• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
32 
33 #include <asm/div64.h>
34 
35 #define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40 	 IPG_AC_AUTO_INIT)
41 
42 #define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
45 
46 #define ipg_r32(reg)		ioread32(ioaddr + (reg))
47 #define ipg_r16(reg)		ioread16(ioaddr + (reg))
48 #define ipg_r8(reg)		ioread8(ioaddr + (reg))
49 
50 enum {
51 	netdev_io_size = 128
52 };
53 
54 #include "ipg.h"
55 #define DRV_NAME	"ipg"
56 
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
60 
61 /*
62  * Defaults
63  */
64 #define IPG_MAX_RXFRAME_SIZE	0x0600
65 #define IPG_RXFRAG_SIZE		0x0600
66 #define IPG_RXSUPPORT_SIZE	0x0600
67 #define IPG_IS_JUMBO		false
68 
69 /*
70  * Variable record -- index by leading revision/length
71  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72  */
73 static const unsigned short DefaultPhyParam[] = {
74 	/* 11/12/03 IP1000A v1-3 rev=0x40 */
75 	/*--------------------------------------------------------------------------
76 	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
79 	  --------------------------------------------------------------------------*/
80 	/* 12/17/03 IP1000A v1-4 rev=0x40 */
81 	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 	    0x0000,
83 	30, 0x005e, 9, 0x0700,
84 	/* 01/09/04 IP1000A v1-5 rev=0x41 */
85 	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86 	    0x0000,
87 	30, 0x005e, 9, 0x0700,
88 	0x0000
89 };
90 
91 static const char * const ipg_brand_name[] = {
92 	"IC PLUS IP1000 1000/100/10 based NIC",
93 	"Sundance Technology ST2021 based NIC",
94 	"Tamarack Microelectronics TC9020/9021 based NIC",
95 	"D-Link NIC IP1000A"
96 };
97 
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
99 	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
100 	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
101 	{ PCI_VDEVICE(DLINK,	0x9021), 2 },
102 	{ PCI_VDEVICE(DLINK,	0x4020), 3 },
103 	{ 0, }
104 };
105 
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107 
ipg_ioaddr(struct net_device * dev)108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109 {
110 	struct ipg_nic_private *sp = netdev_priv(dev);
111 	return sp->ioaddr;
112 }
113 
114 #ifdef IPG_DEBUG
ipg_dump_rfdlist(struct net_device * dev)115 static void ipg_dump_rfdlist(struct net_device *dev)
116 {
117 	struct ipg_nic_private *sp = netdev_priv(dev);
118 	void __iomem *ioaddr = sp->ioaddr;
119 	unsigned int i;
120 	u32 offset;
121 
122 	IPG_DEBUG_MSG("_dump_rfdlist\n");
123 
124 	netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125 	netdev_info(dev, "rx_dirty   = %02x\n", sp->rx_dirty);
126 	netdev_info(dev, "RFDList start address = %016lx\n",
127 		    (unsigned long)sp->rxd_map);
128 	netdev_info(dev, "RFDListPtr register   = %08x%08x\n",
129 		    ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130 
131 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132 		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133 		netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134 			    i, offset, (unsigned long)sp->rxd[i].next_desc);
135 		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136 		netdev_info(dev, "%02x %04x RFS        = %016lx\n",
137 			    i, offset, (unsigned long)sp->rxd[i].rfs);
138 		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139 		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
140 			    i, offset, (unsigned long)sp->rxd[i].frag_info);
141 	}
142 }
143 
ipg_dump_tfdlist(struct net_device * dev)144 static void ipg_dump_tfdlist(struct net_device *dev)
145 {
146 	struct ipg_nic_private *sp = netdev_priv(dev);
147 	void __iomem *ioaddr = sp->ioaddr;
148 	unsigned int i;
149 	u32 offset;
150 
151 	IPG_DEBUG_MSG("_dump_tfdlist\n");
152 
153 	netdev_info(dev, "tx_current         = %02x\n", sp->tx_current);
154 	netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155 	netdev_info(dev, "TFDList start address = %016lx\n",
156 		    (unsigned long) sp->txd_map);
157 	netdev_info(dev, "TFDListPtr register   = %08x%08x\n",
158 		    ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159 
160 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161 		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162 		netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163 			    i, offset, (unsigned long)sp->txd[i].next_desc);
164 
165 		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166 		netdev_info(dev, "%02x %04x TFC        = %016lx\n",
167 			    i, offset, (unsigned long) sp->txd[i].tfc);
168 		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169 		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
170 			    i, offset, (unsigned long) sp->txd[i].frag_info);
171 	}
172 }
173 #endif
174 
ipg_write_phy_ctl(void __iomem * ioaddr,u8 data)175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176 {
177 	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178 	ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 }
180 
ipg_drive_phy_ctl_low_high(void __iomem * ioaddr,u8 data)181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182 {
183 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 }
186 
send_three_state(void __iomem * ioaddr,u8 phyctrlpolarity)187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188 {
189 	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190 
191 	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 }
193 
send_end(void __iomem * ioaddr,u8 phyctrlpolarity)194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195 {
196 	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197 		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 }
199 
read_phy_bit(void __iomem * ioaddr,u8 phyctrlpolarity)200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201 {
202 	u16 bit_data;
203 
204 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205 
206 	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207 
208 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209 
210 	return bit_data;
211 }
212 
213 /*
214  * Read a register from the Physical Layer device located
215  * on the IPG NIC, using the IPG PHYCTRL register.
216  */
mdio_read(struct net_device * dev,int phy_id,int phy_reg)217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218 {
219 	void __iomem *ioaddr = ipg_ioaddr(dev);
220 	/*
221 	 * The GMII mangement frame structure for a read is as follows:
222 	 *
223 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
224 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
225 	 *
226 	 * <32 1s> = 32 consecutive logic 1 values
227 	 * A = bit of Physical Layer device address (MSB first)
228 	 * R = bit of register address (MSB first)
229 	 * z = High impedance state
230 	 * D = bit of read data (MSB first)
231 	 *
232 	 * Transmission order is 'Preamble' field first, bits transmitted
233 	 * left to right (first to last).
234 	 */
235 	struct {
236 		u32 field;
237 		unsigned int len;
238 	} p[] = {
239 		{ GMII_PREAMBLE,	32 },	/* Preamble */
240 		{ GMII_ST,		2  },	/* ST */
241 		{ GMII_READ,		2  },	/* OP */
242 		{ phy_id,		5  },	/* PHYAD */
243 		{ phy_reg,		5  },	/* REGAD */
244 		{ 0x0000,		2  },	/* TA */
245 		{ 0x0000,		16 },	/* DATA */
246 		{ 0x0000,		1  }	/* IDLE */
247 	};
248 	unsigned int i, j;
249 	u8 polarity, data;
250 
251 	polarity  = ipg_r8(PHY_CTRL);
252 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253 
254 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 	for (j = 0; j < 5; j++) {
256 		for (i = 0; i < p[j].len; i++) {
257 			/* For each variable length field, the MSB must be
258 			 * transmitted first. Rotate through the field bits,
259 			 * starting with the MSB, and move each bit into the
260 			 * the 1st (2^1) bit position (this is the bit position
261 			 * corresponding to the MgmtData bit of the PhyCtrl
262 			 * register for the IPG).
263 			 *
264 			 * Example: ST = 01;
265 			 *
266 			 *          First write a '0' to bit 1 of the PhyCtrl
267 			 *          register, then write a '1' to bit 1 of the
268 			 *          PhyCtrl register.
269 			 *
270 			 * To do this, right shift the MSB of ST by the value:
271 			 * [field length - 1 - #ST bits already written]
272 			 * then left shift this result by 1.
273 			 */
274 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
275 			data &= IPG_PC_MGMTDATA;
276 			data |= polarity | IPG_PC_MGMTDIR;
277 
278 			ipg_drive_phy_ctl_low_high(ioaddr, data);
279 		}
280 	}
281 
282 	send_three_state(ioaddr, polarity);
283 
284 	read_phy_bit(ioaddr, polarity);
285 
286 	/*
287 	 * For a read cycle, the bits for the next two fields (TA and
288 	 * DATA) are driven by the PHY (the IPG reads these bits).
289 	 */
290 	for (i = 0; i < p[6].len; i++) {
291 		p[6].field |=
292 		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293 	}
294 
295 	send_three_state(ioaddr, polarity);
296 	send_three_state(ioaddr, polarity);
297 	send_three_state(ioaddr, polarity);
298 	send_end(ioaddr, polarity);
299 
300 	/* Return the value of the DATA field. */
301 	return p[6].field;
302 }
303 
304 /*
305  * Write to a register from the Physical Layer device located
306  * on the IPG NIC, using the IPG PHYCTRL register.
307  */
mdio_write(struct net_device * dev,int phy_id,int phy_reg,int val)308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309 {
310 	void __iomem *ioaddr = ipg_ioaddr(dev);
311 	/*
312 	 * The GMII mangement frame structure for a read is as follows:
313 	 *
314 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
315 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
316 	 *
317 	 * <32 1s> = 32 consecutive logic 1 values
318 	 * A = bit of Physical Layer device address (MSB first)
319 	 * R = bit of register address (MSB first)
320 	 * z = High impedance state
321 	 * D = bit of write data (MSB first)
322 	 *
323 	 * Transmission order is 'Preamble' field first, bits transmitted
324 	 * left to right (first to last).
325 	 */
326 	struct {
327 		u32 field;
328 		unsigned int len;
329 	} p[] = {
330 		{ GMII_PREAMBLE,	32 },	/* Preamble */
331 		{ GMII_ST,		2  },	/* ST */
332 		{ GMII_WRITE,		2  },	/* OP */
333 		{ phy_id,		5  },	/* PHYAD */
334 		{ phy_reg,		5  },	/* REGAD */
335 		{ 0x0002,		2  },	/* TA */
336 		{ val & 0xffff,		16 },	/* DATA */
337 		{ 0x0000,		1  }	/* IDLE */
338 	};
339 	unsigned int i, j;
340 	u8 polarity, data;
341 
342 	polarity  = ipg_r8(PHY_CTRL);
343 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344 
345 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 	for (j = 0; j < 7; j++) {
347 		for (i = 0; i < p[j].len; i++) {
348 			/* For each variable length field, the MSB must be
349 			 * transmitted first. Rotate through the field bits,
350 			 * starting with the MSB, and move each bit into the
351 			 * the 1st (2^1) bit position (this is the bit position
352 			 * corresponding to the MgmtData bit of the PhyCtrl
353 			 * register for the IPG).
354 			 *
355 			 * Example: ST = 01;
356 			 *
357 			 *          First write a '0' to bit 1 of the PhyCtrl
358 			 *          register, then write a '1' to bit 1 of the
359 			 *          PhyCtrl register.
360 			 *
361 			 * To do this, right shift the MSB of ST by the value:
362 			 * [field length - 1 - #ST bits already written]
363 			 * then left shift this result by 1.
364 			 */
365 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
366 			data &= IPG_PC_MGMTDATA;
367 			data |= polarity | IPG_PC_MGMTDIR;
368 
369 			ipg_drive_phy_ctl_low_high(ioaddr, data);
370 		}
371 	}
372 
373 	/* The last cycle is a tri-state, so read from the PHY. */
374 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375 	ipg_r8(PHY_CTRL);
376 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377 }
378 
ipg_set_led_mode(struct net_device * dev)379 static void ipg_set_led_mode(struct net_device *dev)
380 {
381 	struct ipg_nic_private *sp = netdev_priv(dev);
382 	void __iomem *ioaddr = sp->ioaddr;
383 	u32 mode;
384 
385 	mode = ipg_r32(ASIC_CTRL);
386 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387 
388 	if ((sp->led_mode & 0x03) > 1)
389 		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
390 
391 	if ((sp->led_mode & 0x01) == 1)
392 		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
393 
394 	if ((sp->led_mode & 0x08) == 8)
395 		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
396 
397 	ipg_w32(mode, ASIC_CTRL);
398 }
399 
ipg_set_phy_set(struct net_device * dev)400 static void ipg_set_phy_set(struct net_device *dev)
401 {
402 	struct ipg_nic_private *sp = netdev_priv(dev);
403 	void __iomem *ioaddr = sp->ioaddr;
404 	int physet;
405 
406 	physet = ipg_r8(PHY_SET);
407 	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 	physet |= ((sp->led_mode & 0x70) >> 4);
409 	ipg_w8(physet, PHY_SET);
410 }
411 
ipg_reset(struct net_device * dev,u32 resetflags)412 static int ipg_reset(struct net_device *dev, u32 resetflags)
413 {
414 	/* Assert functional resets via the IPG AsicCtrl
415 	 * register as specified by the 'resetflags' input
416 	 * parameter.
417 	 */
418 	void __iomem *ioaddr = ipg_ioaddr(dev);
419 	unsigned int timeout_count = 0;
420 
421 	IPG_DEBUG_MSG("_reset\n");
422 
423 	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424 
425 	/* Delay added to account for problem with 10Mbps reset. */
426 	mdelay(IPG_AC_RESETWAIT);
427 
428 	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 		mdelay(IPG_AC_RESETWAIT);
430 		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 			return -ETIME;
432 	}
433 	/* Set LED Mode in Asic Control */
434 	ipg_set_led_mode(dev);
435 
436 	/* Set PHYSet Register Value */
437 	ipg_set_phy_set(dev);
438 	return 0;
439 }
440 
441 /* Find the GMII PHY address. */
ipg_find_phyaddr(struct net_device * dev)442 static int ipg_find_phyaddr(struct net_device *dev)
443 {
444 	unsigned int phyaddr, i;
445 
446 	for (i = 0; i < 32; i++) {
447 		u32 status;
448 
449 		/* Search for the correct PHY address among 32 possible. */
450 		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451 
452 		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 		   GMII_PHY_ID1
454 		 */
455 
456 		status = mdio_read(dev, phyaddr, MII_BMSR);
457 
458 		if ((status != 0xFFFF) && (status != 0))
459 			return phyaddr;
460 	}
461 
462 	return 0x1f;
463 }
464 
465 /*
466  * Configure IPG based on result of IEEE 802.3 PHY
467  * auto-negotiation.
468  */
ipg_config_autoneg(struct net_device * dev)469 static int ipg_config_autoneg(struct net_device *dev)
470 {
471 	struct ipg_nic_private *sp = netdev_priv(dev);
472 	void __iomem *ioaddr = sp->ioaddr;
473 	unsigned int txflowcontrol;
474 	unsigned int rxflowcontrol;
475 	unsigned int fullduplex;
476 	u32 mac_ctrl_val;
477 	u32 asicctrl;
478 	u8 phyctrl;
479 	const char *speed;
480 	const char *duplex;
481 	const char *tx_desc;
482 	const char *rx_desc;
483 
484 	IPG_DEBUG_MSG("_config_autoneg\n");
485 
486 	asicctrl = ipg_r32(ASIC_CTRL);
487 	phyctrl = ipg_r8(PHY_CTRL);
488 	mac_ctrl_val = ipg_r32(MAC_CTRL);
489 
490 	/* Set flags for use in resolving auto-negotiation, assuming
491 	 * non-1000Mbps, half duplex, no flow control.
492 	 */
493 	fullduplex = 0;
494 	txflowcontrol = 0;
495 	rxflowcontrol = 0;
496 
497 	/* To accommodate a problem in 10Mbps operation,
498 	 * set a global flag if PHY running in 10Mbps mode.
499 	 */
500 	sp->tenmbpsmode = 0;
501 
502 	/* Determine actual speed of operation. */
503 	switch (phyctrl & IPG_PC_LINK_SPEED) {
504 	case IPG_PC_LINK_SPEED_10MBPS:
505 		speed = "10Mbps";
506 		sp->tenmbpsmode = 1;
507 		break;
508 	case IPG_PC_LINK_SPEED_100MBPS:
509 		speed = "100Mbps";
510 		break;
511 	case IPG_PC_LINK_SPEED_1000MBPS:
512 		speed = "1000Mbps";
513 		break;
514 	default:
515 		speed = "undefined!";
516 		return 0;
517 	}
518 
519 	netdev_info(dev, "Link speed = %s\n", speed);
520 	if (sp->tenmbpsmode == 1)
521 		netdev_info(dev, "10Mbps operational mode enabled\n");
522 
523 	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524 		fullduplex = 1;
525 		txflowcontrol = 1;
526 		rxflowcontrol = 1;
527 	}
528 
529 	/* Configure full duplex, and flow control. */
530 	if (fullduplex == 1) {
531 
532 		/* Configure IPG for full duplex operation. */
533 
534 		duplex = "full";
535 
536 		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537 
538 		if (txflowcontrol == 1) {
539 			tx_desc  = "";
540 			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 		} else {
542 			tx_desc = "no ";
543 			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544 		}
545 
546 		if (rxflowcontrol == 1) {
547 			rx_desc = "";
548 			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 		} else {
550 			rx_desc = "no ";
551 			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552 		}
553 	} else {
554 		duplex = "half";
555 		tx_desc = "no ";
556 		rx_desc = "no ";
557 		mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558 				 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 				 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
560 	}
561 
562 	netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563 		    duplex, tx_desc, rx_desc);
564 	ipg_w32(mac_ctrl_val, MAC_CTRL);
565 
566 	return 0;
567 }
568 
569 /* Determine and configure multicast operation and set
570  * receive mode for IPG.
571  */
ipg_nic_set_multicast_list(struct net_device * dev)572 static void ipg_nic_set_multicast_list(struct net_device *dev)
573 {
574 	void __iomem *ioaddr = ipg_ioaddr(dev);
575 	struct netdev_hw_addr *ha;
576 	unsigned int hashindex;
577 	u32 hashtable[2];
578 	u8 receivemode;
579 
580 	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
581 
582 	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
583 
584 	if (dev->flags & IFF_PROMISC) {
585 		/* NIC to be configured in promiscuous mode. */
586 		receivemode = IPG_RM_RECEIVEALLFRAMES;
587 	} else if ((dev->flags & IFF_ALLMULTI) ||
588 		   ((dev->flags & IFF_MULTICAST) &&
589 		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590 		/* NIC to be configured to receive all multicast
591 		 * frames. */
592 		receivemode |= IPG_RM_RECEIVEMULTICAST;
593 	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594 		/* NIC to be configured to receive selected
595 		 * multicast addresses. */
596 		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597 	}
598 
599 	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600 	 * The IPG applies a cyclic-redundancy-check (the same CRC
601 	 * used to calculate the frame data FCS) to the destination
602 	 * address all incoming multicast frames whose destination
603 	 * address has the multicast bit set. The least significant
604 	 * 6 bits of the CRC result are used as an addressing index
605 	 * into the hash table. If the value of the bit addressed by
606 	 * this index is a 1, the frame is passed to the host system.
607 	 */
608 
609 	/* Clear hashtable. */
610 	hashtable[0] = 0x00000000;
611 	hashtable[1] = 0x00000000;
612 
613 	/* Cycle through all multicast addresses to filter. */
614 	netdev_for_each_mc_addr(ha, dev) {
615 		/* Calculate CRC result for each multicast address. */
616 		hashindex = crc32_le(0xffffffff, ha->addr,
617 				     ETH_ALEN);
618 
619 		/* Use only the least significant 6 bits. */
620 		hashindex = hashindex & 0x3F;
621 
622 		/* Within "hashtable", set bit number "hashindex"
623 		 * to a logic 1.
624 		 */
625 		set_bit(hashindex, (void *)hashtable);
626 	}
627 
628 	/* Write the value of the hashtable, to the 4, 16 bit
629 	 * HASHTABLE IPG registers.
630 	 */
631 	ipg_w32(hashtable[0], HASHTABLE_0);
632 	ipg_w32(hashtable[1], HASHTABLE_1);
633 
634 	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635 
636 	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638 
ipg_io_config(struct net_device * dev)639 static int ipg_io_config(struct net_device *dev)
640 {
641 	struct ipg_nic_private *sp = netdev_priv(dev);
642 	void __iomem *ioaddr = ipg_ioaddr(dev);
643 	u32 origmacctrl;
644 	u32 restoremacctrl;
645 
646 	IPG_DEBUG_MSG("_io_config\n");
647 
648 	origmacctrl = ipg_r32(MAC_CTRL);
649 
650 	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651 
652 	/* Based on compilation option, determine if FCS is to be
653 	 * stripped on receive frames by IPG.
654 	 */
655 	if (!IPG_STRIP_FCS_ON_RX)
656 		restoremacctrl |= IPG_MC_RCV_FCS;
657 
658 	/* Determine if transmitter and/or receiver are
659 	 * enabled so we may restore MACCTRL correctly.
660 	 */
661 	if (origmacctrl & IPG_MC_TX_ENABLED)
662 		restoremacctrl |= IPG_MC_TX_ENABLE;
663 
664 	if (origmacctrl & IPG_MC_RX_ENABLED)
665 		restoremacctrl |= IPG_MC_RX_ENABLE;
666 
667 	/* Transmitter and receiver must be disabled before setting
668 	 * IFSSelect.
669 	 */
670 	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671 		IPG_MC_RSVD_MASK, MAC_CTRL);
672 
673 	/* Now that transmitter and receiver are disabled, write
674 	 * to IFSSelect.
675 	 */
676 	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677 
678 	/* Set RECEIVEMODE register. */
679 	ipg_nic_set_multicast_list(dev);
680 
681 	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682 
683 	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684 	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685 	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686 	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687 	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688 	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689 	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690 		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691 		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692 		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693 	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694 	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695 
696 	/* IPG multi-frag frame bug workaround.
697 	 * Per silicon revision B3 eratta.
698 	 */
699 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700 
701 	/* IPG TX poll now bug workaround.
702 	 * Per silicon revision B3 eratta.
703 	 */
704 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705 
706 	/* IPG RX poll now bug workaround.
707 	 * Per silicon revision B3 eratta.
708 	 */
709 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710 
711 	/* Now restore MACCTRL to original setting. */
712 	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713 
714 	/* Disable unused RMON statistics. */
715 	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716 
717 	/* Disable unused MIB statistics. */
718 	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719 		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720 		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721 		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722 		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723 		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724 
725 	return 0;
726 }
727 
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
ipg_get_rxbuff(struct net_device * dev,int entry)732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734 	struct ipg_nic_private *sp = netdev_priv(dev);
735 	struct ipg_rx *rxfd = sp->rxd + entry;
736 	struct sk_buff *skb;
737 	u64 rxfragsize;
738 
739 	IPG_DEBUG_MSG("_get_rxbuff\n");
740 
741 	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742 	if (!skb) {
743 		sp->rx_buff[entry] = NULL;
744 		return -ENOMEM;
745 	}
746 
747 	/* Save the address of the sk_buff structure. */
748 	sp->rx_buff[entry] = skb;
749 
750 	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751 		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752 
753 	/* Set the RFD fragment length. */
754 	rxfragsize = sp->rxfrag_size;
755 	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756 
757 	return 0;
758 }
759 
init_rfdlist(struct net_device * dev)760 static int init_rfdlist(struct net_device *dev)
761 {
762 	struct ipg_nic_private *sp = netdev_priv(dev);
763 	void __iomem *ioaddr = sp->ioaddr;
764 	unsigned int i;
765 
766 	IPG_DEBUG_MSG("_init_rfdlist\n");
767 
768 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769 		struct ipg_rx *rxfd = sp->rxd + i;
770 
771 		if (sp->rx_buff[i]) {
772 			pci_unmap_single(sp->pdev,
773 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775 			dev_kfree_skb_irq(sp->rx_buff[i]);
776 			sp->rx_buff[i] = NULL;
777 		}
778 
779 		/* Clear out the RFS field. */
780 		rxfd->rfs = 0x0000000000000000;
781 
782 		if (ipg_get_rxbuff(dev, i) < 0) {
783 			/*
784 			 * A receive buffer was not ready, break the
785 			 * RFD list here.
786 			 */
787 			IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
788 
789 			/* Just in case we cannot allocate a single RFD.
790 			 * Should not occur.
791 			 */
792 			if (i == 0) {
793 				netdev_err(dev, "No memory available for RFD list\n");
794 				return -ENOMEM;
795 			}
796 		}
797 
798 		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
799 			sizeof(struct ipg_rx)*(i + 1));
800 	}
801 	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
802 
803 	sp->rx_current = 0;
804 	sp->rx_dirty = 0;
805 
806 	/* Write the location of the RFDList to the IPG. */
807 	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
808 	ipg_w32(0x00000000, RFD_LIST_PTR_1);
809 
810 	return 0;
811 }
812 
init_tfdlist(struct net_device * dev)813 static void init_tfdlist(struct net_device *dev)
814 {
815 	struct ipg_nic_private *sp = netdev_priv(dev);
816 	void __iomem *ioaddr = sp->ioaddr;
817 	unsigned int i;
818 
819 	IPG_DEBUG_MSG("_init_tfdlist\n");
820 
821 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
822 		struct ipg_tx *txfd = sp->txd + i;
823 
824 		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
825 
826 		if (sp->tx_buff[i]) {
827 			dev_kfree_skb_irq(sp->tx_buff[i]);
828 			sp->tx_buff[i] = NULL;
829 		}
830 
831 		txfd->next_desc = cpu_to_le64(sp->txd_map +
832 			sizeof(struct ipg_tx)*(i + 1));
833 	}
834 	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
835 
836 	sp->tx_current = 0;
837 	sp->tx_dirty = 0;
838 
839 	/* Write the location of the TFDList to the IPG. */
840 	IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
841 		       (u32) sp->txd_map);
842 	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
843 	ipg_w32(0x00000000, TFD_LIST_PTR_1);
844 
845 	sp->reset_current_tfd = 1;
846 }
847 
848 /*
849  * Free all transmit buffers which have already been transferred
850  * via DMA to the IPG.
851  */
ipg_nic_txfree(struct net_device * dev)852 static void ipg_nic_txfree(struct net_device *dev)
853 {
854 	struct ipg_nic_private *sp = netdev_priv(dev);
855 	unsigned int released, pending, dirty;
856 
857 	IPG_DEBUG_MSG("_nic_txfree\n");
858 
859 	pending = sp->tx_current - sp->tx_dirty;
860 	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
861 
862 	for (released = 0; released < pending; released++) {
863 		struct sk_buff *skb = sp->tx_buff[dirty];
864 		struct ipg_tx *txfd = sp->txd + dirty;
865 
866 		IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
867 
868 		/* Look at each TFD's TFC field beginning
869 		 * at the last freed TFD up to the current TFD.
870 		 * If the TFDDone bit is set, free the associated
871 		 * buffer.
872 		 */
873 		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
874                         break;
875 
876 		/* Free the transmit buffer. */
877 		if (skb) {
878 			pci_unmap_single(sp->pdev,
879 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
880 				skb->len, PCI_DMA_TODEVICE);
881 
882 			dev_kfree_skb_irq(skb);
883 
884 			sp->tx_buff[dirty] = NULL;
885 		}
886 		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
887 	}
888 
889 	sp->tx_dirty += released;
890 
891 	if (netif_queue_stopped(dev) &&
892 	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
893 		netif_wake_queue(dev);
894 	}
895 }
896 
ipg_tx_timeout(struct net_device * dev)897 static void ipg_tx_timeout(struct net_device *dev)
898 {
899 	struct ipg_nic_private *sp = netdev_priv(dev);
900 	void __iomem *ioaddr = sp->ioaddr;
901 
902 	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
903 		  IPG_AC_FIFO);
904 
905 	spin_lock_irq(&sp->lock);
906 
907 	/* Re-configure after DMA reset. */
908 	if (ipg_io_config(dev) < 0)
909 		netdev_info(dev, "Error during re-configuration\n");
910 
911 	init_tfdlist(dev);
912 
913 	spin_unlock_irq(&sp->lock);
914 
915 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
916 		MAC_CTRL);
917 }
918 
919 /*
920  * For TxComplete interrupts, free all transmit
921  * buffers which have already been transferred via DMA
922  * to the IPG.
923  */
ipg_nic_txcleanup(struct net_device * dev)924 static void ipg_nic_txcleanup(struct net_device *dev)
925 {
926 	struct ipg_nic_private *sp = netdev_priv(dev);
927 	void __iomem *ioaddr = sp->ioaddr;
928 	unsigned int i;
929 
930 	IPG_DEBUG_MSG("_nic_txcleanup\n");
931 
932 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
933 		/* Reading the TXSTATUS register clears the
934 		 * TX_COMPLETE interrupt.
935 		 */
936 		u32 txstatusdword = ipg_r32(TX_STATUS);
937 
938 		IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
939 
940 		/* Check for Transmit errors. Error bits only valid if
941 		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
942 		 */
943 		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
944 			break;
945 
946 		/* If in 10Mbps mode, indicate transmit is ready. */
947 		if (sp->tenmbpsmode) {
948 			netif_wake_queue(dev);
949 		}
950 
951 		/* Transmit error, increment stat counters. */
952 		if (txstatusdword & IPG_TS_TX_ERROR) {
953 			IPG_DEBUG_MSG("Transmit error\n");
954 			sp->stats.tx_errors++;
955 		}
956 
957 		/* Late collision, re-enable transmitter. */
958 		if (txstatusdword & IPG_TS_LATE_COLLISION) {
959 			IPG_DEBUG_MSG("Late collision on transmit\n");
960 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
961 				IPG_MC_RSVD_MASK, MAC_CTRL);
962 		}
963 
964 		/* Maximum collisions, re-enable transmitter. */
965 		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
966 			IPG_DEBUG_MSG("Maximum collisions on transmit\n");
967 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968 				IPG_MC_RSVD_MASK, MAC_CTRL);
969 		}
970 
971 		/* Transmit underrun, reset and re-enable
972 		 * transmitter.
973 		 */
974 		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
975 			IPG_DEBUG_MSG("Transmitter underrun\n");
976 			sp->stats.tx_fifo_errors++;
977 			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
978 				  IPG_AC_NETWORK | IPG_AC_FIFO);
979 
980 			/* Re-configure after DMA reset. */
981 			if (ipg_io_config(dev) < 0) {
982 				netdev_info(dev, "Error during re-configuration\n");
983 			}
984 			init_tfdlist(dev);
985 
986 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
987 				IPG_MC_RSVD_MASK, MAC_CTRL);
988 		}
989 	}
990 
991 	ipg_nic_txfree(dev);
992 }
993 
994 /* Provides statistical information about the IPG NIC. */
ipg_nic_get_stats(struct net_device * dev)995 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
996 {
997 	struct ipg_nic_private *sp = netdev_priv(dev);
998 	void __iomem *ioaddr = sp->ioaddr;
999 	u16 temp1;
1000 	u16 temp2;
1001 
1002 	IPG_DEBUG_MSG("_nic_get_stats\n");
1003 
1004 	/* Check to see if the NIC has been initialized via nic_open,
1005 	 * before trying to read statistic registers.
1006 	 */
1007 	if (!test_bit(__LINK_STATE_START, &dev->state))
1008 		return &sp->stats;
1009 
1010 	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1011 	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1012 	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1013 	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1014 	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1015 	sp->stats.rx_errors += temp1;
1016 	sp->stats.rx_missed_errors += temp1;
1017 	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1018 		ipg_r32(IPG_LATECOLLISIONS);
1019 	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1020 	sp->stats.collisions += temp1;
1021 	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1022 	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1023 		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1024 	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1025 
1026 	/* detailed tx_errors */
1027 	sp->stats.tx_carrier_errors += temp2;
1028 
1029 	/* detailed rx_errors */
1030 	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1031 		ipg_r16(IPG_FRAMETOOLONGERRRORS);
1032 	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1033 
1034 	/* Unutilized IPG statistic registers. */
1035 	ipg_r32(IPG_MCSTFRAMESRCVDOK);
1036 
1037 	return &sp->stats;
1038 }
1039 
1040 /* Restore used receive buffers. */
ipg_nic_rxrestore(struct net_device * dev)1041 static int ipg_nic_rxrestore(struct net_device *dev)
1042 {
1043 	struct ipg_nic_private *sp = netdev_priv(dev);
1044 	const unsigned int curr = sp->rx_current;
1045 	unsigned int dirty = sp->rx_dirty;
1046 
1047 	IPG_DEBUG_MSG("_nic_rxrestore\n");
1048 
1049 	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1050 		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1051 
1052 		/* rx_copybreak may poke hole here and there. */
1053 		if (sp->rx_buff[entry])
1054 			continue;
1055 
1056 		/* Generate a new receive buffer to replace the
1057 		 * current buffer (which will be released by the
1058 		 * Linux system).
1059 		 */
1060 		if (ipg_get_rxbuff(dev, entry) < 0) {
1061 			IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1062 
1063 			break;
1064 		}
1065 
1066 		/* Reset the RFS field. */
1067 		sp->rxd[entry].rfs = 0x0000000000000000;
1068 	}
1069 	sp->rx_dirty = dirty;
1070 
1071 	return 0;
1072 }
1073 
1074 /* use jumboindex and jumbosize to control jumbo frame status
1075  * initial status is jumboindex=-1 and jumbosize=0
1076  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1077  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1078  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1079  *               previous receiving and need to continue dumping the current one
1080  */
1081 enum {
1082 	NORMAL_PACKET,
1083 	ERROR_PACKET
1084 };
1085 
1086 enum {
1087 	FRAME_NO_START_NO_END	= 0,
1088 	FRAME_WITH_START		= 1,
1089 	FRAME_WITH_END		= 10,
1090 	FRAME_WITH_START_WITH_END = 11
1091 };
1092 
ipg_nic_rx_free_skb(struct net_device * dev)1093 static void ipg_nic_rx_free_skb(struct net_device *dev)
1094 {
1095 	struct ipg_nic_private *sp = netdev_priv(dev);
1096 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1097 
1098 	if (sp->rx_buff[entry]) {
1099 		struct ipg_rx *rxfd = sp->rxd + entry;
1100 
1101 		pci_unmap_single(sp->pdev,
1102 			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1103 			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1104 		dev_kfree_skb_irq(sp->rx_buff[entry]);
1105 		sp->rx_buff[entry] = NULL;
1106 	}
1107 }
1108 
ipg_nic_rx_check_frame_type(struct net_device * dev)1109 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1110 {
1111 	struct ipg_nic_private *sp = netdev_priv(dev);
1112 	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1113 	int type = FRAME_NO_START_NO_END;
1114 
1115 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1116 		type += FRAME_WITH_START;
1117 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1118 		type += FRAME_WITH_END;
1119 	return type;
1120 }
1121 
ipg_nic_rx_check_error(struct net_device * dev)1122 static int ipg_nic_rx_check_error(struct net_device *dev)
1123 {
1124 	struct ipg_nic_private *sp = netdev_priv(dev);
1125 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1126 	struct ipg_rx *rxfd = sp->rxd + entry;
1127 
1128 	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1129 	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1130 	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1131 	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1132 		IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1133 			      (unsigned long) rxfd->rfs);
1134 
1135 		/* Increment general receive error statistic. */
1136 		sp->stats.rx_errors++;
1137 
1138 		/* Increment detailed receive error statistics. */
1139 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1140 			IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1141 
1142 			sp->stats.rx_fifo_errors++;
1143 		}
1144 
1145 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1146 			IPG_DEBUG_MSG("RX runt occurred\n");
1147 			sp->stats.rx_length_errors++;
1148 		}
1149 
1150 		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1151 		 * error count handled by a IPG statistic register.
1152 		 */
1153 
1154 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1155 			IPG_DEBUG_MSG("RX alignment error occurred\n");
1156 			sp->stats.rx_frame_errors++;
1157 		}
1158 
1159 		/* Do nothing for IPG_RFS_RXFCSERROR, error count
1160 		 * handled by a IPG statistic register.
1161 		 */
1162 
1163 		/* Free the memory associated with the RX
1164 		 * buffer since it is erroneous and we will
1165 		 * not pass it to higher layer processes.
1166 		 */
1167 		if (sp->rx_buff[entry]) {
1168 			pci_unmap_single(sp->pdev,
1169 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1170 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1171 
1172 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1173 			sp->rx_buff[entry] = NULL;
1174 		}
1175 		return ERROR_PACKET;
1176 	}
1177 	return NORMAL_PACKET;
1178 }
1179 
ipg_nic_rx_with_start_and_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1180 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1181 					  struct ipg_nic_private *sp,
1182 					  struct ipg_rx *rxfd, unsigned entry)
1183 {
1184 	struct ipg_jumbo *jumbo = &sp->jumbo;
1185 	struct sk_buff *skb;
1186 	int framelen;
1187 
1188 	if (jumbo->found_start) {
1189 		dev_kfree_skb_irq(jumbo->skb);
1190 		jumbo->found_start = 0;
1191 		jumbo->current_size = 0;
1192 		jumbo->skb = NULL;
1193 	}
1194 
1195 	/* 1: found error, 0 no error */
1196 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1197 		return;
1198 
1199 	skb = sp->rx_buff[entry];
1200 	if (!skb)
1201 		return;
1202 
1203 	/* accept this frame and send to upper layer */
1204 	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1205 	if (framelen > sp->rxfrag_size)
1206 		framelen = sp->rxfrag_size;
1207 
1208 	skb_put(skb, framelen);
1209 	skb->protocol = eth_type_trans(skb, dev);
1210 	skb_checksum_none_assert(skb);
1211 	netif_rx(skb);
1212 	sp->rx_buff[entry] = NULL;
1213 }
1214 
ipg_nic_rx_with_start(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1215 static void ipg_nic_rx_with_start(struct net_device *dev,
1216 				  struct ipg_nic_private *sp,
1217 				  struct ipg_rx *rxfd, unsigned entry)
1218 {
1219 	struct ipg_jumbo *jumbo = &sp->jumbo;
1220 	struct pci_dev *pdev = sp->pdev;
1221 	struct sk_buff *skb;
1222 
1223 	/* 1: found error, 0 no error */
1224 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1225 		return;
1226 
1227 	/* accept this frame and send to upper layer */
1228 	skb = sp->rx_buff[entry];
1229 	if (!skb)
1230 		return;
1231 
1232 	if (jumbo->found_start)
1233 		dev_kfree_skb_irq(jumbo->skb);
1234 
1235 	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1236 			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1237 
1238 	skb_put(skb, sp->rxfrag_size);
1239 
1240 	jumbo->found_start = 1;
1241 	jumbo->current_size = sp->rxfrag_size;
1242 	jumbo->skb = skb;
1243 
1244 	sp->rx_buff[entry] = NULL;
1245 }
1246 
ipg_nic_rx_with_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1247 static void ipg_nic_rx_with_end(struct net_device *dev,
1248 				struct ipg_nic_private *sp,
1249 				struct ipg_rx *rxfd, unsigned entry)
1250 {
1251 	struct ipg_jumbo *jumbo = &sp->jumbo;
1252 
1253 	/* 1: found error, 0 no error */
1254 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1255 		struct sk_buff *skb = sp->rx_buff[entry];
1256 
1257 		if (!skb)
1258 			return;
1259 
1260 		if (jumbo->found_start) {
1261 			int framelen, endframelen;
1262 
1263 			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1264 
1265 			endframelen = framelen - jumbo->current_size;
1266 			if (framelen > sp->rxsupport_size)
1267 				dev_kfree_skb_irq(jumbo->skb);
1268 			else {
1269 				memcpy(skb_put(jumbo->skb, endframelen),
1270 				       skb->data, endframelen);
1271 
1272 				jumbo->skb->protocol =
1273 				    eth_type_trans(jumbo->skb, dev);
1274 
1275 				skb_checksum_none_assert(jumbo->skb);
1276 				netif_rx(jumbo->skb);
1277 			}
1278 		}
1279 
1280 		jumbo->found_start = 0;
1281 		jumbo->current_size = 0;
1282 		jumbo->skb = NULL;
1283 
1284 		ipg_nic_rx_free_skb(dev);
1285 	} else {
1286 		dev_kfree_skb_irq(jumbo->skb);
1287 		jumbo->found_start = 0;
1288 		jumbo->current_size = 0;
1289 		jumbo->skb = NULL;
1290 	}
1291 }
1292 
ipg_nic_rx_no_start_no_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1293 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1294 				       struct ipg_nic_private *sp,
1295 				       struct ipg_rx *rxfd, unsigned entry)
1296 {
1297 	struct ipg_jumbo *jumbo = &sp->jumbo;
1298 
1299 	/* 1: found error, 0 no error */
1300 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1301 		struct sk_buff *skb = sp->rx_buff[entry];
1302 
1303 		if (skb) {
1304 			if (jumbo->found_start) {
1305 				jumbo->current_size += sp->rxfrag_size;
1306 				if (jumbo->current_size <= sp->rxsupport_size) {
1307 					memcpy(skb_put(jumbo->skb,
1308 						       sp->rxfrag_size),
1309 					       skb->data, sp->rxfrag_size);
1310 				}
1311 			}
1312 			ipg_nic_rx_free_skb(dev);
1313 		}
1314 	} else {
1315 		dev_kfree_skb_irq(jumbo->skb);
1316 		jumbo->found_start = 0;
1317 		jumbo->current_size = 0;
1318 		jumbo->skb = NULL;
1319 	}
1320 }
1321 
ipg_nic_rx_jumbo(struct net_device * dev)1322 static int ipg_nic_rx_jumbo(struct net_device *dev)
1323 {
1324 	struct ipg_nic_private *sp = netdev_priv(dev);
1325 	unsigned int curr = sp->rx_current;
1326 	void __iomem *ioaddr = sp->ioaddr;
1327 	unsigned int i;
1328 
1329 	IPG_DEBUG_MSG("_nic_rx\n");
1330 
1331 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1332 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1333 		struct ipg_rx *rxfd = sp->rxd + entry;
1334 
1335 		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1336 			break;
1337 
1338 		switch (ipg_nic_rx_check_frame_type(dev)) {
1339 		case FRAME_WITH_START_WITH_END:
1340 			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1341 			break;
1342 		case FRAME_WITH_START:
1343 			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1344 			break;
1345 		case FRAME_WITH_END:
1346 			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1347 			break;
1348 		case FRAME_NO_START_NO_END:
1349 			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1350 			break;
1351 		}
1352 	}
1353 
1354 	sp->rx_current = curr;
1355 
1356 	if (i == IPG_MAXRFDPROCESS_COUNT) {
1357 		/* There are more RFDs to process, however the
1358 		 * allocated amount of RFD processing time has
1359 		 * expired. Assert Interrupt Requested to make
1360 		 * sure we come back to process the remaining RFDs.
1361 		 */
1362 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1363 	}
1364 
1365 	ipg_nic_rxrestore(dev);
1366 
1367 	return 0;
1368 }
1369 
ipg_nic_rx(struct net_device * dev)1370 static int ipg_nic_rx(struct net_device *dev)
1371 {
1372 	/* Transfer received Ethernet frames to higher network layers. */
1373 	struct ipg_nic_private *sp = netdev_priv(dev);
1374 	unsigned int curr = sp->rx_current;
1375 	void __iomem *ioaddr = sp->ioaddr;
1376 	struct ipg_rx *rxfd;
1377 	unsigned int i;
1378 
1379 	IPG_DEBUG_MSG("_nic_rx\n");
1380 
1381 #define __RFS_MASK \
1382 	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1383 
1384 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1385 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1386 		struct sk_buff *skb = sp->rx_buff[entry];
1387 		unsigned int framelen;
1388 
1389 		rxfd = sp->rxd + entry;
1390 
1391 		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1392 			break;
1393 
1394 		/* Get received frame length. */
1395 		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1396 
1397 		/* Check for jumbo frame arrival with too small
1398 		 * RXFRAG_SIZE.
1399 		 */
1400 		if (framelen > sp->rxfrag_size) {
1401 			IPG_DEBUG_MSG
1402 			    ("RFS FrameLen > allocated fragment size\n");
1403 
1404 			framelen = sp->rxfrag_size;
1405 		}
1406 
1407 		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1408 		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1409 			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1410 			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1411 
1412 			IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1413 				      (unsigned long int) rxfd->rfs);
1414 
1415 			/* Increment general receive error statistic. */
1416 			sp->stats.rx_errors++;
1417 
1418 			/* Increment detailed receive error statistics. */
1419 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1420 				IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1421 				sp->stats.rx_fifo_errors++;
1422 			}
1423 
1424 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1425 				IPG_DEBUG_MSG("RX runt occurred\n");
1426 				sp->stats.rx_length_errors++;
1427 			}
1428 
1429 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1430 			/* Do nothing, error count handled by a IPG
1431 			 * statistic register.
1432 			 */
1433 
1434 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1435 				IPG_DEBUG_MSG("RX alignment error occurred\n");
1436 				sp->stats.rx_frame_errors++;
1437 			}
1438 
1439 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1440 			/* Do nothing, error count handled by a IPG
1441 			 * statistic register.
1442 			 */
1443 
1444 			/* Free the memory associated with the RX
1445 			 * buffer since it is erroneous and we will
1446 			 * not pass it to higher layer processes.
1447 			 */
1448 			if (skb) {
1449 				__le64 info = rxfd->frag_info;
1450 
1451 				pci_unmap_single(sp->pdev,
1452 					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1453 					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454 
1455 				dev_kfree_skb_irq(skb);
1456 			}
1457 		} else {
1458 
1459 			/* Adjust the new buffer length to accommodate the size
1460 			 * of the received frame.
1461 			 */
1462 			skb_put(skb, framelen);
1463 
1464 			/* Set the buffer's protocol field to Ethernet. */
1465 			skb->protocol = eth_type_trans(skb, dev);
1466 
1467 			/* The IPG encountered an error with (or
1468 			 * there were no) IP/TCP/UDP checksums.
1469 			 * This may or may not indicate an invalid
1470 			 * IP/TCP/UDP frame was received. Let the
1471 			 * upper layer decide.
1472 			 */
1473 			skb_checksum_none_assert(skb);
1474 
1475 			/* Hand off frame for higher layer processing.
1476 			 * The function netif_rx() releases the sk_buff
1477 			 * when processing completes.
1478 			 */
1479 			netif_rx(skb);
1480 		}
1481 
1482 		/* Assure RX buffer is not reused by IPG. */
1483 		sp->rx_buff[entry] = NULL;
1484 	}
1485 
1486 	/*
1487 	 * If there are more RFDs to process and the allocated amount of RFD
1488 	 * processing time has expired, assert Interrupt Requested to make
1489 	 * sure we come back to process the remaining RFDs.
1490 	 */
1491 	if (i == IPG_MAXRFDPROCESS_COUNT)
1492 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1493 
1494 #ifdef IPG_DEBUG
1495 	/* Check if the RFD list contained no receive frame data. */
1496 	if (!i)
1497 		sp->EmptyRFDListCount++;
1498 #endif
1499 	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1500 	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1501 		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1502 		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1503 
1504 		rxfd = sp->rxd + entry;
1505 
1506 		IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1507 
1508 		/* An unexpected event, additional code needed to handle
1509 		 * properly. So for the time being, just disregard the
1510 		 * frame.
1511 		 */
1512 
1513 		/* Free the memory associated with the RX
1514 		 * buffer since it is erroneous and we will
1515 		 * not pass it to higher layer processes.
1516 		 */
1517 		if (sp->rx_buff[entry]) {
1518 			pci_unmap_single(sp->pdev,
1519 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1520 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1521 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1522 		}
1523 
1524 		/* Assure RX buffer is not reused by IPG. */
1525 		sp->rx_buff[entry] = NULL;
1526 	}
1527 
1528 	sp->rx_current = curr;
1529 
1530 	/* Check to see if there are a minimum number of used
1531 	 * RFDs before restoring any (should improve performance.)
1532 	 */
1533 	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1534 		ipg_nic_rxrestore(dev);
1535 
1536 	return 0;
1537 }
1538 
ipg_reset_after_host_error(struct work_struct * work)1539 static void ipg_reset_after_host_error(struct work_struct *work)
1540 {
1541 	struct ipg_nic_private *sp =
1542 		container_of(work, struct ipg_nic_private, task.work);
1543 	struct net_device *dev = sp->dev;
1544 
1545 	/*
1546 	 * Acknowledge HostError interrupt by resetting
1547 	 * IPG DMA and HOST.
1548 	 */
1549 	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1550 
1551 	init_rfdlist(dev);
1552 	init_tfdlist(dev);
1553 
1554 	if (ipg_io_config(dev) < 0) {
1555 		netdev_info(dev, "Cannot recover from PCI error\n");
1556 		schedule_delayed_work(&sp->task, HZ);
1557 	}
1558 }
1559 
ipg_interrupt_handler(int irq,void * dev_inst)1560 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1561 {
1562 	struct net_device *dev = dev_inst;
1563 	struct ipg_nic_private *sp = netdev_priv(dev);
1564 	void __iomem *ioaddr = sp->ioaddr;
1565 	unsigned int handled = 0;
1566 	u16 status;
1567 
1568 	IPG_DEBUG_MSG("_interrupt_handler\n");
1569 
1570 	if (sp->is_jumbo)
1571 		ipg_nic_rxrestore(dev);
1572 
1573 	spin_lock(&sp->lock);
1574 
1575 	/* Get interrupt source information, and acknowledge
1576 	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1577 	 * IntRequested, MacControlFrame, LinkEvent) interrupts
1578 	 * if issued. Also, all IPG interrupts are disabled by
1579 	 * reading IntStatusAck.
1580 	 */
1581 	status = ipg_r16(INT_STATUS_ACK);
1582 
1583 	IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1584 
1585 	/* Shared IRQ of remove event. */
1586 	if (!(status & IPG_IS_RSVD_MASK))
1587 		goto out_enable;
1588 
1589 	handled = 1;
1590 
1591 	if (unlikely(!netif_running(dev)))
1592 		goto out_unlock;
1593 
1594 	/* If RFDListEnd interrupt, restore all used RFDs. */
1595 	if (status & IPG_IS_RFD_LIST_END) {
1596 		IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1597 
1598 		/* The RFD list end indicates an RFD was encountered
1599 		 * with a 0 NextPtr, or with an RFDDone bit set to 1
1600 		 * (indicating the RFD is not read for use by the
1601 		 * IPG.) Try to restore all RFDs.
1602 		 */
1603 		ipg_nic_rxrestore(dev);
1604 
1605 #ifdef IPG_DEBUG
1606 		/* Increment the RFDlistendCount counter. */
1607 		sp->RFDlistendCount++;
1608 #endif
1609 	}
1610 
1611 	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1612 	 * IntRequested interrupt, process received frames. */
1613 	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1614 	    (status & IPG_IS_RFD_LIST_END) ||
1615 	    (status & IPG_IS_RX_DMA_COMPLETE) ||
1616 	    (status & IPG_IS_INT_REQUESTED)) {
1617 #ifdef IPG_DEBUG
1618 		/* Increment the RFD list checked counter if interrupted
1619 		 * only to check the RFD list. */
1620 		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1621 				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1622 			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1623 				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1624 				IPG_IS_UPDATE_STATS)))
1625 			sp->RFDListCheckedCount++;
1626 #endif
1627 
1628 		if (sp->is_jumbo)
1629 			ipg_nic_rx_jumbo(dev);
1630 		else
1631 			ipg_nic_rx(dev);
1632 	}
1633 
1634 	/* If TxDMAComplete interrupt, free used TFDs. */
1635 	if (status & IPG_IS_TX_DMA_COMPLETE)
1636 		ipg_nic_txfree(dev);
1637 
1638 	/* TxComplete interrupts indicate one of numerous actions.
1639 	 * Determine what action to take based on TXSTATUS register.
1640 	 */
1641 	if (status & IPG_IS_TX_COMPLETE)
1642 		ipg_nic_txcleanup(dev);
1643 
1644 	/* If UpdateStats interrupt, update Linux Ethernet statistics */
1645 	if (status & IPG_IS_UPDATE_STATS)
1646 		ipg_nic_get_stats(dev);
1647 
1648 	/* If HostError interrupt, reset IPG. */
1649 	if (status & IPG_IS_HOST_ERROR) {
1650 		IPG_DDEBUG_MSG("HostError Interrupt\n");
1651 
1652 		schedule_delayed_work(&sp->task, 0);
1653 	}
1654 
1655 	/* If LinkEvent interrupt, resolve autonegotiation. */
1656 	if (status & IPG_IS_LINK_EVENT) {
1657 		if (ipg_config_autoneg(dev) < 0)
1658 			netdev_info(dev, "Auto-negotiation error\n");
1659 	}
1660 
1661 	/* If MACCtrlFrame interrupt, do nothing. */
1662 	if (status & IPG_IS_MAC_CTRL_FRAME)
1663 		IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1664 
1665 	/* If RxComplete interrupt, do nothing. */
1666 	if (status & IPG_IS_RX_COMPLETE)
1667 		IPG_DEBUG_MSG("RxComplete interrupt\n");
1668 
1669 	/* If RxEarly interrupt, do nothing. */
1670 	if (status & IPG_IS_RX_EARLY)
1671 		IPG_DEBUG_MSG("RxEarly interrupt\n");
1672 
1673 out_enable:
1674 	/* Re-enable IPG interrupts. */
1675 	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1676 		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1677 		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1678 out_unlock:
1679 	spin_unlock(&sp->lock);
1680 
1681 	return IRQ_RETVAL(handled);
1682 }
1683 
ipg_rx_clear(struct ipg_nic_private * sp)1684 static void ipg_rx_clear(struct ipg_nic_private *sp)
1685 {
1686 	unsigned int i;
1687 
1688 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1689 		if (sp->rx_buff[i]) {
1690 			struct ipg_rx *rxfd = sp->rxd + i;
1691 
1692 			dev_kfree_skb_irq(sp->rx_buff[i]);
1693 			sp->rx_buff[i] = NULL;
1694 			pci_unmap_single(sp->pdev,
1695 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1696 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1697 		}
1698 	}
1699 }
1700 
ipg_tx_clear(struct ipg_nic_private * sp)1701 static void ipg_tx_clear(struct ipg_nic_private *sp)
1702 {
1703 	unsigned int i;
1704 
1705 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1706 		if (sp->tx_buff[i]) {
1707 			struct ipg_tx *txfd = sp->txd + i;
1708 
1709 			pci_unmap_single(sp->pdev,
1710 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1711 				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1712 
1713 			dev_kfree_skb_irq(sp->tx_buff[i]);
1714 
1715 			sp->tx_buff[i] = NULL;
1716 		}
1717 	}
1718 }
1719 
ipg_nic_open(struct net_device * dev)1720 static int ipg_nic_open(struct net_device *dev)
1721 {
1722 	struct ipg_nic_private *sp = netdev_priv(dev);
1723 	void __iomem *ioaddr = sp->ioaddr;
1724 	struct pci_dev *pdev = sp->pdev;
1725 	int rc;
1726 
1727 	IPG_DEBUG_MSG("_nic_open\n");
1728 
1729 	sp->rx_buf_sz = sp->rxsupport_size;
1730 
1731 	/* Check for interrupt line conflicts, and request interrupt
1732 	 * line for IPG.
1733 	 *
1734 	 * IMPORTANT: Disable IPG interrupts prior to registering
1735 	 *            IRQ.
1736 	 */
1737 	ipg_w16(0x0000, INT_ENABLE);
1738 
1739 	/* Register the interrupt line to be used by the IPG within
1740 	 * the Linux system.
1741 	 */
1742 	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1743 			 dev->name, dev);
1744 	if (rc < 0) {
1745 		netdev_info(dev, "Error when requesting interrupt\n");
1746 		goto out;
1747 	}
1748 
1749 	dev->irq = pdev->irq;
1750 
1751 	rc = -ENOMEM;
1752 
1753 	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1754 				     &sp->rxd_map, GFP_KERNEL);
1755 	if (!sp->rxd)
1756 		goto err_free_irq_0;
1757 
1758 	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1759 				     &sp->txd_map, GFP_KERNEL);
1760 	if (!sp->txd)
1761 		goto err_free_rx_1;
1762 
1763 	rc = init_rfdlist(dev);
1764 	if (rc < 0) {
1765 		netdev_info(dev, "Error during configuration\n");
1766 		goto err_free_tx_2;
1767 	}
1768 
1769 	init_tfdlist(dev);
1770 
1771 	rc = ipg_io_config(dev);
1772 	if (rc < 0) {
1773 		netdev_info(dev, "Error during configuration\n");
1774 		goto err_release_tfdlist_3;
1775 	}
1776 
1777 	/* Resolve autonegotiation. */
1778 	if (ipg_config_autoneg(dev) < 0)
1779 		netdev_info(dev, "Auto-negotiation error\n");
1780 
1781 	/* initialize JUMBO Frame control variable */
1782 	sp->jumbo.found_start = 0;
1783 	sp->jumbo.current_size = 0;
1784 	sp->jumbo.skb = NULL;
1785 
1786 	/* Enable transmit and receive operation of the IPG. */
1787 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1788 		 IPG_MC_RSVD_MASK, MAC_CTRL);
1789 
1790 	netif_start_queue(dev);
1791 out:
1792 	return rc;
1793 
1794 err_release_tfdlist_3:
1795 	ipg_tx_clear(sp);
1796 	ipg_rx_clear(sp);
1797 err_free_tx_2:
1798 	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1799 err_free_rx_1:
1800 	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1801 err_free_irq_0:
1802 	free_irq(pdev->irq, dev);
1803 	goto out;
1804 }
1805 
ipg_nic_stop(struct net_device * dev)1806 static int ipg_nic_stop(struct net_device *dev)
1807 {
1808 	struct ipg_nic_private *sp = netdev_priv(dev);
1809 	void __iomem *ioaddr = sp->ioaddr;
1810 	struct pci_dev *pdev = sp->pdev;
1811 
1812 	IPG_DEBUG_MSG("_nic_stop\n");
1813 
1814 	netif_stop_queue(dev);
1815 
1816 	IPG_DUMPTFDLIST(dev);
1817 
1818 	do {
1819 		(void) ipg_r16(INT_STATUS_ACK);
1820 
1821 		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1822 
1823 		synchronize_irq(pdev->irq);
1824 	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1825 
1826 	ipg_rx_clear(sp);
1827 
1828 	ipg_tx_clear(sp);
1829 
1830 	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1831 	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1832 
1833 	free_irq(pdev->irq, dev);
1834 
1835 	return 0;
1836 }
1837 
ipg_nic_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)1838 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1839 					   struct net_device *dev)
1840 {
1841 	struct ipg_nic_private *sp = netdev_priv(dev);
1842 	void __iomem *ioaddr = sp->ioaddr;
1843 	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1844 	unsigned long flags;
1845 	struct ipg_tx *txfd;
1846 
1847 	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1848 
1849 	/* If in 10Mbps mode, stop the transmit queue so
1850 	 * no more transmit frames are accepted.
1851 	 */
1852 	if (sp->tenmbpsmode)
1853 		netif_stop_queue(dev);
1854 
1855 	if (sp->reset_current_tfd) {
1856 		sp->reset_current_tfd = 0;
1857 		entry = 0;
1858 	}
1859 
1860 	txfd = sp->txd + entry;
1861 
1862 	sp->tx_buff[entry] = skb;
1863 
1864 	/* Clear all TFC fields, except TFDDONE. */
1865 	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1866 
1867 	/* Specify the TFC field within the TFD. */
1868 	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1869 		(IPG_TFC_FRAMEID & sp->tx_current) |
1870 		(IPG_TFC_FRAGCOUNT & (1 << 24)));
1871 	/*
1872 	 * 16--17 (WordAlign) <- 3 (disable),
1873 	 * 0--15 (FrameId) <- sp->tx_current,
1874 	 * 24--27 (FragCount) <- 1
1875 	 */
1876 
1877 	/* Request TxComplete interrupts at an interval defined
1878 	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1879 	 * Request TxComplete interrupt for every frame
1880 	 * if in 10Mbps mode to accommodate problem with 10Mbps
1881 	 * processing.
1882 	 */
1883 	if (sp->tenmbpsmode)
1884 		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1885 	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1886 	/* Based on compilation option, determine if FCS is to be
1887 	 * appended to transmit frame by IPG.
1888 	 */
1889 	if (!(IPG_APPEND_FCS_ON_TX))
1890 		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1891 
1892 	/* Based on compilation option, determine if IP, TCP and/or
1893 	 * UDP checksums are to be added to transmit frame by IPG.
1894 	 */
1895 	if (IPG_ADD_IPCHECKSUM_ON_TX)
1896 		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1897 
1898 	if (IPG_ADD_TCPCHECKSUM_ON_TX)
1899 		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1900 
1901 	if (IPG_ADD_UDPCHECKSUM_ON_TX)
1902 		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1903 
1904 	/* Based on compilation option, determine if VLAN tag info is to be
1905 	 * inserted into transmit frame by IPG.
1906 	 */
1907 	if (IPG_INSERT_MANUAL_VLAN_TAG) {
1908 		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1909 			((u64) IPG_MANUAL_VLAN_VID << 32) |
1910 			((u64) IPG_MANUAL_VLAN_CFI << 44) |
1911 			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1912 	}
1913 
1914 	/* The fragment start location within system memory is defined
1915 	 * by the sk_buff structure's data field. The physical address
1916 	 * of this location within the system's virtual memory space
1917 	 * is determined using the IPG_HOST2BUS_MAP function.
1918 	 */
1919 	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1920 		skb->len, PCI_DMA_TODEVICE));
1921 
1922 	/* The length of the fragment within system memory is defined by
1923 	 * the sk_buff structure's len field.
1924 	 */
1925 	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1926 		((u64) (skb->len & 0xffff) << 48));
1927 
1928 	/* Clear the TFDDone bit last to indicate the TFD is ready
1929 	 * for transfer to the IPG.
1930 	 */
1931 	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1932 
1933 	spin_lock_irqsave(&sp->lock, flags);
1934 
1935 	sp->tx_current++;
1936 
1937 	mmiowb();
1938 
1939 	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1940 
1941 	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1942 		netif_stop_queue(dev);
1943 
1944 	spin_unlock_irqrestore(&sp->lock, flags);
1945 
1946 	return NETDEV_TX_OK;
1947 }
1948 
ipg_set_phy_default_param(unsigned char rev,struct net_device * dev,int phy_address)1949 static void ipg_set_phy_default_param(unsigned char rev,
1950 				      struct net_device *dev, int phy_address)
1951 {
1952 	unsigned short length;
1953 	unsigned char revision;
1954 	const unsigned short *phy_param;
1955 	unsigned short address, value;
1956 
1957 	phy_param = &DefaultPhyParam[0];
1958 	length = *phy_param & 0x00FF;
1959 	revision = (unsigned char)((*phy_param) >> 8);
1960 	phy_param++;
1961 	while (length != 0) {
1962 		if (rev == revision) {
1963 			while (length > 1) {
1964 				address = *phy_param;
1965 				value = *(phy_param + 1);
1966 				phy_param += 2;
1967 				mdio_write(dev, phy_address, address, value);
1968 				length -= 4;
1969 			}
1970 			break;
1971 		} else {
1972 			phy_param += length / 2;
1973 			length = *phy_param & 0x00FF;
1974 			revision = (unsigned char)((*phy_param) >> 8);
1975 			phy_param++;
1976 		}
1977 	}
1978 }
1979 
read_eeprom(struct net_device * dev,int eep_addr)1980 static int read_eeprom(struct net_device *dev, int eep_addr)
1981 {
1982 	void __iomem *ioaddr = ipg_ioaddr(dev);
1983 	unsigned int i;
1984 	int ret = 0;
1985 	u16 value;
1986 
1987 	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1988 	ipg_w16(value, EEPROM_CTRL);
1989 
1990 	for (i = 0; i < 1000; i++) {
1991 		u16 data;
1992 
1993 		mdelay(10);
1994 		data = ipg_r16(EEPROM_CTRL);
1995 		if (!(data & IPG_EC_EEPROM_BUSY)) {
1996 			ret = ipg_r16(EEPROM_DATA);
1997 			break;
1998 		}
1999 	}
2000 	return ret;
2001 }
2002 
ipg_init_mii(struct net_device * dev)2003 static void ipg_init_mii(struct net_device *dev)
2004 {
2005 	struct ipg_nic_private *sp = netdev_priv(dev);
2006 	struct mii_if_info *mii_if = &sp->mii_if;
2007 	int phyaddr;
2008 
2009 	mii_if->dev          = dev;
2010 	mii_if->mdio_read    = mdio_read;
2011 	mii_if->mdio_write   = mdio_write;
2012 	mii_if->phy_id_mask  = 0x1f;
2013 	mii_if->reg_num_mask = 0x1f;
2014 
2015 	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2016 
2017 	if (phyaddr != 0x1f) {
2018 		u16 mii_phyctrl, mii_1000cr;
2019 
2020 		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2021 		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2022 			GMII_PHY_1000BASETCONTROL_PreferMaster;
2023 		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2024 
2025 		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2026 
2027 		/* Set default phyparam */
2028 		ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2029 
2030 		/* Reset PHY */
2031 		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2032 		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2033 
2034 	}
2035 }
2036 
ipg_hw_init(struct net_device * dev)2037 static int ipg_hw_init(struct net_device *dev)
2038 {
2039 	struct ipg_nic_private *sp = netdev_priv(dev);
2040 	void __iomem *ioaddr = sp->ioaddr;
2041 	unsigned int i;
2042 	int rc;
2043 
2044 	/* Read/Write and Reset EEPROM Value */
2045 	/* Read LED Mode Configuration from EEPROM */
2046 	sp->led_mode = read_eeprom(dev, 6);
2047 
2048 	/* Reset all functions within the IPG. Do not assert
2049 	 * RST_OUT as not compatible with some PHYs.
2050 	 */
2051 	rc = ipg_reset(dev, IPG_RESET_MASK);
2052 	if (rc < 0)
2053 		goto out;
2054 
2055 	ipg_init_mii(dev);
2056 
2057 	/* Read MAC Address from EEPROM */
2058 	for (i = 0; i < 3; i++)
2059 		sp->station_addr[i] = read_eeprom(dev, 16 + i);
2060 
2061 	for (i = 0; i < 3; i++)
2062 		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2063 
2064 	/* Set station address in ethernet_device structure. */
2065 	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2066 	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2067 	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2068 	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2069 	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2070 	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2071 out:
2072 	return rc;
2073 }
2074 
ipg_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2075 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2076 {
2077 	struct ipg_nic_private *sp = netdev_priv(dev);
2078 	int rc;
2079 
2080 	mutex_lock(&sp->mii_mutex);
2081 	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2082 	mutex_unlock(&sp->mii_mutex);
2083 
2084 	return rc;
2085 }
2086 
ipg_nic_change_mtu(struct net_device * dev,int new_mtu)2087 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2088 {
2089 	struct ipg_nic_private *sp = netdev_priv(dev);
2090 	int err;
2091 
2092 	/* Function to accommodate changes to Maximum Transfer Unit
2093 	 * (or MTU) of IPG NIC. Cannot use default function since
2094 	 * the default will not allow for MTU > 1500 bytes.
2095 	 */
2096 
2097 	IPG_DEBUG_MSG("_nic_change_mtu\n");
2098 
2099 	/*
2100 	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2101 	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2102 	 */
2103 	if (new_mtu < 68 || new_mtu > 10240)
2104 		return -EINVAL;
2105 
2106 	err = ipg_nic_stop(dev);
2107 	if (err)
2108 		return err;
2109 
2110 	dev->mtu = new_mtu;
2111 
2112 	sp->max_rxframe_size = new_mtu;
2113 
2114 	sp->rxfrag_size = new_mtu;
2115 	if (sp->rxfrag_size > 4088)
2116 		sp->rxfrag_size = 4088;
2117 
2118 	sp->rxsupport_size = sp->max_rxframe_size;
2119 
2120 	if (new_mtu > 0x0600)
2121 		sp->is_jumbo = true;
2122 	else
2123 		sp->is_jumbo = false;
2124 
2125 	return ipg_nic_open(dev);
2126 }
2127 
ipg_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2128 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2129 {
2130 	struct ipg_nic_private *sp = netdev_priv(dev);
2131 	int rc;
2132 
2133 	mutex_lock(&sp->mii_mutex);
2134 	rc = mii_ethtool_gset(&sp->mii_if, cmd);
2135 	mutex_unlock(&sp->mii_mutex);
2136 
2137 	return rc;
2138 }
2139 
ipg_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2140 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2141 {
2142 	struct ipg_nic_private *sp = netdev_priv(dev);
2143 	int rc;
2144 
2145 	mutex_lock(&sp->mii_mutex);
2146 	rc = mii_ethtool_sset(&sp->mii_if, cmd);
2147 	mutex_unlock(&sp->mii_mutex);
2148 
2149 	return rc;
2150 }
2151 
ipg_nway_reset(struct net_device * dev)2152 static int ipg_nway_reset(struct net_device *dev)
2153 {
2154 	struct ipg_nic_private *sp = netdev_priv(dev);
2155 	int rc;
2156 
2157 	mutex_lock(&sp->mii_mutex);
2158 	rc = mii_nway_restart(&sp->mii_if);
2159 	mutex_unlock(&sp->mii_mutex);
2160 
2161 	return rc;
2162 }
2163 
2164 static const struct ethtool_ops ipg_ethtool_ops = {
2165 	.get_settings = ipg_get_settings,
2166 	.set_settings = ipg_set_settings,
2167 	.nway_reset   = ipg_nway_reset,
2168 };
2169 
ipg_remove(struct pci_dev * pdev)2170 static void ipg_remove(struct pci_dev *pdev)
2171 {
2172 	struct net_device *dev = pci_get_drvdata(pdev);
2173 	struct ipg_nic_private *sp = netdev_priv(dev);
2174 
2175 	IPG_DEBUG_MSG("_remove\n");
2176 
2177 	/* Un-register Ethernet device. */
2178 	unregister_netdev(dev);
2179 
2180 	pci_iounmap(pdev, sp->ioaddr);
2181 
2182 	pci_release_regions(pdev);
2183 
2184 	free_netdev(dev);
2185 	pci_disable_device(pdev);
2186 	pci_set_drvdata(pdev, NULL);
2187 }
2188 
2189 static const struct net_device_ops ipg_netdev_ops = {
2190 	.ndo_open		= ipg_nic_open,
2191 	.ndo_stop		= ipg_nic_stop,
2192 	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
2193 	.ndo_get_stats		= ipg_nic_get_stats,
2194 	.ndo_set_rx_mode	= ipg_nic_set_multicast_list,
2195 	.ndo_do_ioctl		= ipg_ioctl,
2196 	.ndo_tx_timeout 	= ipg_tx_timeout,
2197 	.ndo_change_mtu 	= ipg_nic_change_mtu,
2198 	.ndo_set_mac_address	= eth_mac_addr,
2199 	.ndo_validate_addr	= eth_validate_addr,
2200 };
2201 
ipg_probe(struct pci_dev * pdev,const struct pci_device_id * id)2202 static int ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2203 {
2204 	unsigned int i = id->driver_data;
2205 	struct ipg_nic_private *sp;
2206 	struct net_device *dev;
2207 	void __iomem *ioaddr;
2208 	int rc;
2209 
2210 	rc = pci_enable_device(pdev);
2211 	if (rc < 0)
2212 		goto out;
2213 
2214 	pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2215 
2216 	pci_set_master(pdev);
2217 
2218 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2219 	if (rc < 0) {
2220 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2221 		if (rc < 0) {
2222 			pr_err("%s: DMA config failed\n", pci_name(pdev));
2223 			goto err_disable_0;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * Initialize net device.
2229 	 */
2230 	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2231 	if (!dev) {
2232 		rc = -ENOMEM;
2233 		goto err_disable_0;
2234 	}
2235 
2236 	sp = netdev_priv(dev);
2237 	spin_lock_init(&sp->lock);
2238 	mutex_init(&sp->mii_mutex);
2239 
2240 	sp->is_jumbo = IPG_IS_JUMBO;
2241 	sp->rxfrag_size = IPG_RXFRAG_SIZE;
2242 	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2243 	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2244 
2245 	/* Declare IPG NIC functions for Ethernet device methods.
2246 	 */
2247 	dev->netdev_ops = &ipg_netdev_ops;
2248 	SET_NETDEV_DEV(dev, &pdev->dev);
2249 	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2250 
2251 	rc = pci_request_regions(pdev, DRV_NAME);
2252 	if (rc)
2253 		goto err_free_dev_1;
2254 
2255 	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2256 	if (!ioaddr) {
2257 		pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2258 		rc = -EIO;
2259 		goto err_release_regions_2;
2260 	}
2261 
2262 	/* Save the pointer to the PCI device information. */
2263 	sp->ioaddr = ioaddr;
2264 	sp->pdev = pdev;
2265 	sp->dev = dev;
2266 
2267 	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2268 
2269 	pci_set_drvdata(pdev, dev);
2270 
2271 	rc = ipg_hw_init(dev);
2272 	if (rc < 0)
2273 		goto err_unmap_3;
2274 
2275 	rc = register_netdev(dev);
2276 	if (rc < 0)
2277 		goto err_unmap_3;
2278 
2279 	netdev_info(dev, "Ethernet device registered\n");
2280 out:
2281 	return rc;
2282 
2283 err_unmap_3:
2284 	pci_iounmap(pdev, ioaddr);
2285 err_release_regions_2:
2286 	pci_release_regions(pdev);
2287 err_free_dev_1:
2288 	free_netdev(dev);
2289 err_disable_0:
2290 	pci_disable_device(pdev);
2291 	goto out;
2292 }
2293 
2294 static struct pci_driver ipg_pci_driver = {
2295 	.name		= IPG_DRIVER_NAME,
2296 	.id_table	= ipg_pci_tbl,
2297 	.probe		= ipg_probe,
2298 	.remove		= ipg_remove,
2299 };
2300 
ipg_init_module(void)2301 static int __init ipg_init_module(void)
2302 {
2303 	return pci_register_driver(&ipg_pci_driver);
2304 }
2305 
ipg_exit_module(void)2306 static void __exit ipg_exit_module(void)
2307 {
2308 	pci_unregister_driver(&ipg_pci_driver);
2309 }
2310 
2311 module_init(ipg_init_module);
2312 module_exit(ipg_exit_module);
2313