• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					     u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] = {
42 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 	(sizeof(e1000_m88_cable_length_table) / \
45 	sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] = {
48 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 	104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 	(sizeof(e1000_igp_2_cable_length_table) / \
58 	 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
igb_check_reset_block(struct e1000_hw * hw)68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
igb_get_phy_id(struct e1000_hw * hw)84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
igb_phy_reset_dsp(struct e1000_hw * hw)113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/* Set up Op-code, Phy Address, and register offset in the MDI
152 	 * Control register.  The MAC will take care of interfacing with the
153 	 * PHY to retrieve the desired data.
154 	 */
155 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
157 		(E1000_MDIC_OP_READ));
158 
159 	wr32(E1000_MDIC, mdic);
160 
161 	/* Poll the ready bit to see if the MDI read completed
162 	 * Increasing the time out as testing showed failures with
163 	 * the lower time out
164 	 */
165 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 		udelay(50);
167 		mdic = rd32(E1000_MDIC);
168 		if (mdic & E1000_MDIC_READY)
169 			break;
170 	}
171 	if (!(mdic & E1000_MDIC_READY)) {
172 		hw_dbg("MDI Read did not complete\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	if (mdic & E1000_MDIC_ERROR) {
177 		hw_dbg("MDI Error\n");
178 		ret_val = -E1000_ERR_PHY;
179 		goto out;
180 	}
181 	*data = (u16) mdic;
182 
183 out:
184 	return ret_val;
185 }
186 
187 /**
188  *  igb_write_phy_reg_mdic - Write MDI control register
189  *  @hw: pointer to the HW structure
190  *  @offset: register offset to write to
191  *  @data: data to write to register at offset
192  *
193  *  Writes data to MDI control register in the PHY at offset.
194  **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
196 {
197 	struct e1000_phy_info *phy = &hw->phy;
198 	u32 i, mdic = 0;
199 	s32 ret_val = 0;
200 
201 	if (offset > MAX_PHY_REG_ADDRESS) {
202 		hw_dbg("PHY Address %d is out of range\n", offset);
203 		ret_val = -E1000_ERR_PARAM;
204 		goto out;
205 	}
206 
207 	/* Set up Op-code, Phy Address, and register offset in the MDI
208 	 * Control register.  The MAC will take care of interfacing with the
209 	 * PHY to retrieve the desired data.
210 	 */
211 	mdic = (((u32)data) |
212 		(offset << E1000_MDIC_REG_SHIFT) |
213 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
214 		(E1000_MDIC_OP_WRITE));
215 
216 	wr32(E1000_MDIC, mdic);
217 
218 	/* Poll the ready bit to see if the MDI read completed
219 	 * Increasing the time out as testing showed failures with
220 	 * the lower time out
221 	 */
222 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 		udelay(50);
224 		mdic = rd32(E1000_MDIC);
225 		if (mdic & E1000_MDIC_READY)
226 			break;
227 	}
228 	if (!(mdic & E1000_MDIC_READY)) {
229 		hw_dbg("MDI Write did not complete\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 	if (mdic & E1000_MDIC_ERROR) {
234 		hw_dbg("MDI Error\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 
239 out:
240 	return ret_val;
241 }
242 
243 /**
244  *  igb_read_phy_reg_i2c - Read PHY register using i2c
245  *  @hw: pointer to the HW structure
246  *  @offset: register offset to be read
247  *  @data: pointer to the read data
248  *
249  *  Reads the PHY register at offset using the i2c interface and stores the
250  *  retrieved information in data.
251  **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253 {
254 	struct e1000_phy_info *phy = &hw->phy;
255 	u32 i, i2ccmd = 0;
256 
257 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
258 	 * register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 		  (E1000_I2CCMD_OPCODE_READ));
264 
265 	wr32(E1000_I2CCMD, i2ccmd);
266 
267 	/* Poll the ready bit to see if the I2C read completed */
268 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 		udelay(50);
270 		i2ccmd = rd32(E1000_I2CCMD);
271 		if (i2ccmd & E1000_I2CCMD_READY)
272 			break;
273 	}
274 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 		hw_dbg("I2CCMD Read did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (i2ccmd & E1000_I2CCMD_ERROR) {
279 		hw_dbg("I2CCMD Error bit set\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Need to byte-swap the 16-bit value. */
284 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285 
286 	return 0;
287 }
288 
289 /**
290  *  igb_write_phy_reg_i2c - Write PHY register using i2c
291  *  @hw: pointer to the HW structure
292  *  @offset: register offset to write to
293  *  @data: data to write at register offset
294  *
295  *  Writes the data to PHY register at the offset using the i2c interface.
296  **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298 {
299 	struct e1000_phy_info *phy = &hw->phy;
300 	u32 i, i2ccmd = 0;
301 	u16 phy_data_swapped;
302 
303 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 		hw_dbg("PHY I2C Address %d is out of range.\n",
306 			  hw->phy.addr);
307 		return -E1000_ERR_CONFIG;
308 	}
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
314 	 * register.  The MAC will take care of interfacing with the
315 	 * PHY to retrieve the desired data.
316 	 */
317 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 		  E1000_I2CCMD_OPCODE_WRITE |
320 		  phy_data_swapped);
321 
322 	wr32(E1000_I2CCMD, i2ccmd);
323 
324 	/* Poll the ready bit to see if the I2C read completed */
325 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 		udelay(50);
327 		i2ccmd = rd32(E1000_I2CCMD);
328 		if (i2ccmd & E1000_I2CCMD_READY)
329 			break;
330 	}
331 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 		hw_dbg("I2CCMD Write did not complete\n");
333 		return -E1000_ERR_PHY;
334 	}
335 	if (i2ccmd & E1000_I2CCMD_ERROR) {
336 		hw_dbg("I2CCMD Error bit set\n");
337 		return -E1000_ERR_PHY;
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  *  igb_read_phy_reg_igp - Read igp PHY register
345  *  @hw: pointer to the HW structure
346  *  @offset: register offset to be read
347  *  @data: pointer to the read data
348  *
349  *  Acquires semaphore, if necessary, then reads the PHY register at offset
350  *  and storing the retrieved information in data.  Release any acquired
351  *  semaphores before exiting.
352  **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)353 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
354 {
355 	s32 ret_val = 0;
356 
357 	if (!(hw->phy.ops.acquire))
358 		goto out;
359 
360 	ret_val = hw->phy.ops.acquire(hw);
361 	if (ret_val)
362 		goto out;
363 
364 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
365 		ret_val = igb_write_phy_reg_mdic(hw,
366 						 IGP01E1000_PHY_PAGE_SELECT,
367 						 (u16)offset);
368 		if (ret_val) {
369 			hw->phy.ops.release(hw);
370 			goto out;
371 		}
372 	}
373 
374 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
375 					data);
376 
377 	hw->phy.ops.release(hw);
378 
379 out:
380 	return ret_val;
381 }
382 
383 /**
384  *  igb_write_phy_reg_igp - Write igp PHY register
385  *  @hw: pointer to the HW structure
386  *  @offset: register offset to write to
387  *  @data: data to write at register offset
388  *
389  *  Acquires semaphore, if necessary, then writes the data to PHY register
390  *  at the offset.  Release any acquired semaphores before exiting.
391  **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)392 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
393 {
394 	s32 ret_val = 0;
395 
396 	if (!(hw->phy.ops.acquire))
397 		goto out;
398 
399 	ret_val = hw->phy.ops.acquire(hw);
400 	if (ret_val)
401 		goto out;
402 
403 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
404 		ret_val = igb_write_phy_reg_mdic(hw,
405 						 IGP01E1000_PHY_PAGE_SELECT,
406 						 (u16)offset);
407 		if (ret_val) {
408 			hw->phy.ops.release(hw);
409 			goto out;
410 		}
411 	}
412 
413 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
414 					 data);
415 
416 	hw->phy.ops.release(hw);
417 
418 out:
419 	return ret_val;
420 }
421 
422 /**
423  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
424  *  @hw: pointer to the HW structure
425  *
426  *  Sets up Carrier-sense on Transmit and downshift values.
427  **/
igb_copper_link_setup_82580(struct e1000_hw * hw)428 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
429 {
430 	struct e1000_phy_info *phy = &hw->phy;
431 	s32 ret_val;
432 	u16 phy_data;
433 
434 	if (phy->reset_disable) {
435 		ret_val = 0;
436 		goto out;
437 	}
438 
439 	if (phy->type == e1000_phy_82580) {
440 		ret_val = hw->phy.ops.reset(hw);
441 		if (ret_val) {
442 			hw_dbg("Error resetting the PHY.\n");
443 			goto out;
444 		}
445 	}
446 
447 	/* Enable CRS on TX. This must be set for half-duplex operation. */
448 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
449 	if (ret_val)
450 		goto out;
451 
452 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
453 
454 	/* Enable downshift */
455 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
456 
457 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
458 	if (ret_val)
459 		goto out;
460 
461 	/* Set MDI/MDIX mode */
462 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
463 	if (ret_val)
464 		goto out;
465 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
466 	/* Options:
467 	 *   0 - Auto (default)
468 	 *   1 - MDI mode
469 	 *   2 - MDI-X mode
470 	 */
471 	switch (hw->phy.mdix) {
472 	case 1:
473 		break;
474 	case 2:
475 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
476 		break;
477 	case 0:
478 	default:
479 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
480 		break;
481 	}
482 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
483 
484 out:
485 	return ret_val;
486 }
487 
488 /**
489  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
490  *  @hw: pointer to the HW structure
491  *
492  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
493  *  and downshift values are set also.
494  **/
igb_copper_link_setup_m88(struct e1000_hw * hw)495 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
496 {
497 	struct e1000_phy_info *phy = &hw->phy;
498 	s32 ret_val;
499 	u16 phy_data;
500 
501 	if (phy->reset_disable) {
502 		ret_val = 0;
503 		goto out;
504 	}
505 
506 	/* Enable CRS on TX. This must be set for half-duplex operation. */
507 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
508 	if (ret_val)
509 		goto out;
510 
511 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
512 
513 	/* Options:
514 	 *   MDI/MDI-X = 0 (default)
515 	 *   0 - Auto for all speeds
516 	 *   1 - MDI mode
517 	 *   2 - MDI-X mode
518 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
519 	 */
520 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
521 
522 	switch (phy->mdix) {
523 	case 1:
524 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
525 		break;
526 	case 2:
527 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
528 		break;
529 	case 3:
530 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
531 		break;
532 	case 0:
533 	default:
534 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
535 		break;
536 	}
537 
538 	/* Options:
539 	 *   disable_polarity_correction = 0 (default)
540 	 *       Automatic Correction for Reversed Cable Polarity
541 	 *   0 - Disabled
542 	 *   1 - Enabled
543 	 */
544 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
545 	if (phy->disable_polarity_correction == 1)
546 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
547 
548 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
549 	if (ret_val)
550 		goto out;
551 
552 	if (phy->revision < E1000_REVISION_4) {
553 		/* Force TX_CLK in the Extended PHY Specific Control Register
554 		 * to 25MHz clock.
555 		 */
556 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
557 					    &phy_data);
558 		if (ret_val)
559 			goto out;
560 
561 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
562 
563 		if ((phy->revision == E1000_REVISION_2) &&
564 		    (phy->id == M88E1111_I_PHY_ID)) {
565 			/* 82573L PHY - set the downshift counter to 5x. */
566 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
567 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
568 		} else {
569 			/* Configure Master and Slave downshift values */
570 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
571 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
572 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
573 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
574 		}
575 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
576 					     phy_data);
577 		if (ret_val)
578 			goto out;
579 	}
580 
581 	/* Commit the changes. */
582 	ret_val = igb_phy_sw_reset(hw);
583 	if (ret_val) {
584 		hw_dbg("Error committing the PHY changes\n");
585 		goto out;
586 	}
587 	if (phy->type == e1000_phy_i210) {
588 		ret_val = igb_set_master_slave_mode(hw);
589 		if (ret_val)
590 			return ret_val;
591 	}
592 
593 out:
594 	return ret_val;
595 }
596 
597 /**
598  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
599  *  @hw: pointer to the HW structure
600  *
601  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
602  *  Also enables and sets the downshift parameters.
603  **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)604 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
605 {
606 	struct e1000_phy_info *phy = &hw->phy;
607 	s32 ret_val;
608 	u16 phy_data;
609 
610 	if (phy->reset_disable) {
611 		ret_val = 0;
612 		goto out;
613 	}
614 
615 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
616 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
617 	if (ret_val)
618 		goto out;
619 
620 	/* Options:
621 	 *   MDI/MDI-X = 0 (default)
622 	 *   0 - Auto for all speeds
623 	 *   1 - MDI mode
624 	 *   2 - MDI-X mode
625 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
626 	 */
627 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
628 
629 	switch (phy->mdix) {
630 	case 1:
631 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
632 		break;
633 	case 2:
634 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
635 		break;
636 	case 3:
637 		/* M88E1112 does not support this mode) */
638 		if (phy->id != M88E1112_E_PHY_ID) {
639 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
640 			break;
641 		}
642 	case 0:
643 	default:
644 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
645 		break;
646 	}
647 
648 	/* Options:
649 	 *   disable_polarity_correction = 0 (default)
650 	 *       Automatic Correction for Reversed Cable Polarity
651 	 *   0 - Disabled
652 	 *   1 - Enabled
653 	 */
654 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
655 	if (phy->disable_polarity_correction == 1)
656 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
657 
658 	/* Enable downshift and setting it to X6 */
659 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
660 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
661 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
662 
663 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
664 	if (ret_val)
665 		goto out;
666 
667 	/* Commit the changes. */
668 	ret_val = igb_phy_sw_reset(hw);
669 	if (ret_val) {
670 		hw_dbg("Error committing the PHY changes\n");
671 		goto out;
672 	}
673 
674 out:
675 	return ret_val;
676 }
677 
678 /**
679  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
680  *  @hw: pointer to the HW structure
681  *
682  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
683  *  igp PHY's.
684  **/
igb_copper_link_setup_igp(struct e1000_hw * hw)685 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
686 {
687 	struct e1000_phy_info *phy = &hw->phy;
688 	s32 ret_val;
689 	u16 data;
690 
691 	if (phy->reset_disable) {
692 		ret_val = 0;
693 		goto out;
694 	}
695 
696 	ret_val = phy->ops.reset(hw);
697 	if (ret_val) {
698 		hw_dbg("Error resetting the PHY.\n");
699 		goto out;
700 	}
701 
702 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
703 	 * timeout issues when LFS is enabled.
704 	 */
705 	msleep(100);
706 
707 	/* The NVM settings will configure LPLU in D3 for
708 	 * non-IGP1 PHYs.
709 	 */
710 	if (phy->type == e1000_phy_igp) {
711 		/* disable lplu d3 during driver init */
712 		if (phy->ops.set_d3_lplu_state)
713 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
714 		if (ret_val) {
715 			hw_dbg("Error Disabling LPLU D3\n");
716 			goto out;
717 		}
718 	}
719 
720 	/* disable lplu d0 during driver init */
721 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
722 	if (ret_val) {
723 		hw_dbg("Error Disabling LPLU D0\n");
724 		goto out;
725 	}
726 	/* Configure mdi-mdix settings */
727 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
728 	if (ret_val)
729 		goto out;
730 
731 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
732 
733 	switch (phy->mdix) {
734 	case 1:
735 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
736 		break;
737 	case 2:
738 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
739 		break;
740 	case 0:
741 	default:
742 		data |= IGP01E1000_PSCR_AUTO_MDIX;
743 		break;
744 	}
745 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
746 	if (ret_val)
747 		goto out;
748 
749 	/* set auto-master slave resolution settings */
750 	if (hw->mac.autoneg) {
751 		/* when autonegotiation advertisement is only 1000Mbps then we
752 		 * should disable SmartSpeed and enable Auto MasterSlave
753 		 * resolution as hardware default.
754 		 */
755 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
756 			/* Disable SmartSpeed */
757 			ret_val = phy->ops.read_reg(hw,
758 						    IGP01E1000_PHY_PORT_CONFIG,
759 						    &data);
760 			if (ret_val)
761 				goto out;
762 
763 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
764 			ret_val = phy->ops.write_reg(hw,
765 						     IGP01E1000_PHY_PORT_CONFIG,
766 						     data);
767 			if (ret_val)
768 				goto out;
769 
770 			/* Set auto Master/Slave resolution process */
771 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
772 			if (ret_val)
773 				goto out;
774 
775 			data &= ~CR_1000T_MS_ENABLE;
776 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
777 			if (ret_val)
778 				goto out;
779 		}
780 
781 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
782 		if (ret_val)
783 			goto out;
784 
785 		/* load defaults for future use */
786 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
787 			((data & CR_1000T_MS_VALUE) ?
788 			e1000_ms_force_master :
789 			e1000_ms_force_slave) :
790 			e1000_ms_auto;
791 
792 		switch (phy->ms_type) {
793 		case e1000_ms_force_master:
794 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
795 			break;
796 		case e1000_ms_force_slave:
797 			data |= CR_1000T_MS_ENABLE;
798 			data &= ~(CR_1000T_MS_VALUE);
799 			break;
800 		case e1000_ms_auto:
801 			data &= ~CR_1000T_MS_ENABLE;
802 		default:
803 			break;
804 		}
805 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
806 		if (ret_val)
807 			goto out;
808 	}
809 
810 out:
811 	return ret_val;
812 }
813 
814 /**
815  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
816  *  @hw: pointer to the HW structure
817  *
818  *  Performs initial bounds checking on autoneg advertisement parameter, then
819  *  configure to advertise the full capability.  Setup the PHY to autoneg
820  *  and restart the negotiation process between the link partner.  If
821  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
822  **/
igb_copper_link_autoneg(struct e1000_hw * hw)823 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
824 {
825 	struct e1000_phy_info *phy = &hw->phy;
826 	s32 ret_val;
827 	u16 phy_ctrl;
828 
829 	/* Perform some bounds checking on the autoneg advertisement
830 	 * parameter.
831 	 */
832 	phy->autoneg_advertised &= phy->autoneg_mask;
833 
834 	/* If autoneg_advertised is zero, we assume it was not defaulted
835 	 * by the calling code so we set to advertise full capability.
836 	 */
837 	if (phy->autoneg_advertised == 0)
838 		phy->autoneg_advertised = phy->autoneg_mask;
839 
840 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
841 	ret_val = igb_phy_setup_autoneg(hw);
842 	if (ret_val) {
843 		hw_dbg("Error Setting up Auto-Negotiation\n");
844 		goto out;
845 	}
846 	hw_dbg("Restarting Auto-Neg\n");
847 
848 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
849 	 * the Auto Neg Restart bit in the PHY control register.
850 	 */
851 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
852 	if (ret_val)
853 		goto out;
854 
855 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
856 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
857 	if (ret_val)
858 		goto out;
859 
860 	/* Does the user want to wait for Auto-Neg to complete here, or
861 	 * check at a later time (for example, callback routine).
862 	 */
863 	if (phy->autoneg_wait_to_complete) {
864 		ret_val = igb_wait_autoneg(hw);
865 		if (ret_val) {
866 			hw_dbg("Error while waiting for "
867 			       "autoneg to complete\n");
868 			goto out;
869 		}
870 	}
871 
872 	hw->mac.get_link_status = true;
873 
874 out:
875 	return ret_val;
876 }
877 
878 /**
879  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
880  *  @hw: pointer to the HW structure
881  *
882  *  Reads the MII auto-neg advertisement register and/or the 1000T control
883  *  register and if the PHY is already setup for auto-negotiation, then
884  *  return successful.  Otherwise, setup advertisement and flow control to
885  *  the appropriate values for the wanted auto-negotiation.
886  **/
igb_phy_setup_autoneg(struct e1000_hw * hw)887 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
888 {
889 	struct e1000_phy_info *phy = &hw->phy;
890 	s32 ret_val;
891 	u16 mii_autoneg_adv_reg;
892 	u16 mii_1000t_ctrl_reg = 0;
893 
894 	phy->autoneg_advertised &= phy->autoneg_mask;
895 
896 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
897 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
898 	if (ret_val)
899 		goto out;
900 
901 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
902 		/* Read the MII 1000Base-T Control Register (Address 9). */
903 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
904 					    &mii_1000t_ctrl_reg);
905 		if (ret_val)
906 			goto out;
907 	}
908 
909 	/* Need to parse both autoneg_advertised and fc and set up
910 	 * the appropriate PHY registers.  First we will parse for
911 	 * autoneg_advertised software override.  Since we can advertise
912 	 * a plethora of combinations, we need to check each bit
913 	 * individually.
914 	 */
915 
916 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
917 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
918 	 * the  1000Base-T Control Register (Address 9).
919 	 */
920 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
921 				 NWAY_AR_100TX_HD_CAPS |
922 				 NWAY_AR_10T_FD_CAPS   |
923 				 NWAY_AR_10T_HD_CAPS);
924 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
925 
926 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
927 
928 	/* Do we want to advertise 10 Mb Half Duplex? */
929 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
930 		hw_dbg("Advertise 10mb Half duplex\n");
931 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
932 	}
933 
934 	/* Do we want to advertise 10 Mb Full Duplex? */
935 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
936 		hw_dbg("Advertise 10mb Full duplex\n");
937 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
938 	}
939 
940 	/* Do we want to advertise 100 Mb Half Duplex? */
941 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
942 		hw_dbg("Advertise 100mb Half duplex\n");
943 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
944 	}
945 
946 	/* Do we want to advertise 100 Mb Full Duplex? */
947 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
948 		hw_dbg("Advertise 100mb Full duplex\n");
949 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
950 	}
951 
952 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
953 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
954 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
955 
956 	/* Do we want to advertise 1000 Mb Full Duplex? */
957 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
958 		hw_dbg("Advertise 1000mb Full duplex\n");
959 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
960 	}
961 
962 	/* Check for a software override of the flow control settings, and
963 	 * setup the PHY advertisement registers accordingly.  If
964 	 * auto-negotiation is enabled, then software will have to set the
965 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
966 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
967 	 * negotiation.
968 	 *
969 	 * The possible values of the "fc" parameter are:
970 	 *      0:  Flow control is completely disabled
971 	 *      1:  Rx flow control is enabled (we can receive pause frames
972 	 *          but not send pause frames).
973 	 *      2:  Tx flow control is enabled (we can send pause frames
974 	 *          but we do not support receiving pause frames).
975 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
976 	 *  other:  No software override.  The flow control configuration
977 	 *          in the EEPROM is used.
978 	 */
979 	switch (hw->fc.current_mode) {
980 	case e1000_fc_none:
981 		/* Flow control (RX & TX) is completely disabled by a
982 		 * software over-ride.
983 		 */
984 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
985 		break;
986 	case e1000_fc_rx_pause:
987 		/* RX Flow control is enabled, and TX Flow control is
988 		 * disabled, by a software over-ride.
989 		 *
990 		 * Since there really isn't a way to advertise that we are
991 		 * capable of RX Pause ONLY, we will advertise that we
992 		 * support both symmetric and asymmetric RX PAUSE.  Later
993 		 * (in e1000_config_fc_after_link_up) we will disable the
994 		 * hw's ability to send PAUSE frames.
995 		 */
996 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
997 		break;
998 	case e1000_fc_tx_pause:
999 		/* TX Flow control is enabled, and RX Flow control is
1000 		 * disabled, by a software over-ride.
1001 		 */
1002 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1003 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1004 		break;
1005 	case e1000_fc_full:
1006 		/* Flow control (both RX and TX) is enabled by a software
1007 		 * over-ride.
1008 		 */
1009 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1010 		break;
1011 	default:
1012 		hw_dbg("Flow control param set incorrectly\n");
1013 		ret_val = -E1000_ERR_CONFIG;
1014 		goto out;
1015 	}
1016 
1017 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1018 	if (ret_val)
1019 		goto out;
1020 
1021 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1022 
1023 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1024 		ret_val = phy->ops.write_reg(hw,
1025 					     PHY_1000T_CTRL,
1026 					     mii_1000t_ctrl_reg);
1027 		if (ret_val)
1028 			goto out;
1029 	}
1030 
1031 out:
1032 	return ret_val;
1033 }
1034 
1035 /**
1036  *  igb_setup_copper_link - Configure copper link settings
1037  *  @hw: pointer to the HW structure
1038  *
1039  *  Calls the appropriate function to configure the link for auto-neg or forced
1040  *  speed and duplex.  Then we check for link, once link is established calls
1041  *  to configure collision distance and flow control are called.  If link is
1042  *  not established, we return -E1000_ERR_PHY (-2).
1043  **/
igb_setup_copper_link(struct e1000_hw * hw)1044 s32 igb_setup_copper_link(struct e1000_hw *hw)
1045 {
1046 	s32 ret_val;
1047 	bool link;
1048 
1049 	if (hw->mac.autoneg) {
1050 		/* Setup autoneg and flow control advertisement and perform
1051 		 * autonegotiation.
1052 		 */
1053 		ret_val = igb_copper_link_autoneg(hw);
1054 		if (ret_val)
1055 			goto out;
1056 	} else {
1057 		/* PHY will be set to 10H, 10F, 100H or 100F
1058 		 * depending on user settings.
1059 		 */
1060 		hw_dbg("Forcing Speed and Duplex\n");
1061 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1062 		if (ret_val) {
1063 			hw_dbg("Error Forcing Speed and Duplex\n");
1064 			goto out;
1065 		}
1066 	}
1067 
1068 	/* Check link status. Wait up to 100 microseconds for link to become
1069 	 * valid.
1070 	 */
1071 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1072 	if (ret_val)
1073 		goto out;
1074 
1075 	if (link) {
1076 		hw_dbg("Valid link established!!!\n");
1077 		igb_config_collision_dist(hw);
1078 		ret_val = igb_config_fc_after_link_up(hw);
1079 	} else {
1080 		hw_dbg("Unable to establish link!!!\n");
1081 	}
1082 
1083 out:
1084 	return ret_val;
1085 }
1086 
1087 /**
1088  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1089  *  @hw: pointer to the HW structure
1090  *
1091  *  Calls the PHY setup function to force speed and duplex.  Clears the
1092  *  auto-crossover to force MDI manually.  Waits for link and returns
1093  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1094  **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1095 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1096 {
1097 	struct e1000_phy_info *phy = &hw->phy;
1098 	s32 ret_val;
1099 	u16 phy_data;
1100 	bool link;
1101 
1102 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1103 	if (ret_val)
1104 		goto out;
1105 
1106 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1107 
1108 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1109 	if (ret_val)
1110 		goto out;
1111 
1112 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1113 	 * forced whenever speed and duplex are forced.
1114 	 */
1115 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1116 	if (ret_val)
1117 		goto out;
1118 
1119 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1120 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1121 
1122 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1123 	if (ret_val)
1124 		goto out;
1125 
1126 	hw_dbg("IGP PSCR: %X\n", phy_data);
1127 
1128 	udelay(1);
1129 
1130 	if (phy->autoneg_wait_to_complete) {
1131 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1132 
1133 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1134 		if (ret_val)
1135 			goto out;
1136 
1137 		if (!link)
1138 			hw_dbg("Link taking longer than expected.\n");
1139 
1140 		/* Try once more */
1141 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1142 		if (ret_val)
1143 			goto out;
1144 	}
1145 
1146 out:
1147 	return ret_val;
1148 }
1149 
1150 /**
1151  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1152  *  @hw: pointer to the HW structure
1153  *
1154  *  Calls the PHY setup function to force speed and duplex.  Clears the
1155  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1156  *  changes.  If time expires while waiting for link up, we reset the DSP.
1157  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1158  *  successful completion, else return corresponding error code.
1159  **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1160 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1161 {
1162 	struct e1000_phy_info *phy = &hw->phy;
1163 	s32 ret_val;
1164 	u16 phy_data;
1165 	bool link;
1166 
1167 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1168 	if (phy->type != e1000_phy_i210) {
1169 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1170 		 * requires MDI forced whenever speed and duplex are forced.
1171 		 */
1172 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1173 					    &phy_data);
1174 		if (ret_val)
1175 			goto out;
1176 
1177 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1178 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1179 					     phy_data);
1180 		if (ret_val)
1181 			goto out;
1182 
1183 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1184 	}
1185 
1186 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1187 	if (ret_val)
1188 		goto out;
1189 
1190 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1191 
1192 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1193 	if (ret_val)
1194 		goto out;
1195 
1196 	/* Reset the phy to commit changes. */
1197 	ret_val = igb_phy_sw_reset(hw);
1198 	if (ret_val)
1199 		goto out;
1200 
1201 	if (phy->autoneg_wait_to_complete) {
1202 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1203 
1204 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1205 		if (ret_val)
1206 			goto out;
1207 
1208 		if (!link) {
1209 			bool reset_dsp = true;
1210 
1211 			switch (hw->phy.id) {
1212 			case I347AT4_E_PHY_ID:
1213 			case M88E1112_E_PHY_ID:
1214 			case I210_I_PHY_ID:
1215 				reset_dsp = false;
1216 				break;
1217 			default:
1218 				if (hw->phy.type != e1000_phy_m88)
1219 					reset_dsp = false;
1220 				break;
1221 			}
1222 			if (!reset_dsp)
1223 				hw_dbg("Link taking longer than expected.\n");
1224 			else {
1225 				/* We didn't get link.
1226 				 * Reset the DSP and cross our fingers.
1227 				 */
1228 				ret_val = phy->ops.write_reg(hw,
1229 						M88E1000_PHY_PAGE_SELECT,
1230 						0x001d);
1231 				if (ret_val)
1232 					goto out;
1233 				ret_val = igb_phy_reset_dsp(hw);
1234 				if (ret_val)
1235 					goto out;
1236 			}
1237 		}
1238 
1239 		/* Try once more */
1240 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1241 					   100000, &link);
1242 		if (ret_val)
1243 			goto out;
1244 	}
1245 
1246 	if (hw->phy.type != e1000_phy_m88 ||
1247 	    hw->phy.id == I347AT4_E_PHY_ID ||
1248 	    hw->phy.id == M88E1112_E_PHY_ID ||
1249 	    hw->phy.id == I210_I_PHY_ID)
1250 		goto out;
1251 
1252 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1253 	if (ret_val)
1254 		goto out;
1255 
1256 	/* Resetting the phy means we need to re-force TX_CLK in the
1257 	 * Extended PHY Specific Control Register to 25MHz clock from
1258 	 * the reset value of 2.5MHz.
1259 	 */
1260 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1261 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1262 	if (ret_val)
1263 		goto out;
1264 
1265 	/* In addition, we must re-enable CRS on Tx for both half and full
1266 	 * duplex.
1267 	 */
1268 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1269 	if (ret_val)
1270 		goto out;
1271 
1272 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1273 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1274 
1275 out:
1276 	return ret_val;
1277 }
1278 
1279 /**
1280  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1281  *  @hw: pointer to the HW structure
1282  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1283  *
1284  *  Forces speed and duplex on the PHY by doing the following: disable flow
1285  *  control, force speed/duplex on the MAC, disable auto speed detection,
1286  *  disable auto-negotiation, configure duplex, configure speed, configure
1287  *  the collision distance, write configuration to CTRL register.  The
1288  *  caller must write to the PHY_CONTROL register for these settings to
1289  *  take affect.
1290  **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1291 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1292 					     u16 *phy_ctrl)
1293 {
1294 	struct e1000_mac_info *mac = &hw->mac;
1295 	u32 ctrl;
1296 
1297 	/* Turn off flow control when forcing speed/duplex */
1298 	hw->fc.current_mode = e1000_fc_none;
1299 
1300 	/* Force speed/duplex on the mac */
1301 	ctrl = rd32(E1000_CTRL);
1302 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1303 	ctrl &= ~E1000_CTRL_SPD_SEL;
1304 
1305 	/* Disable Auto Speed Detection */
1306 	ctrl &= ~E1000_CTRL_ASDE;
1307 
1308 	/* Disable autoneg on the phy */
1309 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1310 
1311 	/* Forcing Full or Half Duplex? */
1312 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1313 		ctrl &= ~E1000_CTRL_FD;
1314 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1315 		hw_dbg("Half Duplex\n");
1316 	} else {
1317 		ctrl |= E1000_CTRL_FD;
1318 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1319 		hw_dbg("Full Duplex\n");
1320 	}
1321 
1322 	/* Forcing 10mb or 100mb? */
1323 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1324 		ctrl |= E1000_CTRL_SPD_100;
1325 		*phy_ctrl |= MII_CR_SPEED_100;
1326 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1327 		hw_dbg("Forcing 100mb\n");
1328 	} else {
1329 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1330 		*phy_ctrl |= MII_CR_SPEED_10;
1331 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1332 		hw_dbg("Forcing 10mb\n");
1333 	}
1334 
1335 	igb_config_collision_dist(hw);
1336 
1337 	wr32(E1000_CTRL, ctrl);
1338 }
1339 
1340 /**
1341  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1342  *  @hw: pointer to the HW structure
1343  *  @active: boolean used to enable/disable lplu
1344  *
1345  *  Success returns 0, Failure returns 1
1346  *
1347  *  The low power link up (lplu) state is set to the power management level D3
1348  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1349  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1350  *  is used during Dx states where the power conservation is most important.
1351  *  During driver activity, SmartSpeed should be enabled so performance is
1352  *  maintained.
1353  **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1354 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1355 {
1356 	struct e1000_phy_info *phy = &hw->phy;
1357 	s32 ret_val = 0;
1358 	u16 data;
1359 
1360 	if (!(hw->phy.ops.read_reg))
1361 		goto out;
1362 
1363 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1364 	if (ret_val)
1365 		goto out;
1366 
1367 	if (!active) {
1368 		data &= ~IGP02E1000_PM_D3_LPLU;
1369 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1370 					     data);
1371 		if (ret_val)
1372 			goto out;
1373 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1374 		 * during Dx states where the power conservation is most
1375 		 * important.  During driver activity we should enable
1376 		 * SmartSpeed, so performance is maintained.
1377 		 */
1378 		if (phy->smart_speed == e1000_smart_speed_on) {
1379 			ret_val = phy->ops.read_reg(hw,
1380 						    IGP01E1000_PHY_PORT_CONFIG,
1381 						    &data);
1382 			if (ret_val)
1383 				goto out;
1384 
1385 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1386 			ret_val = phy->ops.write_reg(hw,
1387 						     IGP01E1000_PHY_PORT_CONFIG,
1388 						     data);
1389 			if (ret_val)
1390 				goto out;
1391 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1392 			ret_val = phy->ops.read_reg(hw,
1393 						     IGP01E1000_PHY_PORT_CONFIG,
1394 						     &data);
1395 			if (ret_val)
1396 				goto out;
1397 
1398 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1399 			ret_val = phy->ops.write_reg(hw,
1400 						     IGP01E1000_PHY_PORT_CONFIG,
1401 						     data);
1402 			if (ret_val)
1403 				goto out;
1404 		}
1405 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1406 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1407 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1408 		data |= IGP02E1000_PM_D3_LPLU;
1409 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1410 					      data);
1411 		if (ret_val)
1412 			goto out;
1413 
1414 		/* When LPLU is enabled, we should disable SmartSpeed */
1415 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416 					    &data);
1417 		if (ret_val)
1418 			goto out;
1419 
1420 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1421 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1422 					     data);
1423 	}
1424 
1425 out:
1426 	return ret_val;
1427 }
1428 
1429 /**
1430  *  igb_check_downshift - Checks whether a downshift in speed occurred
1431  *  @hw: pointer to the HW structure
1432  *
1433  *  Success returns 0, Failure returns 1
1434  *
1435  *  A downshift is detected by querying the PHY link health.
1436  **/
igb_check_downshift(struct e1000_hw * hw)1437 s32 igb_check_downshift(struct e1000_hw *hw)
1438 {
1439 	struct e1000_phy_info *phy = &hw->phy;
1440 	s32 ret_val;
1441 	u16 phy_data, offset, mask;
1442 
1443 	switch (phy->type) {
1444 	case e1000_phy_i210:
1445 	case e1000_phy_m88:
1446 	case e1000_phy_gg82563:
1447 		offset	= M88E1000_PHY_SPEC_STATUS;
1448 		mask	= M88E1000_PSSR_DOWNSHIFT;
1449 		break;
1450 	case e1000_phy_igp_2:
1451 	case e1000_phy_igp:
1452 	case e1000_phy_igp_3:
1453 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1454 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1455 		break;
1456 	default:
1457 		/* speed downshift not supported */
1458 		phy->speed_downgraded = false;
1459 		ret_val = 0;
1460 		goto out;
1461 	}
1462 
1463 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1464 
1465 	if (!ret_val)
1466 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1467 
1468 out:
1469 	return ret_val;
1470 }
1471 
1472 /**
1473  *  igb_check_polarity_m88 - Checks the polarity.
1474  *  @hw: pointer to the HW structure
1475  *
1476  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1477  *
1478  *  Polarity is determined based on the PHY specific status register.
1479  **/
igb_check_polarity_m88(struct e1000_hw * hw)1480 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1481 {
1482 	struct e1000_phy_info *phy = &hw->phy;
1483 	s32 ret_val;
1484 	u16 data;
1485 
1486 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1487 
1488 	if (!ret_val)
1489 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1490 				      ? e1000_rev_polarity_reversed
1491 				      : e1000_rev_polarity_normal;
1492 
1493 	return ret_val;
1494 }
1495 
1496 /**
1497  *  igb_check_polarity_igp - Checks the polarity.
1498  *  @hw: pointer to the HW structure
1499  *
1500  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1501  *
1502  *  Polarity is determined based on the PHY port status register, and the
1503  *  current speed (since there is no polarity at 100Mbps).
1504  **/
igb_check_polarity_igp(struct e1000_hw * hw)1505 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1506 {
1507 	struct e1000_phy_info *phy = &hw->phy;
1508 	s32 ret_val;
1509 	u16 data, offset, mask;
1510 
1511 	/* Polarity is determined based on the speed of
1512 	 * our connection.
1513 	 */
1514 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1515 	if (ret_val)
1516 		goto out;
1517 
1518 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1519 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1520 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1521 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1522 	} else {
1523 		/* This really only applies to 10Mbps since
1524 		 * there is no polarity for 100Mbps (always 0).
1525 		 */
1526 		offset	= IGP01E1000_PHY_PORT_STATUS;
1527 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1528 	}
1529 
1530 	ret_val = phy->ops.read_reg(hw, offset, &data);
1531 
1532 	if (!ret_val)
1533 		phy->cable_polarity = (data & mask)
1534 				      ? e1000_rev_polarity_reversed
1535 				      : e1000_rev_polarity_normal;
1536 
1537 out:
1538 	return ret_val;
1539 }
1540 
1541 /**
1542  *  igb_wait_autoneg - Wait for auto-neg completion
1543  *  @hw: pointer to the HW structure
1544  *
1545  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1546  *  limit to expire, which ever happens first.
1547  **/
igb_wait_autoneg(struct e1000_hw * hw)1548 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1549 {
1550 	s32 ret_val = 0;
1551 	u16 i, phy_status;
1552 
1553 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1554 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1555 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1556 		if (ret_val)
1557 			break;
1558 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1559 		if (ret_val)
1560 			break;
1561 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1562 			break;
1563 		msleep(100);
1564 	}
1565 
1566 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1567 	 * has completed.
1568 	 */
1569 	return ret_val;
1570 }
1571 
1572 /**
1573  *  igb_phy_has_link - Polls PHY for link
1574  *  @hw: pointer to the HW structure
1575  *  @iterations: number of times to poll for link
1576  *  @usec_interval: delay between polling attempts
1577  *  @success: pointer to whether polling was successful or not
1578  *
1579  *  Polls the PHY status register for link, 'iterations' number of times.
1580  **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1581 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1582 		     u32 usec_interval, bool *success)
1583 {
1584 	s32 ret_val = 0;
1585 	u16 i, phy_status;
1586 
1587 	for (i = 0; i < iterations; i++) {
1588 		/* Some PHYs require the PHY_STATUS register to be read
1589 		 * twice due to the link bit being sticky.  No harm doing
1590 		 * it across the board.
1591 		 */
1592 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1593 		if (ret_val && usec_interval > 0) {
1594 			/* If the first read fails, another entity may have
1595 			 * ownership of the resources, wait and try again to
1596 			 * see if they have relinquished the resources yet.
1597 			 */
1598 			udelay(usec_interval);
1599 		}
1600 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1601 		if (ret_val)
1602 			break;
1603 		if (phy_status & MII_SR_LINK_STATUS)
1604 			break;
1605 		if (usec_interval >= 1000)
1606 			mdelay(usec_interval/1000);
1607 		else
1608 			udelay(usec_interval);
1609 	}
1610 
1611 	*success = (i < iterations) ? true : false;
1612 
1613 	return ret_val;
1614 }
1615 
1616 /**
1617  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1618  *  @hw: pointer to the HW structure
1619  *
1620  *  Reads the PHY specific status register to retrieve the cable length
1621  *  information.  The cable length is determined by averaging the minimum and
1622  *  maximum values to get the "average" cable length.  The m88 PHY has four
1623  *  possible cable length values, which are:
1624  *	Register Value		Cable Length
1625  *	0			< 50 meters
1626  *	1			50 - 80 meters
1627  *	2			80 - 110 meters
1628  *	3			110 - 140 meters
1629  *	4			> 140 meters
1630  **/
igb_get_cable_length_m88(struct e1000_hw * hw)1631 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1632 {
1633 	struct e1000_phy_info *phy = &hw->phy;
1634 	s32 ret_val;
1635 	u16 phy_data, index;
1636 
1637 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1638 	if (ret_val)
1639 		goto out;
1640 
1641 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1642 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1643 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1644 		ret_val = -E1000_ERR_PHY;
1645 		goto out;
1646 	}
1647 
1648 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1649 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1650 
1651 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1652 
1653 out:
1654 	return ret_val;
1655 }
1656 
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1657 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1658 {
1659 	struct e1000_phy_info *phy = &hw->phy;
1660 	s32 ret_val;
1661 	u16 phy_data, phy_data2, index, default_page, is_cm;
1662 
1663 	switch (hw->phy.id) {
1664 	case I210_I_PHY_ID:
1665 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1666 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1667 					    (I347AT4_PCDL + phy->addr),
1668 					    &phy_data);
1669 		if (ret_val)
1670 			return ret_val;
1671 
1672 		/* Check if the unit of cable length is meters or cm */
1673 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1674 					    I347AT4_PCDC, &phy_data2);
1675 		if (ret_val)
1676 			return ret_val;
1677 
1678 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1679 
1680 		/* Populate the phy structure with cable length in meters */
1681 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1682 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1683 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1684 		break;
1685 	case M88E1545_E_PHY_ID:
1686 	case I347AT4_E_PHY_ID:
1687 		/* Remember the original page select and set it to 7 */
1688 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1689 					    &default_page);
1690 		if (ret_val)
1691 			goto out;
1692 
1693 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1694 		if (ret_val)
1695 			goto out;
1696 
1697 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1698 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1699 					    &phy_data);
1700 		if (ret_val)
1701 			goto out;
1702 
1703 		/* Check if the unit of cable length is meters or cm */
1704 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1705 		if (ret_val)
1706 			goto out;
1707 
1708 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1709 
1710 		/* Populate the phy structure with cable length in meters */
1711 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1712 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1713 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1714 
1715 		/* Reset the page selec to its original value */
1716 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1717 					     default_page);
1718 		if (ret_val)
1719 			goto out;
1720 		break;
1721 	case M88E1112_E_PHY_ID:
1722 		/* Remember the original page select and set it to 5 */
1723 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1724 					    &default_page);
1725 		if (ret_val)
1726 			goto out;
1727 
1728 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1729 		if (ret_val)
1730 			goto out;
1731 
1732 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1733 					    &phy_data);
1734 		if (ret_val)
1735 			goto out;
1736 
1737 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1738 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1739 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1740 			ret_val = -E1000_ERR_PHY;
1741 			goto out;
1742 		}
1743 
1744 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1745 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1746 
1747 		phy->cable_length = (phy->min_cable_length +
1748 				     phy->max_cable_length) / 2;
1749 
1750 		/* Reset the page select to its original value */
1751 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1752 					     default_page);
1753 		if (ret_val)
1754 			goto out;
1755 
1756 		break;
1757 	default:
1758 		ret_val = -E1000_ERR_PHY;
1759 		goto out;
1760 	}
1761 
1762 out:
1763 	return ret_val;
1764 }
1765 
1766 /**
1767  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1768  *  @hw: pointer to the HW structure
1769  *
1770  *  The automatic gain control (agc) normalizes the amplitude of the
1771  *  received signal, adjusting for the attenuation produced by the
1772  *  cable.  By reading the AGC registers, which represent the
1773  *  combination of coarse and fine gain value, the value can be put
1774  *  into a lookup table to obtain the approximate cable length
1775  *  for each channel.
1776  **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1777 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1778 {
1779 	struct e1000_phy_info *phy = &hw->phy;
1780 	s32 ret_val = 0;
1781 	u16 phy_data, i, agc_value = 0;
1782 	u16 cur_agc_index, max_agc_index = 0;
1783 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1784 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1785 		IGP02E1000_PHY_AGC_A,
1786 		IGP02E1000_PHY_AGC_B,
1787 		IGP02E1000_PHY_AGC_C,
1788 		IGP02E1000_PHY_AGC_D
1789 	};
1790 
1791 	/* Read the AGC registers for all channels */
1792 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1793 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1794 		if (ret_val)
1795 			goto out;
1796 
1797 		/* Getting bits 15:9, which represent the combination of
1798 		 * coarse and fine gain values.  The result is a number
1799 		 * that can be put into the lookup table to obtain the
1800 		 * approximate cable length.
1801 		 */
1802 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1803 				IGP02E1000_AGC_LENGTH_MASK;
1804 
1805 		/* Array index bound check. */
1806 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1807 		    (cur_agc_index == 0)) {
1808 			ret_val = -E1000_ERR_PHY;
1809 			goto out;
1810 		}
1811 
1812 		/* Remove min & max AGC values from calculation. */
1813 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1814 		    e1000_igp_2_cable_length_table[cur_agc_index])
1815 			min_agc_index = cur_agc_index;
1816 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1817 		    e1000_igp_2_cable_length_table[cur_agc_index])
1818 			max_agc_index = cur_agc_index;
1819 
1820 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1821 	}
1822 
1823 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1824 		      e1000_igp_2_cable_length_table[max_agc_index]);
1825 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1826 
1827 	/* Calculate cable length with the error range of +/- 10 meters. */
1828 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1829 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1830 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1831 
1832 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1833 
1834 out:
1835 	return ret_val;
1836 }
1837 
1838 /**
1839  *  igb_get_phy_info_m88 - Retrieve PHY information
1840  *  @hw: pointer to the HW structure
1841  *
1842  *  Valid for only copper links.  Read the PHY status register (sticky read)
1843  *  to verify that link is up.  Read the PHY special control register to
1844  *  determine the polarity and 10base-T extended distance.  Read the PHY
1845  *  special status register to determine MDI/MDIx and current speed.  If
1846  *  speed is 1000, then determine cable length, local and remote receiver.
1847  **/
igb_get_phy_info_m88(struct e1000_hw * hw)1848 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1849 {
1850 	struct e1000_phy_info *phy = &hw->phy;
1851 	s32  ret_val;
1852 	u16 phy_data;
1853 	bool link;
1854 
1855 	if (phy->media_type != e1000_media_type_copper) {
1856 		hw_dbg("Phy info is only valid for copper media\n");
1857 		ret_val = -E1000_ERR_CONFIG;
1858 		goto out;
1859 	}
1860 
1861 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1862 	if (ret_val)
1863 		goto out;
1864 
1865 	if (!link) {
1866 		hw_dbg("Phy info is only valid if link is up\n");
1867 		ret_val = -E1000_ERR_CONFIG;
1868 		goto out;
1869 	}
1870 
1871 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1872 	if (ret_val)
1873 		goto out;
1874 
1875 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1876 				   ? true : false;
1877 
1878 	ret_val = igb_check_polarity_m88(hw);
1879 	if (ret_val)
1880 		goto out;
1881 
1882 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1883 	if (ret_val)
1884 		goto out;
1885 
1886 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1887 
1888 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1889 		ret_val = phy->ops.get_cable_length(hw);
1890 		if (ret_val)
1891 			goto out;
1892 
1893 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1894 		if (ret_val)
1895 			goto out;
1896 
1897 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1898 				? e1000_1000t_rx_status_ok
1899 				: e1000_1000t_rx_status_not_ok;
1900 
1901 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1902 				 ? e1000_1000t_rx_status_ok
1903 				 : e1000_1000t_rx_status_not_ok;
1904 	} else {
1905 		/* Set values to "undefined" */
1906 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1907 		phy->local_rx = e1000_1000t_rx_status_undefined;
1908 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1909 	}
1910 
1911 out:
1912 	return ret_val;
1913 }
1914 
1915 /**
1916  *  igb_get_phy_info_igp - Retrieve igp PHY information
1917  *  @hw: pointer to the HW structure
1918  *
1919  *  Read PHY status to determine if link is up.  If link is up, then
1920  *  set/determine 10base-T extended distance and polarity correction.  Read
1921  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1922  *  determine on the cable length, local and remote receiver.
1923  **/
igb_get_phy_info_igp(struct e1000_hw * hw)1924 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1925 {
1926 	struct e1000_phy_info *phy = &hw->phy;
1927 	s32 ret_val;
1928 	u16 data;
1929 	bool link;
1930 
1931 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1932 	if (ret_val)
1933 		goto out;
1934 
1935 	if (!link) {
1936 		hw_dbg("Phy info is only valid if link is up\n");
1937 		ret_val = -E1000_ERR_CONFIG;
1938 		goto out;
1939 	}
1940 
1941 	phy->polarity_correction = true;
1942 
1943 	ret_val = igb_check_polarity_igp(hw);
1944 	if (ret_val)
1945 		goto out;
1946 
1947 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1948 	if (ret_val)
1949 		goto out;
1950 
1951 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1952 
1953 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1954 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1955 		ret_val = phy->ops.get_cable_length(hw);
1956 		if (ret_val)
1957 			goto out;
1958 
1959 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1960 		if (ret_val)
1961 			goto out;
1962 
1963 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1964 				? e1000_1000t_rx_status_ok
1965 				: e1000_1000t_rx_status_not_ok;
1966 
1967 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1968 				 ? e1000_1000t_rx_status_ok
1969 				 : e1000_1000t_rx_status_not_ok;
1970 	} else {
1971 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1972 		phy->local_rx = e1000_1000t_rx_status_undefined;
1973 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1974 	}
1975 
1976 out:
1977 	return ret_val;
1978 }
1979 
1980 /**
1981  *  igb_phy_sw_reset - PHY software reset
1982  *  @hw: pointer to the HW structure
1983  *
1984  *  Does a software reset of the PHY by reading the PHY control register and
1985  *  setting/write the control register reset bit to the PHY.
1986  **/
igb_phy_sw_reset(struct e1000_hw * hw)1987 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1988 {
1989 	s32 ret_val = 0;
1990 	u16 phy_ctrl;
1991 
1992 	if (!(hw->phy.ops.read_reg))
1993 		goto out;
1994 
1995 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1996 	if (ret_val)
1997 		goto out;
1998 
1999 	phy_ctrl |= MII_CR_RESET;
2000 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2001 	if (ret_val)
2002 		goto out;
2003 
2004 	udelay(1);
2005 
2006 out:
2007 	return ret_val;
2008 }
2009 
2010 /**
2011  *  igb_phy_hw_reset - PHY hardware reset
2012  *  @hw: pointer to the HW structure
2013  *
2014  *  Verify the reset block is not blocking us from resetting.  Acquire
2015  *  semaphore (if necessary) and read/set/write the device control reset
2016  *  bit in the PHY.  Wait the appropriate delay time for the device to
2017  *  reset and relase the semaphore (if necessary).
2018  **/
igb_phy_hw_reset(struct e1000_hw * hw)2019 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2020 {
2021 	struct e1000_phy_info *phy = &hw->phy;
2022 	s32  ret_val;
2023 	u32 ctrl;
2024 
2025 	ret_val = igb_check_reset_block(hw);
2026 	if (ret_val) {
2027 		ret_val = 0;
2028 		goto out;
2029 	}
2030 
2031 	ret_val = phy->ops.acquire(hw);
2032 	if (ret_val)
2033 		goto out;
2034 
2035 	ctrl = rd32(E1000_CTRL);
2036 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2037 	wrfl();
2038 
2039 	udelay(phy->reset_delay_us);
2040 
2041 	wr32(E1000_CTRL, ctrl);
2042 	wrfl();
2043 
2044 	udelay(150);
2045 
2046 	phy->ops.release(hw);
2047 
2048 	ret_val = phy->ops.get_cfg_done(hw);
2049 
2050 out:
2051 	return ret_val;
2052 }
2053 
2054 /**
2055  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2056  *  @hw: pointer to the HW structure
2057  *
2058  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2059  **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2060 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2061 {
2062 	hw_dbg("Running IGP 3 PHY init script\n");
2063 
2064 	/* PHY init IGP 3 */
2065 	/* Enable rise/fall, 10-mode work in class-A */
2066 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2067 	/* Remove all caps from Replica path filter */
2068 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2069 	/* Bias trimming for ADC, AFE and Driver (Default) */
2070 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2071 	/* Increase Hybrid poly bias */
2072 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2073 	/* Add 4% to TX amplitude in Giga mode */
2074 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2075 	/* Disable trimming (TTT) */
2076 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2077 	/* Poly DC correction to 94.6% + 2% for all channels */
2078 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2079 	/* ABS DC correction to 95.9% */
2080 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2081 	/* BG temp curve trim */
2082 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2083 	/* Increasing ADC OPAMP stage 1 currents to max */
2084 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2085 	/* Force 1000 ( required for enabling PHY regs configuration) */
2086 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2087 	/* Set upd_freq to 6 */
2088 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2089 	/* Disable NPDFE */
2090 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2091 	/* Disable adaptive fixed FFE (Default) */
2092 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2093 	/* Enable FFE hysteresis */
2094 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2095 	/* Fixed FFE for short cable lengths */
2096 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2097 	/* Fixed FFE for medium cable lengths */
2098 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2099 	/* Fixed FFE for long cable lengths */
2100 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2101 	/* Enable Adaptive Clip Threshold */
2102 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2103 	/* AHT reset limit to 1 */
2104 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2105 	/* Set AHT master delay to 127 msec */
2106 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2107 	/* Set scan bits for AHT */
2108 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2109 	/* Set AHT Preset bits */
2110 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2111 	/* Change integ_factor of channel A to 3 */
2112 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2113 	/* Change prop_factor of channels BCD to 8 */
2114 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2115 	/* Change cg_icount + enable integbp for channels BCD */
2116 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2117 	/* Change cg_icount + enable integbp + change prop_factor_master
2118 	 * to 8 for channel A
2119 	 */
2120 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2121 	/* Disable AHT in Slave mode on channel A */
2122 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2123 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2124 	 * Enable SPD+B2B
2125 	 */
2126 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2127 	/* Enable restart AN on an1000_dis change */
2128 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2129 	/* Enable wh_fifo read clock in 10/100 modes */
2130 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2131 	/* Restart AN, Speed selection is 1000 */
2132 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2133 
2134 	return 0;
2135 }
2136 
2137 /**
2138  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2139  * @hw: pointer to the HW structure
2140  *
2141  * In the case of a PHY power down to save power, or to turn off link during a
2142  * driver unload, restore the link to previous settings.
2143  **/
igb_power_up_phy_copper(struct e1000_hw * hw)2144 void igb_power_up_phy_copper(struct e1000_hw *hw)
2145 {
2146 	u16 mii_reg = 0;
2147 	u16 power_reg = 0;
2148 
2149 	/* The PHY will retain its settings across a power down/up cycle */
2150 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2151 	mii_reg &= ~MII_CR_POWER_DOWN;
2152 	if (hw->phy.type == e1000_phy_i210) {
2153 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2154 		power_reg &= ~GS40G_CS_POWER_DOWN;
2155 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2156 	}
2157 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2158 }
2159 
2160 /**
2161  * igb_power_down_phy_copper - Power down copper PHY
2162  * @hw: pointer to the HW structure
2163  *
2164  * Power down PHY to save power when interface is down and wake on lan
2165  * is not enabled.
2166  **/
igb_power_down_phy_copper(struct e1000_hw * hw)2167 void igb_power_down_phy_copper(struct e1000_hw *hw)
2168 {
2169 	u16 mii_reg = 0;
2170 	u16 power_reg = 0;
2171 
2172 	/* The PHY will retain its settings across a power down/up cycle */
2173 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2174 	mii_reg |= MII_CR_POWER_DOWN;
2175 
2176 	/* i210 Phy requires an additional bit for power up/down */
2177 	if (hw->phy.type == e1000_phy_i210) {
2178 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2179 		power_reg |= GS40G_CS_POWER_DOWN;
2180 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2181 	}
2182 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2183 	msleep(1);
2184 }
2185 
2186 /**
2187  *  igb_check_polarity_82580 - Checks the polarity.
2188  *  @hw: pointer to the HW structure
2189  *
2190  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2191  *
2192  *  Polarity is determined based on the PHY specific status register.
2193  **/
igb_check_polarity_82580(struct e1000_hw * hw)2194 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2195 {
2196 	struct e1000_phy_info *phy = &hw->phy;
2197 	s32 ret_val;
2198 	u16 data;
2199 
2200 
2201 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2202 
2203 	if (!ret_val)
2204 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2205 				      ? e1000_rev_polarity_reversed
2206 				      : e1000_rev_polarity_normal;
2207 
2208 	return ret_val;
2209 }
2210 
2211 /**
2212  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2213  *  @hw: pointer to the HW structure
2214  *
2215  *  Calls the PHY setup function to force speed and duplex.  Clears the
2216  *  auto-crossover to force MDI manually.  Waits for link and returns
2217  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2218  **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2219 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2220 {
2221 	struct e1000_phy_info *phy = &hw->phy;
2222 	s32 ret_val;
2223 	u16 phy_data;
2224 	bool link;
2225 
2226 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2227 	if (ret_val)
2228 		goto out;
2229 
2230 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2231 
2232 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2233 	if (ret_val)
2234 		goto out;
2235 
2236 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2237 	 * forced whenever speed and duplex are forced.
2238 	 */
2239 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2240 	if (ret_val)
2241 		goto out;
2242 
2243 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2244 
2245 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2246 	if (ret_val)
2247 		goto out;
2248 
2249 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2250 
2251 	udelay(1);
2252 
2253 	if (phy->autoneg_wait_to_complete) {
2254 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2255 
2256 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2257 		if (ret_val)
2258 			goto out;
2259 
2260 		if (!link)
2261 			hw_dbg("Link taking longer than expected.\n");
2262 
2263 		/* Try once more */
2264 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2265 		if (ret_val)
2266 			goto out;
2267 	}
2268 
2269 out:
2270 	return ret_val;
2271 }
2272 
2273 /**
2274  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2275  *  @hw: pointer to the HW structure
2276  *
2277  *  Read PHY status to determine if link is up.  If link is up, then
2278  *  set/determine 10base-T extended distance and polarity correction.  Read
2279  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2280  *  determine on the cable length, local and remote receiver.
2281  **/
igb_get_phy_info_82580(struct e1000_hw * hw)2282 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2283 {
2284 	struct e1000_phy_info *phy = &hw->phy;
2285 	s32 ret_val;
2286 	u16 data;
2287 	bool link;
2288 
2289 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2290 	if (ret_val)
2291 		goto out;
2292 
2293 	if (!link) {
2294 		hw_dbg("Phy info is only valid if link is up\n");
2295 		ret_val = -E1000_ERR_CONFIG;
2296 		goto out;
2297 	}
2298 
2299 	phy->polarity_correction = true;
2300 
2301 	ret_val = igb_check_polarity_82580(hw);
2302 	if (ret_val)
2303 		goto out;
2304 
2305 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2306 	if (ret_val)
2307 		goto out;
2308 
2309 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2310 
2311 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2312 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2313 		ret_val = hw->phy.ops.get_cable_length(hw);
2314 		if (ret_val)
2315 			goto out;
2316 
2317 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2318 		if (ret_val)
2319 			goto out;
2320 
2321 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2322 				? e1000_1000t_rx_status_ok
2323 				: e1000_1000t_rx_status_not_ok;
2324 
2325 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2326 				 ? e1000_1000t_rx_status_ok
2327 				 : e1000_1000t_rx_status_not_ok;
2328 	} else {
2329 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2330 		phy->local_rx = e1000_1000t_rx_status_undefined;
2331 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2332 	}
2333 
2334 out:
2335 	return ret_val;
2336 }
2337 
2338 /**
2339  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2340  *  @hw: pointer to the HW structure
2341  *
2342  * Reads the diagnostic status register and verifies result is valid before
2343  * placing it in the phy_cable_length field.
2344  **/
igb_get_cable_length_82580(struct e1000_hw * hw)2345 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2346 {
2347 	struct e1000_phy_info *phy = &hw->phy;
2348 	s32 ret_val;
2349 	u16 phy_data, length;
2350 
2351 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2352 	if (ret_val)
2353 		goto out;
2354 
2355 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2356 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2357 
2358 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2359 		ret_val = -E1000_ERR_PHY;
2360 
2361 	phy->cable_length = length;
2362 
2363 out:
2364 	return ret_val;
2365 }
2366 
2367 /**
2368  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2369  *  @hw: pointer to the HW structure
2370  *  @offset: lower half is register offset to write to
2371  *     upper half is page to use.
2372  *  @data: data to write at register offset
2373  *
2374  *  Acquires semaphore, if necessary, then writes the data to PHY register
2375  *  at the offset.  Release any acquired semaphores before exiting.
2376  **/
igb_write_phy_reg_gs40g(struct e1000_hw * hw,u32 offset,u16 data)2377 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2378 {
2379 	s32 ret_val;
2380 	u16 page = offset >> GS40G_PAGE_SHIFT;
2381 
2382 	offset = offset & GS40G_OFFSET_MASK;
2383 	ret_val = hw->phy.ops.acquire(hw);
2384 	if (ret_val)
2385 		return ret_val;
2386 
2387 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2388 	if (ret_val)
2389 		goto release;
2390 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2391 
2392 release:
2393 	hw->phy.ops.release(hw);
2394 	return ret_val;
2395 }
2396 
2397 /**
2398  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2399  *  @hw: pointer to the HW structure
2400  *  @offset: lower half is register offset to read to
2401  *     upper half is page to use.
2402  *  @data: data to read at register offset
2403  *
2404  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2405  *  at the offset.  Release any acquired semaphores before exiting.
2406  **/
igb_read_phy_reg_gs40g(struct e1000_hw * hw,u32 offset,u16 * data)2407 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2408 {
2409 	s32 ret_val;
2410 	u16 page = offset >> GS40G_PAGE_SHIFT;
2411 
2412 	offset = offset & GS40G_OFFSET_MASK;
2413 	ret_val = hw->phy.ops.acquire(hw);
2414 	if (ret_val)
2415 		return ret_val;
2416 
2417 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2418 	if (ret_val)
2419 		goto release;
2420 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2421 
2422 release:
2423 	hw->phy.ops.release(hw);
2424 	return ret_val;
2425 }
2426 
2427 /**
2428  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2429  *  @hw: pointer to the HW structure
2430  *
2431  *  Sets up Master/slave mode
2432  **/
igb_set_master_slave_mode(struct e1000_hw * hw)2433 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2434 {
2435 	s32 ret_val;
2436 	u16 phy_data;
2437 
2438 	/* Resolve Master/Slave mode */
2439 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2440 	if (ret_val)
2441 		return ret_val;
2442 
2443 	/* load defaults for future use */
2444 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2445 				   ((phy_data & CR_1000T_MS_VALUE) ?
2446 				    e1000_ms_force_master :
2447 				    e1000_ms_force_slave) : e1000_ms_auto;
2448 
2449 	switch (hw->phy.ms_type) {
2450 	case e1000_ms_force_master:
2451 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2452 		break;
2453 	case e1000_ms_force_slave:
2454 		phy_data |= CR_1000T_MS_ENABLE;
2455 		phy_data &= ~(CR_1000T_MS_VALUE);
2456 		break;
2457 	case e1000_ms_auto:
2458 		phy_data &= ~CR_1000T_MS_ENABLE;
2459 		/* fall-through */
2460 	default:
2461 		break;
2462 	}
2463 
2464 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2465 }
2466