1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79
80 #include "via-velocity.h"
81
82
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
90 *
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
93 */
mac_get_cam_mask(struct mac_regs __iomem * regs,u8 * mask)94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 int i;
97
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
100
101 writeb(0, ®s->CAMADDR);
102
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
106
107 /* disable CAMEN */
108 writeb(0, ®s->CAMADDR);
109
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
112 }
113
114 /**
115 * mac_set_cam_mask - Set a CAM mask
116 * @regs: register block for this velocity
117 * @mask: CAM mask to load
118 *
119 * Store a new mask into a CAM
120 */
mac_set_cam_mask(struct mac_regs __iomem * regs,u8 * mask)121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122 {
123 int i;
124 /* Select CAM mask */
125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
126
127 writeb(CAMADDR_CAMEN, ®s->CAMADDR);
128
129 for (i = 0; i < 8; i++)
130 writeb(*mask++, &(regs->MARCAM[i]));
131
132 /* disable CAMEN */
133 writeb(0, ®s->CAMADDR);
134
135 /* Select mar */
136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
137 }
138
mac_set_vlan_cam_mask(struct mac_regs __iomem * regs,u8 * mask)139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140 {
141 int i;
142 /* Select CAM mask */
143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
144
145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR);
146
147 for (i = 0; i < 8; i++)
148 writeb(*mask++, &(regs->MARCAM[i]));
149
150 /* disable CAMEN */
151 writeb(0, ®s->CAMADDR);
152
153 /* Select mar */
154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
155 }
156
157 /**
158 * mac_set_cam - set CAM data
159 * @regs: register block of this velocity
160 * @idx: Cam index
161 * @addr: 2 or 6 bytes of CAM data
162 *
163 * Load an address or vlan tag into a CAM
164 */
mac_set_cam(struct mac_regs __iomem * regs,int idx,const u8 * addr)165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166 {
167 int i;
168
169 /* Select CAM mask */
170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
171
172 idx &= (64 - 1);
173
174 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR);
175
176 for (i = 0; i < 6; i++)
177 writeb(*addr++, &(regs->MARCAM[i]));
178
179 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR);
180
181 udelay(10);
182
183 writeb(0, ®s->CAMADDR);
184
185 /* Select mar */
186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
187 }
188
mac_set_vlan_cam(struct mac_regs __iomem * regs,int idx,const u8 * addr)189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 const u8 *addr)
191 {
192
193 /* Select CAM mask */
194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
195
196 idx &= (64 - 1);
197
198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR);
199 writew(*((u16 *) addr), ®s->MARCAM[0]);
200
201 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR);
202
203 udelay(10);
204
205 writeb(0, ®s->CAMADDR);
206
207 /* Select mar */
208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR);
209 }
210
211
212 /**
213 * mac_wol_reset - reset WOL after exiting low power
214 * @regs: register block of this velocity
215 *
216 * Called after we drop out of wake on lan mode in order to
217 * reset the Wake on lan features. This function doesn't restore
218 * the rest of the logic from the result of sleep/wakeup
219 */
mac_wol_reset(struct mac_regs __iomem * regs)220 static void mac_wol_reset(struct mac_regs __iomem *regs)
221 {
222
223 /* Turn off SWPTAG right after leaving power mode */
224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW);
225 /* clear sticky bits */
226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW);
227
228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR);
230 /* disable force PME-enable */
231 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr);
232 /* disable power-event config bit */
233 writew(0xFFFF, ®s->WOLCRClr);
234 /* clear power status */
235 writew(0xFFFF, ®s->WOLSRClr);
236 }
237
238 static const struct ethtool_ops velocity_ethtool_ops;
239
240 /*
241 Define module options
242 */
243
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247
248 #define VELOCITY_PARAM(N, D) \
249 static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 module_param_array(N, int, NULL, 0); \
251 MODULE_PARM_DESC(N, D);
252
253 #define RX_DESC_MIN 64
254 #define RX_DESC_MAX 255
255 #define RX_DESC_DEF 64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257
258 #define TX_DESC_MIN 16
259 #define TX_DESC_MAX 256
260 #define TX_DESC_DEF 64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262
263 #define RX_THRESH_MIN 0
264 #define RX_THRESH_MAX 3
265 #define RX_THRESH_DEF 0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267 0: indicate the rxfifo threshold is 128 bytes.
268 1: indicate the rxfifo threshold is 512 bytes.
269 2: indicate the rxfifo threshold is 1024 bytes.
270 3: indicate the rxfifo threshold is store & forward.
271 */
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273
274 #define DMA_LENGTH_MIN 0
275 #define DMA_LENGTH_MAX 7
276 #define DMA_LENGTH_DEF 6
277
278 /* DMA_length[] is used for controlling the DMA length
279 0: 8 DWORDs
280 1: 16 DWORDs
281 2: 32 DWORDs
282 3: 64 DWORDs
283 4: 128 DWORDs
284 5: 256 DWORDs
285 6: SF(flush till emply)
286 7: SF(flush till emply)
287 */
288 VELOCITY_PARAM(DMA_length, "DMA length");
289
290 #define IP_ALIG_DEF 0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292 0: indicate the IP header won't be DWORD byte aligned.(Default) .
293 1: indicate the IP header will be DWORD byte aligned.
294 In some environment, the IP header should be DWORD byte aligned,
295 or the packet will be droped when we receive it. (eg: IPVS)
296 */
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298
299 #define FLOW_CNTL_DEF 1
300 #define FLOW_CNTL_MIN 1
301 #define FLOW_CNTL_MAX 5
302
303 /* flow_control[] is used for setting the flow control ability of NIC.
304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305 2: enable TX flow control.
306 3: enable RX flow control.
307 4: enable RX/TX flow control.
308 5: disable
309 */
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
311
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316 0: indicate autonegotiation for both speed and duplex mode
317 1: indicate 100Mbps half duplex mode
318 2: indicate 100Mbps full duplex mode
319 3: indicate 10Mbps half duplex mode
320 4: indicate 10Mbps full duplex mode
321 5: indicate 1000Mbps full duplex mode
322
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
326 */
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328
329 #define VAL_PKT_LEN_DEF 0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
333 */
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335
336 #define WOL_OPT_DEF 0
337 #define WOL_OPT_MIN 0
338 #define WOL_OPT_MAX 7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
345 */
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351
352 /*
353 * Internal board variants. At the moment we have only one
354 */
355 static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 { }
358 };
359
360 /*
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
363 */
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 { }
367 };
368
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
370
371 /**
372 * get_chip_name - identifier to name
373 * @id: chip identifier
374 *
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
377 */
get_chip_name(enum chip_type chip_id)378 static const char *get_chip_name(enum chip_type chip_id)
379 {
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
385 }
386
387 /**
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
390 *
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
394 */
velocity_remove1(struct pci_dev * pdev)395 static void velocity_remove1(struct pci_dev *pdev)
396 {
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
399
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
406
407 velocity_nics--;
408 }
409
410 /**
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
419 *
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
423 */
velocity_set_int_opt(int * opt,int val,int min,int max,int def,char * name,const char * devname)424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 char *name, const char *devname)
426 {
427 if (val == -1)
428 *opt = def;
429 else if (val < min || val > max) {
430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 devname, name, min, max);
432 *opt = def;
433 } else {
434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 devname, name, val);
436 *opt = val;
437 }
438 }
439
440 /**
441 * velocity_set_bool_opt - parser for boolean options
442 * @opt: pointer to option value
443 * @val: value the user requested (or -1 for default)
444 * @def: default value (yes/no)
445 * @flag: numeric value to set for true.
446 * @name: property name
447 * @dev: device name
448 *
449 * Set a boolean property in the module options. This function does
450 * all the verification and checking as well as reporting so that
451 * we don't duplicate code for each option.
452 */
velocity_set_bool_opt(u32 * opt,int val,int def,u32 flag,char * name,const char * devname)453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 char *name, const char *devname)
455 {
456 (*opt) &= (~flag);
457 if (val == -1)
458 *opt |= (def ? flag : 0);
459 else if (val < 0 || val > 1) {
460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 devname, name);
462 *opt |= (def ? flag : 0);
463 } else {
464 printk(KERN_INFO "%s: set parameter %s to %s\n",
465 devname, name, val ? "TRUE" : "FALSE");
466 *opt |= (val ? flag : 0);
467 }
468 }
469
470 /**
471 * velocity_get_options - set options on device
472 * @opts: option structure for the device
473 * @index: index of option to use in module options array
474 * @devname: device name
475 *
476 * Turn the module and command options into a single structure
477 * for the current device
478 */
velocity_get_options(struct velocity_opt * opts,int index,const char * devname)479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 const char *devname)
481 {
482
483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487
488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
491 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
492 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
493 opts->numrx = (opts->numrx & ~3);
494 }
495
496 /**
497 * velocity_init_cam_filter - initialise CAM
498 * @vptr: velocity to program
499 *
500 * Initialize the content addressable memory used for filters. Load
501 * appropriately according to the presence of VLAN
502 */
velocity_init_cam_filter(struct velocity_info * vptr)503 static void velocity_init_cam_filter(struct velocity_info *vptr)
504 {
505 struct mac_regs __iomem *regs = vptr->mac_regs;
506 unsigned int vid, i = 0;
507
508 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
509 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG);
510 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG);
511
512 /* Disable all CAMs */
513 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
514 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
515 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
516 mac_set_cam_mask(regs, vptr->mCAMmask);
517
518 /* Enable VCAMs */
519 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
520 mac_set_vlan_cam(regs, i, (u8 *) &vid);
521 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
522 if (++i >= VCAM_SIZE)
523 break;
524 }
525 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
526 }
527
velocity_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)528 static int velocity_vlan_rx_add_vid(struct net_device *dev,
529 __be16 proto, u16 vid)
530 {
531 struct velocity_info *vptr = netdev_priv(dev);
532
533 spin_lock_irq(&vptr->lock);
534 set_bit(vid, vptr->active_vlans);
535 velocity_init_cam_filter(vptr);
536 spin_unlock_irq(&vptr->lock);
537 return 0;
538 }
539
velocity_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)540 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
541 __be16 proto, u16 vid)
542 {
543 struct velocity_info *vptr = netdev_priv(dev);
544
545 spin_lock_irq(&vptr->lock);
546 clear_bit(vid, vptr->active_vlans);
547 velocity_init_cam_filter(vptr);
548 spin_unlock_irq(&vptr->lock);
549 return 0;
550 }
551
velocity_init_rx_ring_indexes(struct velocity_info * vptr)552 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
553 {
554 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
555 }
556
557 /**
558 * velocity_rx_reset - handle a receive reset
559 * @vptr: velocity we are resetting
560 *
561 * Reset the ownership and status for the receive ring side.
562 * Hand all the receive queue to the NIC.
563 */
velocity_rx_reset(struct velocity_info * vptr)564 static void velocity_rx_reset(struct velocity_info *vptr)
565 {
566
567 struct mac_regs __iomem *regs = vptr->mac_regs;
568 int i;
569
570 velocity_init_rx_ring_indexes(vptr);
571
572 /*
573 * Init state, all RD entries belong to the NIC
574 */
575 for (i = 0; i < vptr->options.numrx; ++i)
576 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
577
578 writew(vptr->options.numrx, ®s->RBRDU);
579 writel(vptr->rx.pool_dma, ®s->RDBaseLo);
580 writew(0, ®s->RDIdx);
581 writew(vptr->options.numrx - 1, ®s->RDCSize);
582 }
583
584 /**
585 * velocity_get_opt_media_mode - get media selection
586 * @vptr: velocity adapter
587 *
588 * Get the media mode stored in EEPROM or module options and load
589 * mii_status accordingly. The requested link state information
590 * is also returned.
591 */
velocity_get_opt_media_mode(struct velocity_info * vptr)592 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
593 {
594 u32 status = 0;
595
596 switch (vptr->options.spd_dpx) {
597 case SPD_DPX_AUTO:
598 status = VELOCITY_AUTONEG_ENABLE;
599 break;
600 case SPD_DPX_100_FULL:
601 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
602 break;
603 case SPD_DPX_10_FULL:
604 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
605 break;
606 case SPD_DPX_100_HALF:
607 status = VELOCITY_SPEED_100;
608 break;
609 case SPD_DPX_10_HALF:
610 status = VELOCITY_SPEED_10;
611 break;
612 case SPD_DPX_1000_FULL:
613 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
614 break;
615 }
616 vptr->mii_status = status;
617 return status;
618 }
619
620 /**
621 * safe_disable_mii_autopoll - autopoll off
622 * @regs: velocity registers
623 *
624 * Turn off the autopoll and wait for it to disable on the chip
625 */
safe_disable_mii_autopoll(struct mac_regs __iomem * regs)626 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
627 {
628 u16 ww;
629
630 /* turn off MAUTO */
631 writeb(0, ®s->MIICR);
632 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
633 udelay(1);
634 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR))
635 break;
636 }
637 }
638
639 /**
640 * enable_mii_autopoll - turn on autopolling
641 * @regs: velocity registers
642 *
643 * Enable the MII link status autopoll feature on the Velocity
644 * hardware. Wait for it to enable.
645 */
enable_mii_autopoll(struct mac_regs __iomem * regs)646 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
647 {
648 int ii;
649
650 writeb(0, &(regs->MIICR));
651 writeb(MIIADR_SWMPL, ®s->MIIADR);
652
653 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
654 udelay(1);
655 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR))
656 break;
657 }
658
659 writeb(MIICR_MAUTO, ®s->MIICR);
660
661 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
662 udelay(1);
663 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR))
664 break;
665 }
666
667 }
668
669 /**
670 * velocity_mii_read - read MII data
671 * @regs: velocity registers
672 * @index: MII register index
673 * @data: buffer for received data
674 *
675 * Perform a single read of an MII 16bit register. Returns zero
676 * on success or -ETIMEDOUT if the PHY did not respond.
677 */
velocity_mii_read(struct mac_regs __iomem * regs,u8 index,u16 * data)678 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
679 {
680 u16 ww;
681
682 /*
683 * Disable MIICR_MAUTO, so that mii addr can be set normally
684 */
685 safe_disable_mii_autopoll(regs);
686
687 writeb(index, ®s->MIIADR);
688
689 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR);
690
691 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
692 if (!(readb(®s->MIICR) & MIICR_RCMD))
693 break;
694 }
695
696 *data = readw(®s->MIIDATA);
697
698 enable_mii_autopoll(regs);
699 if (ww == W_MAX_TIMEOUT)
700 return -ETIMEDOUT;
701 return 0;
702 }
703
704 /**
705 * mii_check_media_mode - check media state
706 * @regs: velocity registers
707 *
708 * Check the current MII status and determine the link status
709 * accordingly
710 */
mii_check_media_mode(struct mac_regs __iomem * regs)711 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
712 {
713 u32 status = 0;
714 u16 ANAR;
715
716 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
717 status |= VELOCITY_LINK_FAIL;
718
719 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
720 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
721 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
722 status |= (VELOCITY_SPEED_1000);
723 else {
724 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
725 if (ANAR & ADVERTISE_100FULL)
726 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
727 else if (ANAR & ADVERTISE_100HALF)
728 status |= VELOCITY_SPEED_100;
729 else if (ANAR & ADVERTISE_10FULL)
730 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
731 else
732 status |= (VELOCITY_SPEED_10);
733 }
734
735 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
736 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
737 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
738 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
739 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
740 status |= VELOCITY_AUTONEG_ENABLE;
741 }
742 }
743
744 return status;
745 }
746
747 /**
748 * velocity_mii_write - write MII data
749 * @regs: velocity registers
750 * @index: MII register index
751 * @data: 16bit data for the MII register
752 *
753 * Perform a single write to an MII 16bit register. Returns zero
754 * on success or -ETIMEDOUT if the PHY did not respond.
755 */
velocity_mii_write(struct mac_regs __iomem * regs,u8 mii_addr,u16 data)756 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
757 {
758 u16 ww;
759
760 /*
761 * Disable MIICR_MAUTO, so that mii addr can be set normally
762 */
763 safe_disable_mii_autopoll(regs);
764
765 /* MII reg offset */
766 writeb(mii_addr, ®s->MIIADR);
767 /* set MII data */
768 writew(data, ®s->MIIDATA);
769
770 /* turn on MIICR_WCMD */
771 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR);
772
773 /* W_MAX_TIMEOUT is the timeout period */
774 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
775 udelay(5);
776 if (!(readb(®s->MIICR) & MIICR_WCMD))
777 break;
778 }
779 enable_mii_autopoll(regs);
780
781 if (ww == W_MAX_TIMEOUT)
782 return -ETIMEDOUT;
783 return 0;
784 }
785
786 /**
787 * set_mii_flow_control - flow control setup
788 * @vptr: velocity interface
789 *
790 * Set up the flow control on this interface according to
791 * the supplied user/eeprom options.
792 */
set_mii_flow_control(struct velocity_info * vptr)793 static void set_mii_flow_control(struct velocity_info *vptr)
794 {
795 /*Enable or Disable PAUSE in ANAR */
796 switch (vptr->options.flow_cntl) {
797 case FLOW_CNTL_TX:
798 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
799 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
800 break;
801
802 case FLOW_CNTL_RX:
803 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
804 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
805 break;
806
807 case FLOW_CNTL_TX_RX:
808 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 break;
811
812 case FLOW_CNTL_DISABLE:
813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
814 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
815 break;
816 default:
817 break;
818 }
819 }
820
821 /**
822 * mii_set_auto_on - autonegotiate on
823 * @vptr: velocity
824 *
825 * Enable autonegotation on this interface
826 */
mii_set_auto_on(struct velocity_info * vptr)827 static void mii_set_auto_on(struct velocity_info *vptr)
828 {
829 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
830 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
831 else
832 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
833 }
834
check_connection_type(struct mac_regs __iomem * regs)835 static u32 check_connection_type(struct mac_regs __iomem *regs)
836 {
837 u32 status = 0;
838 u8 PHYSR0;
839 u16 ANAR;
840 PHYSR0 = readb(®s->PHYSR0);
841
842 /*
843 if (!(PHYSR0 & PHYSR0_LINKGD))
844 status|=VELOCITY_LINK_FAIL;
845 */
846
847 if (PHYSR0 & PHYSR0_FDPX)
848 status |= VELOCITY_DUPLEX_FULL;
849
850 if (PHYSR0 & PHYSR0_SPDG)
851 status |= VELOCITY_SPEED_1000;
852 else if (PHYSR0 & PHYSR0_SPD10)
853 status |= VELOCITY_SPEED_10;
854 else
855 status |= VELOCITY_SPEED_100;
856
857 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
858 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
859 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
860 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
861 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
862 status |= VELOCITY_AUTONEG_ENABLE;
863 }
864 }
865
866 return status;
867 }
868
869 /**
870 * velocity_set_media_mode - set media mode
871 * @mii_status: old MII link state
872 *
873 * Check the media link state and configure the flow control
874 * PHY and also velocity hardware setup accordingly. In particular
875 * we need to set up CD polling and frame bursting.
876 */
velocity_set_media_mode(struct velocity_info * vptr,u32 mii_status)877 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
878 {
879 u32 curr_status;
880 struct mac_regs __iomem *regs = vptr->mac_regs;
881
882 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
883 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
884
885 /* Set mii link status */
886 set_mii_flow_control(vptr);
887
888 /*
889 Check if new status is consistent with current status
890 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
891 (mii_status==curr_status)) {
892 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
893 vptr->mii_status=check_connection_type(vptr->mac_regs);
894 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
895 return 0;
896 }
897 */
898
899 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
900 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
901
902 /*
903 * If connection type is AUTO
904 */
905 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
906 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
907 /* clear force MAC mode bit */
908 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR);
909 /* set duplex mode of MAC according to duplex mode of MII */
910 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
911 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
912 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
913
914 /* enable AUTO-NEGO mode */
915 mii_set_auto_on(vptr);
916 } else {
917 u16 CTRL1000;
918 u16 ANAR;
919 u8 CHIPGCR;
920
921 /*
922 * 1. if it's 3119, disable frame bursting in halfduplex mode
923 * and enable it in fullduplex mode
924 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
925 * 3. only enable CD heart beat counter in 10HD mode
926 */
927
928 /* set force MAC mode bit */
929 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR);
930
931 CHIPGCR = readb(®s->CHIPGCR);
932
933 if (mii_status & VELOCITY_SPEED_1000)
934 CHIPGCR |= CHIPGCR_FCGMII;
935 else
936 CHIPGCR &= ~CHIPGCR_FCGMII;
937
938 if (mii_status & VELOCITY_DUPLEX_FULL) {
939 CHIPGCR |= CHIPGCR_FCFDX;
940 writeb(CHIPGCR, ®s->CHIPGCR);
941 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
942 if (vptr->rev_id < REV_ID_VT3216_A0)
943 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR);
944 } else {
945 CHIPGCR &= ~CHIPGCR_FCFDX;
946 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
947 writeb(CHIPGCR, ®s->CHIPGCR);
948 if (vptr->rev_id < REV_ID_VT3216_A0)
949 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR);
950 }
951
952 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
953 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
954 if ((mii_status & VELOCITY_SPEED_1000) &&
955 (mii_status & VELOCITY_DUPLEX_FULL)) {
956 CTRL1000 |= ADVERTISE_1000FULL;
957 }
958 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
959
960 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
961 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG);
962 else
963 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG);
964
965 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
966 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
967 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
968 if (mii_status & VELOCITY_SPEED_100) {
969 if (mii_status & VELOCITY_DUPLEX_FULL)
970 ANAR |= ADVERTISE_100FULL;
971 else
972 ANAR |= ADVERTISE_100HALF;
973 } else if (mii_status & VELOCITY_SPEED_10) {
974 if (mii_status & VELOCITY_DUPLEX_FULL)
975 ANAR |= ADVERTISE_10FULL;
976 else
977 ANAR |= ADVERTISE_10HALF;
978 }
979 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
980 /* enable AUTO-NEGO mode */
981 mii_set_auto_on(vptr);
982 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
983 }
984 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
985 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
986 return VELOCITY_LINK_CHANGE;
987 }
988
989 /**
990 * velocity_print_link_status - link status reporting
991 * @vptr: velocity to report on
992 *
993 * Turn the link status of the velocity card into a kernel log
994 * description of the new link state, detailing speed and duplex
995 * status
996 */
velocity_print_link_status(struct velocity_info * vptr)997 static void velocity_print_link_status(struct velocity_info *vptr)
998 {
999
1000 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1001 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1002 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1003 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1004
1005 if (vptr->mii_status & VELOCITY_SPEED_1000)
1006 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1007 else if (vptr->mii_status & VELOCITY_SPEED_100)
1008 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1009 else
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1011
1012 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1013 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1014 else
1015 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1016 } else {
1017 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1018 switch (vptr->options.spd_dpx) {
1019 case SPD_DPX_1000_FULL:
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1021 break;
1022 case SPD_DPX_100_HALF:
1023 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1024 break;
1025 case SPD_DPX_100_FULL:
1026 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1027 break;
1028 case SPD_DPX_10_HALF:
1029 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1030 break;
1031 case SPD_DPX_10_FULL:
1032 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1033 break;
1034 default:
1035 break;
1036 }
1037 }
1038 }
1039
1040 /**
1041 * enable_flow_control_ability - flow control
1042 * @vptr: veloity to configure
1043 *
1044 * Set up flow control according to the flow control options
1045 * determined by the eeprom/configuration.
1046 */
enable_flow_control_ability(struct velocity_info * vptr)1047 static void enable_flow_control_ability(struct velocity_info *vptr)
1048 {
1049
1050 struct mac_regs __iomem *regs = vptr->mac_regs;
1051
1052 switch (vptr->options.flow_cntl) {
1053
1054 case FLOW_CNTL_DEFAULT:
1055 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0))
1056 writel(CR0_FDXRFCEN, ®s->CR0Set);
1057 else
1058 writel(CR0_FDXRFCEN, ®s->CR0Clr);
1059
1060 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0))
1061 writel(CR0_FDXTFCEN, ®s->CR0Set);
1062 else
1063 writel(CR0_FDXTFCEN, ®s->CR0Clr);
1064 break;
1065
1066 case FLOW_CNTL_TX:
1067 writel(CR0_FDXTFCEN, ®s->CR0Set);
1068 writel(CR0_FDXRFCEN, ®s->CR0Clr);
1069 break;
1070
1071 case FLOW_CNTL_RX:
1072 writel(CR0_FDXRFCEN, ®s->CR0Set);
1073 writel(CR0_FDXTFCEN, ®s->CR0Clr);
1074 break;
1075
1076 case FLOW_CNTL_TX_RX:
1077 writel(CR0_FDXTFCEN, ®s->CR0Set);
1078 writel(CR0_FDXRFCEN, ®s->CR0Set);
1079 break;
1080
1081 case FLOW_CNTL_DISABLE:
1082 writel(CR0_FDXRFCEN, ®s->CR0Clr);
1083 writel(CR0_FDXTFCEN, ®s->CR0Clr);
1084 break;
1085
1086 default:
1087 break;
1088 }
1089
1090 }
1091
1092 /**
1093 * velocity_soft_reset - soft reset
1094 * @vptr: velocity to reset
1095 *
1096 * Kick off a soft reset of the velocity adapter and then poll
1097 * until the reset sequence has completed before returning.
1098 */
velocity_soft_reset(struct velocity_info * vptr)1099 static int velocity_soft_reset(struct velocity_info *vptr)
1100 {
1101 struct mac_regs __iomem *regs = vptr->mac_regs;
1102 int i = 0;
1103
1104 writel(CR0_SFRST, ®s->CR0Set);
1105
1106 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1107 udelay(5);
1108 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set))
1109 break;
1110 }
1111
1112 if (i == W_MAX_TIMEOUT) {
1113 writel(CR0_FORSRST, ®s->CR0Set);
1114 /* FIXME: PCI POSTING */
1115 /* delay 2ms */
1116 mdelay(2);
1117 }
1118 return 0;
1119 }
1120
1121 /**
1122 * velocity_set_multi - filter list change callback
1123 * @dev: network device
1124 *
1125 * Called by the network layer when the filter lists need to change
1126 * for a velocity adapter. Reload the CAMs with the new address
1127 * filter ruleset.
1128 */
velocity_set_multi(struct net_device * dev)1129 static void velocity_set_multi(struct net_device *dev)
1130 {
1131 struct velocity_info *vptr = netdev_priv(dev);
1132 struct mac_regs __iomem *regs = vptr->mac_regs;
1133 u8 rx_mode;
1134 int i;
1135 struct netdev_hw_addr *ha;
1136
1137 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1138 writel(0xffffffff, ®s->MARCAM[0]);
1139 writel(0xffffffff, ®s->MARCAM[4]);
1140 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1141 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1142 (dev->flags & IFF_ALLMULTI)) {
1143 writel(0xffffffff, ®s->MARCAM[0]);
1144 writel(0xffffffff, ®s->MARCAM[4]);
1145 rx_mode = (RCR_AM | RCR_AB);
1146 } else {
1147 int offset = MCAM_SIZE - vptr->multicast_limit;
1148 mac_get_cam_mask(regs, vptr->mCAMmask);
1149
1150 i = 0;
1151 netdev_for_each_mc_addr(ha, dev) {
1152 mac_set_cam(regs, i + offset, ha->addr);
1153 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1154 i++;
1155 }
1156
1157 mac_set_cam_mask(regs, vptr->mCAMmask);
1158 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1159 }
1160 if (dev->mtu > 1500)
1161 rx_mode |= RCR_AL;
1162
1163 BYTE_REG_BITS_ON(rx_mode, ®s->RCR);
1164
1165 }
1166
1167 /*
1168 * MII access , media link mode setting functions
1169 */
1170
1171 /**
1172 * mii_init - set up MII
1173 * @vptr: velocity adapter
1174 * @mii_status: links tatus
1175 *
1176 * Set up the PHY for the current link state.
1177 */
mii_init(struct velocity_info * vptr,u32 mii_status)1178 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1179 {
1180 u16 BMCR;
1181
1182 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1183 case PHYID_CICADA_CS8201:
1184 /*
1185 * Reset to hardware default
1186 */
1187 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1188 /*
1189 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1190 * off it in NWay-forced half mode for NWay-forced v.s.
1191 * legacy-forced issue.
1192 */
1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1195 else
1196 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1197 /*
1198 * Turn on Link/Activity LED enable bit for CIS8201
1199 */
1200 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1201 break;
1202 case PHYID_VT3216_32BIT:
1203 case PHYID_VT3216_64BIT:
1204 /*
1205 * Reset to hardware default
1206 */
1207 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1208 /*
1209 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1210 * off it in NWay-forced half mode for NWay-forced v.s.
1211 * legacy-forced issue
1212 */
1213 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1214 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 else
1216 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1217 break;
1218
1219 case PHYID_MARVELL_1000:
1220 case PHYID_MARVELL_1000S:
1221 /*
1222 * Assert CRS on Transmit
1223 */
1224 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1225 /*
1226 * Reset to hardware default
1227 */
1228 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1229 break;
1230 default:
1231 ;
1232 }
1233 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1234 if (BMCR & BMCR_ISOLATE) {
1235 BMCR &= ~BMCR_ISOLATE;
1236 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1237 }
1238 }
1239
1240 /**
1241 * setup_queue_timers - Setup interrupt timers
1242 *
1243 * Setup interrupt frequency during suppression (timeout if the frame
1244 * count isn't filled).
1245 */
setup_queue_timers(struct velocity_info * vptr)1246 static void setup_queue_timers(struct velocity_info *vptr)
1247 {
1248 /* Only for newer revisions */
1249 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1250 u8 txqueue_timer = 0;
1251 u8 rxqueue_timer = 0;
1252
1253 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1254 VELOCITY_SPEED_100)) {
1255 txqueue_timer = vptr->options.txqueue_timer;
1256 rxqueue_timer = vptr->options.rxqueue_timer;
1257 }
1258
1259 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1260 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1261 }
1262 }
1263
1264 /**
1265 * setup_adaptive_interrupts - Setup interrupt suppression
1266 *
1267 * @vptr velocity adapter
1268 *
1269 * The velocity is able to suppress interrupt during high interrupt load.
1270 * This function turns on that feature.
1271 */
setup_adaptive_interrupts(struct velocity_info * vptr)1272 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1273 {
1274 struct mac_regs __iomem *regs = vptr->mac_regs;
1275 u16 tx_intsup = vptr->options.tx_intsup;
1276 u16 rx_intsup = vptr->options.rx_intsup;
1277
1278 /* Setup default interrupt mask (will be changed below) */
1279 vptr->int_mask = INT_MASK_DEF;
1280
1281 /* Set Tx Interrupt Suppression Threshold */
1282 writeb(CAMCR_PS0, ®s->CAMCR);
1283 if (tx_intsup != 0) {
1284 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1285 ISR_PTX2I | ISR_PTX3I);
1286 writew(tx_intsup, ®s->ISRCTL);
1287 } else
1288 writew(ISRCTL_TSUPDIS, ®s->ISRCTL);
1289
1290 /* Set Rx Interrupt Suppression Threshold */
1291 writeb(CAMCR_PS1, ®s->CAMCR);
1292 if (rx_intsup != 0) {
1293 vptr->int_mask &= ~ISR_PRXI;
1294 writew(rx_intsup, ®s->ISRCTL);
1295 } else
1296 writew(ISRCTL_RSUPDIS, ®s->ISRCTL);
1297
1298 /* Select page to interrupt hold timer */
1299 writeb(0, ®s->CAMCR);
1300 }
1301
1302 /**
1303 * velocity_init_registers - initialise MAC registers
1304 * @vptr: velocity to init
1305 * @type: type of initialisation (hot or cold)
1306 *
1307 * Initialise the MAC on a reset or on first set up on the
1308 * hardware.
1309 */
velocity_init_registers(struct velocity_info * vptr,enum velocity_init_type type)1310 static void velocity_init_registers(struct velocity_info *vptr,
1311 enum velocity_init_type type)
1312 {
1313 struct mac_regs __iomem *regs = vptr->mac_regs;
1314 int i, mii_status;
1315
1316 mac_wol_reset(regs);
1317
1318 switch (type) {
1319 case VELOCITY_INIT_RESET:
1320 case VELOCITY_INIT_WOL:
1321
1322 netif_stop_queue(vptr->dev);
1323
1324 /*
1325 * Reset RX to prevent RX pointer not on the 4X location
1326 */
1327 velocity_rx_reset(vptr);
1328 mac_rx_queue_run(regs);
1329 mac_rx_queue_wake(regs);
1330
1331 mii_status = velocity_get_opt_media_mode(vptr);
1332 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1333 velocity_print_link_status(vptr);
1334 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1335 netif_wake_queue(vptr->dev);
1336 }
1337
1338 enable_flow_control_ability(vptr);
1339
1340 mac_clear_isr(regs);
1341 writel(CR0_STOP, ®s->CR0Clr);
1342 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1343 ®s->CR0Set);
1344
1345 break;
1346
1347 case VELOCITY_INIT_COLD:
1348 default:
1349 /*
1350 * Do reset
1351 */
1352 velocity_soft_reset(vptr);
1353 mdelay(5);
1354
1355 mac_eeprom_reload(regs);
1356 for (i = 0; i < 6; i++)
1357 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1358
1359 /*
1360 * clear Pre_ACPI bit.
1361 */
1362 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1363 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1364 mac_set_dma_length(regs, vptr->options.DMA_length);
1365
1366 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet);
1367 /*
1368 * Back off algorithm use original IEEE standard
1369 */
1370 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB);
1371
1372 /*
1373 * Init CAM filter
1374 */
1375 velocity_init_cam_filter(vptr);
1376
1377 /*
1378 * Set packet filter: Receive directed and broadcast address
1379 */
1380 velocity_set_multi(vptr->dev);
1381
1382 /*
1383 * Enable MII auto-polling
1384 */
1385 enable_mii_autopoll(regs);
1386
1387 setup_adaptive_interrupts(vptr);
1388
1389 writel(vptr->rx.pool_dma, ®s->RDBaseLo);
1390 writew(vptr->options.numrx - 1, ®s->RDCSize);
1391 mac_rx_queue_run(regs);
1392 mac_rx_queue_wake(regs);
1393
1394 writew(vptr->options.numtx - 1, ®s->TDCSize);
1395
1396 for (i = 0; i < vptr->tx.numq; i++) {
1397 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]);
1398 mac_tx_queue_run(regs, i);
1399 }
1400
1401 init_flow_control_register(vptr);
1402
1403 writel(CR0_STOP, ®s->CR0Clr);
1404 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set);
1405
1406 mii_status = velocity_get_opt_media_mode(vptr);
1407 netif_stop_queue(vptr->dev);
1408
1409 mii_init(vptr, mii_status);
1410
1411 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1412 velocity_print_link_status(vptr);
1413 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1414 netif_wake_queue(vptr->dev);
1415 }
1416
1417 enable_flow_control_ability(vptr);
1418 mac_hw_mibs_init(regs);
1419 mac_write_int_mask(vptr->int_mask, regs);
1420 mac_clear_isr(regs);
1421
1422 }
1423 }
1424
velocity_give_many_rx_descs(struct velocity_info * vptr)1425 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1426 {
1427 struct mac_regs __iomem *regs = vptr->mac_regs;
1428 int avail, dirty, unusable;
1429
1430 /*
1431 * RD number must be equal to 4X per hardware spec
1432 * (programming guide rev 1.20, p.13)
1433 */
1434 if (vptr->rx.filled < 4)
1435 return;
1436
1437 wmb();
1438
1439 unusable = vptr->rx.filled & 0x0003;
1440 dirty = vptr->rx.dirty - unusable;
1441 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1442 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1443 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1444 }
1445
1446 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU);
1447 vptr->rx.filled = unusable;
1448 }
1449
1450 /**
1451 * velocity_init_dma_rings - set up DMA rings
1452 * @vptr: Velocity to set up
1453 *
1454 * Allocate PCI mapped DMA rings for the receive and transmit layer
1455 * to use.
1456 */
velocity_init_dma_rings(struct velocity_info * vptr)1457 static int velocity_init_dma_rings(struct velocity_info *vptr)
1458 {
1459 struct velocity_opt *opt = &vptr->options;
1460 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1461 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1462 struct pci_dev *pdev = vptr->pdev;
1463 dma_addr_t pool_dma;
1464 void *pool;
1465 unsigned int i;
1466
1467 /*
1468 * Allocate all RD/TD rings a single pool.
1469 *
1470 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1471 * alignment
1472 */
1473 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1474 rx_ring_size, &pool_dma);
1475 if (!pool) {
1476 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1477 vptr->dev->name);
1478 return -ENOMEM;
1479 }
1480
1481 vptr->rx.ring = pool;
1482 vptr->rx.pool_dma = pool_dma;
1483
1484 pool += rx_ring_size;
1485 pool_dma += rx_ring_size;
1486
1487 for (i = 0; i < vptr->tx.numq; i++) {
1488 vptr->tx.rings[i] = pool;
1489 vptr->tx.pool_dma[i] = pool_dma;
1490 pool += tx_ring_size;
1491 pool_dma += tx_ring_size;
1492 }
1493
1494 return 0;
1495 }
1496
velocity_set_rxbufsize(struct velocity_info * vptr,int mtu)1497 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1498 {
1499 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1500 }
1501
1502 /**
1503 * velocity_alloc_rx_buf - allocate aligned receive buffer
1504 * @vptr: velocity
1505 * @idx: ring index
1506 *
1507 * Allocate a new full sized buffer for the reception of a frame and
1508 * map it into PCI space for the hardware to use. The hardware
1509 * requires *64* byte alignment of the buffer which makes life
1510 * less fun than would be ideal.
1511 */
velocity_alloc_rx_buf(struct velocity_info * vptr,int idx)1512 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1513 {
1514 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1515 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1516
1517 rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64);
1518 if (rd_info->skb == NULL)
1519 return -ENOMEM;
1520
1521 /*
1522 * Do the gymnastics to get the buffer head for data at
1523 * 64byte alignment.
1524 */
1525 skb_reserve(rd_info->skb,
1526 64 - ((unsigned long) rd_info->skb->data & 63));
1527 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1528 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1529
1530 /*
1531 * Fill in the descriptor to match
1532 */
1533
1534 *((u32 *) & (rd->rdesc0)) = 0;
1535 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1536 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1537 rd->pa_high = 0;
1538 return 0;
1539 }
1540
1541
velocity_rx_refill(struct velocity_info * vptr)1542 static int velocity_rx_refill(struct velocity_info *vptr)
1543 {
1544 int dirty = vptr->rx.dirty, done = 0;
1545
1546 do {
1547 struct rx_desc *rd = vptr->rx.ring + dirty;
1548
1549 /* Fine for an all zero Rx desc at init time as well */
1550 if (rd->rdesc0.len & OWNED_BY_NIC)
1551 break;
1552
1553 if (!vptr->rx.info[dirty].skb) {
1554 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1555 break;
1556 }
1557 done++;
1558 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1559 } while (dirty != vptr->rx.curr);
1560
1561 if (done) {
1562 vptr->rx.dirty = dirty;
1563 vptr->rx.filled += done;
1564 }
1565
1566 return done;
1567 }
1568
1569 /**
1570 * velocity_free_rd_ring - free receive ring
1571 * @vptr: velocity to clean up
1572 *
1573 * Free the receive buffers for each ring slot and any
1574 * attached socket buffers that need to go away.
1575 */
velocity_free_rd_ring(struct velocity_info * vptr)1576 static void velocity_free_rd_ring(struct velocity_info *vptr)
1577 {
1578 int i;
1579
1580 if (vptr->rx.info == NULL)
1581 return;
1582
1583 for (i = 0; i < vptr->options.numrx; i++) {
1584 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1585 struct rx_desc *rd = vptr->rx.ring + i;
1586
1587 memset(rd, 0, sizeof(*rd));
1588
1589 if (!rd_info->skb)
1590 continue;
1591 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1592 PCI_DMA_FROMDEVICE);
1593 rd_info->skb_dma = 0;
1594
1595 dev_kfree_skb(rd_info->skb);
1596 rd_info->skb = NULL;
1597 }
1598
1599 kfree(vptr->rx.info);
1600 vptr->rx.info = NULL;
1601 }
1602
1603 /**
1604 * velocity_init_rd_ring - set up receive ring
1605 * @vptr: velocity to configure
1606 *
1607 * Allocate and set up the receive buffers for each ring slot and
1608 * assign them to the network adapter.
1609 */
velocity_init_rd_ring(struct velocity_info * vptr)1610 static int velocity_init_rd_ring(struct velocity_info *vptr)
1611 {
1612 int ret = -ENOMEM;
1613
1614 vptr->rx.info = kcalloc(vptr->options.numrx,
1615 sizeof(struct velocity_rd_info), GFP_KERNEL);
1616 if (!vptr->rx.info)
1617 goto out;
1618
1619 velocity_init_rx_ring_indexes(vptr);
1620
1621 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1622 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1623 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1624 velocity_free_rd_ring(vptr);
1625 goto out;
1626 }
1627
1628 ret = 0;
1629 out:
1630 return ret;
1631 }
1632
1633 /**
1634 * velocity_init_td_ring - set up transmit ring
1635 * @vptr: velocity
1636 *
1637 * Set up the transmit ring and chain the ring pointers together.
1638 * Returns zero on success or a negative posix errno code for
1639 * failure.
1640 */
velocity_init_td_ring(struct velocity_info * vptr)1641 static int velocity_init_td_ring(struct velocity_info *vptr)
1642 {
1643 int j;
1644
1645 /* Init the TD ring entries */
1646 for (j = 0; j < vptr->tx.numq; j++) {
1647
1648 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1649 sizeof(struct velocity_td_info),
1650 GFP_KERNEL);
1651 if (!vptr->tx.infos[j]) {
1652 while (--j >= 0)
1653 kfree(vptr->tx.infos[j]);
1654 return -ENOMEM;
1655 }
1656
1657 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1658 }
1659 return 0;
1660 }
1661
1662 /**
1663 * velocity_free_dma_rings - free PCI ring pointers
1664 * @vptr: Velocity to free from
1665 *
1666 * Clean up the PCI ring buffers allocated to this velocity.
1667 */
velocity_free_dma_rings(struct velocity_info * vptr)1668 static void velocity_free_dma_rings(struct velocity_info *vptr)
1669 {
1670 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1671 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1672
1673 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1674 }
1675
velocity_init_rings(struct velocity_info * vptr,int mtu)1676 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1677 {
1678 int ret;
1679
1680 velocity_set_rxbufsize(vptr, mtu);
1681
1682 ret = velocity_init_dma_rings(vptr);
1683 if (ret < 0)
1684 goto out;
1685
1686 ret = velocity_init_rd_ring(vptr);
1687 if (ret < 0)
1688 goto err_free_dma_rings_0;
1689
1690 ret = velocity_init_td_ring(vptr);
1691 if (ret < 0)
1692 goto err_free_rd_ring_1;
1693 out:
1694 return ret;
1695
1696 err_free_rd_ring_1:
1697 velocity_free_rd_ring(vptr);
1698 err_free_dma_rings_0:
1699 velocity_free_dma_rings(vptr);
1700 goto out;
1701 }
1702
1703 /**
1704 * velocity_free_tx_buf - free transmit buffer
1705 * @vptr: velocity
1706 * @tdinfo: buffer
1707 *
1708 * Release an transmit buffer. If the buffer was preallocated then
1709 * recycle it, if not then unmap the buffer.
1710 */
velocity_free_tx_buf(struct velocity_info * vptr,struct velocity_td_info * tdinfo,struct tx_desc * td)1711 static void velocity_free_tx_buf(struct velocity_info *vptr,
1712 struct velocity_td_info *tdinfo, struct tx_desc *td)
1713 {
1714 struct sk_buff *skb = tdinfo->skb;
1715
1716 /*
1717 * Don't unmap the pre-allocated tx_bufs
1718 */
1719 if (tdinfo->skb_dma) {
1720 int i;
1721
1722 for (i = 0; i < tdinfo->nskb_dma; i++) {
1723 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1724
1725 /* For scatter-gather */
1726 if (skb_shinfo(skb)->nr_frags > 0)
1727 pktlen = max_t(size_t, pktlen,
1728 td->td_buf[i].size & ~TD_QUEUE);
1729
1730 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1731 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1732 }
1733 }
1734 dev_kfree_skb_irq(skb);
1735 tdinfo->skb = NULL;
1736 }
1737
1738 /*
1739 * FIXME: could we merge this with velocity_free_tx_buf ?
1740 */
velocity_free_td_ring_entry(struct velocity_info * vptr,int q,int n)1741 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1742 int q, int n)
1743 {
1744 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1745 int i;
1746
1747 if (td_info == NULL)
1748 return;
1749
1750 if (td_info->skb) {
1751 for (i = 0; i < td_info->nskb_dma; i++) {
1752 if (td_info->skb_dma[i]) {
1753 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1754 td_info->skb->len, PCI_DMA_TODEVICE);
1755 td_info->skb_dma[i] = 0;
1756 }
1757 }
1758 dev_kfree_skb(td_info->skb);
1759 td_info->skb = NULL;
1760 }
1761 }
1762
1763 /**
1764 * velocity_free_td_ring - free td ring
1765 * @vptr: velocity
1766 *
1767 * Free up the transmit ring for this particular velocity adapter.
1768 * We free the ring contents but not the ring itself.
1769 */
velocity_free_td_ring(struct velocity_info * vptr)1770 static void velocity_free_td_ring(struct velocity_info *vptr)
1771 {
1772 int i, j;
1773
1774 for (j = 0; j < vptr->tx.numq; j++) {
1775 if (vptr->tx.infos[j] == NULL)
1776 continue;
1777 for (i = 0; i < vptr->options.numtx; i++)
1778 velocity_free_td_ring_entry(vptr, j, i);
1779
1780 kfree(vptr->tx.infos[j]);
1781 vptr->tx.infos[j] = NULL;
1782 }
1783 }
1784
velocity_free_rings(struct velocity_info * vptr)1785 static void velocity_free_rings(struct velocity_info *vptr)
1786 {
1787 velocity_free_td_ring(vptr);
1788 velocity_free_rd_ring(vptr);
1789 velocity_free_dma_rings(vptr);
1790 }
1791
1792 /**
1793 * velocity_error - handle error from controller
1794 * @vptr: velocity
1795 * @status: card status
1796 *
1797 * Process an error report from the hardware and attempt to recover
1798 * the card itself. At the moment we cannot recover from some
1799 * theoretically impossible errors but this could be fixed using
1800 * the pci_device_failed logic to bounce the hardware
1801 *
1802 */
velocity_error(struct velocity_info * vptr,int status)1803 static void velocity_error(struct velocity_info *vptr, int status)
1804 {
1805
1806 if (status & ISR_TXSTLI) {
1807 struct mac_regs __iomem *regs = vptr->mac_regs;
1808
1809 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0]));
1810 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR);
1811 writew(TRDCSR_RUN, ®s->TDCSRClr);
1812 netif_stop_queue(vptr->dev);
1813
1814 /* FIXME: port over the pci_device_failed code and use it
1815 here */
1816 }
1817
1818 if (status & ISR_SRCI) {
1819 struct mac_regs __iomem *regs = vptr->mac_regs;
1820 int linked;
1821
1822 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1823 vptr->mii_status = check_connection_type(regs);
1824
1825 /*
1826 * If it is a 3119, disable frame bursting in
1827 * halfduplex mode and enable it in fullduplex
1828 * mode
1829 */
1830 if (vptr->rev_id < REV_ID_VT3216_A0) {
1831 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1832 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR);
1833 else
1834 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR);
1835 }
1836 /*
1837 * Only enable CD heart beat counter in 10HD mode
1838 */
1839 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1840 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG);
1841 else
1842 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG);
1843
1844 setup_queue_timers(vptr);
1845 }
1846 /*
1847 * Get link status from PHYSR0
1848 */
1849 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD;
1850
1851 if (linked) {
1852 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1853 netif_carrier_on(vptr->dev);
1854 } else {
1855 vptr->mii_status |= VELOCITY_LINK_FAIL;
1856 netif_carrier_off(vptr->dev);
1857 }
1858
1859 velocity_print_link_status(vptr);
1860 enable_flow_control_ability(vptr);
1861
1862 /*
1863 * Re-enable auto-polling because SRCI will disable
1864 * auto-polling
1865 */
1866
1867 enable_mii_autopoll(regs);
1868
1869 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1870 netif_stop_queue(vptr->dev);
1871 else
1872 netif_wake_queue(vptr->dev);
1873
1874 }
1875 if (status & ISR_MIBFI)
1876 velocity_update_hw_mibs(vptr);
1877 if (status & ISR_LSTEI)
1878 mac_rx_queue_wake(vptr->mac_regs);
1879 }
1880
1881 /**
1882 * tx_srv - transmit interrupt service
1883 * @vptr; Velocity
1884 *
1885 * Scan the queues looking for transmitted packets that
1886 * we can complete and clean up. Update any statistics as
1887 * necessary/
1888 */
velocity_tx_srv(struct velocity_info * vptr)1889 static int velocity_tx_srv(struct velocity_info *vptr)
1890 {
1891 struct tx_desc *td;
1892 int qnum;
1893 int full = 0;
1894 int idx;
1895 int works = 0;
1896 struct velocity_td_info *tdinfo;
1897 struct net_device_stats *stats = &vptr->dev->stats;
1898
1899 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1900 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1901 idx = (idx + 1) % vptr->options.numtx) {
1902
1903 /*
1904 * Get Tx Descriptor
1905 */
1906 td = &(vptr->tx.rings[qnum][idx]);
1907 tdinfo = &(vptr->tx.infos[qnum][idx]);
1908
1909 if (td->tdesc0.len & OWNED_BY_NIC)
1910 break;
1911
1912 if ((works++ > 15))
1913 break;
1914
1915 if (td->tdesc0.TSR & TSR0_TERR) {
1916 stats->tx_errors++;
1917 stats->tx_dropped++;
1918 if (td->tdesc0.TSR & TSR0_CDH)
1919 stats->tx_heartbeat_errors++;
1920 if (td->tdesc0.TSR & TSR0_CRS)
1921 stats->tx_carrier_errors++;
1922 if (td->tdesc0.TSR & TSR0_ABT)
1923 stats->tx_aborted_errors++;
1924 if (td->tdesc0.TSR & TSR0_OWC)
1925 stats->tx_window_errors++;
1926 } else {
1927 stats->tx_packets++;
1928 stats->tx_bytes += tdinfo->skb->len;
1929 }
1930 velocity_free_tx_buf(vptr, tdinfo, td);
1931 vptr->tx.used[qnum]--;
1932 }
1933 vptr->tx.tail[qnum] = idx;
1934
1935 if (AVAIL_TD(vptr, qnum) < 1)
1936 full = 1;
1937 }
1938 /*
1939 * Look to see if we should kick the transmit network
1940 * layer for more work.
1941 */
1942 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1943 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1944 netif_wake_queue(vptr->dev);
1945 }
1946 return works;
1947 }
1948
1949 /**
1950 * velocity_rx_csum - checksum process
1951 * @rd: receive packet descriptor
1952 * @skb: network layer packet buffer
1953 *
1954 * Process the status bits for the received packet and determine
1955 * if the checksum was computed and verified by the hardware
1956 */
velocity_rx_csum(struct rx_desc * rd,struct sk_buff * skb)1957 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1958 {
1959 skb_checksum_none_assert(skb);
1960
1961 if (rd->rdesc1.CSM & CSM_IPKT) {
1962 if (rd->rdesc1.CSM & CSM_IPOK) {
1963 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1964 (rd->rdesc1.CSM & CSM_UDPKT)) {
1965 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1966 return;
1967 }
1968 skb->ip_summed = CHECKSUM_UNNECESSARY;
1969 }
1970 }
1971 }
1972
1973 /**
1974 * velocity_rx_copy - in place Rx copy for small packets
1975 * @rx_skb: network layer packet buffer candidate
1976 * @pkt_size: received data size
1977 * @rd: receive packet descriptor
1978 * @dev: network device
1979 *
1980 * Replace the current skb that is scheduled for Rx processing by a
1981 * shorter, immediately allocated skb, if the received packet is small
1982 * enough. This function returns a negative value if the received
1983 * packet is too big or if memory is exhausted.
1984 */
velocity_rx_copy(struct sk_buff ** rx_skb,int pkt_size,struct velocity_info * vptr)1985 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1986 struct velocity_info *vptr)
1987 {
1988 int ret = -1;
1989 if (pkt_size < rx_copybreak) {
1990 struct sk_buff *new_skb;
1991
1992 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1993 if (new_skb) {
1994 new_skb->ip_summed = rx_skb[0]->ip_summed;
1995 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1996 *rx_skb = new_skb;
1997 ret = 0;
1998 }
1999
2000 }
2001 return ret;
2002 }
2003
2004 /**
2005 * velocity_iph_realign - IP header alignment
2006 * @vptr: velocity we are handling
2007 * @skb: network layer packet buffer
2008 * @pkt_size: received data size
2009 *
2010 * Align IP header on a 2 bytes boundary. This behavior can be
2011 * configured by the user.
2012 */
velocity_iph_realign(struct velocity_info * vptr,struct sk_buff * skb,int pkt_size)2013 static inline void velocity_iph_realign(struct velocity_info *vptr,
2014 struct sk_buff *skb, int pkt_size)
2015 {
2016 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2017 memmove(skb->data + 2, skb->data, pkt_size);
2018 skb_reserve(skb, 2);
2019 }
2020 }
2021
2022 /**
2023 * velocity_receive_frame - received packet processor
2024 * @vptr: velocity we are handling
2025 * @idx: ring index
2026 *
2027 * A packet has arrived. We process the packet and if appropriate
2028 * pass the frame up the network stack
2029 */
velocity_receive_frame(struct velocity_info * vptr,int idx)2030 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2031 {
2032 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2033 struct net_device_stats *stats = &vptr->dev->stats;
2034 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2035 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2036 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2037 struct sk_buff *skb;
2038
2039 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2040 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2041 stats->rx_length_errors++;
2042 return -EINVAL;
2043 }
2044
2045 if (rd->rdesc0.RSR & RSR_MAR)
2046 stats->multicast++;
2047
2048 skb = rd_info->skb;
2049
2050 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2051 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2052
2053 /*
2054 * Drop frame not meeting IEEE 802.3
2055 */
2056
2057 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2058 if (rd->rdesc0.RSR & RSR_RL) {
2059 stats->rx_length_errors++;
2060 return -EINVAL;
2061 }
2062 }
2063
2064 pci_action = pci_dma_sync_single_for_device;
2065
2066 velocity_rx_csum(rd, skb);
2067
2068 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2069 velocity_iph_realign(vptr, skb, pkt_len);
2070 pci_action = pci_unmap_single;
2071 rd_info->skb = NULL;
2072 }
2073
2074 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2075 PCI_DMA_FROMDEVICE);
2076
2077 skb_put(skb, pkt_len - 4);
2078 skb->protocol = eth_type_trans(skb, vptr->dev);
2079
2080 if (rd->rdesc0.RSR & RSR_DETAG) {
2081 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2082
2083 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2084 }
2085 netif_rx(skb);
2086
2087 stats->rx_bytes += pkt_len;
2088 stats->rx_packets++;
2089
2090 return 0;
2091 }
2092
2093 /**
2094 * velocity_rx_srv - service RX interrupt
2095 * @vptr: velocity
2096 *
2097 * Walk the receive ring of the velocity adapter and remove
2098 * any received packets from the receive queue. Hand the ring
2099 * slots back to the adapter for reuse.
2100 */
velocity_rx_srv(struct velocity_info * vptr,int budget_left)2101 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2102 {
2103 struct net_device_stats *stats = &vptr->dev->stats;
2104 int rd_curr = vptr->rx.curr;
2105 int works = 0;
2106
2107 while (works < budget_left) {
2108 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2109
2110 if (!vptr->rx.info[rd_curr].skb)
2111 break;
2112
2113 if (rd->rdesc0.len & OWNED_BY_NIC)
2114 break;
2115
2116 rmb();
2117
2118 /*
2119 * Don't drop CE or RL error frame although RXOK is off
2120 */
2121 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2122 if (velocity_receive_frame(vptr, rd_curr) < 0)
2123 stats->rx_dropped++;
2124 } else {
2125 if (rd->rdesc0.RSR & RSR_CRC)
2126 stats->rx_crc_errors++;
2127 if (rd->rdesc0.RSR & RSR_FAE)
2128 stats->rx_frame_errors++;
2129
2130 stats->rx_dropped++;
2131 }
2132
2133 rd->size |= RX_INTEN;
2134
2135 rd_curr++;
2136 if (rd_curr >= vptr->options.numrx)
2137 rd_curr = 0;
2138 works++;
2139 }
2140
2141 vptr->rx.curr = rd_curr;
2142
2143 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2144 velocity_give_many_rx_descs(vptr);
2145
2146 VAR_USED(stats);
2147 return works;
2148 }
2149
velocity_poll(struct napi_struct * napi,int budget)2150 static int velocity_poll(struct napi_struct *napi, int budget)
2151 {
2152 struct velocity_info *vptr = container_of(napi,
2153 struct velocity_info, napi);
2154 unsigned int rx_done;
2155 unsigned long flags;
2156
2157 spin_lock_irqsave(&vptr->lock, flags);
2158 /*
2159 * Do rx and tx twice for performance (taken from the VIA
2160 * out-of-tree driver).
2161 */
2162 rx_done = velocity_rx_srv(vptr, budget / 2);
2163 velocity_tx_srv(vptr);
2164 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2165 velocity_tx_srv(vptr);
2166
2167 /* If budget not fully consumed, exit the polling mode */
2168 if (rx_done < budget) {
2169 napi_complete(napi);
2170 mac_enable_int(vptr->mac_regs);
2171 }
2172 spin_unlock_irqrestore(&vptr->lock, flags);
2173
2174 return rx_done;
2175 }
2176
2177 /**
2178 * velocity_intr - interrupt callback
2179 * @irq: interrupt number
2180 * @dev_instance: interrupting device
2181 *
2182 * Called whenever an interrupt is generated by the velocity
2183 * adapter IRQ line. We may not be the source of the interrupt
2184 * and need to identify initially if we are, and if not exit as
2185 * efficiently as possible.
2186 */
velocity_intr(int irq,void * dev_instance)2187 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2188 {
2189 struct net_device *dev = dev_instance;
2190 struct velocity_info *vptr = netdev_priv(dev);
2191 u32 isr_status;
2192
2193 spin_lock(&vptr->lock);
2194 isr_status = mac_read_isr(vptr->mac_regs);
2195
2196 /* Not us ? */
2197 if (isr_status == 0) {
2198 spin_unlock(&vptr->lock);
2199 return IRQ_NONE;
2200 }
2201
2202 /* Ack the interrupt */
2203 mac_write_isr(vptr->mac_regs, isr_status);
2204
2205 if (likely(napi_schedule_prep(&vptr->napi))) {
2206 mac_disable_int(vptr->mac_regs);
2207 __napi_schedule(&vptr->napi);
2208 }
2209
2210 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2211 velocity_error(vptr, isr_status);
2212
2213 spin_unlock(&vptr->lock);
2214
2215 return IRQ_HANDLED;
2216 }
2217
2218 /**
2219 * velocity_open - interface activation callback
2220 * @dev: network layer device to open
2221 *
2222 * Called when the network layer brings the interface up. Returns
2223 * a negative posix error code on failure, or zero on success.
2224 *
2225 * All the ring allocation and set up is done on open for this
2226 * adapter to minimise memory usage when inactive
2227 */
velocity_open(struct net_device * dev)2228 static int velocity_open(struct net_device *dev)
2229 {
2230 struct velocity_info *vptr = netdev_priv(dev);
2231 int ret;
2232
2233 ret = velocity_init_rings(vptr, dev->mtu);
2234 if (ret < 0)
2235 goto out;
2236
2237 /* Ensure chip is running */
2238 pci_set_power_state(vptr->pdev, PCI_D0);
2239
2240 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2241
2242 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2243 dev->name, dev);
2244 if (ret < 0) {
2245 /* Power down the chip */
2246 pci_set_power_state(vptr->pdev, PCI_D3hot);
2247 velocity_free_rings(vptr);
2248 goto out;
2249 }
2250
2251 velocity_give_many_rx_descs(vptr);
2252
2253 mac_enable_int(vptr->mac_regs);
2254 netif_start_queue(dev);
2255 napi_enable(&vptr->napi);
2256 vptr->flags |= VELOCITY_FLAGS_OPENED;
2257 out:
2258 return ret;
2259 }
2260
2261 /**
2262 * velocity_shutdown - shut down the chip
2263 * @vptr: velocity to deactivate
2264 *
2265 * Shuts down the internal operations of the velocity and
2266 * disables interrupts, autopolling, transmit and receive
2267 */
velocity_shutdown(struct velocity_info * vptr)2268 static void velocity_shutdown(struct velocity_info *vptr)
2269 {
2270 struct mac_regs __iomem *regs = vptr->mac_regs;
2271 mac_disable_int(regs);
2272 writel(CR0_STOP, ®s->CR0Set);
2273 writew(0xFFFF, ®s->TDCSRClr);
2274 writeb(0xFF, ®s->RDCSRClr);
2275 safe_disable_mii_autopoll(regs);
2276 mac_clear_isr(regs);
2277 }
2278
2279 /**
2280 * velocity_change_mtu - MTU change callback
2281 * @dev: network device
2282 * @new_mtu: desired MTU
2283 *
2284 * Handle requests from the networking layer for MTU change on
2285 * this interface. It gets called on a change by the network layer.
2286 * Return zero for success or negative posix error code.
2287 */
velocity_change_mtu(struct net_device * dev,int new_mtu)2288 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2289 {
2290 struct velocity_info *vptr = netdev_priv(dev);
2291 int ret = 0;
2292
2293 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2294 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2295 vptr->dev->name);
2296 ret = -EINVAL;
2297 goto out_0;
2298 }
2299
2300 if (!netif_running(dev)) {
2301 dev->mtu = new_mtu;
2302 goto out_0;
2303 }
2304
2305 if (dev->mtu != new_mtu) {
2306 struct velocity_info *tmp_vptr;
2307 unsigned long flags;
2308 struct rx_info rx;
2309 struct tx_info tx;
2310
2311 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2312 if (!tmp_vptr) {
2313 ret = -ENOMEM;
2314 goto out_0;
2315 }
2316
2317 tmp_vptr->dev = dev;
2318 tmp_vptr->pdev = vptr->pdev;
2319 tmp_vptr->options = vptr->options;
2320 tmp_vptr->tx.numq = vptr->tx.numq;
2321
2322 ret = velocity_init_rings(tmp_vptr, new_mtu);
2323 if (ret < 0)
2324 goto out_free_tmp_vptr_1;
2325
2326 spin_lock_irqsave(&vptr->lock, flags);
2327
2328 netif_stop_queue(dev);
2329 velocity_shutdown(vptr);
2330
2331 rx = vptr->rx;
2332 tx = vptr->tx;
2333
2334 vptr->rx = tmp_vptr->rx;
2335 vptr->tx = tmp_vptr->tx;
2336
2337 tmp_vptr->rx = rx;
2338 tmp_vptr->tx = tx;
2339
2340 dev->mtu = new_mtu;
2341
2342 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2343
2344 velocity_give_many_rx_descs(vptr);
2345
2346 mac_enable_int(vptr->mac_regs);
2347 netif_start_queue(dev);
2348
2349 spin_unlock_irqrestore(&vptr->lock, flags);
2350
2351 velocity_free_rings(tmp_vptr);
2352
2353 out_free_tmp_vptr_1:
2354 kfree(tmp_vptr);
2355 }
2356 out_0:
2357 return ret;
2358 }
2359
2360 /**
2361 * velocity_mii_ioctl - MII ioctl handler
2362 * @dev: network device
2363 * @ifr: the ifreq block for the ioctl
2364 * @cmd: the command
2365 *
2366 * Process MII requests made via ioctl from the network layer. These
2367 * are used by tools like kudzu to interrogate the link state of the
2368 * hardware
2369 */
velocity_mii_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2370 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2371 {
2372 struct velocity_info *vptr = netdev_priv(dev);
2373 struct mac_regs __iomem *regs = vptr->mac_regs;
2374 unsigned long flags;
2375 struct mii_ioctl_data *miidata = if_mii(ifr);
2376 int err;
2377
2378 switch (cmd) {
2379 case SIOCGMIIPHY:
2380 miidata->phy_id = readb(®s->MIIADR) & 0x1f;
2381 break;
2382 case SIOCGMIIREG:
2383 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2384 return -ETIMEDOUT;
2385 break;
2386 case SIOCSMIIREG:
2387 spin_lock_irqsave(&vptr->lock, flags);
2388 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2389 spin_unlock_irqrestore(&vptr->lock, flags);
2390 check_connection_type(vptr->mac_regs);
2391 if (err)
2392 return err;
2393 break;
2394 default:
2395 return -EOPNOTSUPP;
2396 }
2397 return 0;
2398 }
2399
2400 /**
2401 * velocity_ioctl - ioctl entry point
2402 * @dev: network device
2403 * @rq: interface request ioctl
2404 * @cmd: command code
2405 *
2406 * Called when the user issues an ioctl request to the network
2407 * device in question. The velocity interface supports MII.
2408 */
velocity_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2409 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2410 {
2411 struct velocity_info *vptr = netdev_priv(dev);
2412 int ret;
2413
2414 /* If we are asked for information and the device is power
2415 saving then we need to bring the device back up to talk to it */
2416
2417 if (!netif_running(dev))
2418 pci_set_power_state(vptr->pdev, PCI_D0);
2419
2420 switch (cmd) {
2421 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2422 case SIOCGMIIREG: /* Read MII PHY register. */
2423 case SIOCSMIIREG: /* Write to MII PHY register. */
2424 ret = velocity_mii_ioctl(dev, rq, cmd);
2425 break;
2426
2427 default:
2428 ret = -EOPNOTSUPP;
2429 }
2430 if (!netif_running(dev))
2431 pci_set_power_state(vptr->pdev, PCI_D3hot);
2432
2433
2434 return ret;
2435 }
2436
2437 /**
2438 * velocity_get_status - statistics callback
2439 * @dev: network device
2440 *
2441 * Callback from the network layer to allow driver statistics
2442 * to be resynchronized with hardware collected state. In the
2443 * case of the velocity we need to pull the MIB counters from
2444 * the hardware into the counters before letting the network
2445 * layer display them.
2446 */
velocity_get_stats(struct net_device * dev)2447 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2448 {
2449 struct velocity_info *vptr = netdev_priv(dev);
2450
2451 /* If the hardware is down, don't touch MII */
2452 if (!netif_running(dev))
2453 return &dev->stats;
2454
2455 spin_lock_irq(&vptr->lock);
2456 velocity_update_hw_mibs(vptr);
2457 spin_unlock_irq(&vptr->lock);
2458
2459 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2460 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2461 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2462
2463 // unsigned long rx_dropped; /* no space in linux buffers */
2464 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2465 /* detailed rx_errors: */
2466 // unsigned long rx_length_errors;
2467 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2468 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2469 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2470 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2471 // unsigned long rx_missed_errors; /* receiver missed packet */
2472
2473 /* detailed tx_errors */
2474 // unsigned long tx_fifo_errors;
2475
2476 return &dev->stats;
2477 }
2478
2479 /**
2480 * velocity_close - close adapter callback
2481 * @dev: network device
2482 *
2483 * Callback from the network layer when the velocity is being
2484 * deactivated by the network layer
2485 */
velocity_close(struct net_device * dev)2486 static int velocity_close(struct net_device *dev)
2487 {
2488 struct velocity_info *vptr = netdev_priv(dev);
2489
2490 napi_disable(&vptr->napi);
2491 netif_stop_queue(dev);
2492 velocity_shutdown(vptr);
2493
2494 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2495 velocity_get_ip(vptr);
2496
2497 free_irq(vptr->pdev->irq, dev);
2498
2499 velocity_free_rings(vptr);
2500
2501 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2502 return 0;
2503 }
2504
2505 /**
2506 * velocity_xmit - transmit packet callback
2507 * @skb: buffer to transmit
2508 * @dev: network device
2509 *
2510 * Called by the networ layer to request a packet is queued to
2511 * the velocity. Returns zero on success.
2512 */
velocity_xmit(struct sk_buff * skb,struct net_device * dev)2513 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2514 struct net_device *dev)
2515 {
2516 struct velocity_info *vptr = netdev_priv(dev);
2517 int qnum = 0;
2518 struct tx_desc *td_ptr;
2519 struct velocity_td_info *tdinfo;
2520 unsigned long flags;
2521 int pktlen;
2522 int index, prev;
2523 int i = 0;
2524
2525 if (skb_padto(skb, ETH_ZLEN))
2526 goto out;
2527
2528 /* The hardware can handle at most 7 memory segments, so merge
2529 * the skb if there are more */
2530 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2531 kfree_skb(skb);
2532 return NETDEV_TX_OK;
2533 }
2534
2535 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2536 max_t(unsigned int, skb->len, ETH_ZLEN) :
2537 skb_headlen(skb);
2538
2539 spin_lock_irqsave(&vptr->lock, flags);
2540
2541 index = vptr->tx.curr[qnum];
2542 td_ptr = &(vptr->tx.rings[qnum][index]);
2543 tdinfo = &(vptr->tx.infos[qnum][index]);
2544
2545 td_ptr->tdesc1.TCR = TCR0_TIC;
2546 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2547
2548 /*
2549 * Map the linear network buffer into PCI space and
2550 * add it to the transmit ring.
2551 */
2552 tdinfo->skb = skb;
2553 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2554 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2555 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2556 td_ptr->td_buf[0].pa_high = 0;
2557 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2558
2559 /* Handle fragments */
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2562
2563 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2564 frag, 0,
2565 skb_frag_size(frag),
2566 DMA_TO_DEVICE);
2567
2568 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2569 td_ptr->td_buf[i + 1].pa_high = 0;
2570 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2571 }
2572 tdinfo->nskb_dma = i + 1;
2573
2574 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2575
2576 if (vlan_tx_tag_present(skb)) {
2577 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2578 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2579 }
2580
2581 /*
2582 * Handle hardware checksum
2583 */
2584 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2585 const struct iphdr *ip = ip_hdr(skb);
2586 if (ip->protocol == IPPROTO_TCP)
2587 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2588 else if (ip->protocol == IPPROTO_UDP)
2589 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2590 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2591 }
2592
2593 prev = index - 1;
2594 if (prev < 0)
2595 prev = vptr->options.numtx - 1;
2596 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2597 vptr->tx.used[qnum]++;
2598 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2599
2600 if (AVAIL_TD(vptr, qnum) < 1)
2601 netif_stop_queue(dev);
2602
2603 td_ptr = &(vptr->tx.rings[qnum][prev]);
2604 td_ptr->td_buf[0].size |= TD_QUEUE;
2605 mac_tx_queue_wake(vptr->mac_regs, qnum);
2606
2607 spin_unlock_irqrestore(&vptr->lock, flags);
2608 out:
2609 return NETDEV_TX_OK;
2610 }
2611
2612 static const struct net_device_ops velocity_netdev_ops = {
2613 .ndo_open = velocity_open,
2614 .ndo_stop = velocity_close,
2615 .ndo_start_xmit = velocity_xmit,
2616 .ndo_get_stats = velocity_get_stats,
2617 .ndo_validate_addr = eth_validate_addr,
2618 .ndo_set_mac_address = eth_mac_addr,
2619 .ndo_set_rx_mode = velocity_set_multi,
2620 .ndo_change_mtu = velocity_change_mtu,
2621 .ndo_do_ioctl = velocity_ioctl,
2622 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2623 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2624 };
2625
2626 /**
2627 * velocity_init_info - init private data
2628 * @pdev: PCI device
2629 * @vptr: Velocity info
2630 * @info: Board type
2631 *
2632 * Set up the initial velocity_info struct for the device that has been
2633 * discovered.
2634 */
velocity_init_info(struct pci_dev * pdev,struct velocity_info * vptr,const struct velocity_info_tbl * info)2635 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
2636 const struct velocity_info_tbl *info)
2637 {
2638 memset(vptr, 0, sizeof(struct velocity_info));
2639
2640 vptr->pdev = pdev;
2641 vptr->chip_id = info->chip_id;
2642 vptr->tx.numq = info->txqueue;
2643 vptr->multicast_limit = MCAM_SIZE;
2644 spin_lock_init(&vptr->lock);
2645 }
2646
2647 /**
2648 * velocity_get_pci_info - retrieve PCI info for device
2649 * @vptr: velocity device
2650 * @pdev: PCI device it matches
2651 *
2652 * Retrieve the PCI configuration space data that interests us from
2653 * the kernel PCI layer
2654 */
velocity_get_pci_info(struct velocity_info * vptr,struct pci_dev * pdev)2655 static int velocity_get_pci_info(struct velocity_info *vptr,
2656 struct pci_dev *pdev)
2657 {
2658 vptr->rev_id = pdev->revision;
2659
2660 pci_set_master(pdev);
2661
2662 vptr->ioaddr = pci_resource_start(pdev, 0);
2663 vptr->memaddr = pci_resource_start(pdev, 1);
2664
2665 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2666 dev_err(&pdev->dev,
2667 "region #0 is not an I/O resource, aborting.\n");
2668 return -EINVAL;
2669 }
2670
2671 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2672 dev_err(&pdev->dev,
2673 "region #1 is an I/O resource, aborting.\n");
2674 return -EINVAL;
2675 }
2676
2677 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2678 dev_err(&pdev->dev, "region #1 is too small.\n");
2679 return -EINVAL;
2680 }
2681 vptr->pdev = pdev;
2682
2683 return 0;
2684 }
2685
2686 /**
2687 * velocity_print_info - per driver data
2688 * @vptr: velocity
2689 *
2690 * Print per driver data as the kernel driver finds Velocity
2691 * hardware
2692 */
velocity_print_info(struct velocity_info * vptr)2693 static void velocity_print_info(struct velocity_info *vptr)
2694 {
2695 struct net_device *dev = vptr->dev;
2696
2697 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2698 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2699 dev->name, dev->dev_addr);
2700 }
2701
velocity_get_link(struct net_device * dev)2702 static u32 velocity_get_link(struct net_device *dev)
2703 {
2704 struct velocity_info *vptr = netdev_priv(dev);
2705 struct mac_regs __iomem *regs = vptr->mac_regs;
2706 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0;
2707 }
2708
2709 /**
2710 * velocity_found1 - set up discovered velocity card
2711 * @pdev: PCI device
2712 * @ent: PCI device table entry that matched
2713 *
2714 * Configure a discovered adapter from scratch. Return a negative
2715 * errno error code on failure paths.
2716 */
velocity_found1(struct pci_dev * pdev,const struct pci_device_id * ent)2717 static int velocity_found1(struct pci_dev *pdev,
2718 const struct pci_device_id *ent)
2719 {
2720 static int first = 1;
2721 struct net_device *dev;
2722 int i;
2723 const char *drv_string;
2724 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2725 struct velocity_info *vptr;
2726 struct mac_regs __iomem *regs;
2727 int ret = -ENOMEM;
2728
2729 /* FIXME: this driver, like almost all other ethernet drivers,
2730 * can support more than MAX_UNITS.
2731 */
2732 if (velocity_nics >= MAX_UNITS) {
2733 dev_notice(&pdev->dev, "already found %d NICs.\n",
2734 velocity_nics);
2735 return -ENODEV;
2736 }
2737
2738 dev = alloc_etherdev(sizeof(struct velocity_info));
2739 if (!dev)
2740 goto out;
2741
2742 /* Chain it all together */
2743
2744 SET_NETDEV_DEV(dev, &pdev->dev);
2745 vptr = netdev_priv(dev);
2746
2747
2748 if (first) {
2749 printk(KERN_INFO "%s Ver. %s\n",
2750 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2751 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2752 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2753 first = 0;
2754 }
2755
2756 velocity_init_info(pdev, vptr, info);
2757
2758 vptr->dev = dev;
2759
2760 ret = pci_enable_device(pdev);
2761 if (ret < 0)
2762 goto err_free_dev;
2763
2764 ret = velocity_get_pci_info(vptr, pdev);
2765 if (ret < 0) {
2766 /* error message already printed */
2767 goto err_disable;
2768 }
2769
2770 ret = pci_request_regions(pdev, VELOCITY_NAME);
2771 if (ret < 0) {
2772 dev_err(&pdev->dev, "No PCI resources.\n");
2773 goto err_disable;
2774 }
2775
2776 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2777 if (regs == NULL) {
2778 ret = -EIO;
2779 goto err_release_res;
2780 }
2781
2782 vptr->mac_regs = regs;
2783
2784 mac_wol_reset(regs);
2785
2786 for (i = 0; i < 6; i++)
2787 dev->dev_addr[i] = readb(®s->PAR[i]);
2788
2789
2790 drv_string = dev_driver_string(&pdev->dev);
2791
2792 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2793
2794 /*
2795 * Mask out the options cannot be set to the chip
2796 */
2797
2798 vptr->options.flags &= info->flags;
2799
2800 /*
2801 * Enable the chip specified capbilities
2802 */
2803
2804 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2805
2806 vptr->wol_opts = vptr->options.wol_opts;
2807 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2808
2809 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2810
2811 dev->netdev_ops = &velocity_netdev_ops;
2812 dev->ethtool_ops = &velocity_ethtool_ops;
2813 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2814
2815 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2816 NETIF_F_HW_VLAN_CTAG_TX;
2817 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_FILTER |
2818 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_IP_CSUM;
2819
2820 ret = register_netdev(dev);
2821 if (ret < 0)
2822 goto err_iounmap;
2823
2824 if (!velocity_get_link(dev)) {
2825 netif_carrier_off(dev);
2826 vptr->mii_status |= VELOCITY_LINK_FAIL;
2827 }
2828
2829 velocity_print_info(vptr);
2830 pci_set_drvdata(pdev, dev);
2831
2832 /* and leave the chip powered down */
2833
2834 pci_set_power_state(pdev, PCI_D3hot);
2835 velocity_nics++;
2836 out:
2837 return ret;
2838
2839 err_iounmap:
2840 iounmap(regs);
2841 err_release_res:
2842 pci_release_regions(pdev);
2843 err_disable:
2844 pci_disable_device(pdev);
2845 err_free_dev:
2846 free_netdev(dev);
2847 goto out;
2848 }
2849
2850 #ifdef CONFIG_PM
2851 /**
2852 * wol_calc_crc - WOL CRC
2853 * @pattern: data pattern
2854 * @mask_pattern: mask
2855 *
2856 * Compute the wake on lan crc hashes for the packet header
2857 * we are interested in.
2858 */
wol_calc_crc(int size,u8 * pattern,u8 * mask_pattern)2859 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2860 {
2861 u16 crc = 0xFFFF;
2862 u8 mask;
2863 int i, j;
2864
2865 for (i = 0; i < size; i++) {
2866 mask = mask_pattern[i];
2867
2868 /* Skip this loop if the mask equals to zero */
2869 if (mask == 0x00)
2870 continue;
2871
2872 for (j = 0; j < 8; j++) {
2873 if ((mask & 0x01) == 0) {
2874 mask >>= 1;
2875 continue;
2876 }
2877 mask >>= 1;
2878 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2879 }
2880 }
2881 /* Finally, invert the result once to get the correct data */
2882 crc = ~crc;
2883 return bitrev32(crc) >> 16;
2884 }
2885
2886 /**
2887 * velocity_set_wol - set up for wake on lan
2888 * @vptr: velocity to set WOL status on
2889 *
2890 * Set a card up for wake on lan either by unicast or by
2891 * ARP packet.
2892 *
2893 * FIXME: check static buffer is safe here
2894 */
velocity_set_wol(struct velocity_info * vptr)2895 static int velocity_set_wol(struct velocity_info *vptr)
2896 {
2897 struct mac_regs __iomem *regs = vptr->mac_regs;
2898 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2899 static u8 buf[256];
2900 int i;
2901
2902 static u32 mask_pattern[2][4] = {
2903 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2904 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2905 };
2906
2907 writew(0xFFFF, ®s->WOLCRClr);
2908 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet);
2909 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet);
2910
2911 /*
2912 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2913 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet);
2914 */
2915
2916 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2917 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet);
2918
2919 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2920 struct arp_packet *arp = (struct arp_packet *) buf;
2921 u16 crc;
2922 memset(buf, 0, sizeof(struct arp_packet) + 7);
2923
2924 for (i = 0; i < 4; i++)
2925 writel(mask_pattern[0][i], ®s->ByteMask[0][i]);
2926
2927 arp->type = htons(ETH_P_ARP);
2928 arp->ar_op = htons(1);
2929
2930 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2931
2932 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2933 (u8 *) & mask_pattern[0][0]);
2934
2935 writew(crc, ®s->PatternCRC[0]);
2936 writew(WOLCR_ARP_EN, ®s->WOLCRSet);
2937 }
2938
2939 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet);
2940 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet);
2941
2942 writew(0x0FFF, ®s->WOLSRClr);
2943
2944 if (spd_dpx == SPD_DPX_1000_FULL)
2945 goto mac_done;
2946
2947 if (spd_dpx != SPD_DPX_AUTO)
2948 goto advertise_done;
2949
2950 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2951 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2952 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2953
2954 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2955 }
2956
2957 if (vptr->mii_status & VELOCITY_SPEED_1000)
2958 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2959
2960 advertise_done:
2961 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR);
2962
2963 {
2964 u8 GCR;
2965 GCR = readb(®s->CHIPGCR);
2966 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2967 writeb(GCR, ®s->CHIPGCR);
2968 }
2969
2970 mac_done:
2971 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR);
2972 /* Turn on SWPTAG just before entering power mode */
2973 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW);
2974 /* Go to bed ..... */
2975 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW);
2976
2977 return 0;
2978 }
2979
2980 /**
2981 * velocity_save_context - save registers
2982 * @vptr: velocity
2983 * @context: buffer for stored context
2984 *
2985 * Retrieve the current configuration from the velocity hardware
2986 * and stash it in the context structure, for use by the context
2987 * restore functions. This allows us to save things we need across
2988 * power down states
2989 */
velocity_save_context(struct velocity_info * vptr,struct velocity_context * context)2990 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2991 {
2992 struct mac_regs __iomem *regs = vptr->mac_regs;
2993 u16 i;
2994 u8 __iomem *ptr = (u8 __iomem *)regs;
2995
2996 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2997 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2998
2999 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3000 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3001
3002 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3003 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3004
3005 }
3006
velocity_suspend(struct pci_dev * pdev,pm_message_t state)3007 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3008 {
3009 struct net_device *dev = pci_get_drvdata(pdev);
3010 struct velocity_info *vptr = netdev_priv(dev);
3011 unsigned long flags;
3012
3013 if (!netif_running(vptr->dev))
3014 return 0;
3015
3016 netif_device_detach(vptr->dev);
3017
3018 spin_lock_irqsave(&vptr->lock, flags);
3019 pci_save_state(pdev);
3020
3021 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3022 velocity_get_ip(vptr);
3023 velocity_save_context(vptr, &vptr->context);
3024 velocity_shutdown(vptr);
3025 velocity_set_wol(vptr);
3026 pci_enable_wake(pdev, PCI_D3hot, 1);
3027 pci_set_power_state(pdev, PCI_D3hot);
3028 } else {
3029 velocity_save_context(vptr, &vptr->context);
3030 velocity_shutdown(vptr);
3031 pci_disable_device(pdev);
3032 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3033 }
3034
3035 spin_unlock_irqrestore(&vptr->lock, flags);
3036 return 0;
3037 }
3038
3039 /**
3040 * velocity_restore_context - restore registers
3041 * @vptr: velocity
3042 * @context: buffer for stored context
3043 *
3044 * Reload the register configuration from the velocity context
3045 * created by velocity_save_context.
3046 */
velocity_restore_context(struct velocity_info * vptr,struct velocity_context * context)3047 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3048 {
3049 struct mac_regs __iomem *regs = vptr->mac_regs;
3050 int i;
3051 u8 __iomem *ptr = (u8 __iomem *)regs;
3052
3053 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3054 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3055
3056 /* Just skip cr0 */
3057 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3058 /* Clear */
3059 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3060 /* Set */
3061 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3062 }
3063
3064 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3065 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3066
3067 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3068 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3069
3070 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3071 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3072 }
3073
velocity_resume(struct pci_dev * pdev)3074 static int velocity_resume(struct pci_dev *pdev)
3075 {
3076 struct net_device *dev = pci_get_drvdata(pdev);
3077 struct velocity_info *vptr = netdev_priv(dev);
3078 unsigned long flags;
3079 int i;
3080
3081 if (!netif_running(vptr->dev))
3082 return 0;
3083
3084 pci_set_power_state(pdev, PCI_D0);
3085 pci_enable_wake(pdev, 0, 0);
3086 pci_restore_state(pdev);
3087
3088 mac_wol_reset(vptr->mac_regs);
3089
3090 spin_lock_irqsave(&vptr->lock, flags);
3091 velocity_restore_context(vptr, &vptr->context);
3092 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3093 mac_disable_int(vptr->mac_regs);
3094
3095 velocity_tx_srv(vptr);
3096
3097 for (i = 0; i < vptr->tx.numq; i++) {
3098 if (vptr->tx.used[i])
3099 mac_tx_queue_wake(vptr->mac_regs, i);
3100 }
3101
3102 mac_enable_int(vptr->mac_regs);
3103 spin_unlock_irqrestore(&vptr->lock, flags);
3104 netif_device_attach(vptr->dev);
3105
3106 return 0;
3107 }
3108 #endif
3109
3110 /*
3111 * Definition for our device driver. The PCI layer interface
3112 * uses this to handle all our card discover and plugging
3113 */
3114 static struct pci_driver velocity_driver = {
3115 .name = VELOCITY_NAME,
3116 .id_table = velocity_id_table,
3117 .probe = velocity_found1,
3118 .remove = velocity_remove1,
3119 #ifdef CONFIG_PM
3120 .suspend = velocity_suspend,
3121 .resume = velocity_resume,
3122 #endif
3123 };
3124
3125
3126 /**
3127 * velocity_ethtool_up - pre hook for ethtool
3128 * @dev: network device
3129 *
3130 * Called before an ethtool operation. We need to make sure the
3131 * chip is out of D3 state before we poke at it.
3132 */
velocity_ethtool_up(struct net_device * dev)3133 static int velocity_ethtool_up(struct net_device *dev)
3134 {
3135 struct velocity_info *vptr = netdev_priv(dev);
3136 if (!netif_running(dev))
3137 pci_set_power_state(vptr->pdev, PCI_D0);
3138 return 0;
3139 }
3140
3141 /**
3142 * velocity_ethtool_down - post hook for ethtool
3143 * @dev: network device
3144 *
3145 * Called after an ethtool operation. Restore the chip back to D3
3146 * state if it isn't running.
3147 */
velocity_ethtool_down(struct net_device * dev)3148 static void velocity_ethtool_down(struct net_device *dev)
3149 {
3150 struct velocity_info *vptr = netdev_priv(dev);
3151 if (!netif_running(dev))
3152 pci_set_power_state(vptr->pdev, PCI_D3hot);
3153 }
3154
velocity_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)3155 static int velocity_get_settings(struct net_device *dev,
3156 struct ethtool_cmd *cmd)
3157 {
3158 struct velocity_info *vptr = netdev_priv(dev);
3159 struct mac_regs __iomem *regs = vptr->mac_regs;
3160 u32 status;
3161 status = check_connection_type(vptr->mac_regs);
3162
3163 cmd->supported = SUPPORTED_TP |
3164 SUPPORTED_Autoneg |
3165 SUPPORTED_10baseT_Half |
3166 SUPPORTED_10baseT_Full |
3167 SUPPORTED_100baseT_Half |
3168 SUPPORTED_100baseT_Full |
3169 SUPPORTED_1000baseT_Half |
3170 SUPPORTED_1000baseT_Full;
3171
3172 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3173 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3174 cmd->advertising |=
3175 ADVERTISED_10baseT_Half |
3176 ADVERTISED_10baseT_Full |
3177 ADVERTISED_100baseT_Half |
3178 ADVERTISED_100baseT_Full |
3179 ADVERTISED_1000baseT_Half |
3180 ADVERTISED_1000baseT_Full;
3181 } else {
3182 switch (vptr->options.spd_dpx) {
3183 case SPD_DPX_1000_FULL:
3184 cmd->advertising |= ADVERTISED_1000baseT_Full;
3185 break;
3186 case SPD_DPX_100_HALF:
3187 cmd->advertising |= ADVERTISED_100baseT_Half;
3188 break;
3189 case SPD_DPX_100_FULL:
3190 cmd->advertising |= ADVERTISED_100baseT_Full;
3191 break;
3192 case SPD_DPX_10_HALF:
3193 cmd->advertising |= ADVERTISED_10baseT_Half;
3194 break;
3195 case SPD_DPX_10_FULL:
3196 cmd->advertising |= ADVERTISED_10baseT_Full;
3197 break;
3198 default:
3199 break;
3200 }
3201 }
3202
3203 if (status & VELOCITY_SPEED_1000)
3204 ethtool_cmd_speed_set(cmd, SPEED_1000);
3205 else if (status & VELOCITY_SPEED_100)
3206 ethtool_cmd_speed_set(cmd, SPEED_100);
3207 else
3208 ethtool_cmd_speed_set(cmd, SPEED_10);
3209
3210 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3211 cmd->port = PORT_TP;
3212 cmd->transceiver = XCVR_INTERNAL;
3213 cmd->phy_address = readb(®s->MIIADR) & 0x1F;
3214
3215 if (status & VELOCITY_DUPLEX_FULL)
3216 cmd->duplex = DUPLEX_FULL;
3217 else
3218 cmd->duplex = DUPLEX_HALF;
3219
3220 return 0;
3221 }
3222
velocity_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)3223 static int velocity_set_settings(struct net_device *dev,
3224 struct ethtool_cmd *cmd)
3225 {
3226 struct velocity_info *vptr = netdev_priv(dev);
3227 u32 speed = ethtool_cmd_speed(cmd);
3228 u32 curr_status;
3229 u32 new_status = 0;
3230 int ret = 0;
3231
3232 curr_status = check_connection_type(vptr->mac_regs);
3233 curr_status &= (~VELOCITY_LINK_FAIL);
3234
3235 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3236 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3237 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3238 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3239 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3240
3241 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3242 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3243 ret = -EINVAL;
3244 } else {
3245 enum speed_opt spd_dpx;
3246
3247 if (new_status & VELOCITY_AUTONEG_ENABLE)
3248 spd_dpx = SPD_DPX_AUTO;
3249 else if ((new_status & VELOCITY_SPEED_1000) &&
3250 (new_status & VELOCITY_DUPLEX_FULL)) {
3251 spd_dpx = SPD_DPX_1000_FULL;
3252 } else if (new_status & VELOCITY_SPEED_100)
3253 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3254 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3255 else if (new_status & VELOCITY_SPEED_10)
3256 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3257 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3258 else
3259 return -EOPNOTSUPP;
3260
3261 vptr->options.spd_dpx = spd_dpx;
3262
3263 velocity_set_media_mode(vptr, new_status);
3264 }
3265
3266 return ret;
3267 }
3268
velocity_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3269 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3270 {
3271 struct velocity_info *vptr = netdev_priv(dev);
3272 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3273 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3274 strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3275 }
3276
velocity_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3277 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3278 {
3279 struct velocity_info *vptr = netdev_priv(dev);
3280 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3281 wol->wolopts |= WAKE_MAGIC;
3282 /*
3283 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3284 wol.wolopts|=WAKE_PHY;
3285 */
3286 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3287 wol->wolopts |= WAKE_UCAST;
3288 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3289 wol->wolopts |= WAKE_ARP;
3290 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3291 }
3292
velocity_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3293 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3294 {
3295 struct velocity_info *vptr = netdev_priv(dev);
3296
3297 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3298 return -EFAULT;
3299 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3300
3301 /*
3302 if (wol.wolopts & WAKE_PHY) {
3303 vptr->wol_opts|=VELOCITY_WOL_PHY;
3304 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3305 }
3306 */
3307
3308 if (wol->wolopts & WAKE_MAGIC) {
3309 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3310 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3311 }
3312 if (wol->wolopts & WAKE_UCAST) {
3313 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3314 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3315 }
3316 if (wol->wolopts & WAKE_ARP) {
3317 vptr->wol_opts |= VELOCITY_WOL_ARP;
3318 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3319 }
3320 memcpy(vptr->wol_passwd, wol->sopass, 6);
3321 return 0;
3322 }
3323
velocity_get_msglevel(struct net_device * dev)3324 static u32 velocity_get_msglevel(struct net_device *dev)
3325 {
3326 return msglevel;
3327 }
3328
velocity_set_msglevel(struct net_device * dev,u32 value)3329 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3330 {
3331 msglevel = value;
3332 }
3333
get_pending_timer_val(int val)3334 static int get_pending_timer_val(int val)
3335 {
3336 int mult_bits = val >> 6;
3337 int mult = 1;
3338
3339 switch (mult_bits)
3340 {
3341 case 1:
3342 mult = 4; break;
3343 case 2:
3344 mult = 16; break;
3345 case 3:
3346 mult = 64; break;
3347 case 0:
3348 default:
3349 break;
3350 }
3351
3352 return (val & 0x3f) * mult;
3353 }
3354
set_pending_timer_val(int * val,u32 us)3355 static void set_pending_timer_val(int *val, u32 us)
3356 {
3357 u8 mult = 0;
3358 u8 shift = 0;
3359
3360 if (us >= 0x3f) {
3361 mult = 1; /* mult with 4 */
3362 shift = 2;
3363 }
3364 if (us >= 0x3f * 4) {
3365 mult = 2; /* mult with 16 */
3366 shift = 4;
3367 }
3368 if (us >= 0x3f * 16) {
3369 mult = 3; /* mult with 64 */
3370 shift = 6;
3371 }
3372
3373 *val = (mult << 6) | ((us >> shift) & 0x3f);
3374 }
3375
3376
velocity_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd)3377 static int velocity_get_coalesce(struct net_device *dev,
3378 struct ethtool_coalesce *ecmd)
3379 {
3380 struct velocity_info *vptr = netdev_priv(dev);
3381
3382 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3383 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3384
3385 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3386 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3387
3388 return 0;
3389 }
3390
velocity_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd)3391 static int velocity_set_coalesce(struct net_device *dev,
3392 struct ethtool_coalesce *ecmd)
3393 {
3394 struct velocity_info *vptr = netdev_priv(dev);
3395 int max_us = 0x3f * 64;
3396 unsigned long flags;
3397
3398 /* 6 bits of */
3399 if (ecmd->tx_coalesce_usecs > max_us)
3400 return -EINVAL;
3401 if (ecmd->rx_coalesce_usecs > max_us)
3402 return -EINVAL;
3403
3404 if (ecmd->tx_max_coalesced_frames > 0xff)
3405 return -EINVAL;
3406 if (ecmd->rx_max_coalesced_frames > 0xff)
3407 return -EINVAL;
3408
3409 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3410 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3411
3412 set_pending_timer_val(&vptr->options.rxqueue_timer,
3413 ecmd->rx_coalesce_usecs);
3414 set_pending_timer_val(&vptr->options.txqueue_timer,
3415 ecmd->tx_coalesce_usecs);
3416
3417 /* Setup the interrupt suppression and queue timers */
3418 spin_lock_irqsave(&vptr->lock, flags);
3419 mac_disable_int(vptr->mac_regs);
3420 setup_adaptive_interrupts(vptr);
3421 setup_queue_timers(vptr);
3422
3423 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3424 mac_clear_isr(vptr->mac_regs);
3425 mac_enable_int(vptr->mac_regs);
3426 spin_unlock_irqrestore(&vptr->lock, flags);
3427
3428 return 0;
3429 }
3430
3431 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3432 "rx_all",
3433 "rx_ok",
3434 "tx_ok",
3435 "rx_error",
3436 "rx_runt_ok",
3437 "rx_runt_err",
3438 "rx_64",
3439 "tx_64",
3440 "rx_65_to_127",
3441 "tx_65_to_127",
3442 "rx_128_to_255",
3443 "tx_128_to_255",
3444 "rx_256_to_511",
3445 "tx_256_to_511",
3446 "rx_512_to_1023",
3447 "tx_512_to_1023",
3448 "rx_1024_to_1518",
3449 "tx_1024_to_1518",
3450 "tx_ether_collisions",
3451 "rx_crc_errors",
3452 "rx_jumbo",
3453 "tx_jumbo",
3454 "rx_mac_control_frames",
3455 "tx_mac_control_frames",
3456 "rx_frame_alignement_errors",
3457 "rx_long_ok",
3458 "rx_long_err",
3459 "tx_sqe_errors",
3460 "rx_no_buf",
3461 "rx_symbol_errors",
3462 "in_range_length_errors",
3463 "late_collisions"
3464 };
3465
velocity_get_strings(struct net_device * dev,u32 sset,u8 * data)3466 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3467 {
3468 switch (sset) {
3469 case ETH_SS_STATS:
3470 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3471 break;
3472 }
3473 }
3474
velocity_get_sset_count(struct net_device * dev,int sset)3475 static int velocity_get_sset_count(struct net_device *dev, int sset)
3476 {
3477 switch (sset) {
3478 case ETH_SS_STATS:
3479 return ARRAY_SIZE(velocity_gstrings);
3480 default:
3481 return -EOPNOTSUPP;
3482 }
3483 }
3484
velocity_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3485 static void velocity_get_ethtool_stats(struct net_device *dev,
3486 struct ethtool_stats *stats, u64 *data)
3487 {
3488 if (netif_running(dev)) {
3489 struct velocity_info *vptr = netdev_priv(dev);
3490 u32 *p = vptr->mib_counter;
3491 int i;
3492
3493 spin_lock_irq(&vptr->lock);
3494 velocity_update_hw_mibs(vptr);
3495 spin_unlock_irq(&vptr->lock);
3496
3497 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3498 *data++ = *p++;
3499 }
3500 }
3501
3502 static const struct ethtool_ops velocity_ethtool_ops = {
3503 .get_settings = velocity_get_settings,
3504 .set_settings = velocity_set_settings,
3505 .get_drvinfo = velocity_get_drvinfo,
3506 .get_wol = velocity_ethtool_get_wol,
3507 .set_wol = velocity_ethtool_set_wol,
3508 .get_msglevel = velocity_get_msglevel,
3509 .set_msglevel = velocity_set_msglevel,
3510 .get_link = velocity_get_link,
3511 .get_strings = velocity_get_strings,
3512 .get_sset_count = velocity_get_sset_count,
3513 .get_ethtool_stats = velocity_get_ethtool_stats,
3514 .get_coalesce = velocity_get_coalesce,
3515 .set_coalesce = velocity_set_coalesce,
3516 .begin = velocity_ethtool_up,
3517 .complete = velocity_ethtool_down
3518 };
3519
3520 #if defined(CONFIG_PM) && defined(CONFIG_INET)
velocity_netdev_event(struct notifier_block * nb,unsigned long notification,void * ptr)3521 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3522 {
3523 struct in_ifaddr *ifa = ptr;
3524 struct net_device *dev = ifa->ifa_dev->dev;
3525
3526 if (dev_net(dev) == &init_net &&
3527 dev->netdev_ops == &velocity_netdev_ops)
3528 velocity_get_ip(netdev_priv(dev));
3529
3530 return NOTIFY_DONE;
3531 }
3532
3533 static struct notifier_block velocity_inetaddr_notifier = {
3534 .notifier_call = velocity_netdev_event,
3535 };
3536
velocity_register_notifier(void)3537 static void velocity_register_notifier(void)
3538 {
3539 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3540 }
3541
velocity_unregister_notifier(void)3542 static void velocity_unregister_notifier(void)
3543 {
3544 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3545 }
3546
3547 #else
3548
3549 #define velocity_register_notifier() do {} while (0)
3550 #define velocity_unregister_notifier() do {} while (0)
3551
3552 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3553
3554 /**
3555 * velocity_init_module - load time function
3556 *
3557 * Called when the velocity module is loaded. The PCI driver
3558 * is registered with the PCI layer, and in turn will call
3559 * the probe functions for each velocity adapter installed
3560 * in the system.
3561 */
velocity_init_module(void)3562 static int __init velocity_init_module(void)
3563 {
3564 int ret;
3565
3566 velocity_register_notifier();
3567 ret = pci_register_driver(&velocity_driver);
3568 if (ret < 0)
3569 velocity_unregister_notifier();
3570 return ret;
3571 }
3572
3573 /**
3574 * velocity_cleanup - module unload
3575 *
3576 * When the velocity hardware is unloaded this function is called.
3577 * It will clean up the notifiers and the unregister the PCI
3578 * driver interface for this hardware. This in turn cleans up
3579 * all discovered interfaces before returning from the function
3580 */
velocity_cleanup_module(void)3581 static void __exit velocity_cleanup_module(void)
3582 {
3583 velocity_unregister_notifier();
3584 pci_unregister_driver(&velocity_driver);
3585 }
3586
3587 module_init(velocity_init_module);
3588 module_exit(velocity_cleanup_module);
3589