• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * drivers/net/ethernet/micrel/ks8851_mll.c
3  * Copyright (c) 2009 Micrel Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* Supports:
20  * KS8851 16bit MLL chip from Micrel Inc.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/ks8851_mll.h>
38 
39 #define	DRV_NAME	"ks8851_mll"
40 
41 static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
42 #define MAX_RECV_FRAMES			255
43 #define MAX_BUF_SIZE			2048
44 #define TX_BUF_SIZE			2000
45 #define RX_BUF_SIZE			2000
46 
47 #define KS_CCR				0x08
48 #define CCR_EEPROM			(1 << 9)
49 #define CCR_SPI				(1 << 8)
50 #define CCR_8BIT			(1 << 7)
51 #define CCR_16BIT			(1 << 6)
52 #define CCR_32BIT			(1 << 5)
53 #define CCR_SHARED			(1 << 4)
54 #define CCR_32PIN			(1 << 0)
55 
56 /* MAC address registers */
57 #define KS_MARL				0x10
58 #define KS_MARM				0x12
59 #define KS_MARH				0x14
60 
61 #define KS_OBCR				0x20
62 #define OBCR_ODS_16MA			(1 << 6)
63 
64 #define KS_EEPCR			0x22
65 #define EEPCR_EESA			(1 << 4)
66 #define EEPCR_EESB			(1 << 3)
67 #define EEPCR_EEDO			(1 << 2)
68 #define EEPCR_EESCK			(1 << 1)
69 #define EEPCR_EECS			(1 << 0)
70 
71 #define KS_MBIR				0x24
72 #define MBIR_TXMBF			(1 << 12)
73 #define MBIR_TXMBFA			(1 << 11)
74 #define MBIR_RXMBF			(1 << 4)
75 #define MBIR_RXMBFA			(1 << 3)
76 
77 #define KS_GRR				0x26
78 #define GRR_QMU				(1 << 1)
79 #define GRR_GSR				(1 << 0)
80 
81 #define KS_WFCR				0x2A
82 #define WFCR_MPRXE			(1 << 7)
83 #define WFCR_WF3E			(1 << 3)
84 #define WFCR_WF2E			(1 << 2)
85 #define WFCR_WF1E			(1 << 1)
86 #define WFCR_WF0E			(1 << 0)
87 
88 #define KS_WF0CRC0			0x30
89 #define KS_WF0CRC1			0x32
90 #define KS_WF0BM0			0x34
91 #define KS_WF0BM1			0x36
92 #define KS_WF0BM2			0x38
93 #define KS_WF0BM3			0x3A
94 
95 #define KS_WF1CRC0			0x40
96 #define KS_WF1CRC1			0x42
97 #define KS_WF1BM0			0x44
98 #define KS_WF1BM1			0x46
99 #define KS_WF1BM2			0x48
100 #define KS_WF1BM3			0x4A
101 
102 #define KS_WF2CRC0			0x50
103 #define KS_WF2CRC1			0x52
104 #define KS_WF2BM0			0x54
105 #define KS_WF2BM1			0x56
106 #define KS_WF2BM2			0x58
107 #define KS_WF2BM3			0x5A
108 
109 #define KS_WF3CRC0			0x60
110 #define KS_WF3CRC1			0x62
111 #define KS_WF3BM0			0x64
112 #define KS_WF3BM1			0x66
113 #define KS_WF3BM2			0x68
114 #define KS_WF3BM3			0x6A
115 
116 #define KS_TXCR				0x70
117 #define TXCR_TCGICMP			(1 << 8)
118 #define TXCR_TCGUDP			(1 << 7)
119 #define TXCR_TCGTCP			(1 << 6)
120 #define TXCR_TCGIP			(1 << 5)
121 #define TXCR_FTXQ			(1 << 4)
122 #define TXCR_TXFCE			(1 << 3)
123 #define TXCR_TXPE			(1 << 2)
124 #define TXCR_TXCRC			(1 << 1)
125 #define TXCR_TXE			(1 << 0)
126 
127 #define KS_TXSR				0x72
128 #define TXSR_TXLC			(1 << 13)
129 #define TXSR_TXMC			(1 << 12)
130 #define TXSR_TXFID_MASK			(0x3f << 0)
131 #define TXSR_TXFID_SHIFT		(0)
132 #define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)
133 
134 
135 #define KS_RXCR1			0x74
136 #define RXCR1_FRXQ			(1 << 15)
137 #define RXCR1_RXUDPFCC			(1 << 14)
138 #define RXCR1_RXTCPFCC			(1 << 13)
139 #define RXCR1_RXIPFCC			(1 << 12)
140 #define RXCR1_RXPAFMA			(1 << 11)
141 #define RXCR1_RXFCE			(1 << 10)
142 #define RXCR1_RXEFE			(1 << 9)
143 #define RXCR1_RXMAFMA			(1 << 8)
144 #define RXCR1_RXBE			(1 << 7)
145 #define RXCR1_RXME			(1 << 6)
146 #define RXCR1_RXUE			(1 << 5)
147 #define RXCR1_RXAE			(1 << 4)
148 #define RXCR1_RXINVF			(1 << 1)
149 #define RXCR1_RXE			(1 << 0)
150 #define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
151 					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
152 
153 #define KS_RXCR2			0x76
154 #define RXCR2_SRDBL_MASK		(0x7 << 5)
155 #define RXCR2_SRDBL_SHIFT		(5)
156 #define RXCR2_SRDBL_4B			(0x0 << 5)
157 #define RXCR2_SRDBL_8B			(0x1 << 5)
158 #define RXCR2_SRDBL_16B			(0x2 << 5)
159 #define RXCR2_SRDBL_32B			(0x3 << 5)
160 /* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
161 #define RXCR2_IUFFP			(1 << 4)
162 #define RXCR2_RXIUFCEZ			(1 << 3)
163 #define RXCR2_UDPLFE			(1 << 2)
164 #define RXCR2_RXICMPFCC			(1 << 1)
165 #define RXCR2_RXSAF			(1 << 0)
166 
167 #define KS_TXMIR			0x78
168 
169 #define KS_RXFHSR			0x7C
170 #define RXFSHR_RXFV			(1 << 15)
171 #define RXFSHR_RXICMPFCS		(1 << 13)
172 #define RXFSHR_RXIPFCS			(1 << 12)
173 #define RXFSHR_RXTCPFCS			(1 << 11)
174 #define RXFSHR_RXUDPFCS			(1 << 10)
175 #define RXFSHR_RXBF			(1 << 7)
176 #define RXFSHR_RXMF			(1 << 6)
177 #define RXFSHR_RXUF			(1 << 5)
178 #define RXFSHR_RXMR			(1 << 4)
179 #define RXFSHR_RXFT			(1 << 3)
180 #define RXFSHR_RXFTL			(1 << 2)
181 #define RXFSHR_RXRF			(1 << 1)
182 #define RXFSHR_RXCE			(1 << 0)
183 #define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
184 					RXFSHR_RXFTL | RXFSHR_RXMR |\
185 					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
186 					RXFSHR_RXTCPFCS)
187 #define KS_RXFHBCR			0x7E
188 #define RXFHBCR_CNT_MASK		0x0FFF
189 
190 #define KS_TXQCR			0x80
191 #define TXQCR_AETFE			(1 << 2)
192 #define TXQCR_TXQMAM			(1 << 1)
193 #define TXQCR_METFE			(1 << 0)
194 
195 #define KS_RXQCR			0x82
196 #define RXQCR_RXDTTS			(1 << 12)
197 #define RXQCR_RXDBCTS			(1 << 11)
198 #define RXQCR_RXFCTS			(1 << 10)
199 #define RXQCR_RXIPHTOE			(1 << 9)
200 #define RXQCR_RXDTTE			(1 << 7)
201 #define RXQCR_RXDBCTE			(1 << 6)
202 #define RXQCR_RXFCTE			(1 << 5)
203 #define RXQCR_ADRFE			(1 << 4)
204 #define RXQCR_SDA			(1 << 3)
205 #define RXQCR_RRXEF			(1 << 0)
206 #define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
207 
208 #define KS_TXFDPR			0x84
209 #define TXFDPR_TXFPAI			(1 << 14)
210 #define TXFDPR_TXFP_MASK		(0x7ff << 0)
211 #define TXFDPR_TXFP_SHIFT		(0)
212 
213 #define KS_RXFDPR			0x86
214 #define RXFDPR_RXFPAI			(1 << 14)
215 
216 #define KS_RXDTTR			0x8C
217 #define KS_RXDBCTR			0x8E
218 
219 #define KS_IER				0x90
220 #define KS_ISR				0x92
221 #define IRQ_LCI				(1 << 15)
222 #define IRQ_TXI				(1 << 14)
223 #define IRQ_RXI				(1 << 13)
224 #define IRQ_RXOI			(1 << 11)
225 #define IRQ_TXPSI			(1 << 9)
226 #define IRQ_RXPSI			(1 << 8)
227 #define IRQ_TXSAI			(1 << 6)
228 #define IRQ_RXWFDI			(1 << 5)
229 #define IRQ_RXMPDI			(1 << 4)
230 #define IRQ_LDI				(1 << 3)
231 #define IRQ_EDI				(1 << 2)
232 #define IRQ_SPIBEI			(1 << 1)
233 #define IRQ_DEDI			(1 << 0)
234 
235 #define KS_RXFCTR			0x9C
236 #define RXFCTR_THRESHOLD_MASK     	0x00FF
237 
238 #define KS_RXFC				0x9D
239 #define RXFCTR_RXFC_MASK		(0xff << 8)
240 #define RXFCTR_RXFC_SHIFT		(8)
241 #define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
242 #define RXFCTR_RXFCT_MASK		(0xff << 0)
243 #define RXFCTR_RXFCT_SHIFT		(0)
244 
245 #define KS_TXNTFSR			0x9E
246 
247 #define KS_MAHTR0			0xA0
248 #define KS_MAHTR1			0xA2
249 #define KS_MAHTR2			0xA4
250 #define KS_MAHTR3			0xA6
251 
252 #define KS_FCLWR			0xB0
253 #define KS_FCHWR			0xB2
254 #define KS_FCOWR			0xB4
255 
256 #define KS_CIDER			0xC0
257 #define CIDER_ID			0x8870
258 #define CIDER_REV_MASK			(0x7 << 1)
259 #define CIDER_REV_SHIFT			(1)
260 #define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)
261 
262 #define KS_CGCR				0xC6
263 #define KS_IACR				0xC8
264 #define IACR_RDEN			(1 << 12)
265 #define IACR_TSEL_MASK			(0x3 << 10)
266 #define IACR_TSEL_SHIFT			(10)
267 #define IACR_TSEL_MIB			(0x3 << 10)
268 #define IACR_ADDR_MASK			(0x1f << 0)
269 #define IACR_ADDR_SHIFT			(0)
270 
271 #define KS_IADLR			0xD0
272 #define KS_IAHDR			0xD2
273 
274 #define KS_PMECR			0xD4
275 #define PMECR_PME_DELAY			(1 << 14)
276 #define PMECR_PME_POL			(1 << 12)
277 #define PMECR_WOL_WAKEUP		(1 << 11)
278 #define PMECR_WOL_MAGICPKT		(1 << 10)
279 #define PMECR_WOL_LINKUP		(1 << 9)
280 #define PMECR_WOL_ENERGY		(1 << 8)
281 #define PMECR_AUTO_WAKE_EN		(1 << 7)
282 #define PMECR_WAKEUP_NORMAL		(1 << 6)
283 #define PMECR_WKEVT_MASK		(0xf << 2)
284 #define PMECR_WKEVT_SHIFT		(2)
285 #define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
286 #define PMECR_WKEVT_ENERGY		(0x1 << 2)
287 #define PMECR_WKEVT_LINK		(0x2 << 2)
288 #define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
289 #define PMECR_WKEVT_FRAME		(0x8 << 2)
290 #define PMECR_PM_MASK			(0x3 << 0)
291 #define PMECR_PM_SHIFT			(0)
292 #define PMECR_PM_NORMAL			(0x0 << 0)
293 #define PMECR_PM_ENERGY			(0x1 << 0)
294 #define PMECR_PM_SOFTDOWN		(0x2 << 0)
295 #define PMECR_PM_POWERSAVE		(0x3 << 0)
296 
297 /* Standard MII PHY data */
298 #define KS_P1MBCR			0xE4
299 #define P1MBCR_FORCE_FDX		(1 << 8)
300 
301 #define KS_P1MBSR			0xE6
302 #define P1MBSR_AN_COMPLETE		(1 << 5)
303 #define P1MBSR_AN_CAPABLE		(1 << 3)
304 #define P1MBSR_LINK_UP			(1 << 2)
305 
306 #define KS_PHY1ILR			0xE8
307 #define KS_PHY1IHR			0xEA
308 #define KS_P1ANAR			0xEC
309 #define KS_P1ANLPR			0xEE
310 
311 #define KS_P1SCLMD			0xF4
312 #define P1SCLMD_LEDOFF			(1 << 15)
313 #define P1SCLMD_TXIDS			(1 << 14)
314 #define P1SCLMD_RESTARTAN		(1 << 13)
315 #define P1SCLMD_DISAUTOMDIX		(1 << 10)
316 #define P1SCLMD_FORCEMDIX		(1 << 9)
317 #define P1SCLMD_AUTONEGEN		(1 << 7)
318 #define P1SCLMD_FORCE100		(1 << 6)
319 #define P1SCLMD_FORCEFDX		(1 << 5)
320 #define P1SCLMD_ADV_FLOW		(1 << 4)
321 #define P1SCLMD_ADV_100BT_FDX		(1 << 3)
322 #define P1SCLMD_ADV_100BT_HDX		(1 << 2)
323 #define P1SCLMD_ADV_10BT_FDX		(1 << 1)
324 #define P1SCLMD_ADV_10BT_HDX		(1 << 0)
325 
326 #define KS_P1CR				0xF6
327 #define P1CR_HP_MDIX			(1 << 15)
328 #define P1CR_REV_POL			(1 << 13)
329 #define P1CR_OP_100M			(1 << 10)
330 #define P1CR_OP_FDX			(1 << 9)
331 #define P1CR_OP_MDI			(1 << 7)
332 #define P1CR_AN_DONE			(1 << 6)
333 #define P1CR_LINK_GOOD			(1 << 5)
334 #define P1CR_PNTR_FLOW			(1 << 4)
335 #define P1CR_PNTR_100BT_FDX		(1 << 3)
336 #define P1CR_PNTR_100BT_HDX		(1 << 2)
337 #define P1CR_PNTR_10BT_FDX		(1 << 1)
338 #define P1CR_PNTR_10BT_HDX		(1 << 0)
339 
340 /* TX Frame control */
341 
342 #define TXFR_TXIC			(1 << 15)
343 #define TXFR_TXFID_MASK			(0x3f << 0)
344 #define TXFR_TXFID_SHIFT		(0)
345 
346 #define KS_P1SR				0xF8
347 #define P1SR_HP_MDIX			(1 << 15)
348 #define P1SR_REV_POL			(1 << 13)
349 #define P1SR_OP_100M			(1 << 10)
350 #define P1SR_OP_FDX			(1 << 9)
351 #define P1SR_OP_MDI			(1 << 7)
352 #define P1SR_AN_DONE			(1 << 6)
353 #define P1SR_LINK_GOOD			(1 << 5)
354 #define P1SR_PNTR_FLOW			(1 << 4)
355 #define P1SR_PNTR_100BT_FDX		(1 << 3)
356 #define P1SR_PNTR_100BT_HDX		(1 << 2)
357 #define P1SR_PNTR_10BT_FDX		(1 << 1)
358 #define P1SR_PNTR_10BT_HDX		(1 << 0)
359 
360 #define	ENUM_BUS_NONE			0
361 #define	ENUM_BUS_8BIT			1
362 #define	ENUM_BUS_16BIT			2
363 #define	ENUM_BUS_32BIT			3
364 
365 #define MAX_MCAST_LST			32
366 #define HW_MCAST_SIZE			8
367 
368 /**
369  * union ks_tx_hdr - tx header data
370  * @txb: The header as bytes
371  * @txw: The header as 16bit, little-endian words
372  *
373  * A dual representation of the tx header data to allow
374  * access to individual bytes, and to allow 16bit accesses
375  * with 16bit alignment.
376  */
377 union ks_tx_hdr {
378 	u8      txb[4];
379 	__le16  txw[2];
380 };
381 
382 /**
383  * struct ks_net - KS8851 driver private data
384  * @net_device 	: The network device we're bound to
385  * @hw_addr	: start address of data register.
386  * @hw_addr_cmd	: start address of command register.
387  * @txh    	: temporaly buffer to save status/length.
388  * @lock	: Lock to ensure that the device is not accessed when busy.
389  * @pdev	: Pointer to platform device.
390  * @mii		: The MII state information for the mii calls.
391  * @frame_head_info   	: frame header information for multi-pkt rx.
392  * @statelock	: Lock on this structure for tx list.
393  * @msg_enable	: The message flags controlling driver output (see ethtool).
394  * @frame_cnt  	: number of frames received.
395  * @bus_width  	: i/o bus width.
396  * @rc_rxqcr	: Cached copy of KS_RXQCR.
397  * @rc_txcr	: Cached copy of KS_TXCR.
398  * @rc_ier	: Cached copy of KS_IER.
399  * @sharedbus  	: Multipex(addr and data bus) mode indicator.
400  * @cmd_reg_cache	: command register cached.
401  * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
402  * @promiscuous	: promiscuous mode indicator.
403  * @all_mcast  	: mutlicast indicator.
404  * @mcast_lst_size   	: size of multicast list.
405  * @mcast_lst    	: multicast list.
406  * @mcast_bits    	: multicast enabed.
407  * @mac_addr   		: MAC address assigned to this device.
408  * @fid    		: frame id.
409  * @extra_byte    	: number of extra byte prepended rx pkt.
410  * @enabled    		: indicator this device works.
411  *
412  * The @lock ensures that the chip is protected when certain operations are
413  * in progress. When the read or write packet transfer is in progress, most
414  * of the chip registers are not accessible until the transfer is finished and
415  * the DMA has been de-asserted.
416  *
417  * The @statelock is used to protect information in the structure which may
418  * need to be accessed via several sources, such as the network driver layer
419  * or one of the work queues.
420  *
421  */
422 
423 /* Receive multiplex framer header info */
424 struct type_frame_head {
425 	u16	sts;         /* Frame status */
426 	u16	len;         /* Byte count */
427 };
428 
429 struct ks_net {
430 	struct net_device	*netdev;
431 	void __iomem    	*hw_addr;
432 	void __iomem    	*hw_addr_cmd;
433 	union ks_tx_hdr		txh ____cacheline_aligned;
434 	struct mutex      	lock; /* spinlock to be interrupt safe */
435 	struct platform_device *pdev;
436 	struct mii_if_info	mii;
437 	struct type_frame_head	*frame_head_info;
438 	spinlock_t		statelock;
439 	u32			msg_enable;
440 	u32			frame_cnt;
441 	int			bus_width;
442 
443 	u16			rc_rxqcr;
444 	u16			rc_txcr;
445 	u16			rc_ier;
446 	u16			sharedbus;
447 	u16			cmd_reg_cache;
448 	u16			cmd_reg_cache_int;
449 	u16			promiscuous;
450 	u16			all_mcast;
451 	u16			mcast_lst_size;
452 	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
453 	u8			mcast_bits[HW_MCAST_SIZE];
454 	u8			mac_addr[6];
455 	u8                      fid;
456 	u8			extra_byte;
457 	u8			enabled;
458 };
459 
460 static int msg_enable;
461 
462 #define BE3             0x8000      /* Byte Enable 3 */
463 #define BE2             0x4000      /* Byte Enable 2 */
464 #define BE1             0x2000      /* Byte Enable 1 */
465 #define BE0             0x1000      /* Byte Enable 0 */
466 
467 /* register read/write calls.
468  *
469  * All these calls issue transactions to access the chip's registers. They
470  * all require that the necessary lock is held to prevent accesses when the
471  * chip is busy transferring packet data (RX/TX FIFO accesses).
472  */
473 
474 /**
475  * ks_rdreg8 - read 8 bit register from device
476  * @ks	  : The chip information
477  * @offset: The register address
478  *
479  * Read a 8bit register from the chip, returning the result
480  */
ks_rdreg8(struct ks_net * ks,int offset)481 static u8 ks_rdreg8(struct ks_net *ks, int offset)
482 {
483 	u16 data;
484 	u8 shift_bit = offset & 0x03;
485 	u8 shift_data = (offset & 1) << 3;
486 	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
487 	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
488 	data  = ioread16(ks->hw_addr);
489 	return (u8)(data >> shift_data);
490 }
491 
492 /**
493  * ks_rdreg16 - read 16 bit register from device
494  * @ks	  : The chip information
495  * @offset: The register address
496  *
497  * Read a 16bit register from the chip, returning the result
498  */
499 
ks_rdreg16(struct ks_net * ks,int offset)500 static u16 ks_rdreg16(struct ks_net *ks, int offset)
501 {
502 	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
503 	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
504 	return ioread16(ks->hw_addr);
505 }
506 
507 /**
508  * ks_wrreg8 - write 8bit register value to chip
509  * @ks: The chip information
510  * @offset: The register address
511  * @value: The value to write
512  *
513  */
ks_wrreg8(struct ks_net * ks,int offset,u8 value)514 static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
515 {
516 	u8  shift_bit = (offset & 0x03);
517 	u16 value_write = (u16)(value << ((offset & 1) << 3));
518 	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
519 	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
520 	iowrite16(value_write, ks->hw_addr);
521 }
522 
523 /**
524  * ks_wrreg16 - write 16bit register value to chip
525  * @ks: The chip information
526  * @offset: The register address
527  * @value: The value to write
528  *
529  */
530 
ks_wrreg16(struct ks_net * ks,int offset,u16 value)531 static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
532 {
533 	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
534 	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
535 	iowrite16(value, ks->hw_addr);
536 }
537 
538 /**
539  * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
540  * @ks: The chip state
541  * @wptr: buffer address to save data
542  * @len: length in byte to read
543  *
544  */
ks_inblk(struct ks_net * ks,u16 * wptr,u32 len)545 static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
546 {
547 	len >>= 1;
548 	while (len--)
549 		*wptr++ = (u16)ioread16(ks->hw_addr);
550 }
551 
552 /**
553  * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
554  * @ks: The chip information
555  * @wptr: buffer address
556  * @len: length in byte to write
557  *
558  */
ks_outblk(struct ks_net * ks,u16 * wptr,u32 len)559 static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
560 {
561 	len >>= 1;
562 	while (len--)
563 		iowrite16(*wptr++, ks->hw_addr);
564 }
565 
ks_disable_int(struct ks_net * ks)566 static void ks_disable_int(struct ks_net *ks)
567 {
568 	ks_wrreg16(ks, KS_IER, 0x0000);
569 }  /* ks_disable_int */
570 
ks_enable_int(struct ks_net * ks)571 static void ks_enable_int(struct ks_net *ks)
572 {
573 	ks_wrreg16(ks, KS_IER, ks->rc_ier);
574 }  /* ks_enable_int */
575 
576 /**
577  * ks_tx_fifo_space - return the available hardware buffer size.
578  * @ks: The chip information
579  *
580  */
ks_tx_fifo_space(struct ks_net * ks)581 static inline u16 ks_tx_fifo_space(struct ks_net *ks)
582 {
583 	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
584 }
585 
586 /**
587  * ks_save_cmd_reg - save the command register from the cache.
588  * @ks: The chip information
589  *
590  */
ks_save_cmd_reg(struct ks_net * ks)591 static inline void ks_save_cmd_reg(struct ks_net *ks)
592 {
593 	/*ks8851 MLL has a bug to read back the command register.
594 	* So rely on software to save the content of command register.
595 	*/
596 	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
597 }
598 
599 /**
600  * ks_restore_cmd_reg - restore the command register from the cache and
601  * 	write to hardware register.
602  * @ks: The chip information
603  *
604  */
ks_restore_cmd_reg(struct ks_net * ks)605 static inline void ks_restore_cmd_reg(struct ks_net *ks)
606 {
607 	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
608 	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
609 }
610 
611 /**
612  * ks_set_powermode - set power mode of the device
613  * @ks: The chip information
614  * @pwrmode: The power mode value to write to KS_PMECR.
615  *
616  * Change the power mode of the chip.
617  */
ks_set_powermode(struct ks_net * ks,unsigned pwrmode)618 static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
619 {
620 	unsigned pmecr;
621 
622 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
623 
624 	ks_rdreg16(ks, KS_GRR);
625 	pmecr = ks_rdreg16(ks, KS_PMECR);
626 	pmecr &= ~PMECR_PM_MASK;
627 	pmecr |= pwrmode;
628 
629 	ks_wrreg16(ks, KS_PMECR, pmecr);
630 }
631 
632 /**
633  * ks_read_config - read chip configuration of bus width.
634  * @ks: The chip information
635  *
636  */
ks_read_config(struct ks_net * ks)637 static void ks_read_config(struct ks_net *ks)
638 {
639 	u16 reg_data = 0;
640 
641 	/* Regardless of bus width, 8 bit read should always work.*/
642 	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
643 	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
644 
645 	/* addr/data bus are multiplexed */
646 	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
647 
648 	/* There are garbage data when reading data from QMU,
649 	depending on bus-width.
650 	*/
651 
652 	if (reg_data & CCR_8BIT) {
653 		ks->bus_width = ENUM_BUS_8BIT;
654 		ks->extra_byte = 1;
655 	} else if (reg_data & CCR_16BIT) {
656 		ks->bus_width = ENUM_BUS_16BIT;
657 		ks->extra_byte = 2;
658 	} else {
659 		ks->bus_width = ENUM_BUS_32BIT;
660 		ks->extra_byte = 4;
661 	}
662 }
663 
664 /**
665  * ks_soft_reset - issue one of the soft reset to the device
666  * @ks: The device state.
667  * @op: The bit(s) to set in the GRR
668  *
669  * Issue the relevant soft-reset command to the device's GRR register
670  * specified by @op.
671  *
672  * Note, the delays are in there as a caution to ensure that the reset
673  * has time to take effect and then complete. Since the datasheet does
674  * not currently specify the exact sequence, we have chosen something
675  * that seems to work with our device.
676  */
ks_soft_reset(struct ks_net * ks,unsigned op)677 static void ks_soft_reset(struct ks_net *ks, unsigned op)
678 {
679 	/* Disable interrupt first */
680 	ks_wrreg16(ks, KS_IER, 0x0000);
681 	ks_wrreg16(ks, KS_GRR, op);
682 	mdelay(10);	/* wait a short time to effect reset */
683 	ks_wrreg16(ks, KS_GRR, 0);
684 	mdelay(1);	/* wait for condition to clear */
685 }
686 
687 
ks_enable_qmu(struct ks_net * ks)688 void ks_enable_qmu(struct ks_net *ks)
689 {
690 	u16 w;
691 
692 	w = ks_rdreg16(ks, KS_TXCR);
693 	/* Enables QMU Transmit (TXCR). */
694 	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
695 
696 	/*
697 	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
698 	 * Enable
699 	 */
700 
701 	w = ks_rdreg16(ks, KS_RXQCR);
702 	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
703 
704 	/* Enables QMU Receive (RXCR1). */
705 	w = ks_rdreg16(ks, KS_RXCR1);
706 	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
707 	ks->enabled = true;
708 }  /* ks_enable_qmu */
709 
ks_disable_qmu(struct ks_net * ks)710 static void ks_disable_qmu(struct ks_net *ks)
711 {
712 	u16	w;
713 
714 	w = ks_rdreg16(ks, KS_TXCR);
715 
716 	/* Disables QMU Transmit (TXCR). */
717 	w  &= ~TXCR_TXE;
718 	ks_wrreg16(ks, KS_TXCR, w);
719 
720 	/* Disables QMU Receive (RXCR1). */
721 	w = ks_rdreg16(ks, KS_RXCR1);
722 	w &= ~RXCR1_RXE ;
723 	ks_wrreg16(ks, KS_RXCR1, w);
724 
725 	ks->enabled = false;
726 
727 }  /* ks_disable_qmu */
728 
729 /**
730  * ks_read_qmu - read 1 pkt data from the QMU.
731  * @ks: The chip information
732  * @buf: buffer address to save 1 pkt
733  * @len: Pkt length
734  * Here is the sequence to read 1 pkt:
735  *	1. set sudo DMA mode
736  *	2. read prepend data
737  *	3. read pkt data
738  *	4. reset sudo DMA Mode
739  */
ks_read_qmu(struct ks_net * ks,u16 * buf,u32 len)740 static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
741 {
742 	u32 r =  ks->extra_byte & 0x1 ;
743 	u32 w = ks->extra_byte - r;
744 
745 	/* 1. set sudo DMA mode */
746 	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
747 	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
748 
749 	/* 2. read prepend data */
750 	/**
751 	 * read 4 + extra bytes and discard them.
752 	 * extra bytes for dummy, 2 for status, 2 for len
753 	 */
754 
755 	/* use likely(r) for 8 bit access for performance */
756 	if (unlikely(r))
757 		ioread8(ks->hw_addr);
758 	ks_inblk(ks, buf, w + 2 + 2);
759 
760 	/* 3. read pkt data */
761 	ks_inblk(ks, buf, ALIGN(len, 4));
762 
763 	/* 4. reset sudo DMA Mode */
764 	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
765 }
766 
767 /**
768  * ks_rcv - read multiple pkts data from the QMU.
769  * @ks: The chip information
770  * @netdev: The network device being opened.
771  *
772  * Read all of header information before reading pkt content.
773  * It is not allowed only port of pkts in QMU after issuing
774  * interrupt ack.
775  */
ks_rcv(struct ks_net * ks,struct net_device * netdev)776 static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
777 {
778 	u32	i;
779 	struct type_frame_head *frame_hdr = ks->frame_head_info;
780 	struct sk_buff *skb;
781 
782 	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
783 
784 	/* read all header information */
785 	for (i = 0; i < ks->frame_cnt; i++) {
786 		/* Checking Received packet status */
787 		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
788 		/* Get packet len from hardware */
789 		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
790 		frame_hdr++;
791 	}
792 
793 	frame_hdr = ks->frame_head_info;
794 	while (ks->frame_cnt--) {
795 		if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
796 			     frame_hdr->len >= RX_BUF_SIZE ||
797 			     frame_hdr->len <= 0)) {
798 
799 			/* discard an invalid packet */
800 			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
801 			netdev->stats.rx_dropped++;
802 			if (!(frame_hdr->sts & RXFSHR_RXFV))
803 				netdev->stats.rx_frame_errors++;
804 			else
805 				netdev->stats.rx_length_errors++;
806 			frame_hdr++;
807 			continue;
808 		}
809 
810 		skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
811 		if (likely(skb)) {
812 			skb_reserve(skb, 2);
813 			/* read data block including CRC 4 bytes */
814 			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
815 			skb_put(skb, frame_hdr->len - 4);
816 			skb->protocol = eth_type_trans(skb, netdev);
817 			netif_rx(skb);
818 			/* exclude CRC size */
819 			netdev->stats.rx_bytes += frame_hdr->len - 4;
820 			netdev->stats.rx_packets++;
821 		} else {
822 			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
823 			netdev->stats.rx_dropped++;
824 		}
825 		frame_hdr++;
826 	}
827 }
828 
829 /**
830  * ks_update_link_status - link status update.
831  * @netdev: The network device being opened.
832  * @ks: The chip information
833  *
834  */
835 
ks_update_link_status(struct net_device * netdev,struct ks_net * ks)836 static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
837 {
838 	/* check the status of the link */
839 	u32 link_up_status;
840 	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
841 		netif_carrier_on(netdev);
842 		link_up_status = true;
843 	} else {
844 		netif_carrier_off(netdev);
845 		link_up_status = false;
846 	}
847 	netif_dbg(ks, link, ks->netdev,
848 		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
849 }
850 
851 /**
852  * ks_irq - device interrupt handler
853  * @irq: Interrupt number passed from the IRQ handler.
854  * @pw: The private word passed to register_irq(), our struct ks_net.
855  *
856  * This is the handler invoked to find out what happened
857  *
858  * Read the interrupt status, work out what needs to be done and then clear
859  * any of the interrupts that are not needed.
860  */
861 
ks_irq(int irq,void * pw)862 static irqreturn_t ks_irq(int irq, void *pw)
863 {
864 	struct net_device *netdev = pw;
865 	struct ks_net *ks = netdev_priv(netdev);
866 	u16 status;
867 
868 	/*this should be the first in IRQ handler */
869 	ks_save_cmd_reg(ks);
870 
871 	status = ks_rdreg16(ks, KS_ISR);
872 	if (unlikely(!status)) {
873 		ks_restore_cmd_reg(ks);
874 		return IRQ_NONE;
875 	}
876 
877 	ks_wrreg16(ks, KS_ISR, status);
878 
879 	if (likely(status & IRQ_RXI))
880 		ks_rcv(ks, netdev);
881 
882 	if (unlikely(status & IRQ_LCI))
883 		ks_update_link_status(netdev, ks);
884 
885 	if (unlikely(status & IRQ_TXI))
886 		netif_wake_queue(netdev);
887 
888 	if (unlikely(status & IRQ_LDI)) {
889 
890 		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
891 		pmecr &= ~PMECR_WKEVT_MASK;
892 		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
893 	}
894 
895 	if (unlikely(status & IRQ_RXOI))
896 		ks->netdev->stats.rx_over_errors++;
897 	/* this should be the last in IRQ handler*/
898 	ks_restore_cmd_reg(ks);
899 	return IRQ_HANDLED;
900 }
901 
902 
903 /**
904  * ks_net_open - open network device
905  * @netdev: The network device being opened.
906  *
907  * Called when the network device is marked active, such as a user executing
908  * 'ifconfig up' on the device.
909  */
ks_net_open(struct net_device * netdev)910 static int ks_net_open(struct net_device *netdev)
911 {
912 	struct ks_net *ks = netdev_priv(netdev);
913 	int err;
914 
915 #define	KS_INT_FLAGS	(IRQF_DISABLED|IRQF_TRIGGER_LOW)
916 	/* lock the card, even if we may not actually do anything
917 	 * else at the moment.
918 	 */
919 
920 	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
921 
922 	/* reset the HW */
923 	err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
924 
925 	if (err) {
926 		pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
927 		return err;
928 	}
929 
930 	/* wake up powermode to normal mode */
931 	ks_set_powermode(ks, PMECR_PM_NORMAL);
932 	mdelay(1);	/* wait for normal mode to take effect */
933 
934 	ks_wrreg16(ks, KS_ISR, 0xffff);
935 	ks_enable_int(ks);
936 	ks_enable_qmu(ks);
937 	netif_start_queue(ks->netdev);
938 
939 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
940 
941 	return 0;
942 }
943 
944 /**
945  * ks_net_stop - close network device
946  * @netdev: The device being closed.
947  *
948  * Called to close down a network device which has been active. Cancell any
949  * work, shutdown the RX and TX process and then place the chip into a low
950  * power state whilst it is not being used.
951  */
ks_net_stop(struct net_device * netdev)952 static int ks_net_stop(struct net_device *netdev)
953 {
954 	struct ks_net *ks = netdev_priv(netdev);
955 
956 	netif_info(ks, ifdown, netdev, "shutting down\n");
957 
958 	netif_stop_queue(netdev);
959 
960 	mutex_lock(&ks->lock);
961 
962 	/* turn off the IRQs and ack any outstanding */
963 	ks_wrreg16(ks, KS_IER, 0x0000);
964 	ks_wrreg16(ks, KS_ISR, 0xffff);
965 
966 	/* shutdown RX/TX QMU */
967 	ks_disable_qmu(ks);
968 
969 	/* set powermode to soft power down to save power */
970 	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
971 	free_irq(netdev->irq, netdev);
972 	mutex_unlock(&ks->lock);
973 	return 0;
974 }
975 
976 
977 /**
978  * ks_write_qmu - write 1 pkt data to the QMU.
979  * @ks: The chip information
980  * @pdata: buffer address to save 1 pkt
981  * @len: Pkt length in byte
982  * Here is the sequence to write 1 pkt:
983  *	1. set sudo DMA mode
984  *	2. write status/length
985  *	3. write pkt data
986  *	4. reset sudo DMA Mode
987  *	5. reset sudo DMA mode
988  *	6. Wait until pkt is out
989  */
ks_write_qmu(struct ks_net * ks,u8 * pdata,u16 len)990 static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
991 {
992 	/* start header at txb[0] to align txw entries */
993 	ks->txh.txw[0] = 0;
994 	ks->txh.txw[1] = cpu_to_le16(len);
995 
996 	/* 1. set sudo-DMA mode */
997 	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
998 	/* 2. write status/lenth info */
999 	ks_outblk(ks, ks->txh.txw, 4);
1000 	/* 3. write pkt data */
1001 	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1002 	/* 4. reset sudo-DMA mode */
1003 	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1004 	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1005 	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1006 	/* 6. wait until TXQCR_METFE is auto-cleared */
1007 	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1008 		;
1009 }
1010 
1011 /**
1012  * ks_start_xmit - transmit packet
1013  * @skb		: The buffer to transmit
1014  * @netdev	: The device used to transmit the packet.
1015  *
1016  * Called by the network layer to transmit the @skb.
1017  * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1018  * So while tx is in-progress, prevent IRQ interrupt from happenning.
1019  */
ks_start_xmit(struct sk_buff * skb,struct net_device * netdev)1020 static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1021 {
1022 	int retv = NETDEV_TX_OK;
1023 	struct ks_net *ks = netdev_priv(netdev);
1024 
1025 	disable_irq(netdev->irq);
1026 	ks_disable_int(ks);
1027 	spin_lock(&ks->statelock);
1028 
1029 	/* Extra space are required:
1030 	*  4 byte for alignment, 4 for status/length, 4 for CRC
1031 	*/
1032 
1033 	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1034 		ks_write_qmu(ks, skb->data, skb->len);
1035 		/* add tx statistics */
1036 		netdev->stats.tx_bytes += skb->len;
1037 		netdev->stats.tx_packets++;
1038 		dev_kfree_skb(skb);
1039 	} else
1040 		retv = NETDEV_TX_BUSY;
1041 	spin_unlock(&ks->statelock);
1042 	ks_enable_int(ks);
1043 	enable_irq(netdev->irq);
1044 	return retv;
1045 }
1046 
1047 /**
1048  * ks_start_rx - ready to serve pkts
1049  * @ks		: The chip information
1050  *
1051  */
ks_start_rx(struct ks_net * ks)1052 static void ks_start_rx(struct ks_net *ks)
1053 {
1054 	u16 cntl;
1055 
1056 	/* Enables QMU Receive (RXCR1). */
1057 	cntl = ks_rdreg16(ks, KS_RXCR1);
1058 	cntl |= RXCR1_RXE ;
1059 	ks_wrreg16(ks, KS_RXCR1, cntl);
1060 }  /* ks_start_rx */
1061 
1062 /**
1063  * ks_stop_rx - stop to serve pkts
1064  * @ks		: The chip information
1065  *
1066  */
ks_stop_rx(struct ks_net * ks)1067 static void ks_stop_rx(struct ks_net *ks)
1068 {
1069 	u16 cntl;
1070 
1071 	/* Disables QMU Receive (RXCR1). */
1072 	cntl = ks_rdreg16(ks, KS_RXCR1);
1073 	cntl &= ~RXCR1_RXE ;
1074 	ks_wrreg16(ks, KS_RXCR1, cntl);
1075 
1076 }  /* ks_stop_rx */
1077 
1078 static unsigned long const ethernet_polynomial = 0x04c11db7U;
1079 
ether_gen_crc(int length,u8 * data)1080 static unsigned long ether_gen_crc(int length, u8 *data)
1081 {
1082 	long crc = -1;
1083 	while (--length >= 0) {
1084 		u8 current_octet = *data++;
1085 		int bit;
1086 
1087 		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1088 			crc = (crc << 1) ^
1089 				((crc < 0) ^ (current_octet & 1) ?
1090 			ethernet_polynomial : 0);
1091 		}
1092 	}
1093 	return (unsigned long)crc;
1094 }  /* ether_gen_crc */
1095 
1096 /**
1097 * ks_set_grpaddr - set multicast information
1098 * @ks : The chip information
1099 */
1100 
ks_set_grpaddr(struct ks_net * ks)1101 static void ks_set_grpaddr(struct ks_net *ks)
1102 {
1103 	u8	i;
1104 	u32	index, position, value;
1105 
1106 	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1107 
1108 	for (i = 0; i < ks->mcast_lst_size; i++) {
1109 		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1110 		index = position >> 3;
1111 		value = 1 << (position & 7);
1112 		ks->mcast_bits[index] |= (u8)value;
1113 	}
1114 
1115 	for (i  = 0; i < HW_MCAST_SIZE; i++) {
1116 		if (i & 1) {
1117 			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1118 				(ks->mcast_bits[i] << 8) |
1119 				ks->mcast_bits[i - 1]);
1120 		}
1121 	}
1122 }  /* ks_set_grpaddr */
1123 
1124 /**
1125 * ks_clear_mcast - clear multicast information
1126 *
1127 * @ks : The chip information
1128 * This routine removes all mcast addresses set in the hardware.
1129 */
1130 
ks_clear_mcast(struct ks_net * ks)1131 static void ks_clear_mcast(struct ks_net *ks)
1132 {
1133 	u16	i, mcast_size;
1134 	for (i = 0; i < HW_MCAST_SIZE; i++)
1135 		ks->mcast_bits[i] = 0;
1136 
1137 	mcast_size = HW_MCAST_SIZE >> 2;
1138 	for (i = 0; i < mcast_size; i++)
1139 		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1140 }
1141 
ks_set_promis(struct ks_net * ks,u16 promiscuous_mode)1142 static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1143 {
1144 	u16		cntl;
1145 	ks->promiscuous = promiscuous_mode;
1146 	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1147 	cntl = ks_rdreg16(ks, KS_RXCR1);
1148 
1149 	cntl &= ~RXCR1_FILTER_MASK;
1150 	if (promiscuous_mode)
1151 		/* Enable Promiscuous mode */
1152 		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1153 	else
1154 		/* Disable Promiscuous mode (default normal mode) */
1155 		cntl |= RXCR1_RXPAFMA;
1156 
1157 	ks_wrreg16(ks, KS_RXCR1, cntl);
1158 
1159 	if (ks->enabled)
1160 		ks_start_rx(ks);
1161 
1162 }  /* ks_set_promis */
1163 
ks_set_mcast(struct ks_net * ks,u16 mcast)1164 static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1165 {
1166 	u16	cntl;
1167 
1168 	ks->all_mcast = mcast;
1169 	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1170 	cntl = ks_rdreg16(ks, KS_RXCR1);
1171 	cntl &= ~RXCR1_FILTER_MASK;
1172 	if (mcast)
1173 		/* Enable "Perfect with Multicast address passed mode" */
1174 		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1175 	else
1176 		/**
1177 		 * Disable "Perfect with Multicast address passed
1178 		 * mode" (normal mode).
1179 		 */
1180 		cntl |= RXCR1_RXPAFMA;
1181 
1182 	ks_wrreg16(ks, KS_RXCR1, cntl);
1183 
1184 	if (ks->enabled)
1185 		ks_start_rx(ks);
1186 }  /* ks_set_mcast */
1187 
ks_set_rx_mode(struct net_device * netdev)1188 static void ks_set_rx_mode(struct net_device *netdev)
1189 {
1190 	struct ks_net *ks = netdev_priv(netdev);
1191 	struct netdev_hw_addr *ha;
1192 
1193 	/* Turn on/off promiscuous mode. */
1194 	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1195 		ks_set_promis(ks,
1196 			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1197 	/* Turn on/off all mcast mode. */
1198 	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1199 		ks_set_mcast(ks,
1200 			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1201 	else
1202 		ks_set_promis(ks, false);
1203 
1204 	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1205 		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1206 			int i = 0;
1207 
1208 			netdev_for_each_mc_addr(ha, netdev) {
1209 				if (i >= MAX_MCAST_LST)
1210 					break;
1211 				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1212 			}
1213 			ks->mcast_lst_size = (u8)i;
1214 			ks_set_grpaddr(ks);
1215 		} else {
1216 			/**
1217 			 * List too big to support so
1218 			 * turn on all mcast mode.
1219 			 */
1220 			ks->mcast_lst_size = MAX_MCAST_LST;
1221 			ks_set_mcast(ks, true);
1222 		}
1223 	} else {
1224 		ks->mcast_lst_size = 0;
1225 		ks_clear_mcast(ks);
1226 	}
1227 } /* ks_set_rx_mode */
1228 
ks_set_mac(struct ks_net * ks,u8 * data)1229 static void ks_set_mac(struct ks_net *ks, u8 *data)
1230 {
1231 	u16 *pw = (u16 *)data;
1232 	u16 w, u;
1233 
1234 	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1235 
1236 	u = *pw++;
1237 	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1238 	ks_wrreg16(ks, KS_MARH, w);
1239 
1240 	u = *pw++;
1241 	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1242 	ks_wrreg16(ks, KS_MARM, w);
1243 
1244 	u = *pw;
1245 	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1246 	ks_wrreg16(ks, KS_MARL, w);
1247 
1248 	memcpy(ks->mac_addr, data, 6);
1249 
1250 	if (ks->enabled)
1251 		ks_start_rx(ks);
1252 }
1253 
ks_set_mac_address(struct net_device * netdev,void * paddr)1254 static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1255 {
1256 	struct ks_net *ks = netdev_priv(netdev);
1257 	struct sockaddr *addr = paddr;
1258 	u8 *da;
1259 
1260 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1261 
1262 	da = (u8 *)netdev->dev_addr;
1263 
1264 	ks_set_mac(ks, da);
1265 	return 0;
1266 }
1267 
ks_net_ioctl(struct net_device * netdev,struct ifreq * req,int cmd)1268 static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1269 {
1270 	struct ks_net *ks = netdev_priv(netdev);
1271 
1272 	if (!netif_running(netdev))
1273 		return -EINVAL;
1274 
1275 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1276 }
1277 
1278 static const struct net_device_ops ks_netdev_ops = {
1279 	.ndo_open		= ks_net_open,
1280 	.ndo_stop		= ks_net_stop,
1281 	.ndo_do_ioctl		= ks_net_ioctl,
1282 	.ndo_start_xmit		= ks_start_xmit,
1283 	.ndo_set_mac_address	= ks_set_mac_address,
1284 	.ndo_set_rx_mode	= ks_set_rx_mode,
1285 	.ndo_change_mtu		= eth_change_mtu,
1286 	.ndo_validate_addr	= eth_validate_addr,
1287 };
1288 
1289 /* ethtool support */
1290 
ks_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * di)1291 static void ks_get_drvinfo(struct net_device *netdev,
1292 			       struct ethtool_drvinfo *di)
1293 {
1294 	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1295 	strlcpy(di->version, "1.00", sizeof(di->version));
1296 	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1297 		sizeof(di->bus_info));
1298 }
1299 
ks_get_msglevel(struct net_device * netdev)1300 static u32 ks_get_msglevel(struct net_device *netdev)
1301 {
1302 	struct ks_net *ks = netdev_priv(netdev);
1303 	return ks->msg_enable;
1304 }
1305 
ks_set_msglevel(struct net_device * netdev,u32 to)1306 static void ks_set_msglevel(struct net_device *netdev, u32 to)
1307 {
1308 	struct ks_net *ks = netdev_priv(netdev);
1309 	ks->msg_enable = to;
1310 }
1311 
ks_get_settings(struct net_device * netdev,struct ethtool_cmd * cmd)1312 static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1313 {
1314 	struct ks_net *ks = netdev_priv(netdev);
1315 	return mii_ethtool_gset(&ks->mii, cmd);
1316 }
1317 
ks_set_settings(struct net_device * netdev,struct ethtool_cmd * cmd)1318 static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1319 {
1320 	struct ks_net *ks = netdev_priv(netdev);
1321 	return mii_ethtool_sset(&ks->mii, cmd);
1322 }
1323 
ks_get_link(struct net_device * netdev)1324 static u32 ks_get_link(struct net_device *netdev)
1325 {
1326 	struct ks_net *ks = netdev_priv(netdev);
1327 	return mii_link_ok(&ks->mii);
1328 }
1329 
ks_nway_reset(struct net_device * netdev)1330 static int ks_nway_reset(struct net_device *netdev)
1331 {
1332 	struct ks_net *ks = netdev_priv(netdev);
1333 	return mii_nway_restart(&ks->mii);
1334 }
1335 
1336 static const struct ethtool_ops ks_ethtool_ops = {
1337 	.get_drvinfo	= ks_get_drvinfo,
1338 	.get_msglevel	= ks_get_msglevel,
1339 	.set_msglevel	= ks_set_msglevel,
1340 	.get_settings	= ks_get_settings,
1341 	.set_settings	= ks_set_settings,
1342 	.get_link	= ks_get_link,
1343 	.nway_reset	= ks_nway_reset,
1344 };
1345 
1346 /* MII interface controls */
1347 
1348 /**
1349  * ks_phy_reg - convert MII register into a KS8851 register
1350  * @reg: MII register number.
1351  *
1352  * Return the KS8851 register number for the corresponding MII PHY register
1353  * if possible. Return zero if the MII register has no direct mapping to the
1354  * KS8851 register set.
1355  */
ks_phy_reg(int reg)1356 static int ks_phy_reg(int reg)
1357 {
1358 	switch (reg) {
1359 	case MII_BMCR:
1360 		return KS_P1MBCR;
1361 	case MII_BMSR:
1362 		return KS_P1MBSR;
1363 	case MII_PHYSID1:
1364 		return KS_PHY1ILR;
1365 	case MII_PHYSID2:
1366 		return KS_PHY1IHR;
1367 	case MII_ADVERTISE:
1368 		return KS_P1ANAR;
1369 	case MII_LPA:
1370 		return KS_P1ANLPR;
1371 	}
1372 
1373 	return 0x0;
1374 }
1375 
1376 /**
1377  * ks_phy_read - MII interface PHY register read.
1378  * @netdev: The network device the PHY is on.
1379  * @phy_addr: Address of PHY (ignored as we only have one)
1380  * @reg: The register to read.
1381  *
1382  * This call reads data from the PHY register specified in @reg. Since the
1383  * device does not support all the MII registers, the non-existent values
1384  * are always returned as zero.
1385  *
1386  * We return zero for unsupported registers as the MII code does not check
1387  * the value returned for any error status, and simply returns it to the
1388  * caller. The mii-tool that the driver was tested with takes any -ve error
1389  * as real PHY capabilities, thus displaying incorrect data to the user.
1390  */
ks_phy_read(struct net_device * netdev,int phy_addr,int reg)1391 static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1392 {
1393 	struct ks_net *ks = netdev_priv(netdev);
1394 	int ksreg;
1395 	int result;
1396 
1397 	ksreg = ks_phy_reg(reg);
1398 	if (!ksreg)
1399 		return 0x0;	/* no error return allowed, so use zero */
1400 
1401 	mutex_lock(&ks->lock);
1402 	result = ks_rdreg16(ks, ksreg);
1403 	mutex_unlock(&ks->lock);
1404 
1405 	return result;
1406 }
1407 
ks_phy_write(struct net_device * netdev,int phy,int reg,int value)1408 static void ks_phy_write(struct net_device *netdev,
1409 			     int phy, int reg, int value)
1410 {
1411 	struct ks_net *ks = netdev_priv(netdev);
1412 	int ksreg;
1413 
1414 	ksreg = ks_phy_reg(reg);
1415 	if (ksreg) {
1416 		mutex_lock(&ks->lock);
1417 		ks_wrreg16(ks, ksreg, value);
1418 		mutex_unlock(&ks->lock);
1419 	}
1420 }
1421 
1422 /**
1423  * ks_read_selftest - read the selftest memory info.
1424  * @ks: The device state
1425  *
1426  * Read and check the TX/RX memory selftest information.
1427  */
ks_read_selftest(struct ks_net * ks)1428 static int ks_read_selftest(struct ks_net *ks)
1429 {
1430 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1431 	int ret = 0;
1432 	unsigned rd;
1433 
1434 	rd = ks_rdreg16(ks, KS_MBIR);
1435 
1436 	if ((rd & both_done) != both_done) {
1437 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1438 		return 0;
1439 	}
1440 
1441 	if (rd & MBIR_TXMBFA) {
1442 		netdev_err(ks->netdev, "TX memory selftest fails\n");
1443 		ret |= 1;
1444 	}
1445 
1446 	if (rd & MBIR_RXMBFA) {
1447 		netdev_err(ks->netdev, "RX memory selftest fails\n");
1448 		ret |= 2;
1449 	}
1450 
1451 	netdev_info(ks->netdev, "the selftest passes\n");
1452 	return ret;
1453 }
1454 
ks_setup(struct ks_net * ks)1455 static void ks_setup(struct ks_net *ks)
1456 {
1457 	u16	w;
1458 
1459 	/**
1460 	 * Configure QMU Transmit
1461 	 */
1462 
1463 	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1464 	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1465 
1466 	/* Setup Receive Frame Data Pointer Auto-Increment */
1467 	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1468 
1469 	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1470 	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1471 
1472 	/* Setup RxQ Command Control (RXQCR) */
1473 	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1474 	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1475 
1476 	/**
1477 	 * set the force mode to half duplex, default is full duplex
1478 	 *  because if the auto-negotiation fails, most switch uses
1479 	 *  half-duplex.
1480 	 */
1481 
1482 	w = ks_rdreg16(ks, KS_P1MBCR);
1483 	w &= ~P1MBCR_FORCE_FDX;
1484 	ks_wrreg16(ks, KS_P1MBCR, w);
1485 
1486 	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1487 	ks_wrreg16(ks, KS_TXCR, w);
1488 
1489 	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1490 
1491 	if (ks->promiscuous)         /* bPromiscuous */
1492 		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1493 	else if (ks->all_mcast) /* Multicast address passed mode */
1494 		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1495 	else                                   /* Normal mode */
1496 		w |= RXCR1_RXPAFMA;
1497 
1498 	ks_wrreg16(ks, KS_RXCR1, w);
1499 }  /*ks_setup */
1500 
1501 
ks_setup_int(struct ks_net * ks)1502 static void ks_setup_int(struct ks_net *ks)
1503 {
1504 	ks->rc_ier = 0x00;
1505 	/* Clear the interrupts status of the hardware. */
1506 	ks_wrreg16(ks, KS_ISR, 0xffff);
1507 
1508 	/* Enables the interrupts of the hardware. */
1509 	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1510 }  /* ks_setup_int */
1511 
ks_hw_init(struct ks_net * ks)1512 static int ks_hw_init(struct ks_net *ks)
1513 {
1514 #define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1515 	ks->promiscuous = 0;
1516 	ks->all_mcast = 0;
1517 	ks->mcast_lst_size = 0;
1518 
1519 	ks->frame_head_info = kmalloc(MHEADER_SIZE, GFP_KERNEL);
1520 	if (!ks->frame_head_info)
1521 		return false;
1522 
1523 	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1524 	return true;
1525 }
1526 
1527 
ks8851_probe(struct platform_device * pdev)1528 static int ks8851_probe(struct platform_device *pdev)
1529 {
1530 	int err = -ENOMEM;
1531 	struct resource *io_d, *io_c;
1532 	struct net_device *netdev;
1533 	struct ks_net *ks;
1534 	u16 id, data;
1535 	struct ks8851_mll_platform_data *pdata;
1536 
1537 	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1538 	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1539 
1540 	if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1541 		goto err_mem_region;
1542 
1543 	if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1544 		goto err_mem_region1;
1545 
1546 	netdev = alloc_etherdev(sizeof(struct ks_net));
1547 	if (!netdev)
1548 		goto err_alloc_etherdev;
1549 
1550 	SET_NETDEV_DEV(netdev, &pdev->dev);
1551 
1552 	ks = netdev_priv(netdev);
1553 	ks->netdev = netdev;
1554 	ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1555 
1556 	if (!ks->hw_addr)
1557 		goto err_ioremap;
1558 
1559 	ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1560 	if (!ks->hw_addr_cmd)
1561 		goto err_ioremap1;
1562 
1563 	netdev->irq = platform_get_irq(pdev, 0);
1564 
1565 	if ((int)netdev->irq < 0) {
1566 		err = netdev->irq;
1567 		goto err_get_irq;
1568 	}
1569 
1570 	ks->pdev = pdev;
1571 
1572 	mutex_init(&ks->lock);
1573 	spin_lock_init(&ks->statelock);
1574 
1575 	netdev->netdev_ops = &ks_netdev_ops;
1576 	netdev->ethtool_ops = &ks_ethtool_ops;
1577 
1578 	/* setup mii state */
1579 	ks->mii.dev             = netdev;
1580 	ks->mii.phy_id          = 1,
1581 	ks->mii.phy_id_mask     = 1;
1582 	ks->mii.reg_num_mask    = 0xf;
1583 	ks->mii.mdio_read       = ks_phy_read;
1584 	ks->mii.mdio_write      = ks_phy_write;
1585 
1586 	netdev_info(netdev, "message enable is %d\n", msg_enable);
1587 	/* set the default message enable */
1588 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1589 						     NETIF_MSG_PROBE |
1590 						     NETIF_MSG_LINK));
1591 	ks_read_config(ks);
1592 
1593 	/* simple check for a valid chip being connected to the bus */
1594 	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1595 		netdev_err(netdev, "failed to read device ID\n");
1596 		err = -ENODEV;
1597 		goto err_register;
1598 	}
1599 
1600 	if (ks_read_selftest(ks)) {
1601 		netdev_err(netdev, "failed to read device ID\n");
1602 		err = -ENODEV;
1603 		goto err_register;
1604 	}
1605 
1606 	err = register_netdev(netdev);
1607 	if (err)
1608 		goto err_register;
1609 
1610 	platform_set_drvdata(pdev, netdev);
1611 
1612 	ks_soft_reset(ks, GRR_GSR);
1613 	ks_hw_init(ks);
1614 	ks_disable_qmu(ks);
1615 	ks_setup(ks);
1616 	ks_setup_int(ks);
1617 
1618 	data = ks_rdreg16(ks, KS_OBCR);
1619 	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1620 
1621 	/* overwriting the default MAC address */
1622 	pdata = pdev->dev.platform_data;
1623 	if (!pdata) {
1624 		netdev_err(netdev, "No platform data\n");
1625 		err = -ENODEV;
1626 		goto err_pdata;
1627 	}
1628 	memcpy(ks->mac_addr, pdata->mac_addr, 6);
1629 	if (!is_valid_ether_addr(ks->mac_addr)) {
1630 		/* Use random MAC address if none passed */
1631 		eth_random_addr(ks->mac_addr);
1632 		netdev_info(netdev, "Using random mac address\n");
1633 	}
1634 	netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1635 
1636 	memcpy(netdev->dev_addr, ks->mac_addr, 6);
1637 
1638 	ks_set_mac(ks, netdev->dev_addr);
1639 
1640 	id = ks_rdreg16(ks, KS_CIDER);
1641 
1642 	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1643 		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1644 	return 0;
1645 
1646 err_pdata:
1647 	unregister_netdev(netdev);
1648 err_register:
1649 err_get_irq:
1650 	iounmap(ks->hw_addr_cmd);
1651 err_ioremap1:
1652 	iounmap(ks->hw_addr);
1653 err_ioremap:
1654 	free_netdev(netdev);
1655 err_alloc_etherdev:
1656 	release_mem_region(io_c->start, resource_size(io_c));
1657 err_mem_region1:
1658 	release_mem_region(io_d->start, resource_size(io_d));
1659 err_mem_region:
1660 	return err;
1661 }
1662 
ks8851_remove(struct platform_device * pdev)1663 static int ks8851_remove(struct platform_device *pdev)
1664 {
1665 	struct net_device *netdev = platform_get_drvdata(pdev);
1666 	struct ks_net *ks = netdev_priv(netdev);
1667 	struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1668 
1669 	kfree(ks->frame_head_info);
1670 	unregister_netdev(netdev);
1671 	iounmap(ks->hw_addr);
1672 	free_netdev(netdev);
1673 	release_mem_region(iomem->start, resource_size(iomem));
1674 	platform_set_drvdata(pdev, NULL);
1675 	return 0;
1676 
1677 }
1678 
1679 static struct platform_driver ks8851_platform_driver = {
1680 	.driver = {
1681 		.name = DRV_NAME,
1682 		.owner = THIS_MODULE,
1683 	},
1684 	.probe = ks8851_probe,
1685 	.remove = ks8851_remove,
1686 };
1687 
1688 module_platform_driver(ks8851_platform_driver);
1689 
1690 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1691 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1692 MODULE_LICENSE("GPL");
1693 module_param_named(message, msg_enable, int, 0);
1694 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1695 
1696