1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <linux/iommu.h>
20 #include <net/ip.h>
21 #include <net/checksum.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26 #include "workarounds.h"
27
28 /* Preferred number of descriptors to fill at once */
29 #define EFX_RX_PREFERRED_BATCH 8U
30
31 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
32 * ring, this number is divided by the number of buffers per page to calculate
33 * the number of pages to store in the RX page recycle ring.
34 */
35 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
36 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
37
38 /* Size of buffer allocated for skb header area. */
39 #define EFX_SKB_HEADERS 64u
40
41 /* This is the percentage fill level below which new RX descriptors
42 * will be added to the RX descriptor ring.
43 */
44 static unsigned int rx_refill_threshold;
45
46 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
47 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
48 EFX_RX_USR_BUF_SIZE)
49
50 /*
51 * RX maximum head room required.
52 *
53 * This must be at least 1 to prevent overflow, plus one packet-worth
54 * to allow pipelined receives.
55 */
56 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
57
efx_rx_buf_va(struct efx_rx_buffer * buf)58 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
59 {
60 return page_address(buf->page) + buf->page_offset;
61 }
62
efx_rx_buf_hash(const u8 * eh)63 static inline u32 efx_rx_buf_hash(const u8 *eh)
64 {
65 /* The ethernet header is always directly after any hash. */
66 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
67 return __le32_to_cpup((const __le32 *)(eh - 4));
68 #else
69 const u8 *data = eh - 4;
70 return (u32)data[0] |
71 (u32)data[1] << 8 |
72 (u32)data[2] << 16 |
73 (u32)data[3] << 24;
74 #endif
75 }
76
77 static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)78 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
79 {
80 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
81 return efx_rx_buffer(rx_queue, 0);
82 else
83 return rx_buf + 1;
84 }
85
efx_sync_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf,unsigned int len)86 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
87 struct efx_rx_buffer *rx_buf,
88 unsigned int len)
89 {
90 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
91 DMA_FROM_DEVICE);
92 }
93
efx_rx_config_page_split(struct efx_nic * efx)94 void efx_rx_config_page_split(struct efx_nic *efx)
95 {
96 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
97 EFX_RX_BUF_ALIGNMENT);
98 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
99 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
100 efx->rx_page_buf_step);
101 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
102 efx->rx_bufs_per_page;
103 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
104 efx->rx_bufs_per_page);
105 }
106
107 /* Check the RX page recycle ring for a page that can be reused. */
efx_reuse_page(struct efx_rx_queue * rx_queue)108 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
109 {
110 struct efx_nic *efx = rx_queue->efx;
111 struct page *page;
112 struct efx_rx_page_state *state;
113 unsigned index;
114
115 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
116 page = rx_queue->page_ring[index];
117 if (page == NULL)
118 return NULL;
119
120 rx_queue->page_ring[index] = NULL;
121 /* page_remove cannot exceed page_add. */
122 if (rx_queue->page_remove != rx_queue->page_add)
123 ++rx_queue->page_remove;
124
125 /* If page_count is 1 then we hold the only reference to this page. */
126 if (page_count(page) == 1) {
127 ++rx_queue->page_recycle_count;
128 return page;
129 } else {
130 state = page_address(page);
131 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
132 PAGE_SIZE << efx->rx_buffer_order,
133 DMA_FROM_DEVICE);
134 put_page(page);
135 ++rx_queue->page_recycle_failed;
136 }
137
138 return NULL;
139 }
140
141 /**
142 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
143 *
144 * @rx_queue: Efx RX queue
145 *
146 * This allocates a batch of pages, maps them for DMA, and populates
147 * struct efx_rx_buffers for each one. Return a negative error code or
148 * 0 on success. If a single page can be used for multiple buffers,
149 * then the page will either be inserted fully, or not at all.
150 */
efx_init_rx_buffers(struct efx_rx_queue * rx_queue)151 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
152 {
153 struct efx_nic *efx = rx_queue->efx;
154 struct efx_rx_buffer *rx_buf;
155 struct page *page;
156 unsigned int page_offset;
157 struct efx_rx_page_state *state;
158 dma_addr_t dma_addr;
159 unsigned index, count;
160
161 count = 0;
162 do {
163 page = efx_reuse_page(rx_queue);
164 if (page == NULL) {
165 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
166 efx->rx_buffer_order);
167 if (unlikely(page == NULL))
168 return -ENOMEM;
169 dma_addr =
170 dma_map_page(&efx->pci_dev->dev, page, 0,
171 PAGE_SIZE << efx->rx_buffer_order,
172 DMA_FROM_DEVICE);
173 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174 dma_addr))) {
175 __free_pages(page, efx->rx_buffer_order);
176 return -EIO;
177 }
178 state = page_address(page);
179 state->dma_addr = dma_addr;
180 } else {
181 state = page_address(page);
182 dma_addr = state->dma_addr;
183 }
184
185 dma_addr += sizeof(struct efx_rx_page_state);
186 page_offset = sizeof(struct efx_rx_page_state);
187
188 do {
189 index = rx_queue->added_count & rx_queue->ptr_mask;
190 rx_buf = efx_rx_buffer(rx_queue, index);
191 rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
192 rx_buf->page = page;
193 rx_buf->page_offset = page_offset + NET_IP_ALIGN;
194 rx_buf->len = efx->rx_dma_len;
195 rx_buf->flags = 0;
196 ++rx_queue->added_count;
197 get_page(page);
198 dma_addr += efx->rx_page_buf_step;
199 page_offset += efx->rx_page_buf_step;
200 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201
202 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
203 } while (++count < efx->rx_pages_per_batch);
204
205 return 0;
206 }
207
208 /* Unmap a DMA-mapped page. This function is only called for the final RX
209 * buffer in a page.
210 */
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)211 static void efx_unmap_rx_buffer(struct efx_nic *efx,
212 struct efx_rx_buffer *rx_buf)
213 {
214 struct page *page = rx_buf->page;
215
216 if (page) {
217 struct efx_rx_page_state *state = page_address(page);
218 dma_unmap_page(&efx->pci_dev->dev,
219 state->dma_addr,
220 PAGE_SIZE << efx->rx_buffer_order,
221 DMA_FROM_DEVICE);
222 }
223 }
224
efx_free_rx_buffer(struct efx_rx_buffer * rx_buf)225 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
226 {
227 if (rx_buf->page) {
228 put_page(rx_buf->page);
229 rx_buf->page = NULL;
230 }
231 }
232
233 /* Attempt to recycle the page if there is an RX recycle ring; the page can
234 * only be added if this is the final RX buffer, to prevent pages being used in
235 * the descriptor ring and appearing in the recycle ring simultaneously.
236 */
efx_recycle_rx_page(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)237 static void efx_recycle_rx_page(struct efx_channel *channel,
238 struct efx_rx_buffer *rx_buf)
239 {
240 struct page *page = rx_buf->page;
241 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
242 struct efx_nic *efx = rx_queue->efx;
243 unsigned index;
244
245 /* Only recycle the page after processing the final buffer. */
246 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
247 return;
248
249 index = rx_queue->page_add & rx_queue->page_ptr_mask;
250 if (rx_queue->page_ring[index] == NULL) {
251 unsigned read_index = rx_queue->page_remove &
252 rx_queue->page_ptr_mask;
253
254 /* The next slot in the recycle ring is available, but
255 * increment page_remove if the read pointer currently
256 * points here.
257 */
258 if (read_index == index)
259 ++rx_queue->page_remove;
260 rx_queue->page_ring[index] = page;
261 ++rx_queue->page_add;
262 return;
263 }
264 ++rx_queue->page_recycle_full;
265 efx_unmap_rx_buffer(efx, rx_buf);
266 put_page(rx_buf->page);
267 }
268
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 struct efx_rx_buffer *rx_buf)
271 {
272 /* Release the page reference we hold for the buffer. */
273 if (rx_buf->page)
274 put_page(rx_buf->page);
275
276 /* If this is the last buffer in a page, unmap and free it. */
277 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
278 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
279 efx_free_rx_buffer(rx_buf);
280 }
281 rx_buf->page = NULL;
282 }
283
284 /* Recycle the pages that are used by buffers that have just been received. */
efx_recycle_rx_buffers(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)285 static void efx_recycle_rx_buffers(struct efx_channel *channel,
286 struct efx_rx_buffer *rx_buf,
287 unsigned int n_frags)
288 {
289 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
290
291 do {
292 efx_recycle_rx_page(channel, rx_buf);
293 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
294 } while (--n_frags);
295 }
296
297 /**
298 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
299 * @rx_queue: RX descriptor queue
300 *
301 * This will aim to fill the RX descriptor queue up to
302 * @rx_queue->@max_fill. If there is insufficient atomic
303 * memory to do so, a slow fill will be scheduled.
304 *
305 * The caller must provide serialisation (none is used here). In practise,
306 * this means this function must run from the NAPI handler, or be called
307 * when NAPI is disabled.
308 */
efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue)309 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
310 {
311 struct efx_nic *efx = rx_queue->efx;
312 unsigned int fill_level, batch_size;
313 int space, rc = 0;
314
315 /* Calculate current fill level, and exit if we don't need to fill */
316 fill_level = (rx_queue->added_count - rx_queue->removed_count);
317 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
318 if (fill_level >= rx_queue->fast_fill_trigger)
319 goto out;
320
321 /* Record minimum fill level */
322 if (unlikely(fill_level < rx_queue->min_fill)) {
323 if (fill_level)
324 rx_queue->min_fill = fill_level;
325 }
326
327 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
328 space = rx_queue->max_fill - fill_level;
329 EFX_BUG_ON_PARANOID(space < batch_size);
330
331 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
332 "RX queue %d fast-filling descriptor ring from"
333 " level %d to level %d\n",
334 efx_rx_queue_index(rx_queue), fill_level,
335 rx_queue->max_fill);
336
337
338 do {
339 rc = efx_init_rx_buffers(rx_queue);
340 if (unlikely(rc)) {
341 /* Ensure that we don't leave the rx queue empty */
342 if (rx_queue->added_count == rx_queue->removed_count)
343 efx_schedule_slow_fill(rx_queue);
344 goto out;
345 }
346 } while ((space -= batch_size) >= batch_size);
347
348 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
349 "RX queue %d fast-filled descriptor ring "
350 "to level %d\n", efx_rx_queue_index(rx_queue),
351 rx_queue->added_count - rx_queue->removed_count);
352
353 out:
354 if (rx_queue->notified_count != rx_queue->added_count)
355 efx_nic_notify_rx_desc(rx_queue);
356 }
357
efx_rx_slow_fill(unsigned long context)358 void efx_rx_slow_fill(unsigned long context)
359 {
360 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
361
362 /* Post an event to cause NAPI to run and refill the queue */
363 efx_nic_generate_fill_event(rx_queue);
364 ++rx_queue->slow_fill_count;
365 }
366
efx_rx_packet__check_len(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,int len)367 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
368 struct efx_rx_buffer *rx_buf,
369 int len)
370 {
371 struct efx_nic *efx = rx_queue->efx;
372 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
373
374 if (likely(len <= max_len))
375 return;
376
377 /* The packet must be discarded, but this is only a fatal error
378 * if the caller indicated it was
379 */
380 rx_buf->flags |= EFX_RX_PKT_DISCARD;
381
382 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
383 if (net_ratelimit())
384 netif_err(efx, rx_err, efx->net_dev,
385 " RX queue %d seriously overlength "
386 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
387 efx_rx_queue_index(rx_queue), len, max_len,
388 efx->type->rx_buffer_padding);
389 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
390 } else {
391 if (net_ratelimit())
392 netif_err(efx, rx_err, efx->net_dev,
393 " RX queue %d overlength RX event "
394 "(0x%x > 0x%x)\n",
395 efx_rx_queue_index(rx_queue), len, max_len);
396 }
397
398 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
399 }
400
401 /* Pass a received packet up through GRO. GRO can handle pages
402 * regardless of checksum state and skbs with a good checksum.
403 */
404 static void
efx_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh)405 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
406 unsigned int n_frags, u8 *eh)
407 {
408 struct napi_struct *napi = &channel->napi_str;
409 gro_result_t gro_result;
410 struct efx_nic *efx = channel->efx;
411 struct sk_buff *skb;
412
413 skb = napi_get_frags(napi);
414 if (unlikely(!skb)) {
415 while (n_frags--) {
416 put_page(rx_buf->page);
417 rx_buf->page = NULL;
418 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
419 }
420 return;
421 }
422
423 if (efx->net_dev->features & NETIF_F_RXHASH)
424 skb->rxhash = efx_rx_buf_hash(eh);
425 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
426 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
427
428 for (;;) {
429 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
430 rx_buf->page, rx_buf->page_offset,
431 rx_buf->len);
432 rx_buf->page = NULL;
433 skb->len += rx_buf->len;
434 if (skb_shinfo(skb)->nr_frags == n_frags)
435 break;
436
437 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
438 }
439
440 skb->data_len = skb->len;
441 skb->truesize += n_frags * efx->rx_buffer_truesize;
442
443 skb_record_rx_queue(skb, channel->rx_queue.core_index);
444
445 gro_result = napi_gro_frags(napi);
446 if (gro_result != GRO_DROP)
447 channel->irq_mod_score += 2;
448 }
449
450 /* Allocate and construct an SKB around page fragments */
efx_rx_mk_skb(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,int hdr_len)451 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
452 struct efx_rx_buffer *rx_buf,
453 unsigned int n_frags,
454 u8 *eh, int hdr_len)
455 {
456 struct efx_nic *efx = channel->efx;
457 struct sk_buff *skb;
458
459 /* Allocate an SKB to store the headers */
460 skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
461 if (unlikely(skb == NULL))
462 return NULL;
463
464 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
465
466 skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
467 memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
468
469 /* Append the remaining page(s) onto the frag list */
470 if (rx_buf->len > hdr_len) {
471 rx_buf->page_offset += hdr_len;
472 rx_buf->len -= hdr_len;
473
474 for (;;) {
475 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
476 rx_buf->page, rx_buf->page_offset,
477 rx_buf->len);
478 rx_buf->page = NULL;
479 skb->len += rx_buf->len;
480 skb->data_len += rx_buf->len;
481 if (skb_shinfo(skb)->nr_frags == n_frags)
482 break;
483
484 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
485 }
486 } else {
487 __free_pages(rx_buf->page, efx->rx_buffer_order);
488 rx_buf->page = NULL;
489 n_frags = 0;
490 }
491
492 skb->truesize += n_frags * efx->rx_buffer_truesize;
493
494 /* Move past the ethernet header */
495 skb->protocol = eth_type_trans(skb, efx->net_dev);
496
497 return skb;
498 }
499
efx_rx_packet(struct efx_rx_queue * rx_queue,unsigned int index,unsigned int n_frags,unsigned int len,u16 flags)500 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
501 unsigned int n_frags, unsigned int len, u16 flags)
502 {
503 struct efx_nic *efx = rx_queue->efx;
504 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
505 struct efx_rx_buffer *rx_buf;
506
507 rx_buf = efx_rx_buffer(rx_queue, index);
508 rx_buf->flags |= flags;
509
510 /* Validate the number of fragments and completed length */
511 if (n_frags == 1) {
512 efx_rx_packet__check_len(rx_queue, rx_buf, len);
513 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
514 unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
515 unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
516 unlikely(!efx->rx_scatter)) {
517 /* If this isn't an explicit discard request, either
518 * the hardware or the driver is broken.
519 */
520 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
521 rx_buf->flags |= EFX_RX_PKT_DISCARD;
522 }
523
524 netif_vdbg(efx, rx_status, efx->net_dev,
525 "RX queue %d received ids %x-%x len %d %s%s\n",
526 efx_rx_queue_index(rx_queue), index,
527 (index + n_frags - 1) & rx_queue->ptr_mask, len,
528 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
529 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
530
531 /* Discard packet, if instructed to do so. Process the
532 * previous receive first.
533 */
534 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
535 efx_rx_flush_packet(channel);
536 put_page(rx_buf->page);
537 efx_recycle_rx_buffers(channel, rx_buf, n_frags);
538 return;
539 }
540
541 if (n_frags == 1)
542 rx_buf->len = len;
543
544 /* Release and/or sync the DMA mapping - assumes all RX buffers
545 * consumed in-order per RX queue.
546 */
547 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
548
549 /* Prefetch nice and early so data will (hopefully) be in cache by
550 * the time we look at it.
551 */
552 prefetch(efx_rx_buf_va(rx_buf));
553
554 rx_buf->page_offset += efx->type->rx_buffer_hash_size;
555 rx_buf->len -= efx->type->rx_buffer_hash_size;
556
557 if (n_frags > 1) {
558 /* Release/sync DMA mapping for additional fragments.
559 * Fix length for last fragment.
560 */
561 unsigned int tail_frags = n_frags - 1;
562
563 for (;;) {
564 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
565 if (--tail_frags == 0)
566 break;
567 efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
568 }
569 rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
570 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
571 }
572
573 /* All fragments have been DMA-synced, so recycle buffers and pages. */
574 rx_buf = efx_rx_buffer(rx_queue, index);
575 efx_recycle_rx_buffers(channel, rx_buf, n_frags);
576
577 /* Pipeline receives so that we give time for packet headers to be
578 * prefetched into cache.
579 */
580 efx_rx_flush_packet(channel);
581 channel->rx_pkt_n_frags = n_frags;
582 channel->rx_pkt_index = index;
583 }
584
efx_rx_deliver(struct efx_channel * channel,u8 * eh,struct efx_rx_buffer * rx_buf,unsigned int n_frags)585 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
586 struct efx_rx_buffer *rx_buf,
587 unsigned int n_frags)
588 {
589 struct sk_buff *skb;
590 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
591
592 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
593 if (unlikely(skb == NULL)) {
594 efx_free_rx_buffer(rx_buf);
595 return;
596 }
597 skb_record_rx_queue(skb, channel->rx_queue.core_index);
598
599 /* Set the SKB flags */
600 skb_checksum_none_assert(skb);
601
602 if (channel->type->receive_skb)
603 if (channel->type->receive_skb(channel, skb))
604 return;
605
606 /* Pass the packet up */
607 netif_receive_skb(skb);
608 }
609
610 /* Handle a received packet. Second half: Touches packet payload. */
__efx_rx_packet(struct efx_channel * channel)611 void __efx_rx_packet(struct efx_channel *channel)
612 {
613 struct efx_nic *efx = channel->efx;
614 struct efx_rx_buffer *rx_buf =
615 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
616 u8 *eh = efx_rx_buf_va(rx_buf);
617
618 /* If we're in loopback test, then pass the packet directly to the
619 * loopback layer, and free the rx_buf here
620 */
621 if (unlikely(efx->loopback_selftest)) {
622 efx_loopback_rx_packet(efx, eh, rx_buf->len);
623 efx_free_rx_buffer(rx_buf);
624 goto out;
625 }
626
627 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
628 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
629
630 if (!channel->type->receive_skb)
631 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
632 else
633 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
634 out:
635 channel->rx_pkt_n_frags = 0;
636 }
637
efx_probe_rx_queue(struct efx_rx_queue * rx_queue)638 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
639 {
640 struct efx_nic *efx = rx_queue->efx;
641 unsigned int entries;
642 int rc;
643
644 /* Create the smallest power-of-two aligned ring */
645 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
646 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
647 rx_queue->ptr_mask = entries - 1;
648
649 netif_dbg(efx, probe, efx->net_dev,
650 "creating RX queue %d size %#x mask %#x\n",
651 efx_rx_queue_index(rx_queue), efx->rxq_entries,
652 rx_queue->ptr_mask);
653
654 /* Allocate RX buffers */
655 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
656 GFP_KERNEL);
657 if (!rx_queue->buffer)
658 return -ENOMEM;
659
660 rc = efx_nic_probe_rx(rx_queue);
661 if (rc) {
662 kfree(rx_queue->buffer);
663 rx_queue->buffer = NULL;
664 }
665
666 return rc;
667 }
668
efx_init_rx_recycle_ring(struct efx_nic * efx,struct efx_rx_queue * rx_queue)669 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
670 struct efx_rx_queue *rx_queue)
671 {
672 unsigned int bufs_in_recycle_ring, page_ring_size;
673
674 /* Set the RX recycle ring size */
675 #ifdef CONFIG_PPC64
676 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
677 #else
678 if (efx->pci_dev->dev.iommu_group)
679 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
680 else
681 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
682 #endif /* CONFIG_PPC64 */
683
684 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
685 efx->rx_bufs_per_page);
686 rx_queue->page_ring = kcalloc(page_ring_size,
687 sizeof(*rx_queue->page_ring), GFP_KERNEL);
688 rx_queue->page_ptr_mask = page_ring_size - 1;
689 }
690
efx_init_rx_queue(struct efx_rx_queue * rx_queue)691 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
692 {
693 struct efx_nic *efx = rx_queue->efx;
694 unsigned int max_fill, trigger, max_trigger;
695
696 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
697 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
698
699 /* Initialise ptr fields */
700 rx_queue->added_count = 0;
701 rx_queue->notified_count = 0;
702 rx_queue->removed_count = 0;
703 rx_queue->min_fill = -1U;
704 efx_init_rx_recycle_ring(efx, rx_queue);
705
706 rx_queue->page_remove = 0;
707 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
708 rx_queue->page_recycle_count = 0;
709 rx_queue->page_recycle_failed = 0;
710 rx_queue->page_recycle_full = 0;
711
712 /* Initialise limit fields */
713 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
714 max_trigger =
715 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
716 if (rx_refill_threshold != 0) {
717 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
718 if (trigger > max_trigger)
719 trigger = max_trigger;
720 } else {
721 trigger = max_trigger;
722 }
723
724 rx_queue->max_fill = max_fill;
725 rx_queue->fast_fill_trigger = trigger;
726
727 /* Set up RX descriptor ring */
728 rx_queue->enabled = true;
729 efx_nic_init_rx(rx_queue);
730 }
731
efx_fini_rx_queue(struct efx_rx_queue * rx_queue)732 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
733 {
734 int i;
735 struct efx_nic *efx = rx_queue->efx;
736 struct efx_rx_buffer *rx_buf;
737
738 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
739 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
740
741 /* A flush failure might have left rx_queue->enabled */
742 rx_queue->enabled = false;
743
744 del_timer_sync(&rx_queue->slow_fill);
745 efx_nic_fini_rx(rx_queue);
746
747 /* Release RX buffers from the current read ptr to the write ptr */
748 if (rx_queue->buffer) {
749 for (i = rx_queue->removed_count; i < rx_queue->added_count;
750 i++) {
751 unsigned index = i & rx_queue->ptr_mask;
752 rx_buf = efx_rx_buffer(rx_queue, index);
753 efx_fini_rx_buffer(rx_queue, rx_buf);
754 }
755 }
756
757 /* Unmap and release the pages in the recycle ring. Remove the ring. */
758 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
759 struct page *page = rx_queue->page_ring[i];
760 struct efx_rx_page_state *state;
761
762 if (page == NULL)
763 continue;
764
765 state = page_address(page);
766 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
767 PAGE_SIZE << efx->rx_buffer_order,
768 DMA_FROM_DEVICE);
769 put_page(page);
770 }
771 kfree(rx_queue->page_ring);
772 rx_queue->page_ring = NULL;
773 }
774
efx_remove_rx_queue(struct efx_rx_queue * rx_queue)775 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
776 {
777 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
778 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
779
780 efx_nic_remove_rx(rx_queue);
781
782 kfree(rx_queue->buffer);
783 rx_queue->buffer = NULL;
784 }
785
786
787 module_param(rx_refill_threshold, uint, 0444);
788 MODULE_PARM_DESC(rx_refill_threshold,
789 "RX descriptor ring refill threshold (%)");
790
791