• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h>   /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <asm/checksum.h>
35 #include <asm/homecache.h>
36 
37 #include <hv/drv_xgbe_intf.h>
38 #include <hv/drv_xgbe_impl.h>
39 #include <hv/hypervisor.h>
40 #include <hv/netio_intf.h>
41 
42 /* For TSO */
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 
46 
47 /*
48  * First, "tile_net_init_module()" initializes all four "devices" which
49  * can be used by linux.
50  *
51  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
52  * the network cpus, then uses "tile_net_open_aux()" to initialize
53  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
54  * the tiles, provide buffers to LIPP, allow ingress to start, and
55  * turn on hypervisor interrupt handling (and NAPI) on all tiles.
56  *
57  * If registration fails due to the link being down, then "retry_work"
58  * is used to keep calling "tile_net_open_inner()" until it succeeds.
59  *
60  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
61  * stop egress, drain the LIPP buffers, unregister all the tiles, stop
62  * LIPP/LEPP, and wipe the LEPP queue.
63  *
64  * We start out with the ingress interrupt enabled on each CPU.  When
65  * this interrupt fires, we disable it, and call "napi_schedule()".
66  * This will cause "tile_net_poll()" to be called, which will pull
67  * packets from the netio queue, filtering them out, or passing them
68  * to "netif_receive_skb()".  If our budget is exhausted, we will
69  * return, knowing we will be called again later.  Otherwise, we
70  * reenable the ingress interrupt, and call "napi_complete()".
71  *
72  * HACK: Since disabling the ingress interrupt is not reliable, we
73  * ignore the interrupt if the global "active" flag is false.
74  *
75  *
76  * NOTE: The use of "native_driver" ensures that EPP exists, and that
77  * we are using "LIPP" and "LEPP".
78  *
79  * NOTE: Failing to free completions for an arbitrarily long time
80  * (which is defined to be illegal) does in fact cause bizarre
81  * problems.  The "egress_timer" helps prevent this from happening.
82  */
83 
84 
85 /* HACK: Allow use of "jumbo" packets. */
86 /* This should be 1500 if "jumbo" is not set in LIPP. */
87 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
88 /* ISSUE: This has not been thoroughly tested (except at 1500). */
89 #define TILE_NET_MTU 1500
90 
91 /* HACK: Define to support GSO. */
92 /* ISSUE: This may actually hurt performance of the TCP blaster. */
93 /* #define TILE_NET_GSO */
94 
95 /* Define this to collapse "duplicate" acks. */
96 /* #define IGNORE_DUP_ACKS */
97 
98 /* HACK: Define this to verify incoming packets. */
99 /* #define TILE_NET_VERIFY_INGRESS */
100 
101 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
102 #define TILE_NET_TX_QUEUE_LEN 0
103 
104 /* Define to dump packets (prints out the whole packet on tx and rx). */
105 /* #define TILE_NET_DUMP_PACKETS */
106 
107 /* Define to enable debug spew (all PDEBUG's are enabled). */
108 /* #define TILE_NET_DEBUG */
109 
110 
111 /* Define to activate paranoia checks. */
112 /* #define TILE_NET_PARANOIA */
113 
114 /* Default transmit lockup timeout period, in jiffies. */
115 #define TILE_NET_TIMEOUT (5 * HZ)
116 
117 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
118 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
119 
120 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
121 #define TILE_NET_DEVS 4
122 
123 
124 
125 /* Paranoia. */
126 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
127 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
128 #endif
129 
130 
131 /* Debug print. */
132 #ifdef TILE_NET_DEBUG
133 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
134 #else
135 #define PDEBUG(fmt, args...)
136 #endif
137 
138 
139 MODULE_AUTHOR("Tilera");
140 MODULE_LICENSE("GPL");
141 
142 
143 /*
144  * Queue of incoming packets for a specific cpu and device.
145  *
146  * Includes a pointer to the "system" data, and the actual "user" data.
147  */
148 struct tile_netio_queue {
149 	netio_queue_impl_t *__system_part;
150 	netio_queue_user_impl_t __user_part;
151 
152 };
153 
154 
155 /*
156  * Statistics counters for a specific cpu and device.
157  */
158 struct tile_net_stats_t {
159 	u32 rx_packets;
160 	u32 rx_bytes;
161 	u32 tx_packets;
162 	u32 tx_bytes;
163 };
164 
165 
166 /*
167  * Info for a specific cpu and device.
168  *
169  * ISSUE: There is a "dev" pointer in "napi" as well.
170  */
171 struct tile_net_cpu {
172 	/* The NAPI struct. */
173 	struct napi_struct napi;
174 	/* Packet queue. */
175 	struct tile_netio_queue queue;
176 	/* Statistics. */
177 	struct tile_net_stats_t stats;
178 	/* True iff NAPI is enabled. */
179 	bool napi_enabled;
180 	/* True if this tile has successfully registered with the IPP. */
181 	bool registered;
182 	/* True if the link was down last time we tried to register. */
183 	bool link_down;
184 	/* True if "egress_timer" is scheduled. */
185 	bool egress_timer_scheduled;
186 	/* Number of small sk_buffs which must still be provided. */
187 	unsigned int num_needed_small_buffers;
188 	/* Number of large sk_buffs which must still be provided. */
189 	unsigned int num_needed_large_buffers;
190 	/* A timer for handling egress completions. */
191 	struct timer_list egress_timer;
192 };
193 
194 
195 /*
196  * Info for a specific device.
197  */
198 struct tile_net_priv {
199 	/* Our network device. */
200 	struct net_device *dev;
201 	/* Pages making up the egress queue. */
202 	struct page *eq_pages;
203 	/* Address of the actual egress queue. */
204 	lepp_queue_t *eq;
205 	/* Protects "eq". */
206 	spinlock_t eq_lock;
207 	/* The hypervisor handle for this interface. */
208 	int hv_devhdl;
209 	/* The intr bit mask that IDs this device. */
210 	u32 intr_id;
211 	/* True iff "tile_net_open_aux()" has succeeded. */
212 	bool partly_opened;
213 	/* True iff the device is "active". */
214 	bool active;
215 	/* Effective network cpus. */
216 	struct cpumask network_cpus_map;
217 	/* Number of network cpus. */
218 	int network_cpus_count;
219 	/* Credits per network cpu. */
220 	int network_cpus_credits;
221 	/* Network stats. */
222 	struct net_device_stats stats;
223 	/* For NetIO bringup retries. */
224 	struct delayed_work retry_work;
225 	/* Quick access to per cpu data. */
226 	struct tile_net_cpu *cpu[NR_CPUS];
227 };
228 
229 /* Log2 of the number of small pages needed for the egress queue. */
230 #define EQ_ORDER  get_order(sizeof(lepp_queue_t))
231 /* Size of the egress queue's pages. */
232 #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
233 
234 /*
235  * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
236  */
237 static struct net_device *tile_net_devs[TILE_NET_DEVS];
238 
239 /*
240  * The "tile_net_cpu" structures for each device.
241  */
242 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
243 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
244 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
245 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
246 
247 
248 /*
249  * True if "network_cpus" was specified.
250  */
251 static bool network_cpus_used;
252 
253 /*
254  * The actual cpus in "network_cpus".
255  */
256 static struct cpumask network_cpus_map;
257 
258 
259 
260 #ifdef TILE_NET_DEBUG
261 /*
262  * printk with extra stuff.
263  *
264  * We print the CPU we're running in brackets.
265  */
net_printk(char * fmt,...)266 static void net_printk(char *fmt, ...)
267 {
268 	int i;
269 	int len;
270 	va_list args;
271 	static char buf[256];
272 
273 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
274 	va_start(args, fmt);
275 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
276 	va_end(args);
277 	buf[255] = '\0';
278 	pr_notice(buf);
279 }
280 #endif
281 
282 
283 #ifdef TILE_NET_DUMP_PACKETS
284 /*
285  * Dump a packet.
286  */
dump_packet(unsigned char * data,unsigned long length,char * s)287 static void dump_packet(unsigned char *data, unsigned long length, char *s)
288 {
289 	int my_cpu = smp_processor_id();
290 
291 	unsigned long i;
292 	char buf[128];
293 
294 	static unsigned int count;
295 
296 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
297 	       data, length, s, count++);
298 
299 	pr_info("\n");
300 
301 	for (i = 0; i < length; i++) {
302 		if ((i & 0xf) == 0)
303 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
304 		sprintf(buf + strlen(buf), " %2.2x", data[i]);
305 		if ((i & 0xf) == 0xf || i == length - 1) {
306 			strcat(buf, "\n");
307 			pr_info("%s", buf);
308 		}
309 	}
310 }
311 #endif
312 
313 
314 /*
315  * Provide support for the __netio_fastio1() swint
316  * (see <hv/drv_xgbe_intf.h> for how it is used).
317  *
318  * The fastio swint2 call may clobber all the caller-saved registers.
319  * It rarely clobbers memory, but we allow for the possibility in
320  * the signature just to be on the safe side.
321  *
322  * Also, gcc doesn't seem to allow an input operand to be
323  * clobbered, so we fake it with dummy outputs.
324  *
325  * This function can't be static because of the way it is declared
326  * in the netio header.
327  */
__netio_fastio1(u32 fastio_index,u32 arg0)328 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
329 {
330 	long result, clobber_r1, clobber_r10;
331 	asm volatile("swint2"
332 		     : "=R00" (result),
333 		       "=R01" (clobber_r1), "=R10" (clobber_r10)
334 		     : "R10" (fastio_index), "R01" (arg0)
335 		     : "memory", "r2", "r3", "r4",
336 		       "r5", "r6", "r7", "r8", "r9",
337 		       "r11", "r12", "r13", "r14",
338 		       "r15", "r16", "r17", "r18", "r19",
339 		       "r20", "r21", "r22", "r23", "r24",
340 		       "r25", "r26", "r27", "r28", "r29");
341 	return result;
342 }
343 
344 
tile_net_return_credit(struct tile_net_cpu * info)345 static void tile_net_return_credit(struct tile_net_cpu *info)
346 {
347 	struct tile_netio_queue *queue = &info->queue;
348 	netio_queue_user_impl_t *qup = &queue->__user_part;
349 
350 	/* Return four credits after every fourth packet. */
351 	if (--qup->__receive_credit_remaining == 0) {
352 		u32 interval = qup->__receive_credit_interval;
353 		qup->__receive_credit_remaining = interval;
354 		__netio_fastio_return_credits(qup->__fastio_index, interval);
355 	}
356 }
357 
358 
359 
360 /*
361  * Provide a linux buffer to LIPP.
362  */
tile_net_provide_linux_buffer(struct tile_net_cpu * info,void * va,bool small)363 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
364 					  void *va, bool small)
365 {
366 	struct tile_netio_queue *queue = &info->queue;
367 
368 	/* Convert "va" and "small" to "linux_buffer_t". */
369 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
370 
371 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
372 }
373 
374 
375 /*
376  * Provide a linux buffer for LIPP.
377  *
378  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
379  * plus a chunk of memory that includes not only the requested bytes, but
380  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
381  *
382  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
383  * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
384  *
385  * Without jumbo packets, the maximum packet size will be 1536 bytes,
386  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
387  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
388  * could save an entire cache line, but in practice, we don't need it.
389  *
390  * Since CPAs are 38 bits, and we can only encode the high 31 bits in
391  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
392  * align the actual "va" mod 128.
393  *
394  * We assume that the underlying "head" will be aligned mod 64.  Note
395  * that in practice, we have seen "head" NOT aligned mod 128 even when
396  * using 2048 byte allocations, which is surprising.
397  *
398  * If "head" WAS always aligned mod 128, we could change LIPP to
399  * assume that the low SIX bits are zero, and the 7th bit is one, that
400  * is, align the actual "va" mod 128 plus 64, which would be "free".
401  *
402  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
403  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
404  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
405  * the actual packet, plus 62 bytes of empty padding, plus some
406  * padding and the "struct skb_shared_info".
407  *
408  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
409  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
410  *
411  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
412  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
413  * could presumably increase the size of small buffers.
414  *
415  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
416  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
417  *
418  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
419  * bytes, or 524 bytes, which is annoyingly wasteful.
420  *
421  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
422  *
423  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
424  */
tile_net_provide_needed_buffer(struct tile_net_cpu * info,bool small)425 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
426 					   bool small)
427 {
428 #if TILE_NET_MTU <= 1536
429 	/* Without "jumbo", 2 + 1536 should be sufficient. */
430 	unsigned int large_size = NET_IP_ALIGN + 1536;
431 #else
432 	/* ISSUE: This has not been tested. */
433 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
434 #endif
435 
436 	/* Avoid "false sharing" with last cache line. */
437 	/* ISSUE: This is already done by "netdev_alloc_skb()". */
438 	unsigned int len =
439 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
440 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
441 
442 	unsigned int padding = 128 - NET_SKB_PAD;
443 	unsigned int align;
444 
445 	struct sk_buff *skb;
446 	void *va;
447 
448 	struct sk_buff **skb_ptr;
449 
450 	/* Request 96 extra bytes for alignment purposes. */
451 	skb = netdev_alloc_skb(info->napi.dev, len + padding);
452 	if (skb == NULL)
453 		return false;
454 
455 	/* Skip 32 or 96 bytes to align "data" mod 128. */
456 	align = -(long)skb->data & (128 - 1);
457 	BUG_ON(align > padding);
458 	skb_reserve(skb, align);
459 
460 	/* This address is given to IPP. */
461 	va = skb->data;
462 
463 	/* Buffers must not span a huge page. */
464 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
465 
466 #ifdef TILE_NET_PARANOIA
467 #if CHIP_HAS_CBOX_HOME_MAP()
468 	if (hash_default) {
469 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
470 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
471 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
472 			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
473 	}
474 #endif
475 #endif
476 
477 	/* Invalidate the packet buffer. */
478 	if (!hash_default)
479 		__inv_buffer(va, len);
480 
481 	/* Skip two bytes to satisfy LIPP assumptions. */
482 	/* Note that this aligns IP on a 16 byte boundary. */
483 	/* ISSUE: Do this when the packet arrives? */
484 	skb_reserve(skb, NET_IP_ALIGN);
485 
486 	/* Save a back-pointer to 'skb'. */
487 	skb_ptr = va - sizeof(*skb_ptr);
488 	*skb_ptr = skb;
489 
490 	/* Make sure "skb_ptr" has been flushed. */
491 	__insn_mf();
492 
493 	/* Provide the new buffer. */
494 	tile_net_provide_linux_buffer(info, va, small);
495 
496 	return true;
497 }
498 
499 
500 /*
501  * Provide linux buffers for LIPP.
502  */
tile_net_provide_needed_buffers(struct tile_net_cpu * info)503 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
504 {
505 	while (info->num_needed_small_buffers != 0) {
506 		if (!tile_net_provide_needed_buffer(info, true))
507 			goto oops;
508 		info->num_needed_small_buffers--;
509 	}
510 
511 	while (info->num_needed_large_buffers != 0) {
512 		if (!tile_net_provide_needed_buffer(info, false))
513 			goto oops;
514 		info->num_needed_large_buffers--;
515 	}
516 
517 	return;
518 
519 oops:
520 
521 	/* Add a description to the page allocation failure dump. */
522 	pr_notice("Could not provide a linux buffer to LIPP.\n");
523 }
524 
525 
526 /*
527  * Grab some LEPP completions, and store them in "comps", of size
528  * "comps_size", and return the number of completions which were
529  * stored, so the caller can free them.
530  */
tile_net_lepp_grab_comps(lepp_queue_t * eq,struct sk_buff * comps[],unsigned int comps_size,unsigned int min_size)531 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
532 					     struct sk_buff *comps[],
533 					     unsigned int comps_size,
534 					     unsigned int min_size)
535 {
536 	unsigned int n = 0;
537 
538 	unsigned int comp_head = eq->comp_head;
539 	unsigned int comp_busy = eq->comp_busy;
540 
541 	while (comp_head != comp_busy && n < comps_size) {
542 		comps[n++] = eq->comps[comp_head];
543 		LEPP_QINC(comp_head);
544 	}
545 
546 	if (n < min_size)
547 		return 0;
548 
549 	eq->comp_head = comp_head;
550 
551 	return n;
552 }
553 
554 
555 /*
556  * Free some comps, and return true iff there are still some pending.
557  */
tile_net_lepp_free_comps(struct net_device * dev,bool all)558 static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
559 {
560 	struct tile_net_priv *priv = netdev_priv(dev);
561 
562 	lepp_queue_t *eq = priv->eq;
563 
564 	struct sk_buff *olds[64];
565 	unsigned int wanted = 64;
566 	unsigned int i, n;
567 	bool pending;
568 
569 	spin_lock(&priv->eq_lock);
570 
571 	if (all)
572 		eq->comp_busy = eq->comp_tail;
573 
574 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
575 
576 	pending = (eq->comp_head != eq->comp_tail);
577 
578 	spin_unlock(&priv->eq_lock);
579 
580 	for (i = 0; i < n; i++)
581 		kfree_skb(olds[i]);
582 
583 	return pending;
584 }
585 
586 
587 /*
588  * Make sure the egress timer is scheduled.
589  *
590  * Note that we use "schedule if not scheduled" logic instead of the more
591  * obvious "reschedule" logic, because "reschedule" is fairly expensive.
592  */
tile_net_schedule_egress_timer(struct tile_net_cpu * info)593 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
594 {
595 	if (!info->egress_timer_scheduled) {
596 		mod_timer_pinned(&info->egress_timer, jiffies + 1);
597 		info->egress_timer_scheduled = true;
598 	}
599 }
600 
601 
602 /*
603  * The "function" for "info->egress_timer".
604  *
605  * This timer will reschedule itself as long as there are any pending
606  * completions expected (on behalf of any tile).
607  *
608  * ISSUE: Realistically, will the timer ever stop scheduling itself?
609  *
610  * ISSUE: This timer is almost never actually needed, so just use a global
611  * timer that can run on any tile.
612  *
613  * ISSUE: Maybe instead track number of expected completions, and free
614  * only that many, resetting to zero if "pending" is ever false.
615  */
tile_net_handle_egress_timer(unsigned long arg)616 static void tile_net_handle_egress_timer(unsigned long arg)
617 {
618 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
619 	struct net_device *dev = info->napi.dev;
620 
621 	/* The timer is no longer scheduled. */
622 	info->egress_timer_scheduled = false;
623 
624 	/* Free comps, and reschedule timer if more are pending. */
625 	if (tile_net_lepp_free_comps(dev, false))
626 		tile_net_schedule_egress_timer(info);
627 }
628 
629 
630 #ifdef IGNORE_DUP_ACKS
631 
632 /*
633  * Help detect "duplicate" ACKs.  These are sequential packets (for a
634  * given flow) which are exactly 66 bytes long, sharing everything but
635  * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
636  * Tstamps=10@0x38.  The ID's are +1, the Hsum's are -1, the Ack's are
637  * +N, and the Tstamps are usually identical.
638  *
639  * NOTE: Apparently truly duplicate acks (with identical "ack" values),
640  * should not be collapsed, as they are used for some kind of flow control.
641  */
is_dup_ack(char * s1,char * s2,unsigned int len)642 static bool is_dup_ack(char *s1, char *s2, unsigned int len)
643 {
644 	int i;
645 
646 	unsigned long long ignorable = 0;
647 
648 	/* Identification. */
649 	ignorable |= (1ULL << 0x12);
650 	ignorable |= (1ULL << 0x13);
651 
652 	/* Header checksum. */
653 	ignorable |= (1ULL << 0x18);
654 	ignorable |= (1ULL << 0x19);
655 
656 	/* ACK. */
657 	ignorable |= (1ULL << 0x2a);
658 	ignorable |= (1ULL << 0x2b);
659 	ignorable |= (1ULL << 0x2c);
660 	ignorable |= (1ULL << 0x2d);
661 
662 	/* WinSize. */
663 	ignorable |= (1ULL << 0x30);
664 	ignorable |= (1ULL << 0x31);
665 
666 	/* Checksum. */
667 	ignorable |= (1ULL << 0x32);
668 	ignorable |= (1ULL << 0x33);
669 
670 	for (i = 0; i < len; i++, ignorable >>= 1) {
671 
672 		if ((ignorable & 1) || (s1[i] == s2[i]))
673 			continue;
674 
675 #ifdef TILE_NET_DEBUG
676 		/* HACK: Mention non-timestamp diffs. */
677 		if (i < 0x38 && i != 0x2f &&
678 		    net_ratelimit())
679 			pr_info("Diff at 0x%x\n", i);
680 #endif
681 
682 		return false;
683 	}
684 
685 #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
686 	/* HACK: Do not suppress truly duplicate ACKs. */
687 	/* ISSUE: Is this actually necessary or helpful? */
688 	if (s1[0x2a] == s2[0x2a] &&
689 	    s1[0x2b] == s2[0x2b] &&
690 	    s1[0x2c] == s2[0x2c] &&
691 	    s1[0x2d] == s2[0x2d]) {
692 		return false;
693 	}
694 #endif
695 
696 	return true;
697 }
698 
699 #endif
700 
701 
702 
tile_net_discard_aux(struct tile_net_cpu * info,int index)703 static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
704 {
705 	struct tile_netio_queue *queue = &info->queue;
706 	netio_queue_impl_t *qsp = queue->__system_part;
707 	netio_queue_user_impl_t *qup = &queue->__user_part;
708 
709 	int index2_aux = index + sizeof(netio_pkt_t);
710 	int index2 =
711 		((index2_aux ==
712 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
713 		 0 : index2_aux);
714 
715 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
716 
717 	/* Extract the "linux_buffer_t". */
718 	unsigned int buffer = pkt->__packet.word;
719 
720 	/* Convert "linux_buffer_t" to "va". */
721 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
722 
723 	/* Acquire the associated "skb". */
724 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
725 	struct sk_buff *skb = *skb_ptr;
726 
727 	kfree_skb(skb);
728 
729 	/* Consume this packet. */
730 	qup->__packet_receive_read = index2;
731 }
732 
733 
734 /*
735  * Like "tile_net_poll()", but just discard packets.
736  */
tile_net_discard_packets(struct net_device * dev)737 static void tile_net_discard_packets(struct net_device *dev)
738 {
739 	struct tile_net_priv *priv = netdev_priv(dev);
740 	int my_cpu = smp_processor_id();
741 	struct tile_net_cpu *info = priv->cpu[my_cpu];
742 	struct tile_netio_queue *queue = &info->queue;
743 	netio_queue_impl_t *qsp = queue->__system_part;
744 	netio_queue_user_impl_t *qup = &queue->__user_part;
745 
746 	while (qup->__packet_receive_read !=
747 	       qsp->__packet_receive_queue.__packet_write) {
748 		int index = qup->__packet_receive_read;
749 		tile_net_discard_aux(info, index);
750 	}
751 }
752 
753 
754 /*
755  * Handle the next packet.  Return true if "processed", false if "filtered".
756  */
tile_net_poll_aux(struct tile_net_cpu * info,int index)757 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
758 {
759 	struct net_device *dev = info->napi.dev;
760 
761 	struct tile_netio_queue *queue = &info->queue;
762 	netio_queue_impl_t *qsp = queue->__system_part;
763 	netio_queue_user_impl_t *qup = &queue->__user_part;
764 	struct tile_net_stats_t *stats = &info->stats;
765 
766 	int filter;
767 
768 	int index2_aux = index + sizeof(netio_pkt_t);
769 	int index2 =
770 		((index2_aux ==
771 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
772 		 0 : index2_aux);
773 
774 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
775 
776 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
777 
778 	/* Extract the packet size.  FIXME: Shouldn't the second line */
779 	/* get subtracted?  Mostly moot, since it should be "zero". */
780 	unsigned long len =
781 		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
782 		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
783 
784 	/* Extract the "linux_buffer_t". */
785 	unsigned int buffer = pkt->__packet.word;
786 
787 	/* Extract "small" (vs "large"). */
788 	bool small = ((buffer & 1) != 0);
789 
790 	/* Convert "linux_buffer_t" to "va". */
791 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
792 
793 	/* Extract the packet data pointer. */
794 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
795 	unsigned char *buf = va + NET_IP_ALIGN;
796 
797 	/* Invalidate the packet buffer. */
798 	if (!hash_default)
799 		__inv_buffer(buf, len);
800 
801 	/* ISSUE: Is this needed? */
802 	dev->last_rx = jiffies;
803 
804 #ifdef TILE_NET_DUMP_PACKETS
805 	dump_packet(buf, len, "rx");
806 #endif /* TILE_NET_DUMP_PACKETS */
807 
808 #ifdef TILE_NET_VERIFY_INGRESS
809 	if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) &&
810 	    NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) {
811 		/* Bug 6624: Includes UDP packets with a "zero" checksum. */
812 		pr_warning("Bad L4 checksum on %d byte packet.\n", len);
813 	}
814 	if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) &&
815 	    NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) {
816 		dump_packet(buf, len, "rx");
817 		panic("Bad L3 checksum.");
818 	}
819 	switch (NETIO_PKT_STATUS_M(metadata, pkt)) {
820 	case NETIO_PKT_STATUS_OVERSIZE:
821 		if (len >= 64) {
822 			dump_packet(buf, len, "rx");
823 			panic("Unexpected OVERSIZE.");
824 		}
825 		break;
826 	case NETIO_PKT_STATUS_BAD:
827 		pr_warning("Unexpected BAD %ld byte packet.\n", len);
828 	}
829 #endif
830 
831 	filter = 0;
832 
833 	/* ISSUE: Filter TCP packets with "bad" checksums? */
834 
835 	if (!(dev->flags & IFF_UP)) {
836 		/* Filter packets received before we're up. */
837 		filter = 1;
838 	} else if (NETIO_PKT_STATUS_M(metadata, pkt) == NETIO_PKT_STATUS_BAD) {
839 		/* Filter "truncated" packets. */
840 		filter = 1;
841 	} else if (!(dev->flags & IFF_PROMISC)) {
842 		/* FIXME: Implement HW multicast filter. */
843 		if (!is_multicast_ether_addr(buf)) {
844 			/* Filter packets not for our address. */
845 			const u8 *mine = dev->dev_addr;
846 			filter = !ether_addr_equal(mine, buf);
847 		}
848 	}
849 
850 	if (filter) {
851 
852 		/* ISSUE: Update "drop" statistics? */
853 
854 		tile_net_provide_linux_buffer(info, va, small);
855 
856 	} else {
857 
858 		/* Acquire the associated "skb". */
859 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
860 		struct sk_buff *skb = *skb_ptr;
861 
862 		/* Paranoia. */
863 		if (skb->data != buf)
864 			panic("Corrupt linux buffer from LIPP! "
865 			      "VA=%p, skb=%p, skb->data=%p\n",
866 			      va, skb, skb->data);
867 
868 		/* Encode the actual packet length. */
869 		skb_put(skb, len);
870 
871 		/* NOTE: This call also sets "skb->dev = dev". */
872 		skb->protocol = eth_type_trans(skb, dev);
873 
874 		/* Avoid recomputing "good" TCP/UDP checksums. */
875 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
876 			skb->ip_summed = CHECKSUM_UNNECESSARY;
877 
878 		netif_receive_skb(skb);
879 
880 		stats->rx_packets++;
881 		stats->rx_bytes += len;
882 	}
883 
884 	/* ISSUE: It would be nice to defer this until the packet has */
885 	/* actually been processed. */
886 	tile_net_return_credit(info);
887 
888 	/* Consume this packet. */
889 	qup->__packet_receive_read = index2;
890 
891 	return !filter;
892 }
893 
894 
895 /*
896  * Handle some packets for the given device on the current CPU.
897  *
898  * If "tile_net_stop()" is called on some other tile while this
899  * function is running, we will return, hopefully before that
900  * other tile asks us to call "napi_disable()".
901  *
902  * The "rotting packet" race condition occurs if a packet arrives
903  * during the extremely narrow window between the queue appearing to
904  * be empty, and the ingress interrupt being re-enabled.  This happens
905  * a LOT under heavy network load.
906  */
tile_net_poll(struct napi_struct * napi,int budget)907 static int tile_net_poll(struct napi_struct *napi, int budget)
908 {
909 	struct net_device *dev = napi->dev;
910 	struct tile_net_priv *priv = netdev_priv(dev);
911 	int my_cpu = smp_processor_id();
912 	struct tile_net_cpu *info = priv->cpu[my_cpu];
913 	struct tile_netio_queue *queue = &info->queue;
914 	netio_queue_impl_t *qsp = queue->__system_part;
915 	netio_queue_user_impl_t *qup = &queue->__user_part;
916 
917 	unsigned int work = 0;
918 
919 	while (priv->active) {
920 		int index = qup->__packet_receive_read;
921 		if (index == qsp->__packet_receive_queue.__packet_write)
922 			break;
923 
924 		if (tile_net_poll_aux(info, index)) {
925 			if (++work >= budget)
926 				goto done;
927 		}
928 	}
929 
930 	napi_complete(&info->napi);
931 
932 	if (!priv->active)
933 		goto done;
934 
935 	/* Re-enable the ingress interrupt. */
936 	enable_percpu_irq(priv->intr_id, 0);
937 
938 	/* HACK: Avoid the "rotting packet" problem (see above). */
939 	if (qup->__packet_receive_read !=
940 	    qsp->__packet_receive_queue.__packet_write) {
941 		/* ISSUE: Sometimes this returns zero, presumably */
942 		/* because an interrupt was handled for this tile. */
943 		(void)napi_reschedule(&info->napi);
944 	}
945 
946 done:
947 
948 	if (priv->active)
949 		tile_net_provide_needed_buffers(info);
950 
951 	return work;
952 }
953 
954 
955 /*
956  * Handle an ingress interrupt for the given device on the current cpu.
957  *
958  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
959  * been called!  This is probably due to "pending hypervisor downcalls".
960  *
961  * ISSUE: Is there any race condition between the "napi_schedule()" here
962  * and the "napi_complete()" call above?
963  */
tile_net_handle_ingress_interrupt(int irq,void * dev_ptr)964 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
965 {
966 	struct net_device *dev = (struct net_device *)dev_ptr;
967 	struct tile_net_priv *priv = netdev_priv(dev);
968 	int my_cpu = smp_processor_id();
969 	struct tile_net_cpu *info = priv->cpu[my_cpu];
970 
971 	/* Disable the ingress interrupt. */
972 	disable_percpu_irq(priv->intr_id);
973 
974 	/* Ignore unwanted interrupts. */
975 	if (!priv->active)
976 		return IRQ_HANDLED;
977 
978 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
979 
980 	napi_schedule(&info->napi);
981 
982 	return IRQ_HANDLED;
983 }
984 
985 
986 /*
987  * One time initialization per interface.
988  */
tile_net_open_aux(struct net_device * dev)989 static int tile_net_open_aux(struct net_device *dev)
990 {
991 	struct tile_net_priv *priv = netdev_priv(dev);
992 
993 	int ret;
994 	int dummy;
995 	unsigned int epp_lotar;
996 
997 	/*
998 	 * Find out where EPP memory should be homed.
999 	 */
1000 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1001 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
1002 			   NETIO_EPP_SHM_OFF);
1003 	if (ret < 0) {
1004 		pr_err("could not read epp_shm_queue lotar.\n");
1005 		return -EIO;
1006 	}
1007 
1008 	/*
1009 	 * Home the page on the EPP.
1010 	 */
1011 	{
1012 		int epp_home = hv_lotar_to_cpu(epp_lotar);
1013 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
1014 	}
1015 
1016 	/*
1017 	 * Register the EPP shared memory queue.
1018 	 */
1019 	{
1020 		netio_ipp_address_t ea = {
1021 			.va = 0,
1022 			.pa = __pa(priv->eq),
1023 			.pte = hv_pte(0),
1024 			.size = EQ_SIZE,
1025 		};
1026 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
1027 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
1028 		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1029 				    (HV_VirtAddr)&ea,
1030 				    sizeof(ea),
1031 				    NETIO_EPP_SHM_OFF);
1032 		if (ret < 0)
1033 			return -EIO;
1034 	}
1035 
1036 	/*
1037 	 * Start LIPP/LEPP.
1038 	 */
1039 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1040 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
1041 		pr_warning("Failed to start LIPP/LEPP.\n");
1042 		return -EIO;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 
1049 /*
1050  * Register with hypervisor on the current CPU.
1051  *
1052  * Strangely, this function does important things even if it "fails",
1053  * which is especially common if the link is not up yet.  Hopefully
1054  * these things are all "harmless" if done twice!
1055  */
tile_net_register(void * dev_ptr)1056 static void tile_net_register(void *dev_ptr)
1057 {
1058 	struct net_device *dev = (struct net_device *)dev_ptr;
1059 	struct tile_net_priv *priv = netdev_priv(dev);
1060 	int my_cpu = smp_processor_id();
1061 	struct tile_net_cpu *info;
1062 
1063 	struct tile_netio_queue *queue;
1064 
1065 	/* Only network cpus can receive packets. */
1066 	int queue_id =
1067 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
1068 
1069 	netio_input_config_t config = {
1070 		.flags = 0,
1071 		.num_receive_packets = priv->network_cpus_credits,
1072 		.queue_id = queue_id
1073 	};
1074 
1075 	int ret = 0;
1076 	netio_queue_impl_t *queuep;
1077 
1078 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
1079 
1080 	if (!strcmp(dev->name, "xgbe0"))
1081 		info = &__get_cpu_var(hv_xgbe0);
1082 	else if (!strcmp(dev->name, "xgbe1"))
1083 		info = &__get_cpu_var(hv_xgbe1);
1084 	else if (!strcmp(dev->name, "gbe0"))
1085 		info = &__get_cpu_var(hv_gbe0);
1086 	else if (!strcmp(dev->name, "gbe1"))
1087 		info = &__get_cpu_var(hv_gbe1);
1088 	else
1089 		BUG();
1090 
1091 	/* Initialize the egress timer. */
1092 	init_timer(&info->egress_timer);
1093 	info->egress_timer.data = (long)info;
1094 	info->egress_timer.function = tile_net_handle_egress_timer;
1095 
1096 	priv->cpu[my_cpu] = info;
1097 
1098 	/*
1099 	 * Register ourselves with LIPP.  This does a lot of stuff,
1100 	 * including invoking the LIPP registration code.
1101 	 */
1102 	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1103 			    (HV_VirtAddr)&config,
1104 			    sizeof(netio_input_config_t),
1105 			    NETIO_IPP_INPUT_REGISTER_OFF);
1106 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1107 	       ret);
1108 	if (ret < 0) {
1109 		if (ret != NETIO_LINK_DOWN) {
1110 			printk(KERN_DEBUG "hv_dev_pwrite "
1111 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1112 			       ret);
1113 		}
1114 		info->link_down = (ret == NETIO_LINK_DOWN);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * Get the pointer to our queue's system part.
1120 	 */
1121 
1122 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1123 			   (HV_VirtAddr)&queuep,
1124 			   sizeof(netio_queue_impl_t *),
1125 			   NETIO_IPP_INPUT_REGISTER_OFF);
1126 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1127 	       ret);
1128 	PDEBUG("queuep %p\n", queuep);
1129 	if (ret <= 0) {
1130 		/* ISSUE: Shouldn't this be a fatal error? */
1131 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1132 		return;
1133 	}
1134 
1135 	queue = &info->queue;
1136 
1137 	queue->__system_part = queuep;
1138 
1139 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1140 
1141 	/* This is traditionally "config.num_receive_packets / 2". */
1142 	queue->__user_part.__receive_credit_interval = 4;
1143 	queue->__user_part.__receive_credit_remaining =
1144 		queue->__user_part.__receive_credit_interval;
1145 
1146 	/*
1147 	 * Get a fastio index from the hypervisor.
1148 	 * ISSUE: Shouldn't this check the result?
1149 	 */
1150 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1151 			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
1152 			   sizeof(queue->__user_part.__fastio_index),
1153 			   NETIO_IPP_GET_FASTIO_OFF);
1154 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1155 
1156 	/* Now we are registered. */
1157 	info->registered = true;
1158 }
1159 
1160 
1161 /*
1162  * Deregister with hypervisor on the current CPU.
1163  *
1164  * This simply discards all our credits, so no more packets will be
1165  * delivered to this tile.  There may still be packets in our queue.
1166  *
1167  * Also, disable the ingress interrupt.
1168  */
tile_net_deregister(void * dev_ptr)1169 static void tile_net_deregister(void *dev_ptr)
1170 {
1171 	struct net_device *dev = (struct net_device *)dev_ptr;
1172 	struct tile_net_priv *priv = netdev_priv(dev);
1173 	int my_cpu = smp_processor_id();
1174 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1175 
1176 	/* Disable the ingress interrupt. */
1177 	disable_percpu_irq(priv->intr_id);
1178 
1179 	/* Do nothing else if not registered. */
1180 	if (info == NULL || !info->registered)
1181 		return;
1182 
1183 	{
1184 		struct tile_netio_queue *queue = &info->queue;
1185 		netio_queue_user_impl_t *qup = &queue->__user_part;
1186 
1187 		/* Discard all our credits. */
1188 		__netio_fastio_return_credits(qup->__fastio_index, -1);
1189 	}
1190 }
1191 
1192 
1193 /*
1194  * Unregister with hypervisor on the current CPU.
1195  *
1196  * Also, disable the ingress interrupt.
1197  */
tile_net_unregister(void * dev_ptr)1198 static void tile_net_unregister(void *dev_ptr)
1199 {
1200 	struct net_device *dev = (struct net_device *)dev_ptr;
1201 	struct tile_net_priv *priv = netdev_priv(dev);
1202 	int my_cpu = smp_processor_id();
1203 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1204 
1205 	int ret;
1206 	int dummy = 0;
1207 
1208 	/* Disable the ingress interrupt. */
1209 	disable_percpu_irq(priv->intr_id);
1210 
1211 	/* Do nothing else if not registered. */
1212 	if (info == NULL || !info->registered)
1213 		return;
1214 
1215 	/* Unregister ourselves with LIPP/LEPP. */
1216 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1217 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1218 	if (ret < 0)
1219 		panic("Failed to unregister with LIPP/LEPP!\n");
1220 
1221 	/* Discard all packets still in our NetIO queue. */
1222 	tile_net_discard_packets(dev);
1223 
1224 	/* Reset state. */
1225 	info->num_needed_small_buffers = 0;
1226 	info->num_needed_large_buffers = 0;
1227 
1228 	/* Cancel egress timer. */
1229 	del_timer(&info->egress_timer);
1230 	info->egress_timer_scheduled = false;
1231 }
1232 
1233 
1234 /*
1235  * Helper function for "tile_net_stop()".
1236  *
1237  * Also used to handle registration failure in "tile_net_open_inner()",
1238  * when the various extra steps in "tile_net_stop()" are not necessary.
1239  */
tile_net_stop_aux(struct net_device * dev)1240 static void tile_net_stop_aux(struct net_device *dev)
1241 {
1242 	struct tile_net_priv *priv = netdev_priv(dev);
1243 	int i;
1244 
1245 	int dummy = 0;
1246 
1247 	/*
1248 	 * Unregister all tiles, so LIPP will stop delivering packets.
1249 	 * Also, delete all the "napi" objects (sequentially, to protect
1250 	 * "dev->napi_list").
1251 	 */
1252 	on_each_cpu(tile_net_unregister, (void *)dev, 1);
1253 	for_each_online_cpu(i) {
1254 		struct tile_net_cpu *info = priv->cpu[i];
1255 		if (info != NULL && info->registered) {
1256 			netif_napi_del(&info->napi);
1257 			info->registered = false;
1258 		}
1259 	}
1260 
1261 	/* Stop LIPP/LEPP. */
1262 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1263 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1264 		panic("Failed to stop LIPP/LEPP!\n");
1265 
1266 	priv->partly_opened = false;
1267 }
1268 
1269 
1270 /*
1271  * Disable NAPI for the given device on the current cpu.
1272  */
tile_net_stop_disable(void * dev_ptr)1273 static void tile_net_stop_disable(void *dev_ptr)
1274 {
1275 	struct net_device *dev = (struct net_device *)dev_ptr;
1276 	struct tile_net_priv *priv = netdev_priv(dev);
1277 	int my_cpu = smp_processor_id();
1278 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1279 
1280 	/* Disable NAPI if needed. */
1281 	if (info != NULL && info->napi_enabled) {
1282 		napi_disable(&info->napi);
1283 		info->napi_enabled = false;
1284 	}
1285 }
1286 
1287 
1288 /*
1289  * Enable NAPI and the ingress interrupt for the given device
1290  * on the current cpu.
1291  *
1292  * ISSUE: Only do this for "network cpus"?
1293  */
tile_net_open_enable(void * dev_ptr)1294 static void tile_net_open_enable(void *dev_ptr)
1295 {
1296 	struct net_device *dev = (struct net_device *)dev_ptr;
1297 	struct tile_net_priv *priv = netdev_priv(dev);
1298 	int my_cpu = smp_processor_id();
1299 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1300 
1301 	/* Enable NAPI. */
1302 	napi_enable(&info->napi);
1303 	info->napi_enabled = true;
1304 
1305 	/* Enable the ingress interrupt. */
1306 	enable_percpu_irq(priv->intr_id, 0);
1307 }
1308 
1309 
1310 /*
1311  * tile_net_open_inner does most of the work of bringing up the interface.
1312  * It's called from tile_net_open(), and also from tile_net_retry_open().
1313  * The return value is 0 if the interface was brought up, < 0 if
1314  * tile_net_open() should return the return value as an error, and > 0 if
1315  * tile_net_open() should return success and schedule a work item to
1316  * periodically retry the bringup.
1317  */
tile_net_open_inner(struct net_device * dev)1318 static int tile_net_open_inner(struct net_device *dev)
1319 {
1320 	struct tile_net_priv *priv = netdev_priv(dev);
1321 	int my_cpu = smp_processor_id();
1322 	struct tile_net_cpu *info;
1323 	struct tile_netio_queue *queue;
1324 	int result = 0;
1325 	int i;
1326 	int dummy = 0;
1327 
1328 	/*
1329 	 * First try to register just on the local CPU, and handle any
1330 	 * semi-expected "link down" failure specially.  Note that we
1331 	 * do NOT call "tile_net_stop_aux()", unlike below.
1332 	 */
1333 	tile_net_register(dev);
1334 	info = priv->cpu[my_cpu];
1335 	if (!info->registered) {
1336 		if (info->link_down)
1337 			return 1;
1338 		return -EAGAIN;
1339 	}
1340 
1341 	/*
1342 	 * Now register everywhere else.  If any registration fails,
1343 	 * even for "link down" (which might not be possible), we
1344 	 * clean up using "tile_net_stop_aux()".  Also, add all the
1345 	 * "napi" objects (sequentially, to protect "dev->napi_list").
1346 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1347 	 */
1348 	smp_call_function(tile_net_register, (void *)dev, 1);
1349 	for_each_online_cpu(i) {
1350 		struct tile_net_cpu *info = priv->cpu[i];
1351 		if (info->registered)
1352 			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1353 		else
1354 			result = -EAGAIN;
1355 	}
1356 	if (result != 0) {
1357 		tile_net_stop_aux(dev);
1358 		return result;
1359 	}
1360 
1361 	queue = &info->queue;
1362 
1363 	if (priv->intr_id == 0) {
1364 		unsigned int irq;
1365 
1366 		/*
1367 		 * Acquire the irq allocated by the hypervisor.  Every
1368 		 * queue gets the same irq.  The "__intr_id" field is
1369 		 * "1 << irq", so we use "__ffs()" to extract "irq".
1370 		 */
1371 		priv->intr_id = queue->__system_part->__intr_id;
1372 		BUG_ON(priv->intr_id == 0);
1373 		irq = __ffs(priv->intr_id);
1374 
1375 		/*
1376 		 * Register the ingress interrupt handler for this
1377 		 * device, permanently.
1378 		 *
1379 		 * We used to call "free_irq()" in "tile_net_stop()",
1380 		 * and then re-register the handler here every time,
1381 		 * but that caused DNP errors in "handle_IRQ_event()"
1382 		 * because "desc->action" was NULL.  See bug 9143.
1383 		 */
1384 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1385 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1386 				   0, dev->name, (void *)dev) != 0);
1387 	}
1388 
1389 	{
1390 		/* Allocate initial buffers. */
1391 
1392 		int max_buffers =
1393 			priv->network_cpus_count * priv->network_cpus_credits;
1394 
1395 		info->num_needed_small_buffers =
1396 			min(LIPP_SMALL_BUFFERS, max_buffers);
1397 
1398 		info->num_needed_large_buffers =
1399 			min(LIPP_LARGE_BUFFERS, max_buffers);
1400 
1401 		tile_net_provide_needed_buffers(info);
1402 
1403 		if (info->num_needed_small_buffers != 0 ||
1404 		    info->num_needed_large_buffers != 0)
1405 			panic("Insufficient memory for buffer stack!");
1406 	}
1407 
1408 	/* We are about to be active. */
1409 	priv->active = true;
1410 
1411 	/* Make sure "active" is visible to all tiles. */
1412 	mb();
1413 
1414 	/* On each tile, enable NAPI and the ingress interrupt. */
1415 	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1416 
1417 	/* Start LIPP/LEPP and activate "ingress" at the shim. */
1418 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1419 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1420 		panic("Failed to activate the LIPP Shim!\n");
1421 
1422 	/* Start our transmit queue. */
1423 	netif_start_queue(dev);
1424 
1425 	return 0;
1426 }
1427 
1428 
1429 /*
1430  * Called periodically to retry bringing up the NetIO interface,
1431  * if it doesn't come up cleanly during tile_net_open().
1432  */
tile_net_open_retry(struct work_struct * w)1433 static void tile_net_open_retry(struct work_struct *w)
1434 {
1435 	struct delayed_work *dw =
1436 		container_of(w, struct delayed_work, work);
1437 
1438 	struct tile_net_priv *priv =
1439 		container_of(dw, struct tile_net_priv, retry_work);
1440 
1441 	/*
1442 	 * Try to bring the NetIO interface up.  If it fails, reschedule
1443 	 * ourselves to try again later; otherwise, tell Linux we now have
1444 	 * a working link.  ISSUE: What if the return value is negative?
1445 	 */
1446 	if (tile_net_open_inner(priv->dev) != 0)
1447 		schedule_delayed_work(&priv->retry_work,
1448 				      TILE_NET_RETRY_INTERVAL);
1449 	else
1450 		netif_carrier_on(priv->dev);
1451 }
1452 
1453 
1454 /*
1455  * Called when a network interface is made active.
1456  *
1457  * Returns 0 on success, negative value on failure.
1458  *
1459  * The open entry point is called when a network interface is made
1460  * active by the system (IFF_UP).  At this point all resources needed
1461  * for transmit and receive operations are allocated, the interrupt
1462  * handler is registered with the OS (if needed), the watchdog timer
1463  * is started, and the stack is notified that the interface is ready.
1464  *
1465  * If the actual link is not available yet, then we tell Linux that
1466  * we have no carrier, and we keep checking until the link comes up.
1467  */
tile_net_open(struct net_device * dev)1468 static int tile_net_open(struct net_device *dev)
1469 {
1470 	int ret = 0;
1471 	struct tile_net_priv *priv = netdev_priv(dev);
1472 
1473 	/*
1474 	 * We rely on priv->partly_opened to tell us if this is the
1475 	 * first time this interface is being brought up. If it is
1476 	 * set, the IPP was already initialized and should not be
1477 	 * initialized again.
1478 	 */
1479 	if (!priv->partly_opened) {
1480 
1481 		int count;
1482 		int credits;
1483 
1484 		/* Initialize LIPP/LEPP, and start the Shim. */
1485 		ret = tile_net_open_aux(dev);
1486 		if (ret < 0) {
1487 			pr_err("tile_net_open_aux failed: %d\n", ret);
1488 			return ret;
1489 		}
1490 
1491 		/* Analyze the network cpus. */
1492 
1493 		if (network_cpus_used)
1494 			cpumask_copy(&priv->network_cpus_map,
1495 				     &network_cpus_map);
1496 		else
1497 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1498 
1499 
1500 		count = cpumask_weight(&priv->network_cpus_map);
1501 
1502 		/* Limit credits to available buffers, and apply min. */
1503 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1504 
1505 		/* Apply "GBE" max limit. */
1506 		/* ISSUE: Use higher limit for XGBE? */
1507 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1508 
1509 		priv->network_cpus_count = count;
1510 		priv->network_cpus_credits = credits;
1511 
1512 #ifdef TILE_NET_DEBUG
1513 		pr_info("Using %d network cpus, with %d credits each\n",
1514 		       priv->network_cpus_count, priv->network_cpus_credits);
1515 #endif
1516 
1517 		priv->partly_opened = true;
1518 
1519 	} else {
1520 		/* FIXME: Is this possible? */
1521 		/* printk("Already partly opened.\n"); */
1522 	}
1523 
1524 	/*
1525 	 * Attempt to bring up the link.
1526 	 */
1527 	ret = tile_net_open_inner(dev);
1528 	if (ret <= 0) {
1529 		if (ret == 0)
1530 			netif_carrier_on(dev);
1531 		return ret;
1532 	}
1533 
1534 	/*
1535 	 * We were unable to bring up the NetIO interface, but we want to
1536 	 * try again in a little bit.  Tell Linux that we have no carrier
1537 	 * so it doesn't try to use the interface before the link comes up
1538 	 * and then remember to try again later.
1539 	 */
1540 	netif_carrier_off(dev);
1541 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1542 
1543 	return 0;
1544 }
1545 
1546 
tile_net_drain_lipp_buffers(struct tile_net_priv * priv)1547 static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1548 {
1549 	int n = 0;
1550 
1551 	/* Drain all the LIPP buffers. */
1552 	while (true) {
1553 		unsigned int buffer;
1554 
1555 		/* NOTE: This should never fail. */
1556 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1557 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1558 			break;
1559 
1560 		/* Stop when done. */
1561 		if (buffer == 0)
1562 			break;
1563 
1564 		{
1565 			/* Convert "linux_buffer_t" to "va". */
1566 			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1567 
1568 			/* Acquire the associated "skb". */
1569 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1570 			struct sk_buff *skb = *skb_ptr;
1571 
1572 			kfree_skb(skb);
1573 		}
1574 
1575 		n++;
1576 	}
1577 
1578 	return n;
1579 }
1580 
1581 
1582 /*
1583  * Disables a network interface.
1584  *
1585  * Returns 0, this is not allowed to fail.
1586  *
1587  * The close entry point is called when an interface is de-activated
1588  * by the OS.  The hardware is still under the drivers control, but
1589  * needs to be disabled.  A global MAC reset is issued to stop the
1590  * hardware, and all transmit and receive resources are freed.
1591  *
1592  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1593  *
1594  * Before we are called by "__dev_close()", "netif_running()" will
1595  * have been cleared, so no NEW calls to "tile_net_poll()" will be
1596  * made by "netpoll_poll_dev()".
1597  *
1598  * Often, this can cause some tiles to still have packets in their
1599  * queues, so we must call "tile_net_discard_packets()" later.
1600  *
1601  * Note that some other tile may still be INSIDE "tile_net_poll()",
1602  * and in fact, many will be, if there is heavy network load.
1603  *
1604  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1605  * any tile is still "napi_schedule()"'d will induce a horrible crash
1606  * when "msleep()" is called.  This includes tiles which are inside
1607  * "tile_net_poll()" which have not yet called "napi_complete()".
1608  *
1609  * So, we must first try to wait long enough for other tiles to finish
1610  * with any current "tile_net_poll()" call, and, hopefully, to clear
1611  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1612  * which have called "napi_schedule()" but which had not yet tried to
1613  * call "tile_net_poll()", or which exhausted their budget inside
1614  * "tile_net_poll()" just before this function was called.
1615  */
tile_net_stop(struct net_device * dev)1616 static int tile_net_stop(struct net_device *dev)
1617 {
1618 	struct tile_net_priv *priv = netdev_priv(dev);
1619 
1620 	PDEBUG("tile_net_stop()\n");
1621 
1622 	/* Start discarding packets. */
1623 	priv->active = false;
1624 
1625 	/* Make sure "active" is visible to all tiles. */
1626 	mb();
1627 
1628 	/*
1629 	 * On each tile, make sure no NEW packets get delivered, and
1630 	 * disable the ingress interrupt.
1631 	 *
1632 	 * Note that the ingress interrupt can fire AFTER this,
1633 	 * presumably due to packets which were recently delivered,
1634 	 * but it will have no effect.
1635 	 */
1636 	on_each_cpu(tile_net_deregister, (void *)dev, 1);
1637 
1638 	/* Optimistically drain LIPP buffers. */
1639 	(void)tile_net_drain_lipp_buffers(priv);
1640 
1641 	/* ISSUE: Only needed if not yet fully open. */
1642 	cancel_delayed_work_sync(&priv->retry_work);
1643 
1644 	/* Can't transmit any more. */
1645 	netif_stop_queue(dev);
1646 
1647 	/* Disable NAPI on each tile. */
1648 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1649 
1650 	/*
1651 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1652 	 * has never been observed, but in theory it could happen.
1653 	 */
1654 	if (tile_net_drain_lipp_buffers(priv) != 0)
1655 		printk("Had to drain some extra LIPP buffers!\n");
1656 
1657 	/* Stop LIPP/LEPP. */
1658 	tile_net_stop_aux(dev);
1659 
1660 	/*
1661 	 * ISSUE: It appears that, in practice anyway, by the time we
1662 	 * get here, there are no pending completions, but just in case,
1663 	 * we free (all of) them anyway.
1664 	 */
1665 	while (tile_net_lepp_free_comps(dev, true))
1666 		/* loop */;
1667 
1668 	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
1669 	memset(priv->eq, 0, sizeof(lepp_queue_t));
1670 	mb();
1671 
1672 	return 0;
1673 }
1674 
1675 
1676 /*
1677  * Prepare the "frags" info for the resulting LEPP command.
1678  *
1679  * If needed, flush the memory used by the frags.
1680  */
tile_net_tx_frags(lepp_frag_t * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1681 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1682 				      struct sk_buff *skb,
1683 				      void *b_data, unsigned int b_len)
1684 {
1685 	unsigned int i, n = 0;
1686 
1687 	struct skb_shared_info *sh = skb_shinfo(skb);
1688 
1689 	phys_addr_t cpa;
1690 
1691 	if (b_len != 0) {
1692 
1693 		if (!hash_default)
1694 			finv_buffer_remote(b_data, b_len, 0);
1695 
1696 		cpa = __pa(b_data);
1697 		frags[n].cpa_lo = cpa;
1698 		frags[n].cpa_hi = cpa >> 32;
1699 		frags[n].length = b_len;
1700 		frags[n].hash_for_home = hash_default;
1701 		n++;
1702 	}
1703 
1704 	for (i = 0; i < sh->nr_frags; i++) {
1705 
1706 		skb_frag_t *f = &sh->frags[i];
1707 		unsigned long pfn = page_to_pfn(skb_frag_page(f));
1708 
1709 		/* FIXME: Compute "hash_for_home" properly. */
1710 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1711 		int hash_for_home = hash_default;
1712 
1713 		/* FIXME: Hmmm. */
1714 		if (!hash_default) {
1715 			void *va = pfn_to_kaddr(pfn) + f->page_offset;
1716 			BUG_ON(PageHighMem(skb_frag_page(f)));
1717 			finv_buffer_remote(va, skb_frag_size(f), 0);
1718 		}
1719 
1720 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1721 		frags[n].cpa_lo = cpa;
1722 		frags[n].cpa_hi = cpa >> 32;
1723 		frags[n].length = skb_frag_size(f);
1724 		frags[n].hash_for_home = hash_for_home;
1725 		n++;
1726 	}
1727 
1728 	return n;
1729 }
1730 
1731 
1732 /*
1733  * This function takes "skb", consisting of a header template and a
1734  * payload, and hands it to LEPP, to emit as one or more segments,
1735  * each consisting of a possibly modified header, plus a piece of the
1736  * payload, via a process known as "tcp segmentation offload".
1737  *
1738  * Usually, "data" will contain the header template, of size "sh_len",
1739  * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1740  * there will be "sh->gso_segs" segments.
1741  *
1742  * Sometimes, if "sendfile()" requires copying, we will be called with
1743  * "data" containing the header and payload, with "frags" being empty.
1744  *
1745  * Sometimes, for example when using NFS over TCP, a single segment can
1746  * span 3 fragments, which must be handled carefully in LEPP.
1747  *
1748  * See "emulate_large_send_offload()" for some reference code, which
1749  * does not handle checksumming.
1750  *
1751  * ISSUE: How do we make sure that high memory DMA does not migrate?
1752  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1753 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1754 {
1755 	struct tile_net_priv *priv = netdev_priv(dev);
1756 	int my_cpu = smp_processor_id();
1757 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1758 	struct tile_net_stats_t *stats = &info->stats;
1759 
1760 	struct skb_shared_info *sh = skb_shinfo(skb);
1761 
1762 	unsigned char *data = skb->data;
1763 
1764 	/* The ip header follows the ethernet header. */
1765 	struct iphdr *ih = ip_hdr(skb);
1766 	unsigned int ih_len = ih->ihl * 4;
1767 
1768 	/* Note that "nh == ih", by definition. */
1769 	unsigned char *nh = skb_network_header(skb);
1770 	unsigned int eh_len = nh - data;
1771 
1772 	/* The tcp header follows the ip header. */
1773 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1774 	unsigned int th_len = th->doff * 4;
1775 
1776 	/* The total number of header bytes. */
1777 	/* NOTE: This may be less than skb_headlen(skb). */
1778 	unsigned int sh_len = eh_len + ih_len + th_len;
1779 
1780 	/* The number of payload bytes at "skb->data + sh_len". */
1781 	/* This is non-zero for sendfile() without HIGHDMA. */
1782 	unsigned int b_len = skb_headlen(skb) - sh_len;
1783 
1784 	/* The total number of payload bytes. */
1785 	unsigned int d_len = b_len + skb->data_len;
1786 
1787 	/* The maximum payload size. */
1788 	unsigned int p_len = sh->gso_size;
1789 
1790 	/* The total number of segments. */
1791 	unsigned int num_segs = sh->gso_segs;
1792 
1793 	/* The temporary copy of the command. */
1794 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1795 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1796 
1797 	/* Analyze the "frags". */
1798 	unsigned int num_frags =
1799 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1800 
1801 	/* The size of the command, including frags and header. */
1802 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1803 
1804 	/* The command header. */
1805 	lepp_tso_cmd_t cmd_init = {
1806 		.tso = true,
1807 		.header_size = sh_len,
1808 		.ip_offset = eh_len,
1809 		.tcp_offset = eh_len + ih_len,
1810 		.payload_size = p_len,
1811 		.num_frags = num_frags,
1812 	};
1813 
1814 	unsigned long irqflags;
1815 
1816 	lepp_queue_t *eq = priv->eq;
1817 
1818 	struct sk_buff *olds[8];
1819 	unsigned int wanted = 8;
1820 	unsigned int i, nolds = 0;
1821 
1822 	unsigned int cmd_head, cmd_tail, cmd_next;
1823 	unsigned int comp_tail;
1824 
1825 
1826 	/* Paranoia. */
1827 	BUG_ON(skb->protocol != htons(ETH_P_IP));
1828 	BUG_ON(ih->protocol != IPPROTO_TCP);
1829 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1830 	BUG_ON(num_frags > LEPP_MAX_FRAGS);
1831 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1832 	BUG_ON(num_segs <= 1);
1833 
1834 
1835 	/* Finish preparing the command. */
1836 
1837 	/* Copy the command header. */
1838 	*cmd = cmd_init;
1839 
1840 	/* Copy the "header". */
1841 	memcpy(&cmd->frags[num_frags], data, sh_len);
1842 
1843 
1844 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1845 	prefetch_L1(&eq->comp_tail);
1846 	prefetch_L1(&eq->cmd_tail);
1847 	mb();
1848 
1849 
1850 	/* Enqueue the command. */
1851 
1852 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1853 
1854 	/* Handle completions if needed to make room. */
1855 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1856 	if (lepp_num_free_comp_slots(eq) == 0) {
1857 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1858 		if (nolds == 0) {
1859 busy:
1860 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1861 			return NETDEV_TX_BUSY;
1862 		}
1863 	}
1864 
1865 	cmd_head = eq->cmd_head;
1866 	cmd_tail = eq->cmd_tail;
1867 
1868 	/* Prepare to advance, detecting full queue. */
1869 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1870 	cmd_next = cmd_tail + cmd_size;
1871 	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1872 		goto busy;
1873 	if (cmd_next > LEPP_CMD_LIMIT) {
1874 		cmd_next = 0;
1875 		if (cmd_next == cmd_head)
1876 			goto busy;
1877 	}
1878 
1879 	/* Copy the command. */
1880 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1881 
1882 	/* Advance. */
1883 	cmd_tail = cmd_next;
1884 
1885 	/* Record "skb" for eventual freeing. */
1886 	comp_tail = eq->comp_tail;
1887 	eq->comps[comp_tail] = skb;
1888 	LEPP_QINC(comp_tail);
1889 	eq->comp_tail = comp_tail;
1890 
1891 	/* Flush before allowing LEPP to handle the command. */
1892 	/* ISSUE: Is this the optimal location for the flush? */
1893 	__insn_mf();
1894 
1895 	eq->cmd_tail = cmd_tail;
1896 
1897 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1898 	/* and, strangely, more efficient than pre-checking the number */
1899 	/* of available completions, and comparing it to 4. */
1900 	if (nolds == 0)
1901 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1902 
1903 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1904 
1905 	/* Handle completions. */
1906 	for (i = 0; i < nolds; i++)
1907 		kfree_skb(olds[i]);
1908 
1909 	/* Update stats. */
1910 	stats->tx_packets += num_segs;
1911 	stats->tx_bytes += (num_segs * sh_len) + d_len;
1912 
1913 	/* Make sure the egress timer is scheduled. */
1914 	tile_net_schedule_egress_timer(info);
1915 
1916 	return NETDEV_TX_OK;
1917 }
1918 
1919 
1920 /*
1921  * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1922  */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1923 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1924 {
1925 	struct tile_net_priv *priv = netdev_priv(dev);
1926 	int my_cpu = smp_processor_id();
1927 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1928 	struct tile_net_stats_t *stats = &info->stats;
1929 
1930 	unsigned long irqflags;
1931 
1932 	struct skb_shared_info *sh = skb_shinfo(skb);
1933 
1934 	unsigned int len = skb->len;
1935 	unsigned char *data = skb->data;
1936 
1937 	unsigned int csum_start = skb_checksum_start_offset(skb);
1938 
1939 	lepp_frag_t frags[LEPP_MAX_FRAGS];
1940 
1941 	unsigned int num_frags;
1942 
1943 	lepp_queue_t *eq = priv->eq;
1944 
1945 	struct sk_buff *olds[8];
1946 	unsigned int wanted = 8;
1947 	unsigned int i, nolds = 0;
1948 
1949 	unsigned int cmd_size = sizeof(lepp_cmd_t);
1950 
1951 	unsigned int cmd_head, cmd_tail, cmd_next;
1952 	unsigned int comp_tail;
1953 
1954 	lepp_cmd_t cmds[LEPP_MAX_FRAGS];
1955 
1956 
1957 	/*
1958 	 * This is paranoia, since we think that if the link doesn't come
1959 	 * up, telling Linux we have no carrier will keep it from trying
1960 	 * to transmit.  If it does, though, we can't execute this routine,
1961 	 * since data structures we depend on aren't set up yet.
1962 	 */
1963 	if (!info->registered)
1964 		return NETDEV_TX_BUSY;
1965 
1966 
1967 	/* Save the timestamp. */
1968 	dev->trans_start = jiffies;
1969 
1970 
1971 #ifdef TILE_NET_PARANOIA
1972 #if CHIP_HAS_CBOX_HOME_MAP()
1973 	if (hash_default) {
1974 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1975 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1976 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1977 			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
1978 	}
1979 #endif
1980 #endif
1981 
1982 
1983 #ifdef TILE_NET_DUMP_PACKETS
1984 	/* ISSUE: Does not dump the "frags". */
1985 	dump_packet(data, skb_headlen(skb), "tx");
1986 #endif /* TILE_NET_DUMP_PACKETS */
1987 
1988 
1989 	if (sh->gso_size != 0)
1990 		return tile_net_tx_tso(skb, dev);
1991 
1992 
1993 	/* Prepare the commands. */
1994 
1995 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1996 
1997 	for (i = 0; i < num_frags; i++) {
1998 
1999 		bool final = (i == num_frags - 1);
2000 
2001 		lepp_cmd_t cmd = {
2002 			.cpa_lo = frags[i].cpa_lo,
2003 			.cpa_hi = frags[i].cpa_hi,
2004 			.length = frags[i].length,
2005 			.hash_for_home = frags[i].hash_for_home,
2006 			.send_completion = final,
2007 			.end_of_packet = final
2008 		};
2009 
2010 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
2011 			cmd.compute_checksum = 1;
2012 			cmd.checksum_data.bits.start_byte = csum_start;
2013 			cmd.checksum_data.bits.count = len - csum_start;
2014 			cmd.checksum_data.bits.destination_byte =
2015 				csum_start + skb->csum_offset;
2016 		}
2017 
2018 		cmds[i] = cmd;
2019 	}
2020 
2021 
2022 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
2023 	prefetch_L1(&eq->comp_tail);
2024 	prefetch_L1(&eq->cmd_tail);
2025 	mb();
2026 
2027 
2028 	/* Enqueue the commands. */
2029 
2030 	spin_lock_irqsave(&priv->eq_lock, irqflags);
2031 
2032 	/* Handle completions if needed to make room. */
2033 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
2034 	if (lepp_num_free_comp_slots(eq) == 0) {
2035 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
2036 		if (nolds == 0) {
2037 busy:
2038 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2039 			return NETDEV_TX_BUSY;
2040 		}
2041 	}
2042 
2043 	cmd_head = eq->cmd_head;
2044 	cmd_tail = eq->cmd_tail;
2045 
2046 	/* Copy the commands, or fail. */
2047 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
2048 	for (i = 0; i < num_frags; i++) {
2049 
2050 		/* Prepare to advance, detecting full queue. */
2051 		cmd_next = cmd_tail + cmd_size;
2052 		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
2053 			goto busy;
2054 		if (cmd_next > LEPP_CMD_LIMIT) {
2055 			cmd_next = 0;
2056 			if (cmd_next == cmd_head)
2057 				goto busy;
2058 		}
2059 
2060 		/* Copy the command. */
2061 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
2062 
2063 		/* Advance. */
2064 		cmd_tail = cmd_next;
2065 	}
2066 
2067 	/* Record "skb" for eventual freeing. */
2068 	comp_tail = eq->comp_tail;
2069 	eq->comps[comp_tail] = skb;
2070 	LEPP_QINC(comp_tail);
2071 	eq->comp_tail = comp_tail;
2072 
2073 	/* Flush before allowing LEPP to handle the command. */
2074 	/* ISSUE: Is this the optimal location for the flush? */
2075 	__insn_mf();
2076 
2077 	eq->cmd_tail = cmd_tail;
2078 
2079 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
2080 	/* and, strangely, more efficient than pre-checking the number */
2081 	/* of available completions, and comparing it to 4. */
2082 	if (nolds == 0)
2083 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2084 
2085 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2086 
2087 	/* Handle completions. */
2088 	for (i = 0; i < nolds; i++)
2089 		kfree_skb(olds[i]);
2090 
2091 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2092 	stats->tx_packets++;
2093 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2094 
2095 	/* Make sure the egress timer is scheduled. */
2096 	tile_net_schedule_egress_timer(info);
2097 
2098 	return NETDEV_TX_OK;
2099 }
2100 
2101 
2102 /*
2103  * Deal with a transmit timeout.
2104  */
tile_net_tx_timeout(struct net_device * dev)2105 static void tile_net_tx_timeout(struct net_device *dev)
2106 {
2107 	PDEBUG("tile_net_tx_timeout()\n");
2108 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2109 	       jiffies - dev->trans_start);
2110 
2111 	/* XXX: ISSUE: This doesn't seem useful for us. */
2112 	netif_wake_queue(dev);
2113 }
2114 
2115 
2116 /*
2117  * Ioctl commands.
2118  */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2119 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2120 {
2121 	return -EOPNOTSUPP;
2122 }
2123 
2124 
2125 /*
2126  * Get System Network Statistics.
2127  *
2128  * Returns the address of the device statistics structure.
2129  */
tile_net_get_stats(struct net_device * dev)2130 static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
2131 {
2132 	struct tile_net_priv *priv = netdev_priv(dev);
2133 	u32 rx_packets = 0;
2134 	u32 tx_packets = 0;
2135 	u32 rx_bytes = 0;
2136 	u32 tx_bytes = 0;
2137 	int i;
2138 
2139 	for_each_online_cpu(i) {
2140 		if (priv->cpu[i]) {
2141 			rx_packets += priv->cpu[i]->stats.rx_packets;
2142 			rx_bytes += priv->cpu[i]->stats.rx_bytes;
2143 			tx_packets += priv->cpu[i]->stats.tx_packets;
2144 			tx_bytes += priv->cpu[i]->stats.tx_bytes;
2145 		}
2146 	}
2147 
2148 	priv->stats.rx_packets = rx_packets;
2149 	priv->stats.rx_bytes = rx_bytes;
2150 	priv->stats.tx_packets = tx_packets;
2151 	priv->stats.tx_bytes = tx_bytes;
2152 
2153 	return &priv->stats;
2154 }
2155 
2156 
2157 /*
2158  * Change the "mtu".
2159  *
2160  * The "change_mtu" method is usually not needed.
2161  * If you need it, it must be like this.
2162  */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2163 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2164 {
2165 	PDEBUG("tile_net_change_mtu()\n");
2166 
2167 	/* Check ranges. */
2168 	if ((new_mtu < 68) || (new_mtu > 1500))
2169 		return -EINVAL;
2170 
2171 	/* Accept the value. */
2172 	dev->mtu = new_mtu;
2173 
2174 	return 0;
2175 }
2176 
2177 
2178 /*
2179  * Change the Ethernet Address of the NIC.
2180  *
2181  * The hypervisor driver does not support changing MAC address.  However,
2182  * the IPP does not do anything with the MAC address, so the address which
2183  * gets used on outgoing packets, and which is accepted on incoming packets,
2184  * is completely up to the NetIO program or kernel driver which is actually
2185  * handling them.
2186  *
2187  * Returns 0 on success, negative on failure.
2188  */
tile_net_set_mac_address(struct net_device * dev,void * p)2189 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2190 {
2191 	struct sockaddr *addr = p;
2192 
2193 	if (!is_valid_ether_addr(addr->sa_data))
2194 		return -EADDRNOTAVAIL;
2195 
2196 	/* ISSUE: Note that "dev_addr" is now a pointer. */
2197 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2198 
2199 	return 0;
2200 }
2201 
2202 
2203 /*
2204  * Obtain the MAC address from the hypervisor.
2205  * This must be done before opening the device.
2206  */
tile_net_get_mac(struct net_device * dev)2207 static int tile_net_get_mac(struct net_device *dev)
2208 {
2209 	struct tile_net_priv *priv = netdev_priv(dev);
2210 
2211 	char hv_dev_name[32];
2212 	int len;
2213 
2214 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2215 
2216 	int ret;
2217 
2218 	/* For example, "xgbe0". */
2219 	strcpy(hv_dev_name, dev->name);
2220 	len = strlen(hv_dev_name);
2221 
2222 	/* For example, "xgbe/0". */
2223 	hv_dev_name[len] = hv_dev_name[len - 1];
2224 	hv_dev_name[len - 1] = '/';
2225 	len++;
2226 
2227 	/* For example, "xgbe/0/native_hash". */
2228 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2229 
2230 	/* Get the hypervisor handle for this device. */
2231 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2232 	PDEBUG("hv_dev_open(%s) returned %d %p\n",
2233 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2234 	if (priv->hv_devhdl < 0) {
2235 		if (priv->hv_devhdl == HV_ENODEV)
2236 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2237 				 hv_dev_name);
2238 		else
2239 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2240 				 hv_dev_name, priv->hv_devhdl);
2241 		return -1;
2242 	}
2243 
2244 	/*
2245 	 * Read the hardware address from the hypervisor.
2246 	 * ISSUE: Note that "dev_addr" is now a pointer.
2247 	 */
2248 	offset.bits.class = NETIO_PARAM;
2249 	offset.bits.addr = NETIO_PARAM_MAC;
2250 	ret = hv_dev_pread(priv->hv_devhdl, 0,
2251 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2252 			   offset.word);
2253 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2254 	if (ret <= 0) {
2255 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2256 		       dev->name);
2257 		/*
2258 		 * Since the device is configured by the hypervisor but we
2259 		 * can't get its MAC address, we are most likely running
2260 		 * the simulator, so let's generate a random MAC address.
2261 		 */
2262 		eth_hw_addr_random(dev);
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 
2269 #ifdef CONFIG_NET_POLL_CONTROLLER
2270 /*
2271  * Polling 'interrupt' - used by things like netconsole to send skbs
2272  * without having to re-enable interrupts. It's not called while
2273  * the interrupt routine is executing.
2274  */
tile_net_netpoll(struct net_device * dev)2275 static void tile_net_netpoll(struct net_device *dev)
2276 {
2277 	struct tile_net_priv *priv = netdev_priv(dev);
2278 	disable_percpu_irq(priv->intr_id);
2279 	tile_net_handle_ingress_interrupt(priv->intr_id, dev);
2280 	enable_percpu_irq(priv->intr_id, 0);
2281 }
2282 #endif
2283 
2284 
2285 static const struct net_device_ops tile_net_ops = {
2286 	.ndo_open = tile_net_open,
2287 	.ndo_stop = tile_net_stop,
2288 	.ndo_start_xmit = tile_net_tx,
2289 	.ndo_do_ioctl = tile_net_ioctl,
2290 	.ndo_get_stats = tile_net_get_stats,
2291 	.ndo_change_mtu = tile_net_change_mtu,
2292 	.ndo_tx_timeout = tile_net_tx_timeout,
2293 	.ndo_set_mac_address = tile_net_set_mac_address,
2294 #ifdef CONFIG_NET_POLL_CONTROLLER
2295 	.ndo_poll_controller = tile_net_netpoll,
2296 #endif
2297 };
2298 
2299 
2300 /*
2301  * The setup function.
2302  *
2303  * This uses ether_setup() to assign various fields in dev, including
2304  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2305  */
tile_net_setup(struct net_device * dev)2306 static void tile_net_setup(struct net_device *dev)
2307 {
2308 	PDEBUG("tile_net_setup()\n");
2309 
2310 	ether_setup(dev);
2311 
2312 	dev->netdev_ops = &tile_net_ops;
2313 
2314 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2315 
2316 	/* We want lockless xmit. */
2317 	dev->features |= NETIF_F_LLTX;
2318 
2319 	/* We support hardware tx checksums. */
2320 	dev->features |= NETIF_F_HW_CSUM;
2321 
2322 	/* We support scatter/gather. */
2323 	dev->features |= NETIF_F_SG;
2324 
2325 	/* We support TSO. */
2326 	dev->features |= NETIF_F_TSO;
2327 
2328 #ifdef TILE_NET_GSO
2329 	/* We support GSO. */
2330 	dev->features |= NETIF_F_GSO;
2331 #endif
2332 
2333 	if (hash_default)
2334 		dev->features |= NETIF_F_HIGHDMA;
2335 
2336 	/* ISSUE: We should support NETIF_F_UFO. */
2337 
2338 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2339 
2340 	dev->mtu = TILE_NET_MTU;
2341 }
2342 
2343 
2344 /*
2345  * Allocate the device structure, register the device, and obtain the
2346  * MAC address from the hypervisor.
2347  */
tile_net_dev_init(const char * name)2348 static struct net_device *tile_net_dev_init(const char *name)
2349 {
2350 	int ret;
2351 	struct net_device *dev;
2352 	struct tile_net_priv *priv;
2353 
2354 	/*
2355 	 * Allocate the device structure.  This allocates "priv", calls
2356 	 * tile_net_setup(), and saves "name".  Normally, "name" is a
2357 	 * template, instantiated by register_netdev(), but not for us.
2358 	 */
2359 	dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
2360 	if (!dev) {
2361 		pr_err("alloc_netdev(%s) failed\n", name);
2362 		return NULL;
2363 	}
2364 
2365 	priv = netdev_priv(dev);
2366 
2367 	/* Initialize "priv". */
2368 
2369 	memset(priv, 0, sizeof(*priv));
2370 
2371 	/* Save "dev" for "tile_net_open_retry()". */
2372 	priv->dev = dev;
2373 
2374 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2375 
2376 	spin_lock_init(&priv->eq_lock);
2377 
2378 	/* Allocate "eq". */
2379 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2380 	if (!priv->eq_pages) {
2381 		free_netdev(dev);
2382 		return NULL;
2383 	}
2384 	priv->eq = page_address(priv->eq_pages);
2385 
2386 	/* Register the network device. */
2387 	ret = register_netdev(dev);
2388 	if (ret) {
2389 		pr_err("register_netdev %s failed %d\n", dev->name, ret);
2390 		__free_pages(priv->eq_pages, EQ_ORDER);
2391 		free_netdev(dev);
2392 		return NULL;
2393 	}
2394 
2395 	/* Get the MAC address. */
2396 	ret = tile_net_get_mac(dev);
2397 	if (ret < 0) {
2398 		unregister_netdev(dev);
2399 		__free_pages(priv->eq_pages, EQ_ORDER);
2400 		free_netdev(dev);
2401 		return NULL;
2402 	}
2403 
2404 	return dev;
2405 }
2406 
2407 
2408 /*
2409  * Module cleanup.
2410  *
2411  * FIXME: If compiled as a module, this module cannot be "unloaded",
2412  * because the "ingress interrupt handler" is registered permanently.
2413  */
tile_net_cleanup(void)2414 static void tile_net_cleanup(void)
2415 {
2416 	int i;
2417 
2418 	for (i = 0; i < TILE_NET_DEVS; i++) {
2419 		if (tile_net_devs[i]) {
2420 			struct net_device *dev = tile_net_devs[i];
2421 			struct tile_net_priv *priv = netdev_priv(dev);
2422 			unregister_netdev(dev);
2423 			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2424 			__free_pages(priv->eq_pages, EQ_ORDER);
2425 			free_netdev(dev);
2426 		}
2427 	}
2428 }
2429 
2430 
2431 /*
2432  * Module initialization.
2433  */
tile_net_init_module(void)2434 static int tile_net_init_module(void)
2435 {
2436 	pr_info("Tilera Network Driver\n");
2437 
2438 	tile_net_devs[0] = tile_net_dev_init("xgbe0");
2439 	tile_net_devs[1] = tile_net_dev_init("xgbe1");
2440 	tile_net_devs[2] = tile_net_dev_init("gbe0");
2441 	tile_net_devs[3] = tile_net_dev_init("gbe1");
2442 
2443 	return 0;
2444 }
2445 
2446 
2447 module_init(tile_net_init_module);
2448 module_exit(tile_net_cleanup);
2449 
2450 
2451 #ifndef MODULE
2452 
2453 /*
2454  * The "network_cpus" boot argument specifies the cpus that are dedicated
2455  * to handle ingress packets.
2456  *
2457  * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2458  * m, n, x, y are integer numbers that represent the cpus that can be
2459  * neither a dedicated cpu nor a dataplane cpu.
2460  */
network_cpus_setup(char * str)2461 static int __init network_cpus_setup(char *str)
2462 {
2463 	int rc = cpulist_parse_crop(str, &network_cpus_map);
2464 	if (rc != 0) {
2465 		pr_warning("network_cpus=%s: malformed cpu list\n",
2466 		       str);
2467 	} else {
2468 
2469 		/* Remove dedicated cpus. */
2470 		cpumask_and(&network_cpus_map, &network_cpus_map,
2471 			    cpu_possible_mask);
2472 
2473 
2474 		if (cpumask_empty(&network_cpus_map)) {
2475 			pr_warning("Ignoring network_cpus='%s'.\n",
2476 			       str);
2477 		} else {
2478 			char buf[1024];
2479 			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
2480 			pr_info("Linux network CPUs: %s\n", buf);
2481 			network_cpus_used = true;
2482 		}
2483 	}
2484 
2485 	return 0;
2486 }
2487 __setup("network_cpus=", network_cpus_setup);
2488 
2489 #endif
2490