• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port		0x00		0x10		0x20
13  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
14  * physical PortId	2		0		1
15  * TX queue		23		24		25
16  * RX-free queue	26		27		28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1	- NPE ID (RX and TX-done)
22  * bits 0 -> 2	- priority (TX, per 802.1D)
23  * bits 3 -> 4	- port ID (user-set?)
24  * bits 5 -> 31	- physical descriptor address
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
42 
43 #define DEBUG_DESC		0
44 #define DEBUG_RX		0
45 #define DEBUG_TX		0
46 #define DEBUG_PKT_BYTES		0
47 #define DEBUG_MDIO		0
48 #define DEBUG_CLOSE		0
49 
50 #define DRV_NAME		"ixp4xx_eth"
51 
52 #define MAX_NPES		3
53 
54 #define RX_DESCS		64 /* also length of all RX queues */
55 #define TX_DESCS		16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN	64 /* dwords */
57 
58 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE		0x1000
60 #define MAX_MRU			1536 /* 0x600 */
61 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
62 
63 #define NAPI_WEIGHT		16
64 #define MDIO_INTERVAL		(3 * HZ)
65 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
67 
68 #define NPE_ID(port_id)		((port_id) >> 4)
69 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE		31
73 
74 #define PTP_SLAVE_MODE		1
75 #define PTP_MASTER_MODE		2
76 #define PORT2CHANNEL(p)		NPE_ID(p->id)
77 
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN		0x01
80 #define TX_CNTRL0_HALFDUPLEX	0x02
81 #define TX_CNTRL0_RETRY		0x04
82 #define TX_CNTRL0_PAD_EN	0x08
83 #define TX_CNTRL0_APPEND_FCS	0x10
84 #define TX_CNTRL0_2DEFER	0x20
85 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
87 
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN		0x01
90 #define RX_CNTRL0_PADSTRIP_EN	0x02
91 #define RX_CNTRL0_SEND_FCS	0x04
92 #define RX_CNTRL0_PAUSE_EN	0x08
93 #define RX_CNTRL0_LOOP_EN	0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
95 #define RX_CNTRL0_RX_RUNT_EN	0x40
96 #define RX_CNTRL0_BCAST_DIS	0x80
97 #define RX_CNTRL1_DEFER_EN	0x01
98 
99 /* Core Control Register */
100 #define CORE_RESET		0x01
101 #define CORE_RX_FIFO_FLUSH	0x02
102 #define CORE_TX_FIFO_FLUSH	0x04
103 #define CORE_SEND_JAM		0x08
104 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
105 
106 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
107 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108 				 TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
111 
112 
113 /* NPE message codes */
114 #define NPE_GETSTATUS			0x00
115 #define NPE_EDB_SETPORTADDRESS		0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
118 #define NPE_GETSTATS			0x04
119 #define NPE_RESETSTATS			0x05
120 #define NPE_SETMAXFRAMELENGTHS		0x06
121 #define NPE_VLAN_SETRXTAGMODE		0x07
122 #define NPE_VLAN_SETDEFAULTRXVID	0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
125 #define NPE_VLAN_SETRXQOSENTRY		0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE	0x0D
128 #define NPE_FW_SETFIREWALLMODE		0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE		0x11
131 #define NPE_SETLOOPBACK_MODE		0x12
132 #define NPE_PC_SETBSSIDTABLE		0x13
133 #define NPE_ADDRESS_FILTER_CONFIG	0x14
134 #define NPE_APPENDFCSCONFIG		0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
136 #define NPE_MAC_RECOVERY_START		0x17
137 
138 
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
148 
149 struct eth_regs {
150 	u32 tx_control[2], __res1[2];		/* 000 */
151 	u32 rx_control[2], __res2[2];		/* 010 */
152 	u32 random_seed, __res3[3];		/* 020 */
153 	u32 partial_empty_threshold, __res4;	/* 030 */
154 	u32 partial_full_threshold, __res5;	/* 038 */
155 	u32 tx_start_bytes, __res6[3];		/* 040 */
156 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
158 	u32 slot_time, __res9[3];		/* 070 */
159 	u32 mdio_command[4];			/* 080 */
160 	u32 mdio_status[4];			/* 090 */
161 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
162 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
163 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
164 	u32 hw_addr[6], __res13[61];		/* 0F0 */
165 	u32 core_control;			/* 1FC */
166 };
167 
168 struct port {
169 	struct resource *mem_res;
170 	struct eth_regs __iomem *regs;
171 	struct npe *npe;
172 	struct net_device *netdev;
173 	struct napi_struct napi;
174 	struct phy_device *phydev;
175 	struct eth_plat_info *plat;
176 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
177 	struct desc *desc_tab;	/* coherent */
178 	u32 desc_tab_phys;
179 	int id;			/* logical port ID */
180 	int speed, duplex;
181 	u8 firmware[4];
182 	int hwts_tx_en;
183 	int hwts_rx_en;
184 };
185 
186 /* NPE message structure */
187 struct msg {
188 #ifdef __ARMEB__
189 	u8 cmd, eth_id, byte2, byte3;
190 	u8 byte4, byte5, byte6, byte7;
191 #else
192 	u8 byte3, byte2, eth_id, cmd;
193 	u8 byte7, byte6, byte5, byte4;
194 #endif
195 };
196 
197 /* Ethernet packet descriptor */
198 struct desc {
199 	u32 next;		/* pointer to next buffer, unused */
200 
201 #ifdef __ARMEB__
202 	u16 buf_len;		/* buffer length */
203 	u16 pkt_len;		/* packet length */
204 	u32 data;		/* pointer to data buffer in RAM */
205 	u8 dest_id;
206 	u8 src_id;
207 	u16 flags;
208 	u8 qos;
209 	u8 padlen;
210 	u16 vlan_tci;
211 #else
212 	u16 pkt_len;		/* packet length */
213 	u16 buf_len;		/* buffer length */
214 	u32 data;		/* pointer to data buffer in RAM */
215 	u16 flags;
216 	u8 src_id;
217 	u8 dest_id;
218 	u16 vlan_tci;
219 	u8 padlen;
220 	u8 qos;
221 #endif
222 
223 #ifdef __ARMEB__
224 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
225 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
226 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
227 #else
228 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
229 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
230 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
231 #endif
232 };
233 
234 
235 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
236 				 (n) * sizeof(struct desc))
237 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
238 
239 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
240 				 ((n) + RX_DESCS) * sizeof(struct desc))
241 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
242 
243 #ifndef __ARMEB__
memcpy_swab32(u32 * dest,u32 * src,int cnt)244 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
245 {
246 	int i;
247 	for (i = 0; i < cnt; i++)
248 		dest[i] = swab32(src[i]);
249 }
250 #endif
251 
252 static spinlock_t mdio_lock;
253 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
254 static struct mii_bus *mdio_bus;
255 static int ports_open;
256 static struct port *npe_port_tab[MAX_NPES];
257 static struct dma_pool *dma_pool;
258 
259 static struct sock_filter ptp_filter[] = {
260 	PTP_FILTER
261 };
262 
ixp_ptp_match(struct sk_buff * skb,u16 uid_hi,u32 uid_lo,u16 seqid)263 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
264 {
265 	u8 *data = skb->data;
266 	unsigned int offset;
267 	u16 *hi, *id;
268 	u32 lo;
269 
270 	if (sk_run_filter(skb, ptp_filter) != PTP_CLASS_V1_IPV4)
271 		return 0;
272 
273 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
274 
275 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
276 		return 0;
277 
278 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
279 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
280 
281 	memcpy(&lo, &hi[1], sizeof(lo));
282 
283 	return (uid_hi == ntohs(*hi) &&
284 		uid_lo == ntohl(lo) &&
285 		seqid  == ntohs(*id));
286 }
287 
ixp_rx_timestamp(struct port * port,struct sk_buff * skb)288 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
289 {
290 	struct skb_shared_hwtstamps *shhwtstamps;
291 	struct ixp46x_ts_regs *regs;
292 	u64 ns;
293 	u32 ch, hi, lo, val;
294 	u16 uid, seq;
295 
296 	if (!port->hwts_rx_en)
297 		return;
298 
299 	ch = PORT2CHANNEL(port);
300 
301 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
302 
303 	val = __raw_readl(&regs->channel[ch].ch_event);
304 
305 	if (!(val & RX_SNAPSHOT_LOCKED))
306 		return;
307 
308 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
309 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
310 
311 	uid = hi & 0xffff;
312 	seq = (hi >> 16) & 0xffff;
313 
314 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
315 		goto out;
316 
317 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
318 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
319 	ns = ((u64) hi) << 32;
320 	ns |= lo;
321 	ns <<= TICKS_NS_SHIFT;
322 
323 	shhwtstamps = skb_hwtstamps(skb);
324 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
325 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
326 out:
327 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
328 }
329 
ixp_tx_timestamp(struct port * port,struct sk_buff * skb)330 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
331 {
332 	struct skb_shared_hwtstamps shhwtstamps;
333 	struct ixp46x_ts_regs *regs;
334 	struct skb_shared_info *shtx;
335 	u64 ns;
336 	u32 ch, cnt, hi, lo, val;
337 
338 	shtx = skb_shinfo(skb);
339 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
340 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
341 	else
342 		return;
343 
344 	ch = PORT2CHANNEL(port);
345 
346 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
347 
348 	/*
349 	 * This really stinks, but we have to poll for the Tx time stamp.
350 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
351 	 */
352 	for (cnt = 0; cnt < 100; cnt++) {
353 		val = __raw_readl(&regs->channel[ch].ch_event);
354 		if (val & TX_SNAPSHOT_LOCKED)
355 			break;
356 		udelay(1);
357 	}
358 	if (!(val & TX_SNAPSHOT_LOCKED)) {
359 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
360 		return;
361 	}
362 
363 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
364 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
365 	ns = ((u64) hi) << 32;
366 	ns |= lo;
367 	ns <<= TICKS_NS_SHIFT;
368 
369 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
370 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
371 	skb_tstamp_tx(skb, &shhwtstamps);
372 
373 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
374 }
375 
hwtstamp_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)376 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
377 {
378 	struct hwtstamp_config cfg;
379 	struct ixp46x_ts_regs *regs;
380 	struct port *port = netdev_priv(netdev);
381 	int ch;
382 
383 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
384 		return -EFAULT;
385 
386 	if (cfg.flags) /* reserved for future extensions */
387 		return -EINVAL;
388 
389 	ch = PORT2CHANNEL(port);
390 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
391 
392 	switch (cfg.tx_type) {
393 	case HWTSTAMP_TX_OFF:
394 		port->hwts_tx_en = 0;
395 		break;
396 	case HWTSTAMP_TX_ON:
397 		port->hwts_tx_en = 1;
398 		break;
399 	default:
400 		return -ERANGE;
401 	}
402 
403 	switch (cfg.rx_filter) {
404 	case HWTSTAMP_FILTER_NONE:
405 		port->hwts_rx_en = 0;
406 		break;
407 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
408 		port->hwts_rx_en = PTP_SLAVE_MODE;
409 		__raw_writel(0, &regs->channel[ch].ch_control);
410 		break;
411 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
412 		port->hwts_rx_en = PTP_MASTER_MODE;
413 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
414 		break;
415 	default:
416 		return -ERANGE;
417 	}
418 
419 	/* Clear out any old time stamps. */
420 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
421 		     &regs->channel[ch].ch_event);
422 
423 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
424 }
425 
ixp4xx_mdio_cmd(struct mii_bus * bus,int phy_id,int location,int write,u16 cmd)426 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
427 			   int write, u16 cmd)
428 {
429 	int cycles = 0;
430 
431 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
432 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
433 		return -1;
434 	}
435 
436 	if (write) {
437 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
438 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
439 	}
440 	__raw_writel(((phy_id << 5) | location) & 0xFF,
441 		     &mdio_regs->mdio_command[2]);
442 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
443 		     &mdio_regs->mdio_command[3]);
444 
445 	while ((cycles < MAX_MDIO_RETRIES) &&
446 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
447 		udelay(1);
448 		cycles++;
449 	}
450 
451 	if (cycles == MAX_MDIO_RETRIES) {
452 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
453 		       phy_id);
454 		return -1;
455 	}
456 
457 #if DEBUG_MDIO
458 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
459 	       phy_id, write ? "write" : "read", cycles);
460 #endif
461 
462 	if (write)
463 		return 0;
464 
465 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
466 #if DEBUG_MDIO
467 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
468 		       phy_id);
469 #endif
470 		return 0xFFFF; /* don't return error */
471 	}
472 
473 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
474 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
475 }
476 
ixp4xx_mdio_read(struct mii_bus * bus,int phy_id,int location)477 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
478 {
479 	unsigned long flags;
480 	int ret;
481 
482 	spin_lock_irqsave(&mdio_lock, flags);
483 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
484 	spin_unlock_irqrestore(&mdio_lock, flags);
485 #if DEBUG_MDIO
486 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
487 	       phy_id, location, ret);
488 #endif
489 	return ret;
490 }
491 
ixp4xx_mdio_write(struct mii_bus * bus,int phy_id,int location,u16 val)492 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
493 			     u16 val)
494 {
495 	unsigned long flags;
496 	int ret;
497 
498 	spin_lock_irqsave(&mdio_lock, flags);
499 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
500 	spin_unlock_irqrestore(&mdio_lock, flags);
501 #if DEBUG_MDIO
502 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
503 	       bus->name, phy_id, location, val, ret);
504 #endif
505 	return ret;
506 }
507 
ixp4xx_mdio_register(void)508 static int ixp4xx_mdio_register(void)
509 {
510 	int err;
511 
512 	if (!(mdio_bus = mdiobus_alloc()))
513 		return -ENOMEM;
514 
515 	if (cpu_is_ixp43x()) {
516 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
517 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
518 			return -ENODEV;
519 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
520 	} else {
521 		/* All MII PHY accesses use NPE-B Ethernet registers */
522 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
523 			return -ENODEV;
524 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
525 	}
526 
527 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
528 	spin_lock_init(&mdio_lock);
529 	mdio_bus->name = "IXP4xx MII Bus";
530 	mdio_bus->read = &ixp4xx_mdio_read;
531 	mdio_bus->write = &ixp4xx_mdio_write;
532 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
533 
534 	if ((err = mdiobus_register(mdio_bus)))
535 		mdiobus_free(mdio_bus);
536 	return err;
537 }
538 
ixp4xx_mdio_remove(void)539 static void ixp4xx_mdio_remove(void)
540 {
541 	mdiobus_unregister(mdio_bus);
542 	mdiobus_free(mdio_bus);
543 }
544 
545 
ixp4xx_adjust_link(struct net_device * dev)546 static void ixp4xx_adjust_link(struct net_device *dev)
547 {
548 	struct port *port = netdev_priv(dev);
549 	struct phy_device *phydev = port->phydev;
550 
551 	if (!phydev->link) {
552 		if (port->speed) {
553 			port->speed = 0;
554 			printk(KERN_INFO "%s: link down\n", dev->name);
555 		}
556 		return;
557 	}
558 
559 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
560 		return;
561 
562 	port->speed = phydev->speed;
563 	port->duplex = phydev->duplex;
564 
565 	if (port->duplex)
566 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
567 			     &port->regs->tx_control[0]);
568 	else
569 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
570 			     &port->regs->tx_control[0]);
571 
572 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
573 	       dev->name, port->speed, port->duplex ? "full" : "half");
574 }
575 
576 
debug_pkt(struct net_device * dev,const char * func,u8 * data,int len)577 static inline void debug_pkt(struct net_device *dev, const char *func,
578 			     u8 *data, int len)
579 {
580 #if DEBUG_PKT_BYTES
581 	int i;
582 
583 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
584 	for (i = 0; i < len; i++) {
585 		if (i >= DEBUG_PKT_BYTES)
586 			break;
587 		printk("%s%02X",
588 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
589 		       data[i]);
590 	}
591 	printk("\n");
592 #endif
593 }
594 
595 
debug_desc(u32 phys,struct desc * desc)596 static inline void debug_desc(u32 phys, struct desc *desc)
597 {
598 #if DEBUG_DESC
599 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
600 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
601 	       phys, desc->next, desc->buf_len, desc->pkt_len,
602 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
603 	       desc->qos, desc->padlen, desc->vlan_tci,
604 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
605 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
606 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
607 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
608 #endif
609 }
610 
queue_get_desc(unsigned int queue,struct port * port,int is_tx)611 static inline int queue_get_desc(unsigned int queue, struct port *port,
612 				 int is_tx)
613 {
614 	u32 phys, tab_phys, n_desc;
615 	struct desc *tab;
616 
617 	if (!(phys = qmgr_get_entry(queue)))
618 		return -1;
619 
620 	phys &= ~0x1F; /* mask out non-address bits */
621 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
622 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
623 	n_desc = (phys - tab_phys) / sizeof(struct desc);
624 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
625 	debug_desc(phys, &tab[n_desc]);
626 	BUG_ON(tab[n_desc].next);
627 	return n_desc;
628 }
629 
queue_put_desc(unsigned int queue,u32 phys,struct desc * desc)630 static inline void queue_put_desc(unsigned int queue, u32 phys,
631 				  struct desc *desc)
632 {
633 	debug_desc(phys, desc);
634 	BUG_ON(phys & 0x1F);
635 	qmgr_put_entry(queue, phys);
636 	/* Don't check for queue overflow here, we've allocated sufficient
637 	   length and queues >= 32 don't support this check anyway. */
638 }
639 
640 
dma_unmap_tx(struct port * port,struct desc * desc)641 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
642 {
643 #ifdef __ARMEB__
644 	dma_unmap_single(&port->netdev->dev, desc->data,
645 			 desc->buf_len, DMA_TO_DEVICE);
646 #else
647 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
648 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
649 			 DMA_TO_DEVICE);
650 #endif
651 }
652 
653 
eth_rx_irq(void * pdev)654 static void eth_rx_irq(void *pdev)
655 {
656 	struct net_device *dev = pdev;
657 	struct port *port = netdev_priv(dev);
658 
659 #if DEBUG_RX
660 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
661 #endif
662 	qmgr_disable_irq(port->plat->rxq);
663 	napi_schedule(&port->napi);
664 }
665 
eth_poll(struct napi_struct * napi,int budget)666 static int eth_poll(struct napi_struct *napi, int budget)
667 {
668 	struct port *port = container_of(napi, struct port, napi);
669 	struct net_device *dev = port->netdev;
670 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
671 	int received = 0;
672 
673 #if DEBUG_RX
674 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
675 #endif
676 
677 	while (received < budget) {
678 		struct sk_buff *skb;
679 		struct desc *desc;
680 		int n;
681 #ifdef __ARMEB__
682 		struct sk_buff *temp;
683 		u32 phys;
684 #endif
685 
686 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
687 #if DEBUG_RX
688 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
689 			       dev->name);
690 #endif
691 			napi_complete(napi);
692 			qmgr_enable_irq(rxq);
693 			if (!qmgr_stat_below_low_watermark(rxq) &&
694 			    napi_reschedule(napi)) { /* not empty again */
695 #if DEBUG_RX
696 				printk(KERN_DEBUG "%s: eth_poll"
697 				       " napi_reschedule successed\n",
698 				       dev->name);
699 #endif
700 				qmgr_disable_irq(rxq);
701 				continue;
702 			}
703 #if DEBUG_RX
704 			printk(KERN_DEBUG "%s: eth_poll all done\n",
705 			       dev->name);
706 #endif
707 			return received; /* all work done */
708 		}
709 
710 		desc = rx_desc_ptr(port, n);
711 
712 #ifdef __ARMEB__
713 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
714 			phys = dma_map_single(&dev->dev, skb->data,
715 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
716 			if (dma_mapping_error(&dev->dev, phys)) {
717 				dev_kfree_skb(skb);
718 				skb = NULL;
719 			}
720 		}
721 #else
722 		skb = netdev_alloc_skb(dev,
723 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
724 #endif
725 
726 		if (!skb) {
727 			dev->stats.rx_dropped++;
728 			/* put the desc back on RX-ready queue */
729 			desc->buf_len = MAX_MRU;
730 			desc->pkt_len = 0;
731 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
732 			continue;
733 		}
734 
735 		/* process received frame */
736 #ifdef __ARMEB__
737 		temp = skb;
738 		skb = port->rx_buff_tab[n];
739 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
740 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
741 #else
742 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
743 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
744 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
745 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
746 #endif
747 		skb_reserve(skb, NET_IP_ALIGN);
748 		skb_put(skb, desc->pkt_len);
749 
750 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
751 
752 		ixp_rx_timestamp(port, skb);
753 		skb->protocol = eth_type_trans(skb, dev);
754 		dev->stats.rx_packets++;
755 		dev->stats.rx_bytes += skb->len;
756 		netif_receive_skb(skb);
757 
758 		/* put the new buffer on RX-free queue */
759 #ifdef __ARMEB__
760 		port->rx_buff_tab[n] = temp;
761 		desc->data = phys + NET_IP_ALIGN;
762 #endif
763 		desc->buf_len = MAX_MRU;
764 		desc->pkt_len = 0;
765 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
766 		received++;
767 	}
768 
769 #if DEBUG_RX
770 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
771 #endif
772 	return received;		/* not all work done */
773 }
774 
775 
eth_txdone_irq(void * unused)776 static void eth_txdone_irq(void *unused)
777 {
778 	u32 phys;
779 
780 #if DEBUG_TX
781 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
782 #endif
783 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
784 		u32 npe_id, n_desc;
785 		struct port *port;
786 		struct desc *desc;
787 		int start;
788 
789 		npe_id = phys & 3;
790 		BUG_ON(npe_id >= MAX_NPES);
791 		port = npe_port_tab[npe_id];
792 		BUG_ON(!port);
793 		phys &= ~0x1F; /* mask out non-address bits */
794 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
795 		BUG_ON(n_desc >= TX_DESCS);
796 		desc = tx_desc_ptr(port, n_desc);
797 		debug_desc(phys, desc);
798 
799 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
800 			port->netdev->stats.tx_packets++;
801 			port->netdev->stats.tx_bytes += desc->pkt_len;
802 
803 			dma_unmap_tx(port, desc);
804 #if DEBUG_TX
805 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
806 			       port->netdev->name, port->tx_buff_tab[n_desc]);
807 #endif
808 			free_buffer_irq(port->tx_buff_tab[n_desc]);
809 			port->tx_buff_tab[n_desc] = NULL;
810 		}
811 
812 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
813 		queue_put_desc(port->plat->txreadyq, phys, desc);
814 		if (start) { /* TX-ready queue was empty */
815 #if DEBUG_TX
816 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
817 			       port->netdev->name);
818 #endif
819 			netif_wake_queue(port->netdev);
820 		}
821 	}
822 }
823 
eth_xmit(struct sk_buff * skb,struct net_device * dev)824 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
825 {
826 	struct port *port = netdev_priv(dev);
827 	unsigned int txreadyq = port->plat->txreadyq;
828 	int len, offset, bytes, n;
829 	void *mem;
830 	u32 phys;
831 	struct desc *desc;
832 
833 #if DEBUG_TX
834 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
835 #endif
836 
837 	if (unlikely(skb->len > MAX_MRU)) {
838 		dev_kfree_skb(skb);
839 		dev->stats.tx_errors++;
840 		return NETDEV_TX_OK;
841 	}
842 
843 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
844 
845 	len = skb->len;
846 #ifdef __ARMEB__
847 	offset = 0; /* no need to keep alignment */
848 	bytes = len;
849 	mem = skb->data;
850 #else
851 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
852 	bytes = ALIGN(offset + len, 4);
853 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
854 		dev_kfree_skb(skb);
855 		dev->stats.tx_dropped++;
856 		return NETDEV_TX_OK;
857 	}
858 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
859 #endif
860 
861 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
862 	if (dma_mapping_error(&dev->dev, phys)) {
863 		dev_kfree_skb(skb);
864 #ifndef __ARMEB__
865 		kfree(mem);
866 #endif
867 		dev->stats.tx_dropped++;
868 		return NETDEV_TX_OK;
869 	}
870 
871 	n = queue_get_desc(txreadyq, port, 1);
872 	BUG_ON(n < 0);
873 	desc = tx_desc_ptr(port, n);
874 
875 #ifdef __ARMEB__
876 	port->tx_buff_tab[n] = skb;
877 #else
878 	port->tx_buff_tab[n] = mem;
879 #endif
880 	desc->data = phys + offset;
881 	desc->buf_len = desc->pkt_len = len;
882 
883 	/* NPE firmware pads short frames with zeros internally */
884 	wmb();
885 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
886 
887 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
888 #if DEBUG_TX
889 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
890 #endif
891 		netif_stop_queue(dev);
892 		/* we could miss TX ready interrupt */
893 		/* really empty in fact */
894 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
895 #if DEBUG_TX
896 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
897 			       dev->name);
898 #endif
899 			netif_wake_queue(dev);
900 		}
901 	}
902 
903 #if DEBUG_TX
904 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
905 #endif
906 
907 	ixp_tx_timestamp(port, skb);
908 	skb_tx_timestamp(skb);
909 
910 #ifndef __ARMEB__
911 	dev_kfree_skb(skb);
912 #endif
913 	return NETDEV_TX_OK;
914 }
915 
916 
eth_set_mcast_list(struct net_device * dev)917 static void eth_set_mcast_list(struct net_device *dev)
918 {
919 	struct port *port = netdev_priv(dev);
920 	struct netdev_hw_addr *ha;
921 	u8 diffs[ETH_ALEN], *addr;
922 	int i;
923 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
924 
925 	if (dev->flags & IFF_ALLMULTI) {
926 		for (i = 0; i < ETH_ALEN; i++) {
927 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
928 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
929 		}
930 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
931 			&port->regs->rx_control[0]);
932 		return;
933 	}
934 
935 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
936 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
937 			     &port->regs->rx_control[0]);
938 		return;
939 	}
940 
941 	memset(diffs, 0, ETH_ALEN);
942 
943 	addr = NULL;
944 	netdev_for_each_mc_addr(ha, dev) {
945 		if (!addr)
946 			addr = ha->addr; /* first MAC address */
947 		for (i = 0; i < ETH_ALEN; i++)
948 			diffs[i] |= addr[i] ^ ha->addr[i];
949 	}
950 
951 	for (i = 0; i < ETH_ALEN; i++) {
952 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
953 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
954 	}
955 
956 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
957 		     &port->regs->rx_control[0]);
958 }
959 
960 
eth_ioctl(struct net_device * dev,struct ifreq * req,int cmd)961 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
962 {
963 	struct port *port = netdev_priv(dev);
964 
965 	if (!netif_running(dev))
966 		return -EINVAL;
967 
968 	if (cpu_is_ixp46x() && cmd == SIOCSHWTSTAMP)
969 		return hwtstamp_ioctl(dev, req, cmd);
970 
971 	return phy_mii_ioctl(port->phydev, req, cmd);
972 }
973 
974 /* ethtool support */
975 
ixp4xx_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)976 static void ixp4xx_get_drvinfo(struct net_device *dev,
977 			       struct ethtool_drvinfo *info)
978 {
979 	struct port *port = netdev_priv(dev);
980 
981 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
982 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
983 		 port->firmware[0], port->firmware[1],
984 		 port->firmware[2], port->firmware[3]);
985 	strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
986 }
987 
ixp4xx_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)988 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
989 {
990 	struct port *port = netdev_priv(dev);
991 	return phy_ethtool_gset(port->phydev, cmd);
992 }
993 
ixp4xx_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)994 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
995 {
996 	struct port *port = netdev_priv(dev);
997 	return phy_ethtool_sset(port->phydev, cmd);
998 }
999 
ixp4xx_nway_reset(struct net_device * dev)1000 static int ixp4xx_nway_reset(struct net_device *dev)
1001 {
1002 	struct port *port = netdev_priv(dev);
1003 	return phy_start_aneg(port->phydev);
1004 }
1005 
1006 int ixp46x_phc_index = -1;
1007 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1008 
ixp4xx_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)1009 static int ixp4xx_get_ts_info(struct net_device *dev,
1010 			      struct ethtool_ts_info *info)
1011 {
1012 	if (!cpu_is_ixp46x()) {
1013 		info->so_timestamping =
1014 			SOF_TIMESTAMPING_TX_SOFTWARE |
1015 			SOF_TIMESTAMPING_RX_SOFTWARE |
1016 			SOF_TIMESTAMPING_SOFTWARE;
1017 		info->phc_index = -1;
1018 		return 0;
1019 	}
1020 	info->so_timestamping =
1021 		SOF_TIMESTAMPING_TX_HARDWARE |
1022 		SOF_TIMESTAMPING_RX_HARDWARE |
1023 		SOF_TIMESTAMPING_RAW_HARDWARE;
1024 	info->phc_index = ixp46x_phc_index;
1025 	info->tx_types =
1026 		(1 << HWTSTAMP_TX_OFF) |
1027 		(1 << HWTSTAMP_TX_ON);
1028 	info->rx_filters =
1029 		(1 << HWTSTAMP_FILTER_NONE) |
1030 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1031 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1032 	return 0;
1033 }
1034 
1035 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1036 	.get_drvinfo = ixp4xx_get_drvinfo,
1037 	.get_settings = ixp4xx_get_settings,
1038 	.set_settings = ixp4xx_set_settings,
1039 	.nway_reset = ixp4xx_nway_reset,
1040 	.get_link = ethtool_op_get_link,
1041 	.get_ts_info = ixp4xx_get_ts_info,
1042 };
1043 
1044 
request_queues(struct port * port)1045 static int request_queues(struct port *port)
1046 {
1047 	int err;
1048 
1049 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1050 				 "%s:RX-free", port->netdev->name);
1051 	if (err)
1052 		return err;
1053 
1054 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1055 				 "%s:RX", port->netdev->name);
1056 	if (err)
1057 		goto rel_rxfree;
1058 
1059 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1060 				 "%s:TX", port->netdev->name);
1061 	if (err)
1062 		goto rel_rx;
1063 
1064 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1065 				 "%s:TX-ready", port->netdev->name);
1066 	if (err)
1067 		goto rel_tx;
1068 
1069 	/* TX-done queue handles skbs sent out by the NPEs */
1070 	if (!ports_open) {
1071 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1072 					 "%s:TX-done", DRV_NAME);
1073 		if (err)
1074 			goto rel_txready;
1075 	}
1076 	return 0;
1077 
1078 rel_txready:
1079 	qmgr_release_queue(port->plat->txreadyq);
1080 rel_tx:
1081 	qmgr_release_queue(TX_QUEUE(port->id));
1082 rel_rx:
1083 	qmgr_release_queue(port->plat->rxq);
1084 rel_rxfree:
1085 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1086 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1087 	       port->netdev->name);
1088 	return err;
1089 }
1090 
release_queues(struct port * port)1091 static void release_queues(struct port *port)
1092 {
1093 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1094 	qmgr_release_queue(port->plat->rxq);
1095 	qmgr_release_queue(TX_QUEUE(port->id));
1096 	qmgr_release_queue(port->plat->txreadyq);
1097 
1098 	if (!ports_open)
1099 		qmgr_release_queue(TXDONE_QUEUE);
1100 }
1101 
init_queues(struct port * port)1102 static int init_queues(struct port *port)
1103 {
1104 	int i;
1105 
1106 	if (!ports_open) {
1107 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1108 					   POOL_ALLOC_SIZE, 32, 0);
1109 		if (!dma_pool)
1110 			return -ENOMEM;
1111 	}
1112 
1113 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1114 					      &port->desc_tab_phys)))
1115 		return -ENOMEM;
1116 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1117 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1118 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1119 
1120 	/* Setup RX buffers */
1121 	for (i = 0; i < RX_DESCS; i++) {
1122 		struct desc *desc = rx_desc_ptr(port, i);
1123 		buffer_t *buff; /* skb or kmalloc()ated memory */
1124 		void *data;
1125 #ifdef __ARMEB__
1126 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1127 			return -ENOMEM;
1128 		data = buff->data;
1129 #else
1130 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1131 			return -ENOMEM;
1132 		data = buff;
1133 #endif
1134 		desc->buf_len = MAX_MRU;
1135 		desc->data = dma_map_single(&port->netdev->dev, data,
1136 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1137 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1138 			free_buffer(buff);
1139 			return -EIO;
1140 		}
1141 		desc->data += NET_IP_ALIGN;
1142 		port->rx_buff_tab[i] = buff;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
destroy_queues(struct port * port)1148 static void destroy_queues(struct port *port)
1149 {
1150 	int i;
1151 
1152 	if (port->desc_tab) {
1153 		for (i = 0; i < RX_DESCS; i++) {
1154 			struct desc *desc = rx_desc_ptr(port, i);
1155 			buffer_t *buff = port->rx_buff_tab[i];
1156 			if (buff) {
1157 				dma_unmap_single(&port->netdev->dev,
1158 						 desc->data - NET_IP_ALIGN,
1159 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1160 				free_buffer(buff);
1161 			}
1162 		}
1163 		for (i = 0; i < TX_DESCS; i++) {
1164 			struct desc *desc = tx_desc_ptr(port, i);
1165 			buffer_t *buff = port->tx_buff_tab[i];
1166 			if (buff) {
1167 				dma_unmap_tx(port, desc);
1168 				free_buffer(buff);
1169 			}
1170 		}
1171 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1172 		port->desc_tab = NULL;
1173 	}
1174 
1175 	if (!ports_open && dma_pool) {
1176 		dma_pool_destroy(dma_pool);
1177 		dma_pool = NULL;
1178 	}
1179 }
1180 
eth_open(struct net_device * dev)1181 static int eth_open(struct net_device *dev)
1182 {
1183 	struct port *port = netdev_priv(dev);
1184 	struct npe *npe = port->npe;
1185 	struct msg msg;
1186 	int i, err;
1187 
1188 	if (!npe_running(npe)) {
1189 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1190 		if (err)
1191 			return err;
1192 
1193 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1194 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1195 			       npe_name(npe));
1196 			return -EIO;
1197 		}
1198 		port->firmware[0] = msg.byte4;
1199 		port->firmware[1] = msg.byte5;
1200 		port->firmware[2] = msg.byte6;
1201 		port->firmware[3] = msg.byte7;
1202 	}
1203 
1204 	memset(&msg, 0, sizeof(msg));
1205 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1206 	msg.eth_id = port->id;
1207 	msg.byte5 = port->plat->rxq | 0x80;
1208 	msg.byte7 = port->plat->rxq << 4;
1209 	for (i = 0; i < 8; i++) {
1210 		msg.byte3 = i;
1211 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1212 			return -EIO;
1213 	}
1214 
1215 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1216 	msg.eth_id = PHYSICAL_ID(port->id);
1217 	msg.byte2 = dev->dev_addr[0];
1218 	msg.byte3 = dev->dev_addr[1];
1219 	msg.byte4 = dev->dev_addr[2];
1220 	msg.byte5 = dev->dev_addr[3];
1221 	msg.byte6 = dev->dev_addr[4];
1222 	msg.byte7 = dev->dev_addr[5];
1223 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1224 		return -EIO;
1225 
1226 	memset(&msg, 0, sizeof(msg));
1227 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1228 	msg.eth_id = port->id;
1229 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1230 		return -EIO;
1231 
1232 	if ((err = request_queues(port)) != 0)
1233 		return err;
1234 
1235 	if ((err = init_queues(port)) != 0) {
1236 		destroy_queues(port);
1237 		release_queues(port);
1238 		return err;
1239 	}
1240 
1241 	port->speed = 0;	/* force "link up" message */
1242 	phy_start(port->phydev);
1243 
1244 	for (i = 0; i < ETH_ALEN; i++)
1245 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1246 	__raw_writel(0x08, &port->regs->random_seed);
1247 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1248 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1249 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1250 	__raw_writel(0x15, &port->regs->tx_deferral);
1251 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1252 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1253 	__raw_writel(0x80, &port->regs->slot_time);
1254 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1255 
1256 	/* Populate queues with buffers, no failure after this point */
1257 	for (i = 0; i < TX_DESCS; i++)
1258 		queue_put_desc(port->plat->txreadyq,
1259 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1260 
1261 	for (i = 0; i < RX_DESCS; i++)
1262 		queue_put_desc(RXFREE_QUEUE(port->id),
1263 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1264 
1265 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1266 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1267 	__raw_writel(0, &port->regs->rx_control[1]);
1268 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1269 
1270 	napi_enable(&port->napi);
1271 	eth_set_mcast_list(dev);
1272 	netif_start_queue(dev);
1273 
1274 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1275 		     eth_rx_irq, dev);
1276 	if (!ports_open) {
1277 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1278 			     eth_txdone_irq, NULL);
1279 		qmgr_enable_irq(TXDONE_QUEUE);
1280 	}
1281 	ports_open++;
1282 	/* we may already have RX data, enables IRQ */
1283 	napi_schedule(&port->napi);
1284 	return 0;
1285 }
1286 
eth_close(struct net_device * dev)1287 static int eth_close(struct net_device *dev)
1288 {
1289 	struct port *port = netdev_priv(dev);
1290 	struct msg msg;
1291 	int buffs = RX_DESCS; /* allocated RX buffers */
1292 	int i;
1293 
1294 	ports_open--;
1295 	qmgr_disable_irq(port->plat->rxq);
1296 	napi_disable(&port->napi);
1297 	netif_stop_queue(dev);
1298 
1299 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1300 		buffs--;
1301 
1302 	memset(&msg, 0, sizeof(msg));
1303 	msg.cmd = NPE_SETLOOPBACK_MODE;
1304 	msg.eth_id = port->id;
1305 	msg.byte3 = 1;
1306 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1307 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1308 
1309 	i = 0;
1310 	do {			/* drain RX buffers */
1311 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1312 			buffs--;
1313 		if (!buffs)
1314 			break;
1315 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1316 			/* we have to inject some packet */
1317 			struct desc *desc;
1318 			u32 phys;
1319 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1320 			BUG_ON(n < 0);
1321 			desc = tx_desc_ptr(port, n);
1322 			phys = tx_desc_phys(port, n);
1323 			desc->buf_len = desc->pkt_len = 1;
1324 			wmb();
1325 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1326 		}
1327 		udelay(1);
1328 	} while (++i < MAX_CLOSE_WAIT);
1329 
1330 	if (buffs)
1331 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1332 		       " left in NPE\n", dev->name, buffs);
1333 #if DEBUG_CLOSE
1334 	if (!buffs)
1335 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1336 #endif
1337 
1338 	buffs = TX_DESCS;
1339 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1340 		buffs--; /* cancel TX */
1341 
1342 	i = 0;
1343 	do {
1344 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1345 			buffs--;
1346 		if (!buffs)
1347 			break;
1348 	} while (++i < MAX_CLOSE_WAIT);
1349 
1350 	if (buffs)
1351 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1352 		       "left in NPE\n", dev->name, buffs);
1353 #if DEBUG_CLOSE
1354 	if (!buffs)
1355 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1356 #endif
1357 
1358 	msg.byte3 = 0;
1359 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1360 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1361 		       dev->name);
1362 
1363 	phy_stop(port->phydev);
1364 
1365 	if (!ports_open)
1366 		qmgr_disable_irq(TXDONE_QUEUE);
1367 	destroy_queues(port);
1368 	release_queues(port);
1369 	return 0;
1370 }
1371 
1372 static const struct net_device_ops ixp4xx_netdev_ops = {
1373 	.ndo_open = eth_open,
1374 	.ndo_stop = eth_close,
1375 	.ndo_start_xmit = eth_xmit,
1376 	.ndo_set_rx_mode = eth_set_mcast_list,
1377 	.ndo_do_ioctl = eth_ioctl,
1378 	.ndo_change_mtu = eth_change_mtu,
1379 	.ndo_set_mac_address = eth_mac_addr,
1380 	.ndo_validate_addr = eth_validate_addr,
1381 };
1382 
eth_init_one(struct platform_device * pdev)1383 static int eth_init_one(struct platform_device *pdev)
1384 {
1385 	struct port *port;
1386 	struct net_device *dev;
1387 	struct eth_plat_info *plat = pdev->dev.platform_data;
1388 	u32 regs_phys;
1389 	char phy_id[MII_BUS_ID_SIZE + 3];
1390 	int err;
1391 
1392 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
1393 		pr_err("ixp4xx_eth: bad ptp filter\n");
1394 		return -EINVAL;
1395 	}
1396 
1397 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1398 		return -ENOMEM;
1399 
1400 	SET_NETDEV_DEV(dev, &pdev->dev);
1401 	port = netdev_priv(dev);
1402 	port->netdev = dev;
1403 	port->id = pdev->id;
1404 
1405 	switch (port->id) {
1406 	case IXP4XX_ETH_NPEA:
1407 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1408 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1409 		break;
1410 	case IXP4XX_ETH_NPEB:
1411 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1412 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1413 		break;
1414 	case IXP4XX_ETH_NPEC:
1415 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1416 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1417 		break;
1418 	default:
1419 		err = -ENODEV;
1420 		goto err_free;
1421 	}
1422 
1423 	dev->netdev_ops = &ixp4xx_netdev_ops;
1424 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1425 	dev->tx_queue_len = 100;
1426 
1427 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1428 
1429 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1430 		err = -EIO;
1431 		goto err_free;
1432 	}
1433 
1434 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1435 	if (!port->mem_res) {
1436 		err = -EBUSY;
1437 		goto err_npe_rel;
1438 	}
1439 
1440 	port->plat = plat;
1441 	npe_port_tab[NPE_ID(port->id)] = port;
1442 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1443 
1444 	platform_set_drvdata(pdev, dev);
1445 
1446 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1447 		     &port->regs->core_control);
1448 	udelay(50);
1449 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1450 	udelay(50);
1451 
1452 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1453 		mdio_bus->id, plat->phy);
1454 	port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1455 				   PHY_INTERFACE_MODE_MII);
1456 	if (IS_ERR(port->phydev)) {
1457 		err = PTR_ERR(port->phydev);
1458 		goto err_free_mem;
1459 	}
1460 
1461 	port->phydev->irq = PHY_POLL;
1462 
1463 	if ((err = register_netdev(dev)))
1464 		goto err_phy_dis;
1465 
1466 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1467 	       npe_name(port->npe));
1468 
1469 	return 0;
1470 
1471 err_phy_dis:
1472 	phy_disconnect(port->phydev);
1473 err_free_mem:
1474 	npe_port_tab[NPE_ID(port->id)] = NULL;
1475 	platform_set_drvdata(pdev, NULL);
1476 	release_resource(port->mem_res);
1477 err_npe_rel:
1478 	npe_release(port->npe);
1479 err_free:
1480 	free_netdev(dev);
1481 	return err;
1482 }
1483 
eth_remove_one(struct platform_device * pdev)1484 static int eth_remove_one(struct platform_device *pdev)
1485 {
1486 	struct net_device *dev = platform_get_drvdata(pdev);
1487 	struct port *port = netdev_priv(dev);
1488 
1489 	unregister_netdev(dev);
1490 	phy_disconnect(port->phydev);
1491 	npe_port_tab[NPE_ID(port->id)] = NULL;
1492 	platform_set_drvdata(pdev, NULL);
1493 	npe_release(port->npe);
1494 	release_resource(port->mem_res);
1495 	free_netdev(dev);
1496 	return 0;
1497 }
1498 
1499 static struct platform_driver ixp4xx_eth_driver = {
1500 	.driver.name	= DRV_NAME,
1501 	.probe		= eth_init_one,
1502 	.remove		= eth_remove_one,
1503 };
1504 
eth_init_module(void)1505 static int __init eth_init_module(void)
1506 {
1507 	int err;
1508 	if ((err = ixp4xx_mdio_register()))
1509 		return err;
1510 	return platform_driver_register(&ixp4xx_eth_driver);
1511 }
1512 
eth_cleanup_module(void)1513 static void __exit eth_cleanup_module(void)
1514 {
1515 	platform_driver_unregister(&ixp4xx_eth_driver);
1516 	ixp4xx_mdio_remove();
1517 }
1518 
1519 MODULE_AUTHOR("Krzysztof Halasa");
1520 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1521 MODULE_LICENSE("GPL v2");
1522 MODULE_ALIAS("platform:ixp4xx_eth");
1523 module_init(eth_init_module);
1524 module_exit(eth_cleanup_module);
1525