• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 
29 #include "vf.h"
30 
31 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
32 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
33                                      u16 *duplex);
34 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
35 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
36 
37 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
38                                          u32, u32, u32);
39 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
40 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
41 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
42 
43 /**
44  *  e1000_init_mac_params_vf - Inits MAC params
45  *  @hw: pointer to the HW structure
46  **/
e1000_init_mac_params_vf(struct e1000_hw * hw)47 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
48 {
49 	struct e1000_mac_info *mac = &hw->mac;
50 
51 	/* VF's have no MTA Registers - PF feature only */
52 	mac->mta_reg_count = 128;
53 	/* VF's have no access to RAR entries  */
54 	mac->rar_entry_count = 1;
55 
56 	/* Function pointers */
57 	/* reset */
58 	mac->ops.reset_hw = e1000_reset_hw_vf;
59 	/* hw initialization */
60 	mac->ops.init_hw = e1000_init_hw_vf;
61 	/* check for link */
62 	mac->ops.check_for_link = e1000_check_for_link_vf;
63 	/* link info */
64 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 	/* multicast address update */
66 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 	/* set mac address */
68 	mac->ops.rar_set = e1000_rar_set_vf;
69 	/* read mac address */
70 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 	/* set vlan filter table array */
72 	mac->ops.set_vfta = e1000_set_vfta_vf;
73 
74 	return E1000_SUCCESS;
75 }
76 
77 /**
78  *  e1000_init_function_pointers_vf - Inits function pointers
79  *  @hw: pointer to the HW structure
80  **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)81 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
82 {
83 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
84 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
85 }
86 
87 /**
88  *  e1000_get_link_up_info_vf - Gets link info.
89  *  @hw: pointer to the HW structure
90  *  @speed: pointer to 16 bit value to store link speed.
91  *  @duplex: pointer to 16 bit value to store duplex.
92  *
93  *  Since we cannot read the PHY and get accurate link info, we must rely upon
94  *  the status register's data which is often stale and inaccurate.
95  **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)96 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
97                                      u16 *duplex)
98 {
99 	s32 status;
100 
101 	status = er32(STATUS);
102 	if (status & E1000_STATUS_SPEED_1000)
103 		*speed = SPEED_1000;
104 	else if (status & E1000_STATUS_SPEED_100)
105 		*speed = SPEED_100;
106 	else
107 		*speed = SPEED_10;
108 
109 	if (status & E1000_STATUS_FD)
110 		*duplex = FULL_DUPLEX;
111 	else
112 		*duplex = HALF_DUPLEX;
113 
114 	return E1000_SUCCESS;
115 }
116 
117 /**
118  *  e1000_reset_hw_vf - Resets the HW
119  *  @hw: pointer to the HW structure
120  *
121  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
122  *  This is all the reset we can perform on a VF.
123  **/
e1000_reset_hw_vf(struct e1000_hw * hw)124 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
125 {
126 	struct e1000_mbx_info *mbx = &hw->mbx;
127 	u32 timeout = E1000_VF_INIT_TIMEOUT;
128 	u32 ret_val = -E1000_ERR_MAC_INIT;
129 	u32 msgbuf[3];
130 	u8 *addr = (u8 *)(&msgbuf[1]);
131 	u32 ctrl;
132 
133 	/* assert vf queue/interrupt reset */
134 	ctrl = er32(CTRL);
135 	ew32(CTRL, ctrl | E1000_CTRL_RST);
136 
137 	/* we cannot initialize while the RSTI / RSTD bits are asserted */
138 	while (!mbx->ops.check_for_rst(hw) && timeout) {
139 		timeout--;
140 		udelay(5);
141 	}
142 
143 	if (timeout) {
144 		/* mailbox timeout can now become active */
145 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
146 
147 		/* notify pf of vf reset completion */
148 		msgbuf[0] = E1000_VF_RESET;
149 		mbx->ops.write_posted(hw, msgbuf, 1);
150 
151 		msleep(10);
152 
153 		/* set our "perm_addr" based on info provided by PF */
154 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
155 		if (!ret_val) {
156 			if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK))
157 				memcpy(hw->mac.perm_addr, addr, 6);
158 			else
159 				ret_val = -E1000_ERR_MAC_INIT;
160 		}
161 	}
162 
163 	return ret_val;
164 }
165 
166 /**
167  *  e1000_init_hw_vf - Inits the HW
168  *  @hw: pointer to the HW structure
169  *
170  *  Not much to do here except clear the PF Reset indication if there is one.
171  **/
e1000_init_hw_vf(struct e1000_hw * hw)172 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
173 {
174 	/* attempt to set and restore our mac address */
175 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
176 
177 	return E1000_SUCCESS;
178 }
179 
180 /**
181  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
182  *  @hw: pointer to the HW structure
183  *  @mc_addr: pointer to a multicast address
184  *
185  *  Generates a multicast address hash value which is used to determine
186  *  the multicast filter table array address and new table value.  See
187  *  e1000_mta_set_generic()
188  **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)189 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
190 {
191 	u32 hash_value, hash_mask;
192 	u8 bit_shift = 0;
193 
194 	/* Register count multiplied by bits per register */
195 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
196 
197 	/*
198 	 * The bit_shift is the number of left-shifts
199 	 * where 0xFF would still fall within the hash mask.
200 	 */
201 	while (hash_mask >> bit_shift != 0xFF)
202 		bit_shift++;
203 
204 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
205 	                          (((u16) mc_addr[5]) << bit_shift)));
206 
207 	return hash_value;
208 }
209 
210 /**
211  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
212  *  @hw: pointer to the HW structure
213  *  @mc_addr_list: array of multicast addresses to program
214  *  @mc_addr_count: number of multicast addresses to program
215  *  @rar_used_count: the first RAR register free to program
216  *  @rar_count: total number of supported Receive Address Registers
217  *
218  *  Updates the Receive Address Registers and Multicast Table Array.
219  *  The caller must have a packed mc_addr_list of multicast addresses.
220  *  The parameter rar_count will usually be hw->mac.rar_entry_count
221  *  unless there are workarounds that change this.
222  **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,u32 rar_used_count,u32 rar_count)223 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
224                                   u8 *mc_addr_list, u32 mc_addr_count,
225                                   u32 rar_used_count, u32 rar_count)
226 {
227 	struct e1000_mbx_info *mbx = &hw->mbx;
228 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
229 	u16 *hash_list = (u16 *)&msgbuf[1];
230 	u32 hash_value;
231 	u32 cnt, i;
232 
233 	/* Each entry in the list uses 1 16 bit word.  We have 30
234 	 * 16 bit words available in our HW msg buffer (minus 1 for the
235 	 * msg type).  That's 30 hash values if we pack 'em right.  If
236 	 * there are more than 30 MC addresses to add then punt the
237 	 * extras for now and then add code to handle more than 30 later.
238 	 * It would be unusual for a server to request that many multi-cast
239 	 * addresses except for in large enterprise network environments.
240 	 */
241 
242 	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
243 	msgbuf[0] = E1000_VF_SET_MULTICAST;
244 	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
245 
246 	for (i = 0; i < cnt; i++) {
247 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
248 		hash_list[i] = hash_value & 0x0FFFF;
249 		mc_addr_list += ETH_ALEN;
250 	}
251 
252 	mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
253 }
254 
255 /**
256  *  e1000_set_vfta_vf - Set/Unset vlan filter table address
257  *  @hw: pointer to the HW structure
258  *  @vid: determines the vfta register and bit to set/unset
259  *  @set: if true then set bit, else clear bit
260  **/
e1000_set_vfta_vf(struct e1000_hw * hw,u16 vid,bool set)261 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
262 {
263 	struct e1000_mbx_info *mbx = &hw->mbx;
264 	u32 msgbuf[2];
265 	s32 err;
266 
267 	msgbuf[0] = E1000_VF_SET_VLAN;
268 	msgbuf[1] = vid;
269 	/* Setting the 8 bit field MSG INFO to true indicates "add" */
270 	if (set)
271 		msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
272 
273 	mbx->ops.write_posted(hw, msgbuf, 2);
274 
275 	err = mbx->ops.read_posted(hw, msgbuf, 2);
276 
277 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
278 
279 	/* if nacked the vlan was rejected */
280 	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
281 		err = -E1000_ERR_MAC_INIT;
282 
283 	return err;
284 }
285 
286 /**
287  *  e1000_rlpml_set_vf - Set the maximum receive packet length
288  *  @hw: pointer to the HW structure
289  *  @max_size: value to assign to max frame size
290  **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)291 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
292 {
293 	struct e1000_mbx_info *mbx = &hw->mbx;
294 	u32 msgbuf[2];
295 
296 	msgbuf[0] = E1000_VF_SET_LPE;
297 	msgbuf[1] = max_size;
298 
299 	mbx->ops.write_posted(hw, msgbuf, 2);
300 }
301 
302 /**
303  *  e1000_rar_set_vf - set device MAC address
304  *  @hw: pointer to the HW structure
305  *  @addr: pointer to the receive address
306  *  @index: receive address array register
307  **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 index)308 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
309 {
310 	struct e1000_mbx_info *mbx = &hw->mbx;
311 	u32 msgbuf[3];
312 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
313 	s32 ret_val;
314 
315 	memset(msgbuf, 0, 12);
316 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
317 	memcpy(msg_addr, addr, 6);
318 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
319 
320 	if (!ret_val)
321 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
322 
323 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
324 
325 	/* if nacked the address was rejected, use "perm_addr" */
326 	if (!ret_val &&
327 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
328 		e1000_read_mac_addr_vf(hw);
329 }
330 
331 /**
332  *  e1000_read_mac_addr_vf - Read device MAC address
333  *  @hw: pointer to the HW structure
334  **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)335 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
336 {
337 	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
338 
339 	return E1000_SUCCESS;
340 }
341 
342 /**
343  *  e1000_check_for_link_vf - Check for link for a virtual interface
344  *  @hw: pointer to the HW structure
345  *
346  *  Checks to see if the underlying PF is still talking to the VF and
347  *  if it is then it reports the link state to the hardware, otherwise
348  *  it reports link down and returns an error.
349  **/
e1000_check_for_link_vf(struct e1000_hw * hw)350 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
351 {
352 	struct e1000_mbx_info *mbx = &hw->mbx;
353 	struct e1000_mac_info *mac = &hw->mac;
354 	s32 ret_val = E1000_SUCCESS;
355 	u32 in_msg = 0;
356 
357 	/*
358 	 * We only want to run this if there has been a rst asserted.
359 	 * in this case that could mean a link change, device reset,
360 	 * or a virtual function reset
361 	 */
362 
363 	/* If we were hit with a reset or timeout drop the link */
364 	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
365 		mac->get_link_status = true;
366 
367 	if (!mac->get_link_status)
368 		goto out;
369 
370 	/* if link status is down no point in checking to see if pf is up */
371 	if (!(er32(STATUS) & E1000_STATUS_LU))
372 		goto out;
373 
374 	/* if the read failed it could just be a mailbox collision, best wait
375 	 * until we are called again and don't report an error */
376 	if (mbx->ops.read(hw, &in_msg, 1))
377 		goto out;
378 
379 	/* if incoming message isn't clear to send we are waiting on response */
380 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
381 		/* message is not CTS and is NACK we must have lost CTS status */
382 		if (in_msg & E1000_VT_MSGTYPE_NACK)
383 			ret_val = -E1000_ERR_MAC_INIT;
384 		goto out;
385 	}
386 
387 	/* the pf is talking, if we timed out in the past we reinit */
388 	if (!mbx->timeout) {
389 		ret_val = -E1000_ERR_MAC_INIT;
390 		goto out;
391 	}
392 
393 	/* if we passed all the tests above then the link is up and we no
394 	 * longer need to check for link */
395 	mac->get_link_status = false;
396 
397 out:
398 	return ret_val;
399 }
400 
401