• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* drivers/net/ethernet/micrel/ks8851.c
2  *
3  * Copyright 2009 Simtec Electronics
4  *	http://www.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #define DEBUG
15 
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 
27 #include <linux/spi/spi.h>
28 
29 #include "ks8851.h"
30 
31 /**
32  * struct ks8851_rxctrl - KS8851 driver rx control
33  * @mchash: Multicast hash-table data.
34  * @rxcr1: KS_RXCR1 register setting
35  * @rxcr2: KS_RXCR2 register setting
36  *
37  * Representation of the settings needs to control the receive filtering
38  * such as the multicast hash-filter and the receive register settings. This
39  * is used to make the job of working out if the receive settings change and
40  * then issuing the new settings to the worker that will send the necessary
41  * commands.
42  */
43 struct ks8851_rxctrl {
44 	u16	mchash[4];
45 	u16	rxcr1;
46 	u16	rxcr2;
47 };
48 
49 /**
50  * union ks8851_tx_hdr - tx header data
51  * @txb: The header as bytes
52  * @txw: The header as 16bit, little-endian words
53  *
54  * A dual representation of the tx header data to allow
55  * access to individual bytes, and to allow 16bit accesses
56  * with 16bit alignment.
57  */
58 union ks8851_tx_hdr {
59 	u8	txb[6];
60 	__le16	txw[3];
61 };
62 
63 /**
64  * struct ks8851_net - KS8851 driver private data
65  * @netdev: The network device we're bound to
66  * @spidev: The spi device we're bound to.
67  * @lock: Lock to ensure that the device is not accessed when busy.
68  * @statelock: Lock on this structure for tx list.
69  * @mii: The MII state information for the mii calls.
70  * @rxctrl: RX settings for @rxctrl_work.
71  * @tx_work: Work queue for tx packets
72  * @rxctrl_work: Work queue for updating RX mode and multicast lists
73  * @txq: Queue of packets for transmission.
74  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
75  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
76  * @txh: Space for generating packet TX header in DMA-able data
77  * @rxd: Space for receiving SPI data, in DMA-able space.
78  * @txd: Space for transmitting SPI data, in DMA-able space.
79  * @msg_enable: The message flags controlling driver output (see ethtool).
80  * @fid: Incrementing frame id tag.
81  * @rc_ier: Cached copy of KS_IER.
82  * @rc_ccr: Cached copy of KS_CCR.
83  * @rc_rxqcr: Cached copy of KS_RXQCR.
84  * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
85  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
86  *
87  * The @lock ensures that the chip is protected when certain operations are
88  * in progress. When the read or write packet transfer is in progress, most
89  * of the chip registers are not ccessible until the transfer is finished and
90  * the DMA has been de-asserted.
91  *
92  * The @statelock is used to protect information in the structure which may
93  * need to be accessed via several sources, such as the network driver layer
94  * or one of the work queues.
95  *
96  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
97  * wants to DMA map them, it will not have any problems with data the driver
98  * modifies.
99  */
100 struct ks8851_net {
101 	struct net_device	*netdev;
102 	struct spi_device	*spidev;
103 	struct mutex		lock;
104 	spinlock_t		statelock;
105 
106 	union ks8851_tx_hdr	txh ____cacheline_aligned;
107 	u8			rxd[8];
108 	u8			txd[8];
109 
110 	u32			msg_enable ____cacheline_aligned;
111 	u16			tx_space;
112 	u8			fid;
113 
114 	u16			rc_ier;
115 	u16			rc_rxqcr;
116 	u16			rc_ccr;
117 	u16			eeprom_size;
118 
119 	struct mii_if_info	mii;
120 	struct ks8851_rxctrl	rxctrl;
121 
122 	struct work_struct	tx_work;
123 	struct work_struct	rxctrl_work;
124 
125 	struct sk_buff_head	txq;
126 
127 	struct spi_message	spi_msg1;
128 	struct spi_message	spi_msg2;
129 	struct spi_transfer	spi_xfer1;
130 	struct spi_transfer	spi_xfer2[2];
131 
132 	struct eeprom_93cx6	eeprom;
133 };
134 
135 static int msg_enable;
136 
137 /* shift for byte-enable data */
138 #define BYTE_EN(_x)	((_x) << 2)
139 
140 /* turn register number and byte-enable mask into data for start of packet */
141 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
142 
143 /* SPI register read/write calls.
144  *
145  * All these calls issue SPI transactions to access the chip's registers. They
146  * all require that the necessary lock is held to prevent accesses when the
147  * chip is busy transferring packet data (RX/TX FIFO accesses).
148  */
149 
150 /**
151  * ks8851_wrreg16 - write 16bit register value to chip
152  * @ks: The chip state
153  * @reg: The register address
154  * @val: The value to write
155  *
156  * Issue a write to put the value @val into the register specified in @reg.
157  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)158 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
159 {
160 	struct spi_transfer *xfer = &ks->spi_xfer1;
161 	struct spi_message *msg = &ks->spi_msg1;
162 	__le16 txb[2];
163 	int ret;
164 
165 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
166 	txb[1] = cpu_to_le16(val);
167 
168 	xfer->tx_buf = txb;
169 	xfer->rx_buf = NULL;
170 	xfer->len = 4;
171 
172 	ret = spi_sync(ks->spidev, msg);
173 	if (ret < 0)
174 		netdev_err(ks->netdev, "spi_sync() failed\n");
175 }
176 
177 /**
178  * ks8851_wrreg8 - write 8bit register value to chip
179  * @ks: The chip state
180  * @reg: The register address
181  * @val: The value to write
182  *
183  * Issue a write to put the value @val into the register specified in @reg.
184  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)185 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
186 {
187 	struct spi_transfer *xfer = &ks->spi_xfer1;
188 	struct spi_message *msg = &ks->spi_msg1;
189 	__le16 txb[2];
190 	int ret;
191 	int bit;
192 
193 	bit = 1 << (reg & 3);
194 
195 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
196 	txb[1] = val;
197 
198 	xfer->tx_buf = txb;
199 	xfer->rx_buf = NULL;
200 	xfer->len = 3;
201 
202 	ret = spi_sync(ks->spidev, msg);
203 	if (ret < 0)
204 		netdev_err(ks->netdev, "spi_sync() failed\n");
205 }
206 
207 /**
208  * ks8851_rx_1msg - select whether to use one or two messages for spi read
209  * @ks: The device structure
210  *
211  * Return whether to generate a single message with a tx and rx buffer
212  * supplied to spi_sync(), or alternatively send the tx and rx buffers
213  * as separate messages.
214  *
215  * Depending on the hardware in use, a single message may be more efficient
216  * on interrupts or work done by the driver.
217  *
218  * This currently always returns true until we add some per-device data passed
219  * from the platform code to specify which mode is better.
220  */
ks8851_rx_1msg(struct ks8851_net * ks)221 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
222 {
223 	return true;
224 }
225 
226 /**
227  * ks8851_rdreg - issue read register command and return the data
228  * @ks: The device state
229  * @op: The register address and byte enables in message format.
230  * @rxb: The RX buffer to return the result into
231  * @rxl: The length of data expected.
232  *
233  * This is the low level read call that issues the necessary spi message(s)
234  * to read data from the register specified in @op.
235  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)236 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
237 			 u8 *rxb, unsigned rxl)
238 {
239 	struct spi_transfer *xfer;
240 	struct spi_message *msg;
241 	__le16 *txb = (__le16 *)ks->txd;
242 	u8 *trx = ks->rxd;
243 	int ret;
244 
245 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
246 
247 	if (ks8851_rx_1msg(ks)) {
248 		msg = &ks->spi_msg1;
249 		xfer = &ks->spi_xfer1;
250 
251 		xfer->tx_buf = txb;
252 		xfer->rx_buf = trx;
253 		xfer->len = rxl + 2;
254 	} else {
255 		msg = &ks->spi_msg2;
256 		xfer = ks->spi_xfer2;
257 
258 		xfer->tx_buf = txb;
259 		xfer->rx_buf = NULL;
260 		xfer->len = 2;
261 
262 		xfer++;
263 		xfer->tx_buf = NULL;
264 		xfer->rx_buf = trx;
265 		xfer->len = rxl;
266 	}
267 
268 	ret = spi_sync(ks->spidev, msg);
269 	if (ret < 0)
270 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
271 	else if (ks8851_rx_1msg(ks))
272 		memcpy(rxb, trx + 2, rxl);
273 	else
274 		memcpy(rxb, trx, rxl);
275 }
276 
277 /**
278  * ks8851_rdreg8 - read 8 bit register from device
279  * @ks: The chip information
280  * @reg: The register address
281  *
282  * Read a 8bit register from the chip, returning the result
283 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)284 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
285 {
286 	u8 rxb[1];
287 
288 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
289 	return rxb[0];
290 }
291 
292 /**
293  * ks8851_rdreg16 - read 16 bit register from device
294  * @ks: The chip information
295  * @reg: The register address
296  *
297  * Read a 16bit register from the chip, returning the result
298 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)299 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
300 {
301 	__le16 rx = 0;
302 
303 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
304 	return le16_to_cpu(rx);
305 }
306 
307 /**
308  * ks8851_rdreg32 - read 32 bit register from device
309  * @ks: The chip information
310  * @reg: The register address
311  *
312  * Read a 32bit register from the chip.
313  *
314  * Note, this read requires the address be aligned to 4 bytes.
315 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)316 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
317 {
318 	__le32 rx = 0;
319 
320 	WARN_ON(reg & 3);
321 
322 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
323 	return le32_to_cpu(rx);
324 }
325 
326 /**
327  * ks8851_soft_reset - issue one of the soft reset to the device
328  * @ks: The device state.
329  * @op: The bit(s) to set in the GRR
330  *
331  * Issue the relevant soft-reset command to the device's GRR register
332  * specified by @op.
333  *
334  * Note, the delays are in there as a caution to ensure that the reset
335  * has time to take effect and then complete. Since the datasheet does
336  * not currently specify the exact sequence, we have chosen something
337  * that seems to work with our device.
338  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)339 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
340 {
341 	ks8851_wrreg16(ks, KS_GRR, op);
342 	mdelay(1);	/* wait a short time to effect reset */
343 	ks8851_wrreg16(ks, KS_GRR, 0);
344 	mdelay(1);	/* wait for condition to clear */
345 }
346 
347 /**
348  * ks8851_set_powermode - set power mode of the device
349  * @ks: The device state
350  * @pwrmode: The power mode value to write to KS_PMECR.
351  *
352  * Change the power mode of the chip.
353  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)354 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
355 {
356 	unsigned pmecr;
357 
358 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
359 
360 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
361 	pmecr &= ~PMECR_PM_MASK;
362 	pmecr |= pwrmode;
363 
364 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
365 }
366 
367 /**
368  * ks8851_write_mac_addr - write mac address to device registers
369  * @dev: The network device
370  *
371  * Update the KS8851 MAC address registers from the address in @dev.
372  *
373  * This call assumes that the chip is not running, so there is no need to
374  * shutdown the RXQ process whilst setting this.
375 */
ks8851_write_mac_addr(struct net_device * dev)376 static int ks8851_write_mac_addr(struct net_device *dev)
377 {
378 	struct ks8851_net *ks = netdev_priv(dev);
379 	int i;
380 
381 	mutex_lock(&ks->lock);
382 
383 	/*
384 	 * Wake up chip in case it was powered off when stopped; otherwise,
385 	 * the first write to the MAC address does not take effect.
386 	 */
387 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
388 	for (i = 0; i < ETH_ALEN; i++)
389 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
390 	if (!netif_running(dev))
391 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
392 
393 	mutex_unlock(&ks->lock);
394 
395 	return 0;
396 }
397 
398 /**
399  * ks8851_read_mac_addr - read mac address from device registers
400  * @dev: The network device
401  *
402  * Update our copy of the KS8851 MAC address from the registers of @dev.
403 */
ks8851_read_mac_addr(struct net_device * dev)404 static void ks8851_read_mac_addr(struct net_device *dev)
405 {
406 	struct ks8851_net *ks = netdev_priv(dev);
407 	int i;
408 
409 	mutex_lock(&ks->lock);
410 
411 	for (i = 0; i < ETH_ALEN; i++)
412 		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
413 
414 	mutex_unlock(&ks->lock);
415 }
416 
417 /**
418  * ks8851_init_mac - initialise the mac address
419  * @ks: The device structure
420  *
421  * Get or create the initial mac address for the device and then set that
422  * into the station address register. If there is an EEPROM present, then
423  * we try that. If no valid mac address is found we use eth_random_addr()
424  * to create a new one.
425  */
ks8851_init_mac(struct ks8851_net * ks)426 static void ks8851_init_mac(struct ks8851_net *ks)
427 {
428 	struct net_device *dev = ks->netdev;
429 
430 	/* first, try reading what we've got already */
431 	if (ks->rc_ccr & CCR_EEPROM) {
432 		ks8851_read_mac_addr(dev);
433 		if (is_valid_ether_addr(dev->dev_addr))
434 			return;
435 
436 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
437 				dev->dev_addr);
438 	}
439 
440 	eth_hw_addr_random(dev);
441 	ks8851_write_mac_addr(dev);
442 }
443 
444 /**
445  * ks8851_rdfifo - read data from the receive fifo
446  * @ks: The device state.
447  * @buff: The buffer address
448  * @len: The length of the data to read
449  *
450  * Issue an RXQ FIFO read command and read the @len amount of data from
451  * the FIFO into the buffer specified by @buff.
452  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)453 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
454 {
455 	struct spi_transfer *xfer = ks->spi_xfer2;
456 	struct spi_message *msg = &ks->spi_msg2;
457 	u8 txb[1];
458 	int ret;
459 
460 	netif_dbg(ks, rx_status, ks->netdev,
461 		  "%s: %d@%p\n", __func__, len, buff);
462 
463 	/* set the operation we're issuing */
464 	txb[0] = KS_SPIOP_RXFIFO;
465 
466 	xfer->tx_buf = txb;
467 	xfer->rx_buf = NULL;
468 	xfer->len = 1;
469 
470 	xfer++;
471 	xfer->rx_buf = buff;
472 	xfer->tx_buf = NULL;
473 	xfer->len = len;
474 
475 	ret = spi_sync(ks->spidev, msg);
476 	if (ret < 0)
477 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
478 }
479 
480 /**
481  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
482  * @ks: The device state
483  * @rxpkt: The data for the received packet
484  *
485  * Dump the initial data from the packet to dev_dbg().
486 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)487 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
488 {
489 	netdev_dbg(ks->netdev,
490 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
491 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
492 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
493 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
494 }
495 
496 /**
497  * ks8851_rx_pkts - receive packets from the host
498  * @ks: The device information.
499  *
500  * This is called from the IRQ work queue when the system detects that there
501  * are packets in the receive queue. Find out how many packets there are and
502  * read them from the FIFO.
503  */
ks8851_rx_pkts(struct ks8851_net * ks)504 static void ks8851_rx_pkts(struct ks8851_net *ks)
505 {
506 	struct sk_buff *skb;
507 	unsigned rxfc;
508 	unsigned rxlen;
509 	unsigned rxstat;
510 	u32 rxh;
511 	u8 *rxpkt;
512 
513 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
514 
515 	netif_dbg(ks, rx_status, ks->netdev,
516 		  "%s: %d packets\n", __func__, rxfc);
517 
518 	/* Currently we're issuing a read per packet, but we could possibly
519 	 * improve the code by issuing a single read, getting the receive
520 	 * header, allocating the packet and then reading the packet data
521 	 * out in one go.
522 	 *
523 	 * This form of operation would require us to hold the SPI bus'
524 	 * chipselect low during the entie transaction to avoid any
525 	 * reset to the data stream coming from the chip.
526 	 */
527 
528 	for (; rxfc != 0; rxfc--) {
529 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
530 		rxstat = rxh & 0xffff;
531 		rxlen = (rxh >> 16) & 0xfff;
532 
533 		netif_dbg(ks, rx_status, ks->netdev,
534 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
535 
536 		/* the length of the packet includes the 32bit CRC */
537 
538 		/* set dma read address */
539 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
540 
541 		/* start the packet dma process, and set auto-dequeue rx */
542 		ks8851_wrreg16(ks, KS_RXQCR,
543 			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
544 
545 		if (rxlen > 4) {
546 			unsigned int rxalign;
547 
548 			rxlen -= 4;
549 			rxalign = ALIGN(rxlen, 4);
550 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
551 			if (skb) {
552 
553 				/* 4 bytes of status header + 4 bytes of
554 				 * garbage: we put them before ethernet
555 				 * header, so that they are copied,
556 				 * but ignored.
557 				 */
558 
559 				rxpkt = skb_put(skb, rxlen) - 8;
560 
561 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
562 
563 				if (netif_msg_pktdata(ks))
564 					ks8851_dbg_dumpkkt(ks, rxpkt);
565 
566 				skb->protocol = eth_type_trans(skb, ks->netdev);
567 				netif_rx_ni(skb);
568 
569 				ks->netdev->stats.rx_packets++;
570 				ks->netdev->stats.rx_bytes += rxlen;
571 			}
572 		}
573 
574 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
575 	}
576 }
577 
578 /**
579  * ks8851_irq - IRQ handler for dealing with interrupt requests
580  * @irq: IRQ number
581  * @_ks: cookie
582  *
583  * This handler is invoked when the IRQ line asserts to find out what happened.
584  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
585  * in thread context.
586  *
587  * Read the interrupt status, work out what needs to be done and then clear
588  * any of the interrupts that are not needed.
589  */
ks8851_irq(int irq,void * _ks)590 static irqreturn_t ks8851_irq(int irq, void *_ks)
591 {
592 	struct ks8851_net *ks = _ks;
593 	unsigned status;
594 	unsigned handled = 0;
595 
596 	mutex_lock(&ks->lock);
597 
598 	status = ks8851_rdreg16(ks, KS_ISR);
599 
600 	netif_dbg(ks, intr, ks->netdev,
601 		  "%s: status 0x%04x\n", __func__, status);
602 
603 	if (status & IRQ_LCI)
604 		handled |= IRQ_LCI;
605 
606 	if (status & IRQ_LDI) {
607 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
608 		pmecr &= ~PMECR_WKEVT_MASK;
609 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
610 
611 		handled |= IRQ_LDI;
612 	}
613 
614 	if (status & IRQ_RXPSI)
615 		handled |= IRQ_RXPSI;
616 
617 	if (status & IRQ_TXI) {
618 		handled |= IRQ_TXI;
619 
620 		/* no lock here, tx queue should have been stopped */
621 
622 		/* update our idea of how much tx space is available to the
623 		 * system */
624 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
625 
626 		netif_dbg(ks, intr, ks->netdev,
627 			  "%s: txspace %d\n", __func__, ks->tx_space);
628 	}
629 
630 	if (status & IRQ_RXI)
631 		handled |= IRQ_RXI;
632 
633 	if (status & IRQ_SPIBEI) {
634 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
635 		handled |= IRQ_SPIBEI;
636 	}
637 
638 	ks8851_wrreg16(ks, KS_ISR, handled);
639 
640 	if (status & IRQ_RXI) {
641 		/* the datasheet says to disable the rx interrupt during
642 		 * packet read-out, however we're masking the interrupt
643 		 * from the device so do not bother masking just the RX
644 		 * from the device. */
645 
646 		ks8851_rx_pkts(ks);
647 	}
648 
649 	/* if something stopped the rx process, probably due to wanting
650 	 * to change the rx settings, then do something about restarting
651 	 * it. */
652 	if (status & IRQ_RXPSI) {
653 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
654 
655 		/* update the multicast hash table */
656 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
657 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
658 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
659 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
660 
661 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
662 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
663 	}
664 
665 	mutex_unlock(&ks->lock);
666 
667 	if (status & IRQ_LCI)
668 		mii_check_link(&ks->mii);
669 
670 	if (status & IRQ_TXI)
671 		netif_wake_queue(ks->netdev);
672 
673 	return IRQ_HANDLED;
674 }
675 
676 /**
677  * calc_txlen - calculate size of message to send packet
678  * @len: Length of data
679  *
680  * Returns the size of the TXFIFO message needed to send
681  * this packet.
682  */
calc_txlen(unsigned len)683 static inline unsigned calc_txlen(unsigned len)
684 {
685 	return ALIGN(len + 4, 4);
686 }
687 
688 /**
689  * ks8851_wrpkt - write packet to TX FIFO
690  * @ks: The device state.
691  * @txp: The sk_buff to transmit.
692  * @irq: IRQ on completion of the packet.
693  *
694  * Send the @txp to the chip. This means creating the relevant packet header
695  * specifying the length of the packet and the other information the chip
696  * needs, such as IRQ on completion. Send the header and the packet data to
697  * the device.
698  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)699 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
700 {
701 	struct spi_transfer *xfer = ks->spi_xfer2;
702 	struct spi_message *msg = &ks->spi_msg2;
703 	unsigned fid = 0;
704 	int ret;
705 
706 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
707 		  __func__, txp, txp->len, txp->data, irq);
708 
709 	fid = ks->fid++;
710 	fid &= TXFR_TXFID_MASK;
711 
712 	if (irq)
713 		fid |= TXFR_TXIC;	/* irq on completion */
714 
715 	/* start header at txb[1] to align txw entries */
716 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
717 	ks->txh.txw[1] = cpu_to_le16(fid);
718 	ks->txh.txw[2] = cpu_to_le16(txp->len);
719 
720 	xfer->tx_buf = &ks->txh.txb[1];
721 	xfer->rx_buf = NULL;
722 	xfer->len = 5;
723 
724 	xfer++;
725 	xfer->tx_buf = txp->data;
726 	xfer->rx_buf = NULL;
727 	xfer->len = ALIGN(txp->len, 4);
728 
729 	ret = spi_sync(ks->spidev, msg);
730 	if (ret < 0)
731 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
732 }
733 
734 /**
735  * ks8851_done_tx - update and then free skbuff after transmitting
736  * @ks: The device state
737  * @txb: The buffer transmitted
738  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)739 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
740 {
741 	struct net_device *dev = ks->netdev;
742 
743 	dev->stats.tx_bytes += txb->len;
744 	dev->stats.tx_packets++;
745 
746 	dev_kfree_skb(txb);
747 }
748 
749 /**
750  * ks8851_tx_work - process tx packet(s)
751  * @work: The work strucutre what was scheduled.
752  *
753  * This is called when a number of packets have been scheduled for
754  * transmission and need to be sent to the device.
755  */
ks8851_tx_work(struct work_struct * work)756 static void ks8851_tx_work(struct work_struct *work)
757 {
758 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
759 	struct sk_buff *txb;
760 	bool last = skb_queue_empty(&ks->txq);
761 
762 	mutex_lock(&ks->lock);
763 
764 	while (!last) {
765 		txb = skb_dequeue(&ks->txq);
766 		last = skb_queue_empty(&ks->txq);
767 
768 		if (txb != NULL) {
769 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
770 			ks8851_wrpkt(ks, txb, last);
771 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
772 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
773 
774 			ks8851_done_tx(ks, txb);
775 		}
776 	}
777 
778 	mutex_unlock(&ks->lock);
779 }
780 
781 /**
782  * ks8851_net_open - open network device
783  * @dev: The network device being opened.
784  *
785  * Called when the network device is marked active, such as a user executing
786  * 'ifconfig up' on the device.
787  */
ks8851_net_open(struct net_device * dev)788 static int ks8851_net_open(struct net_device *dev)
789 {
790 	struct ks8851_net *ks = netdev_priv(dev);
791 
792 	/* lock the card, even if we may not actually be doing anything
793 	 * else at the moment */
794 	mutex_lock(&ks->lock);
795 
796 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
797 
798 	/* bring chip out of any power saving mode it was in */
799 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
800 
801 	/* issue a soft reset to the RX/TX QMU to put it into a known
802 	 * state. */
803 	ks8851_soft_reset(ks, GRR_QMU);
804 
805 	/* setup transmission parameters */
806 
807 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
808 				     TXCR_TXPE | /* pad to min length */
809 				     TXCR_TXCRC | /* add CRC */
810 				     TXCR_TXFCE)); /* enable flow control */
811 
812 	/* auto-increment tx data, reset tx pointer */
813 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
814 
815 	/* setup receiver control */
816 
817 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
818 				      RXCR1_RXFCE | /* enable flow control */
819 				      RXCR1_RXBE | /* broadcast enable */
820 				      RXCR1_RXUE | /* unicast enable */
821 				      RXCR1_RXE)); /* enable rx block */
822 
823 	/* transfer entire frames out in one go */
824 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
825 
826 	/* set receive counter timeouts */
827 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
828 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
829 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
830 
831 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
832 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
833 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
834 
835 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
836 
837 	/* clear then enable interrupts */
838 
839 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
840 		 IRQ_TXI |	/* TX done */		\
841 		 IRQ_RXI |	/* RX done */		\
842 		 IRQ_SPIBEI |	/* SPI bus error */	\
843 		 IRQ_TXPSI |	/* TX process stop */	\
844 		 IRQ_RXPSI)	/* RX process stop */
845 
846 	ks->rc_ier = STD_IRQ;
847 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
848 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
849 
850 	netif_start_queue(ks->netdev);
851 
852 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
853 
854 	mutex_unlock(&ks->lock);
855 	return 0;
856 }
857 
858 /**
859  * ks8851_net_stop - close network device
860  * @dev: The device being closed.
861  *
862  * Called to close down a network device which has been active. Cancell any
863  * work, shutdown the RX and TX process and then place the chip into a low
864  * power state whilst it is not being used.
865  */
ks8851_net_stop(struct net_device * dev)866 static int ks8851_net_stop(struct net_device *dev)
867 {
868 	struct ks8851_net *ks = netdev_priv(dev);
869 
870 	netif_info(ks, ifdown, dev, "shutting down\n");
871 
872 	netif_stop_queue(dev);
873 
874 	mutex_lock(&ks->lock);
875 	/* turn off the IRQs and ack any outstanding */
876 	ks8851_wrreg16(ks, KS_IER, 0x0000);
877 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
878 	mutex_unlock(&ks->lock);
879 
880 	/* stop any outstanding work */
881 	flush_work(&ks->tx_work);
882 	flush_work(&ks->rxctrl_work);
883 
884 	mutex_lock(&ks->lock);
885 	/* shutdown RX process */
886 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
887 
888 	/* shutdown TX process */
889 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
890 
891 	/* set powermode to soft power down to save power */
892 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
893 	mutex_unlock(&ks->lock);
894 
895 	/* ensure any queued tx buffers are dumped */
896 	while (!skb_queue_empty(&ks->txq)) {
897 		struct sk_buff *txb = skb_dequeue(&ks->txq);
898 
899 		netif_dbg(ks, ifdown, ks->netdev,
900 			  "%s: freeing txb %p\n", __func__, txb);
901 
902 		dev_kfree_skb(txb);
903 	}
904 
905 	return 0;
906 }
907 
908 /**
909  * ks8851_start_xmit - transmit packet
910  * @skb: The buffer to transmit
911  * @dev: The device used to transmit the packet.
912  *
913  * Called by the network layer to transmit the @skb. Queue the packet for
914  * the device and schedule the necessary work to transmit the packet when
915  * it is free.
916  *
917  * We do this to firstly avoid sleeping with the network device locked,
918  * and secondly so we can round up more than one packet to transmit which
919  * means we can try and avoid generating too many transmit done interrupts.
920  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)921 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
922 				     struct net_device *dev)
923 {
924 	struct ks8851_net *ks = netdev_priv(dev);
925 	unsigned needed = calc_txlen(skb->len);
926 	netdev_tx_t ret = NETDEV_TX_OK;
927 
928 	netif_dbg(ks, tx_queued, ks->netdev,
929 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
930 
931 	spin_lock(&ks->statelock);
932 
933 	if (needed > ks->tx_space) {
934 		netif_stop_queue(dev);
935 		ret = NETDEV_TX_BUSY;
936 	} else {
937 		ks->tx_space -= needed;
938 		skb_queue_tail(&ks->txq, skb);
939 	}
940 
941 	spin_unlock(&ks->statelock);
942 	schedule_work(&ks->tx_work);
943 
944 	return ret;
945 }
946 
947 /**
948  * ks8851_rxctrl_work - work handler to change rx mode
949  * @work: The work structure this belongs to.
950  *
951  * Lock the device and issue the necessary changes to the receive mode from
952  * the network device layer. This is done so that we can do this without
953  * having to sleep whilst holding the network device lock.
954  *
955  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
956  * receive parameters are programmed, we issue a write to disable the RXQ and
957  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
958  * complete. The interrupt handler then writes the new values into the chip.
959  */
ks8851_rxctrl_work(struct work_struct * work)960 static void ks8851_rxctrl_work(struct work_struct *work)
961 {
962 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
963 
964 	mutex_lock(&ks->lock);
965 
966 	/* need to shutdown RXQ before modifying filter parameters */
967 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
968 
969 	mutex_unlock(&ks->lock);
970 }
971 
ks8851_set_rx_mode(struct net_device * dev)972 static void ks8851_set_rx_mode(struct net_device *dev)
973 {
974 	struct ks8851_net *ks = netdev_priv(dev);
975 	struct ks8851_rxctrl rxctrl;
976 
977 	memset(&rxctrl, 0, sizeof(rxctrl));
978 
979 	if (dev->flags & IFF_PROMISC) {
980 		/* interface to receive everything */
981 
982 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
983 	} else if (dev->flags & IFF_ALLMULTI) {
984 		/* accept all multicast packets */
985 
986 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
987 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
988 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
989 		struct netdev_hw_addr *ha;
990 		u32 crc;
991 
992 		/* accept some multicast */
993 
994 		netdev_for_each_mc_addr(ha, dev) {
995 			crc = ether_crc(ETH_ALEN, ha->addr);
996 			crc >>= (32 - 6);  /* get top six bits */
997 
998 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
999 		}
1000 
1001 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1002 	} else {
1003 		/* just accept broadcast / unicast */
1004 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1005 	}
1006 
1007 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1008 			 RXCR1_RXBE | /* broadcast enable */
1009 			 RXCR1_RXE | /* RX process enable */
1010 			 RXCR1_RXFCE); /* enable flow control */
1011 
1012 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1013 
1014 	/* schedule work to do the actual set of the data if needed */
1015 
1016 	spin_lock(&ks->statelock);
1017 
1018 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1019 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1020 		schedule_work(&ks->rxctrl_work);
1021 	}
1022 
1023 	spin_unlock(&ks->statelock);
1024 }
1025 
ks8851_set_mac_address(struct net_device * dev,void * addr)1026 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1027 {
1028 	struct sockaddr *sa = addr;
1029 
1030 	if (netif_running(dev))
1031 		return -EBUSY;
1032 
1033 	if (!is_valid_ether_addr(sa->sa_data))
1034 		return -EADDRNOTAVAIL;
1035 
1036 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1037 	return ks8851_write_mac_addr(dev);
1038 }
1039 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1040 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1041 {
1042 	struct ks8851_net *ks = netdev_priv(dev);
1043 
1044 	if (!netif_running(dev))
1045 		return -EINVAL;
1046 
1047 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1048 }
1049 
1050 static const struct net_device_ops ks8851_netdev_ops = {
1051 	.ndo_open		= ks8851_net_open,
1052 	.ndo_stop		= ks8851_net_stop,
1053 	.ndo_do_ioctl		= ks8851_net_ioctl,
1054 	.ndo_start_xmit		= ks8851_start_xmit,
1055 	.ndo_set_mac_address	= ks8851_set_mac_address,
1056 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1057 	.ndo_change_mtu		= eth_change_mtu,
1058 	.ndo_validate_addr	= eth_validate_addr,
1059 };
1060 
1061 /* ethtool support */
1062 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1063 static void ks8851_get_drvinfo(struct net_device *dev,
1064 			       struct ethtool_drvinfo *di)
1065 {
1066 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1067 	strlcpy(di->version, "1.00", sizeof(di->version));
1068 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1069 }
1070 
ks8851_get_msglevel(struct net_device * dev)1071 static u32 ks8851_get_msglevel(struct net_device *dev)
1072 {
1073 	struct ks8851_net *ks = netdev_priv(dev);
1074 	return ks->msg_enable;
1075 }
1076 
ks8851_set_msglevel(struct net_device * dev,u32 to)1077 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1078 {
1079 	struct ks8851_net *ks = netdev_priv(dev);
1080 	ks->msg_enable = to;
1081 }
1082 
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1083 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1084 {
1085 	struct ks8851_net *ks = netdev_priv(dev);
1086 	return mii_ethtool_gset(&ks->mii, cmd);
1087 }
1088 
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1089 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1090 {
1091 	struct ks8851_net *ks = netdev_priv(dev);
1092 	return mii_ethtool_sset(&ks->mii, cmd);
1093 }
1094 
ks8851_get_link(struct net_device * dev)1095 static u32 ks8851_get_link(struct net_device *dev)
1096 {
1097 	struct ks8851_net *ks = netdev_priv(dev);
1098 	return mii_link_ok(&ks->mii);
1099 }
1100 
ks8851_nway_reset(struct net_device * dev)1101 static int ks8851_nway_reset(struct net_device *dev)
1102 {
1103 	struct ks8851_net *ks = netdev_priv(dev);
1104 	return mii_nway_restart(&ks->mii);
1105 }
1106 
1107 /* EEPROM support */
1108 
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1109 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1110 {
1111 	struct ks8851_net *ks = ee->data;
1112 	unsigned val;
1113 
1114 	val = ks8851_rdreg16(ks, KS_EEPCR);
1115 
1116 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1117 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1118 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1119 }
1120 
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1121 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1122 {
1123 	struct ks8851_net *ks = ee->data;
1124 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1125 
1126 	if (ee->drive_data)
1127 		val |= EEPCR_EESRWA;
1128 	if (ee->reg_data_in)
1129 		val |= EEPCR_EEDO;
1130 	if (ee->reg_data_clock)
1131 		val |= EEPCR_EESCK;
1132 	if (ee->reg_chip_select)
1133 		val |= EEPCR_EECS;
1134 
1135 	ks8851_wrreg16(ks, KS_EEPCR, val);
1136 }
1137 
1138 /**
1139  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1140  * @ks: The network device state.
1141  *
1142  * Check for the presence of an EEPROM, and then activate software access
1143  * to the device.
1144  */
ks8851_eeprom_claim(struct ks8851_net * ks)1145 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1146 {
1147 	if (!(ks->rc_ccr & CCR_EEPROM))
1148 		return -ENOENT;
1149 
1150 	mutex_lock(&ks->lock);
1151 
1152 	/* start with clock low, cs high */
1153 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1154 	return 0;
1155 }
1156 
1157 /**
1158  * ks8851_eeprom_release - release the EEPROM interface
1159  * @ks: The device state
1160  *
1161  * Release the software access to the device EEPROM
1162  */
ks8851_eeprom_release(struct ks8851_net * ks)1163 static void ks8851_eeprom_release(struct ks8851_net *ks)
1164 {
1165 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1166 
1167 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1168 	mutex_unlock(&ks->lock);
1169 }
1170 
1171 #define KS_EEPROM_MAGIC (0x00008851)
1172 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1173 static int ks8851_set_eeprom(struct net_device *dev,
1174 			     struct ethtool_eeprom *ee, u8 *data)
1175 {
1176 	struct ks8851_net *ks = netdev_priv(dev);
1177 	int offset = ee->offset;
1178 	int len = ee->len;
1179 	u16 tmp;
1180 
1181 	/* currently only support byte writing */
1182 	if (len != 1)
1183 		return -EINVAL;
1184 
1185 	if (ee->magic != KS_EEPROM_MAGIC)
1186 		return -EINVAL;
1187 
1188 	if (ks8851_eeprom_claim(ks))
1189 		return -ENOENT;
1190 
1191 	eeprom_93cx6_wren(&ks->eeprom, true);
1192 
1193 	/* ethtool currently only supports writing bytes, which means
1194 	 * we have to read/modify/write our 16bit EEPROMs */
1195 
1196 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1197 
1198 	if (offset & 1) {
1199 		tmp &= 0xff;
1200 		tmp |= *data << 8;
1201 	} else {
1202 		tmp &= 0xff00;
1203 		tmp |= *data;
1204 	}
1205 
1206 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1207 	eeprom_93cx6_wren(&ks->eeprom, false);
1208 
1209 	ks8851_eeprom_release(ks);
1210 
1211 	return 0;
1212 }
1213 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1214 static int ks8851_get_eeprom(struct net_device *dev,
1215 			     struct ethtool_eeprom *ee, u8 *data)
1216 {
1217 	struct ks8851_net *ks = netdev_priv(dev);
1218 	int offset = ee->offset;
1219 	int len = ee->len;
1220 
1221 	/* must be 2 byte aligned */
1222 	if (len & 1 || offset & 1)
1223 		return -EINVAL;
1224 
1225 	if (ks8851_eeprom_claim(ks))
1226 		return -ENOENT;
1227 
1228 	ee->magic = KS_EEPROM_MAGIC;
1229 
1230 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1231 	ks8851_eeprom_release(ks);
1232 
1233 	return 0;
1234 }
1235 
ks8851_get_eeprom_len(struct net_device * dev)1236 static int ks8851_get_eeprom_len(struct net_device *dev)
1237 {
1238 	struct ks8851_net *ks = netdev_priv(dev);
1239 
1240 	/* currently, we assume it is an 93C46 attached, so return 128 */
1241 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1242 }
1243 
1244 static const struct ethtool_ops ks8851_ethtool_ops = {
1245 	.get_drvinfo	= ks8851_get_drvinfo,
1246 	.get_msglevel	= ks8851_get_msglevel,
1247 	.set_msglevel	= ks8851_set_msglevel,
1248 	.get_settings	= ks8851_get_settings,
1249 	.set_settings	= ks8851_set_settings,
1250 	.get_link	= ks8851_get_link,
1251 	.nway_reset	= ks8851_nway_reset,
1252 	.get_eeprom_len	= ks8851_get_eeprom_len,
1253 	.get_eeprom	= ks8851_get_eeprom,
1254 	.set_eeprom	= ks8851_set_eeprom,
1255 };
1256 
1257 /* MII interface controls */
1258 
1259 /**
1260  * ks8851_phy_reg - convert MII register into a KS8851 register
1261  * @reg: MII register number.
1262  *
1263  * Return the KS8851 register number for the corresponding MII PHY register
1264  * if possible. Return zero if the MII register has no direct mapping to the
1265  * KS8851 register set.
1266  */
ks8851_phy_reg(int reg)1267 static int ks8851_phy_reg(int reg)
1268 {
1269 	switch (reg) {
1270 	case MII_BMCR:
1271 		return KS_P1MBCR;
1272 	case MII_BMSR:
1273 		return KS_P1MBSR;
1274 	case MII_PHYSID1:
1275 		return KS_PHY1ILR;
1276 	case MII_PHYSID2:
1277 		return KS_PHY1IHR;
1278 	case MII_ADVERTISE:
1279 		return KS_P1ANAR;
1280 	case MII_LPA:
1281 		return KS_P1ANLPR;
1282 	}
1283 
1284 	return 0x0;
1285 }
1286 
1287 /**
1288  * ks8851_phy_read - MII interface PHY register read.
1289  * @dev: The network device the PHY is on.
1290  * @phy_addr: Address of PHY (ignored as we only have one)
1291  * @reg: The register to read.
1292  *
1293  * This call reads data from the PHY register specified in @reg. Since the
1294  * device does not support all the MII registers, the non-existent values
1295  * are always returned as zero.
1296  *
1297  * We return zero for unsupported registers as the MII code does not check
1298  * the value returned for any error status, and simply returns it to the
1299  * caller. The mii-tool that the driver was tested with takes any -ve error
1300  * as real PHY capabilities, thus displaying incorrect data to the user.
1301  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1302 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1303 {
1304 	struct ks8851_net *ks = netdev_priv(dev);
1305 	int ksreg;
1306 	int result;
1307 
1308 	ksreg = ks8851_phy_reg(reg);
1309 	if (!ksreg)
1310 		return 0x0;	/* no error return allowed, so use zero */
1311 
1312 	mutex_lock(&ks->lock);
1313 	result = ks8851_rdreg16(ks, ksreg);
1314 	mutex_unlock(&ks->lock);
1315 
1316 	return result;
1317 }
1318 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1319 static void ks8851_phy_write(struct net_device *dev,
1320 			     int phy, int reg, int value)
1321 {
1322 	struct ks8851_net *ks = netdev_priv(dev);
1323 	int ksreg;
1324 
1325 	ksreg = ks8851_phy_reg(reg);
1326 	if (ksreg) {
1327 		mutex_lock(&ks->lock);
1328 		ks8851_wrreg16(ks, ksreg, value);
1329 		mutex_unlock(&ks->lock);
1330 	}
1331 }
1332 
1333 /**
1334  * ks8851_read_selftest - read the selftest memory info.
1335  * @ks: The device state
1336  *
1337  * Read and check the TX/RX memory selftest information.
1338  */
ks8851_read_selftest(struct ks8851_net * ks)1339 static int ks8851_read_selftest(struct ks8851_net *ks)
1340 {
1341 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1342 	int ret = 0;
1343 	unsigned rd;
1344 
1345 	rd = ks8851_rdreg16(ks, KS_MBIR);
1346 
1347 	if ((rd & both_done) != both_done) {
1348 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1349 		return 0;
1350 	}
1351 
1352 	if (rd & MBIR_TXMBFA) {
1353 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1354 		ret |= 1;
1355 	}
1356 
1357 	if (rd & MBIR_RXMBFA) {
1358 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1359 		ret |= 2;
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 /* driver bus management functions */
1366 
1367 #ifdef CONFIG_PM_SLEEP
1368 
ks8851_suspend(struct device * dev)1369 static int ks8851_suspend(struct device *dev)
1370 {
1371 	struct ks8851_net *ks = dev_get_drvdata(dev);
1372 	struct net_device *netdev = ks->netdev;
1373 
1374 	if (netif_running(netdev)) {
1375 		netif_device_detach(netdev);
1376 		ks8851_net_stop(netdev);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
ks8851_resume(struct device * dev)1382 static int ks8851_resume(struct device *dev)
1383 {
1384 	struct ks8851_net *ks = dev_get_drvdata(dev);
1385 	struct net_device *netdev = ks->netdev;
1386 
1387 	if (netif_running(netdev)) {
1388 		ks8851_net_open(netdev);
1389 		netif_device_attach(netdev);
1390 	}
1391 
1392 	return 0;
1393 }
1394 #endif
1395 
1396 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1397 
ks8851_probe(struct spi_device * spi)1398 static int ks8851_probe(struct spi_device *spi)
1399 {
1400 	struct net_device *ndev;
1401 	struct ks8851_net *ks;
1402 	int ret;
1403 	unsigned cider;
1404 
1405 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1406 	if (!ndev)
1407 		return -ENOMEM;
1408 
1409 	spi->bits_per_word = 8;
1410 
1411 	ks = netdev_priv(ndev);
1412 
1413 	ks->netdev = ndev;
1414 	ks->spidev = spi;
1415 	ks->tx_space = 6144;
1416 
1417 	mutex_init(&ks->lock);
1418 	spin_lock_init(&ks->statelock);
1419 
1420 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1421 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1422 
1423 	/* initialise pre-made spi transfer messages */
1424 
1425 	spi_message_init(&ks->spi_msg1);
1426 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1427 
1428 	spi_message_init(&ks->spi_msg2);
1429 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1430 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1431 
1432 	/* setup EEPROM state */
1433 
1434 	ks->eeprom.data = ks;
1435 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1436 	ks->eeprom.register_read = ks8851_eeprom_regread;
1437 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1438 
1439 	/* setup mii state */
1440 	ks->mii.dev		= ndev;
1441 	ks->mii.phy_id		= 1,
1442 	ks->mii.phy_id_mask	= 1;
1443 	ks->mii.reg_num_mask	= 0xf;
1444 	ks->mii.mdio_read	= ks8851_phy_read;
1445 	ks->mii.mdio_write	= ks8851_phy_write;
1446 
1447 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1448 
1449 	/* set the default message enable */
1450 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1451 						     NETIF_MSG_PROBE |
1452 						     NETIF_MSG_LINK));
1453 
1454 	skb_queue_head_init(&ks->txq);
1455 
1456 	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1457 	SET_NETDEV_DEV(ndev, &spi->dev);
1458 
1459 	spi_set_drvdata(spi, ks);
1460 
1461 	ndev->if_port = IF_PORT_100BASET;
1462 	ndev->netdev_ops = &ks8851_netdev_ops;
1463 	ndev->irq = spi->irq;
1464 
1465 	/* issue a global soft reset to reset the device. */
1466 	ks8851_soft_reset(ks, GRR_GSR);
1467 
1468 	/* simple check for a valid chip being connected to the bus */
1469 	cider = ks8851_rdreg16(ks, KS_CIDER);
1470 	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1471 		dev_err(&spi->dev, "failed to read device ID\n");
1472 		ret = -ENODEV;
1473 		goto err_id;
1474 	}
1475 
1476 	/* cache the contents of the CCR register for EEPROM, etc. */
1477 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1478 
1479 	if (ks->rc_ccr & CCR_EEPROM)
1480 		ks->eeprom_size = 128;
1481 	else
1482 		ks->eeprom_size = 0;
1483 
1484 	ks8851_read_selftest(ks);
1485 	ks8851_init_mac(ks);
1486 
1487 	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1488 				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1489 				   ndev->name, ks);
1490 	if (ret < 0) {
1491 		dev_err(&spi->dev, "failed to get irq\n");
1492 		goto err_irq;
1493 	}
1494 
1495 	ret = register_netdev(ndev);
1496 	if (ret) {
1497 		dev_err(&spi->dev, "failed to register network device\n");
1498 		goto err_netdev;
1499 	}
1500 
1501 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1502 		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1503 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1504 
1505 	return 0;
1506 
1507 
1508 err_netdev:
1509 	free_irq(ndev->irq, ks);
1510 
1511 err_id:
1512 err_irq:
1513 	free_netdev(ndev);
1514 	return ret;
1515 }
1516 
ks8851_remove(struct spi_device * spi)1517 static int ks8851_remove(struct spi_device *spi)
1518 {
1519 	struct ks8851_net *priv = spi_get_drvdata(spi);
1520 
1521 	if (netif_msg_drv(priv))
1522 		dev_info(&spi->dev, "remove\n");
1523 
1524 	unregister_netdev(priv->netdev);
1525 	free_irq(spi->irq, priv);
1526 	free_netdev(priv->netdev);
1527 
1528 	return 0;
1529 }
1530 
1531 static struct spi_driver ks8851_driver = {
1532 	.driver = {
1533 		.name = "ks8851",
1534 		.owner = THIS_MODULE,
1535 		.pm = &ks8851_pm_ops,
1536 	},
1537 	.probe = ks8851_probe,
1538 	.remove = ks8851_remove,
1539 };
1540 module_spi_driver(ks8851_driver);
1541 
1542 MODULE_DESCRIPTION("KS8851 Network driver");
1543 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1544 MODULE_LICENSE("GPL");
1545 
1546 module_param_named(message, msg_enable, int, 0);
1547 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1548 MODULE_ALIAS("spi:ks8851");
1549