qe_alive_during_sleep() || ugeth->phydev->irq);
3490 device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3491
3492 return err;
3493
3494 err:
3495 ucc_geth_stop(ugeth);
3496 return err;
3497 }
3498
3499 /* Stops the kernel queue, and halts the controller */
ucc_geth_close(struct net_device * dev)3500 static int ucc_geth_close(struct net_device *dev)
3501 {
3502 struct ucc_geth_private *ugeth = netdev_priv(dev);
3503
3504 ugeth_vdbg("%s: IN", __func__);
3505
3506 napi_disable(&ugeth->napi);
3507
3508 cancel_work_sync(&ugeth->timeout_work);
3509 ucc_geth_stop(ugeth);
3510 phy_disconnect(ugeth->phydev);
3511 ugeth->phydev = NULL;
3512
3513 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3514
3515 netif_stop_queue(dev);
3516
3517 return 0;
3518 }
3519
3520 /* Reopen device. This will reset the MAC and PHY. */
ucc_geth_timeout_work(struct work_struct * work)3521 static void ucc_geth_timeout_work(struct work_struct *work)
3522 {
3523 struct ucc_geth_private *ugeth;
3524 struct net_device *dev;
3525
3526 ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3527 dev = ugeth->ndev;
3528
3529 ugeth_vdbg("%s: IN", __func__);
3530
3531 dev->stats.tx_errors++;
3532
3533 ugeth_dump_regs(ugeth);
3534
3535 if (dev->flags & IFF_UP) {
3536 /*
3537 * Must reset MAC *and* PHY. This is done by reopening
3538 * the device.
3539 */
3540 netif_tx_stop_all_queues(dev);
3541 ucc_geth_stop(ugeth);
3542 ucc_geth_init_mac(ugeth);
3543 /* Must start PHY here */
3544 phy_start(ugeth->phydev);
3545 netif_tx_start_all_queues(dev);
3546 }
3547
3548 netif_tx_schedule_all(dev);
3549 }
3550
3551 /*
3552 * ucc_geth_timeout gets called when a packet has not been
3553 * transmitted after a set amount of time.
3554 */
ucc_geth_timeout(struct net_device * dev)3555 static void ucc_geth_timeout(struct net_device *dev)
3556 {
3557 struct ucc_geth_private *ugeth = netdev_priv(dev);
3558
3559 schedule_work(&ugeth->timeout_work);
3560 }
3561
3562
3563 #ifdef CONFIG_PM
3564
ucc_geth_suspend(struct platform_device * ofdev,pm_message_t state)3565 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3566 {
3567 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3568 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3569
3570 if (!netif_running(ndev))
3571 return 0;
3572
3573 netif_device_detach(ndev);
3574 napi_disable(&ugeth->napi);
3575
3576 /*
3577 * Disable the controller, otherwise we'll wakeup on any network
3578 * activity.
3579 */
3580 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3581
3582 if (ugeth->wol_en & WAKE_MAGIC) {
3583 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3584 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3585 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3586 } else if (!(ugeth->wol_en & WAKE_PHY)) {
3587 phy_stop(ugeth->phydev);
3588 }
3589
3590 return 0;
3591 }
3592
ucc_geth_resume(struct platform_device * ofdev)3593 static int ucc_geth_resume(struct platform_device *ofdev)
3594 {
3595 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3596 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3597 int err;
3598
3599 if (!netif_running(ndev))
3600 return 0;
3601
3602 if (qe_alive_during_sleep()) {
3603 if (ugeth->wol_en & WAKE_MAGIC) {
3604 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3605 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3606 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3607 }
3608 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3609 } else {
3610 /*
3611 * Full reinitialization is required if QE shuts down
3612 * during sleep.
3613 */
3614 ucc_geth_memclean(ugeth);
3615
3616 err = ucc_geth_init_mac(ugeth);
3617 if (err) {
3618 netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3619 return err;
3620 }
3621 }
3622
3623 ugeth->oldlink = 0;
3624 ugeth->oldspeed = 0;
3625 ugeth->oldduplex = -1;
3626
3627 phy_stop(ugeth->phydev);
3628 phy_start(ugeth->phydev);
3629
3630 napi_enable(&ugeth->napi);
3631 netif_device_attach(ndev);
3632
3633 return 0;
3634 }
3635
3636 #else
3637 #define ucc_geth_suspend NULL
3638 #define ucc_geth_resume NULL
3639 #endif
3640
to_phy_interface(const char * phy_connection_type)3641 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3642 {
3643 if (strcasecmp(phy_connection_type, "mii") == 0)
3644 return PHY_INTERFACE_MODE_MII;
3645 if (strcasecmp(phy_connection_type, "gmii") == 0)
3646 return PHY_INTERFACE_MODE_GMII;
3647 if (strcasecmp(phy_connection_type, "tbi") == 0)
3648 return PHY_INTERFACE_MODE_TBI;
3649 if (strcasecmp(phy_connection_type, "rmii") == 0)
3650 return PHY_INTERFACE_MODE_RMII;
3651 if (strcasecmp(phy_connection_type, "rgmii") == 0)
3652 return PHY_INTERFACE_MODE_RGMII;
3653 if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3654 return PHY_INTERFACE_MODE_RGMII_ID;
3655 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3656 return PHY_INTERFACE_MODE_RGMII_TXID;
3657 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3658 return PHY_INTERFACE_MODE_RGMII_RXID;
3659 if (strcasecmp(phy_connection_type, "rtbi") == 0)
3660 return PHY_INTERFACE_MODE_RTBI;
3661 if (strcasecmp(phy_connection_type, "sgmii") == 0)
3662 return PHY_INTERFACE_MODE_SGMII;
3663
3664 return PHY_INTERFACE_MODE_MII;
3665 }
3666
ucc_geth_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3667 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3668 {
3669 struct ucc_geth_private *ugeth = netdev_priv(dev);
3670
3671 if (!netif_running(dev))
3672 return -EINVAL;
3673
3674 if (!ugeth->phydev)
3675 return -ENODEV;
3676
3677 return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3678 }
3679
3680 static const struct net_device_ops ucc_geth_netdev_ops = {
3681 .ndo_open = ucc_geth_open,
3682 .ndo_stop = ucc_geth_close,
3683 .ndo_start_xmit = ucc_geth_start_xmit,
3684 .ndo_validate_addr = eth_validate_addr,
3685 .ndo_set_mac_address = ucc_geth_set_mac_addr,
3686 .ndo_change_mtu = eth_change_mtu,
3687 .ndo_set_rx_mode = ucc_geth_set_multi,
3688 .ndo_tx_timeout = ucc_geth_timeout,
3689 .ndo_do_ioctl = ucc_geth_ioctl,
3690 #ifdef CONFIG_NET_POLL_CONTROLLER
3691 .ndo_poll_controller = ucc_netpoll,
3692 #endif
3693 };
3694
ucc_geth_probe(struct platform_device * ofdev)3695 static int ucc_geth_probe(struct platform_device* ofdev)
3696 {
3697 struct device *device = &ofdev->dev;
3698 struct device_node *np = ofdev->dev.of_node;
3699 struct net_device *dev = NULL;
3700 struct ucc_geth_private *ugeth = NULL;
3701 struct ucc_geth_info *ug_info;
3702 struct resource res;
3703 int err, ucc_num, max_speed = 0;
3704 const unsigned int *prop;
3705 const char *sprop;
3706 const void *mac_addr;
3707 phy_interface_t phy_interface;
3708 static const int enet_to_speed[] = {
3709 SPEED_10, SPEED_10, SPEED_10,
3710 SPEED_100, SPEED_100, SPEED_100,
3711 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3712 };
3713 static const phy_interface_t enet_to_phy_interface[] = {
3714 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3715 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3716 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3717 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3718 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3719 PHY_INTERFACE_MODE_SGMII,
3720 };
3721
3722 ugeth_vdbg("%s: IN", __func__);
3723
3724 prop = of_get_property(np, "cell-index", NULL);
3725 if (!prop) {
3726 prop = of_get_property(np, "device-id", NULL);
3727 if (!prop)
3728 return -ENODEV;
3729 }
3730
3731 ucc_num = *prop - 1;
3732 if ((ucc_num < 0) || (ucc_num > 7))
3733 return -ENODEV;
3734
3735 ug_info = &ugeth_info[ucc_num];
3736 if (ug_info == NULL) {
3737 if (netif_msg_probe(&debug))
3738 pr_err("[%d] Missing additional data!\n", ucc_num);
3739 return -ENODEV;
3740 }
3741
3742 ug_info->uf_info.ucc_num = ucc_num;
3743
3744 sprop = of_get_property(np, "rx-clock-name", NULL);
3745 if (sprop) {
3746 ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3747 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3748 (ug_info->uf_info.rx_clock > QE_CLK24)) {
3749 pr_err("invalid rx-clock-name property\n");
3750 return -EINVAL;
3751 }
3752 } else {
3753 prop = of_get_property(np, "rx-clock", NULL);
3754 if (!prop) {
3755 /* If both rx-clock-name and rx-clock are missing,
3756 we want to tell people to use rx-clock-name. */
3757 pr_err("missing rx-clock-name property\n");
3758 return -EINVAL;
3759 }
3760 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3761 pr_err("invalid rx-clock propperty\n");
3762 return -EINVAL;
3763 }
3764 ug_info->uf_info.rx_clock = *prop;
3765 }
3766
3767 sprop = of_get_property(np, "tx-clock-name", NULL);
3768 if (sprop) {
3769 ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3770 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3771 (ug_info->uf_info.tx_clock > QE_CLK24)) {
3772 pr_err("invalid tx-clock-name property\n");
3773 return -EINVAL;
3774 }
3775 } else {
3776 prop = of_get_property(np, "tx-clock", NULL);
3777 if (!prop) {
3778 pr_err("missing tx-clock-name property\n");
3779 return -EINVAL;
3780 }
3781 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3782 pr_err("invalid tx-clock property\n");
3783 return -EINVAL;
3784 }
3785 ug_info->uf_info.tx_clock = *prop;
3786 }
3787
3788 err = of_address_to_resource(np, 0, &res);
3789 if (err)
3790 return -EINVAL;
3791
3792 ug_info->uf_info.regs = res.start;
3793 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3794
3795 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3796
3797 /* Find the TBI PHY node. If it's not there, we don't support SGMII */
3798 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3799
3800 /* get the phy interface type, or default to MII */
3801 prop = of_get_property(np, "phy-connection-type", NULL);
3802 if (!prop) {
3803 /* handle interface property present in old trees */
3804 prop = of_get_property(ug_info->phy_node, "interface", NULL);
3805 if (prop != NULL) {
3806 phy_interface = enet_to_phy_interface[*prop];
3807 max_speed = enet_to_speed[*prop];
3808 } else
3809 phy_interface = PHY_INTERFACE_MODE_MII;
3810 } else {
3811 phy_interface = to_phy_interface((const char *)prop);
3812 }
3813
3814 /* get speed, or derive from PHY interface */
3815 if (max_speed == 0)
3816 switch (phy_interface) {
3817 case PHY_INTERFACE_MODE_GMII:
3818 case PHY_INTERFACE_MODE_RGMII:
3819 case PHY_INTERFACE_MODE_RGMII_ID:
3820 case PHY_INTERFACE_MODE_RGMII_RXID:
3821 case PHY_INTERFACE_MODE_RGMII_TXID:
3822 case PHY_INTERFACE_MODE_TBI:
3823 case PHY_INTERFACE_MODE_RTBI:
3824 case PHY_INTERFACE_MODE_SGMII:
3825 max_speed = SPEED_1000;
3826 break;
3827 default:
3828 max_speed = SPEED_100;
3829 break;
3830 }
3831
3832 if (max_speed == SPEED_1000) {
3833 unsigned int snums = qe_get_num_of_snums();
3834
3835 /* configure muram FIFOs for gigabit operation */
3836 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3837 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3838 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3839 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3840 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3841 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3842 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3843
3844 /* If QE's snum number is 46/76 which means we need to support
3845 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3846 * more Threads to Rx.
3847 */
3848 if ((snums == 76) || (snums == 46))
3849 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3850 else
3851 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3852 }
3853
3854 if (netif_msg_probe(&debug))
3855 pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3856 ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3857 ug_info->uf_info.irq);
3858
3859 /* Create an ethernet device instance */
3860 dev = alloc_etherdev(sizeof(*ugeth));
3861
3862 if (dev == NULL)
3863 return -ENOMEM;
3864
3865 ugeth = netdev_priv(dev);
3866 spin_lock_init(&ugeth->lock);
3867
3868 /* Create CQs for hash tables */
3869 INIT_LIST_HEAD(&ugeth->group_hash_q);
3870 INIT_LIST_HEAD(&ugeth->ind_hash_q);
3871
3872 dev_set_drvdata(device, dev);
3873
3874 /* Set the dev->base_addr to the gfar reg region */
3875 dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3876
3877 SET_NETDEV_DEV(dev, device);
3878
3879 /* Fill in the dev structure */
3880 uec_set_ethtool_ops(dev);
3881 dev->netdev_ops = &ucc_geth_netdev_ops;
3882 dev->watchdog_timeo = TX_TIMEOUT;
3883 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3884 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3885 dev->mtu = 1500;
3886
3887 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3888 ugeth->phy_interface = phy_interface;
3889 ugeth->max_speed = max_speed;
3890
3891 err = register_netdev(dev);
3892 if (err) {
3893 if (netif_msg_probe(ugeth))
3894 pr_err("%s: Cannot register net device, aborting\n",
3895 dev->name);
3896 free_netdev(dev);
3897 return err;
3898 }
3899
3900 mac_addr = of_get_mac_address(np);
3901 if (mac_addr)
3902 memcpy(dev->dev_addr, mac_addr, 6);
3903
3904 ugeth->ug_info = ug_info;
3905 ugeth->dev = device;
3906 ugeth->ndev = dev;
3907 ugeth->node = np;
3908
3909 return 0;
3910 }
3911
ucc_geth_remove(struct platform_device * ofdev)3912 static int ucc_geth_remove(struct platform_device* ofdev)
3913 {
3914 struct device *device = &ofdev->dev;
3915 struct net_device *dev = dev_get_drvdata(device);
3916 struct ucc_geth_private *ugeth = netdev_priv(dev);
3917
3918 unregister_netdev(dev);
3919 free_netdev(dev);
3920 ucc_geth_memclean(ugeth);
3921 dev_set_drvdata(device, NULL);
3922
3923 return 0;
3924 }
3925
3926 static struct of_device_id ucc_geth_match[] = {
3927 {
3928 .type = "network",
3929 .compatible = "ucc_geth",
3930 },
3931 {},
3932 };
3933
3934 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3935
3936 static struct platform_driver ucc_geth_driver = {
3937 .driver = {
3938 .name = DRV_NAME,
3939 .owner = THIS_MODULE,
3940 .of_match_table = ucc_geth_match,
3941 },
3942 .probe = ucc_geth_probe,
3943 .remove = ucc_geth_remove,
3944 .suspend = ucc_geth_suspend,
3945 .resume = ucc_geth_resume,
3946 };
3947
ucc_geth_init(void)3948 static int __init ucc_geth_init(void)
3949 {
3950 int i, ret;
3951
3952 if (netif_msg_drv(&debug))
3953 pr_info(DRV_DESC "\n");
3954 for (i = 0; i < 8; i++)
3955 memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3956 sizeof(ugeth_primary_info));
3957
3958 ret = platform_driver_register(&ucc_geth_driver);
3959
3960 return ret;
3961 }
3962
ucc_geth_exit(void)3963 static void __exit ucc_geth_exit(void)
3964 {
3965 platform_driver_unregister(&ucc_geth_driver);
3966 }
3967
3968 module_init(ucc_geth_init);
3969 module_exit(ucc_geth_exit);
3970
3971 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3972 MODULE_DESCRIPTION(DRV_DESC);
3973 MODULE_VERSION(DRV_VERSION);
3974 MODULE_LICENSE("GPL");
3975