1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26
27 #include <asm/unaligned.h>
28
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32
33 /**
34 * DOC: Protocol Control Unit (PCU) functions
35 *
36 * Protocol control unit is responsible to maintain various protocol
37 * properties before a frame is send and after a frame is received to/from
38 * baseband. To be more specific, PCU handles:
39 *
40 * - Buffering of RX and TX frames (after QCU/DCUs)
41 *
42 * - Encrypting and decrypting (using the built-in engine)
43 *
44 * - Generating ACKs, RTS/CTS frames
45 *
46 * - Maintaining TSF
47 *
48 * - FCS
49 *
50 * - Updating beacon data (with TSF etc)
51 *
52 * - Generating virtual CCA
53 *
54 * - RX/Multicast filtering
55 *
56 * - BSSID filtering
57 *
58 * - Various statistics
59 *
60 * -Different operating modes: AP, STA, IBSS
61 *
62 * Note: Most of these functions can be tweaked/bypassed so you can do
63 * them on sw above for debugging or research. For more infos check out PCU
64 * registers on reg.h.
65 */
66
67 /**
68 * DOC: ACK rates
69 *
70 * AR5212+ can use higher rates for ack transmission
71 * based on current tx rate instead of the base rate.
72 * It does this to better utilize channel usage.
73 * There is a mapping between G rates (that cover both
74 * CCK and OFDM) and ack rates that we use when setting
75 * rate -> duration table. This mapping is hw-based so
76 * don't change anything.
77 *
78 * To enable this functionality we must set
79 * ah->ah_ack_bitrate_high to true else base rate is
80 * used (1Mb for CCK, 6Mb for OFDM).
81 */
82 static const unsigned int ack_rates_high[] =
83 /* Tx -> ACK */
84 /* 1Mb -> 1Mb */ { 0,
85 /* 2MB -> 2Mb */ 1,
86 /* 5.5Mb -> 2Mb */ 1,
87 /* 11Mb -> 2Mb */ 1,
88 /* 6Mb -> 6Mb */ 4,
89 /* 9Mb -> 6Mb */ 4,
90 /* 12Mb -> 12Mb */ 6,
91 /* 18Mb -> 12Mb */ 6,
92 /* 24Mb -> 24Mb */ 8,
93 /* 36Mb -> 24Mb */ 8,
94 /* 48Mb -> 24Mb */ 8,
95 /* 54Mb -> 24Mb */ 8 };
96
97 /*******************\
98 * Helper functions *
99 \*******************/
100
101 /**
102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
103 * @ah: The &struct ath5k_hw
104 * @len: Frame's length in bytes
105 * @rate: The @struct ieee80211_rate
106 * @shortpre: Indicate short preample
107 *
108 * Calculate tx duration of a frame given it's rate and length
109 * It extends ieee80211_generic_frame_duration for non standard
110 * bwmodes.
111 */
112 int
ath5k_hw_get_frame_duration(struct ath5k_hw * ah,enum ieee80211_band band,int len,struct ieee80211_rate * rate,bool shortpre)113 ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band,
114 int len, struct ieee80211_rate *rate, bool shortpre)
115 {
116 int sifs, preamble, plcp_bits, sym_time;
117 int bitrate, bits, symbols, symbol_bits;
118 int dur;
119
120 /* Fallback */
121 if (!ah->ah_bwmode) {
122 __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
123 NULL, band, len, rate);
124
125 /* subtract difference between long and short preamble */
126 dur = le16_to_cpu(raw_dur);
127 if (shortpre)
128 dur -= 96;
129
130 return dur;
131 }
132
133 bitrate = rate->bitrate;
134 preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
135 plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
136 sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
137
138 switch (ah->ah_bwmode) {
139 case AR5K_BWMODE_40MHZ:
140 sifs = AR5K_INIT_SIFS_TURBO;
141 preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
142 break;
143 case AR5K_BWMODE_10MHZ:
144 sifs = AR5K_INIT_SIFS_HALF_RATE;
145 preamble *= 2;
146 sym_time *= 2;
147 break;
148 case AR5K_BWMODE_5MHZ:
149 sifs = AR5K_INIT_SIFS_QUARTER_RATE;
150 preamble *= 4;
151 sym_time *= 4;
152 break;
153 default:
154 sifs = AR5K_INIT_SIFS_DEFAULT_BG;
155 break;
156 }
157
158 bits = plcp_bits + (len << 3);
159 /* Bit rate is in 100Kbits */
160 symbol_bits = bitrate * sym_time;
161 symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
162
163 dur = sifs + preamble + (sym_time * symbols);
164
165 return dur;
166 }
167
168 /**
169 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170 * @ah: The &struct ath5k_hw
171 */
172 unsigned int
ath5k_hw_get_default_slottime(struct ath5k_hw * ah)173 ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
174 {
175 struct ieee80211_channel *channel = ah->ah_current_channel;
176 unsigned int slot_time;
177
178 switch (ah->ah_bwmode) {
179 case AR5K_BWMODE_40MHZ:
180 slot_time = AR5K_INIT_SLOT_TIME_TURBO;
181 break;
182 case AR5K_BWMODE_10MHZ:
183 slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
184 break;
185 case AR5K_BWMODE_5MHZ:
186 slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
187 break;
188 case AR5K_BWMODE_DEFAULT:
189 default:
190 slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
191 if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
192 slot_time = AR5K_INIT_SLOT_TIME_B;
193 break;
194 }
195
196 return slot_time;
197 }
198
199 /**
200 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201 * @ah: The &struct ath5k_hw
202 */
203 unsigned int
ath5k_hw_get_default_sifs(struct ath5k_hw * ah)204 ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
205 {
206 struct ieee80211_channel *channel = ah->ah_current_channel;
207 unsigned int sifs;
208
209 switch (ah->ah_bwmode) {
210 case AR5K_BWMODE_40MHZ:
211 sifs = AR5K_INIT_SIFS_TURBO;
212 break;
213 case AR5K_BWMODE_10MHZ:
214 sifs = AR5K_INIT_SIFS_HALF_RATE;
215 break;
216 case AR5K_BWMODE_5MHZ:
217 sifs = AR5K_INIT_SIFS_QUARTER_RATE;
218 break;
219 case AR5K_BWMODE_DEFAULT:
220 sifs = AR5K_INIT_SIFS_DEFAULT_BG;
221 default:
222 if (channel->band == IEEE80211_BAND_5GHZ)
223 sifs = AR5K_INIT_SIFS_DEFAULT_A;
224 break;
225 }
226
227 return sifs;
228 }
229
230 /**
231 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232 * @ah: The &struct ath5k_hw
233 *
234 * Reads MIB counters from PCU and updates sw statistics. Is called after a
235 * MIB interrupt, because one of these counters might have reached their maximum
236 * and triggered the MIB interrupt, to let us read and clear the counter.
237 *
238 * NOTE: Is called in interrupt context!
239 */
240 void
ath5k_hw_update_mib_counters(struct ath5k_hw * ah)241 ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
242 {
243 struct ath5k_statistics *stats = &ah->stats;
244
245 /* Read-And-Clear */
246 stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
247 stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
248 stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
249 stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
250 stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
251 }
252
253
254 /******************\
255 * ACK/CTS Timeouts *
256 \******************/
257
258 /**
259 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260 * @ah: The &struct ath5k_hw
261 *
262 * Write the rate code to duration table upon hw reset. This is a helper for
263 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264 * the hardware, based on current mode, for each rate. The rates which are
265 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266 * different rate code so we write their value twice (one for long preamble
267 * and one for short).
268 *
269 * Note: Band doesn't matter here, if we set the values for OFDM it works
270 * on both a and g modes. So all we have to do is set values for all g rates
271 * that include all OFDM and CCK rates.
272 *
273 */
274 static inline void
ath5k_hw_write_rate_duration(struct ath5k_hw * ah)275 ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
276 {
277 struct ieee80211_rate *rate;
278 unsigned int i;
279 /* 802.11g covers both OFDM and CCK */
280 u8 band = IEEE80211_BAND_2GHZ;
281
282 /* Write rate duration table */
283 for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
284 u32 reg;
285 u16 tx_time;
286
287 if (ah->ah_ack_bitrate_high)
288 rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
289 /* CCK -> 1Mb */
290 else if (i < 4)
291 rate = &ah->sbands[band].bitrates[0];
292 /* OFDM -> 6Mb */
293 else
294 rate = &ah->sbands[band].bitrates[4];
295
296 /* Set ACK timeout */
297 reg = AR5K_RATE_DUR(rate->hw_value);
298
299 /* An ACK frame consists of 10 bytes. If you add the FCS,
300 * which ieee80211_generic_frame_duration() adds,
301 * its 14 bytes. Note we use the control rate and not the
302 * actual rate for this rate. See mac80211 tx.c
303 * ieee80211_duration() for a brief description of
304 * what rate we should choose to TX ACKs. */
305 tx_time = ath5k_hw_get_frame_duration(ah, band, 10,
306 rate, false);
307
308 ath5k_hw_reg_write(ah, tx_time, reg);
309
310 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
311 continue;
312
313 tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true);
314 ath5k_hw_reg_write(ah, tx_time,
315 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
316 }
317 }
318
319 /**
320 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
321 * @ah: The &struct ath5k_hw
322 * @timeout: Timeout in usec
323 */
324 static int
ath5k_hw_set_ack_timeout(struct ath5k_hw * ah,unsigned int timeout)325 ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
326 {
327 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
328 <= timeout)
329 return -EINVAL;
330
331 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
332 ath5k_hw_htoclock(ah, timeout));
333
334 return 0;
335 }
336
337 /**
338 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
339 * @ah: The &struct ath5k_hw
340 * @timeout: Timeout in usec
341 */
342 static int
ath5k_hw_set_cts_timeout(struct ath5k_hw * ah,unsigned int timeout)343 ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
344 {
345 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
346 <= timeout)
347 return -EINVAL;
348
349 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
350 ath5k_hw_htoclock(ah, timeout));
351
352 return 0;
353 }
354
355
356 /*******************\
357 * RX filter Control *
358 \*******************/
359
360 /**
361 * ath5k_hw_set_lladdr() - Set station id
362 * @ah: The &struct ath5k_hw
363 * @mac: The card's mac address (array of octets)
364 *
365 * Set station id on hw using the provided mac address
366 */
367 int
ath5k_hw_set_lladdr(struct ath5k_hw * ah,const u8 * mac)368 ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
369 {
370 struct ath_common *common = ath5k_hw_common(ah);
371 u32 low_id, high_id;
372 u32 pcu_reg;
373
374 /* Set new station ID */
375 memcpy(common->macaddr, mac, ETH_ALEN);
376
377 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
378
379 low_id = get_unaligned_le32(mac);
380 high_id = get_unaligned_le16(mac + 4);
381
382 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
383 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
384
385 return 0;
386 }
387
388 /**
389 * ath5k_hw_set_bssid() - Set current BSSID on hw
390 * @ah: The &struct ath5k_hw
391 *
392 * Sets the current BSSID and BSSID mask we have from the
393 * common struct into the hardware
394 */
395 void
ath5k_hw_set_bssid(struct ath5k_hw * ah)396 ath5k_hw_set_bssid(struct ath5k_hw *ah)
397 {
398 struct ath_common *common = ath5k_hw_common(ah);
399 u16 tim_offset = 0;
400
401 /*
402 * Set BSSID mask on 5212
403 */
404 if (ah->ah_version == AR5K_AR5212)
405 ath_hw_setbssidmask(common);
406
407 /*
408 * Set BSSID
409 */
410 ath5k_hw_reg_write(ah,
411 get_unaligned_le32(common->curbssid),
412 AR5K_BSS_ID0);
413 ath5k_hw_reg_write(ah,
414 get_unaligned_le16(common->curbssid + 4) |
415 ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
416 AR5K_BSS_ID1);
417
418 if (common->curaid == 0) {
419 ath5k_hw_disable_pspoll(ah);
420 return;
421 }
422
423 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
424 tim_offset ? tim_offset + 4 : 0);
425
426 ath5k_hw_enable_pspoll(ah, NULL, 0);
427 }
428
429 /**
430 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
431 * @ah: The &struct ath5k_hw
432 * @mask: The BSSID mask to set (array of octets)
433 *
434 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
435 * which bits of the interface's MAC address should be looked at when trying
436 * to decide which packets to ACK. In station mode and AP mode with a single
437 * BSS every bit matters since we lock to only one BSS. In AP mode with
438 * multiple BSSes (virtual interfaces) not every bit matters because hw must
439 * accept frames for all BSSes and so we tweak some bits of our mac address
440 * in order to have multiple BSSes.
441 *
442 * For more information check out ../hw.c of the common ath module.
443 */
444 void
ath5k_hw_set_bssid_mask(struct ath5k_hw * ah,const u8 * mask)445 ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
446 {
447 struct ath_common *common = ath5k_hw_common(ah);
448
449 /* Cache bssid mask so that we can restore it
450 * on reset */
451 memcpy(common->bssidmask, mask, ETH_ALEN);
452 if (ah->ah_version == AR5K_AR5212)
453 ath_hw_setbssidmask(common);
454 }
455
456 /**
457 * ath5k_hw_set_mcast_filter() - Set multicast filter
458 * @ah: The &struct ath5k_hw
459 * @filter0: Lower 32bits of muticast filter
460 * @filter1: Higher 16bits of multicast filter
461 */
462 void
ath5k_hw_set_mcast_filter(struct ath5k_hw * ah,u32 filter0,u32 filter1)463 ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
464 {
465 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
466 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
467 }
468
469 /**
470 * ath5k_hw_get_rx_filter() - Get current rx filter
471 * @ah: The &struct ath5k_hw
472 *
473 * Returns the RX filter by reading rx filter and
474 * phy error filter registers. RX filter is used
475 * to set the allowed frame types that PCU will accept
476 * and pass to the driver. For a list of frame types
477 * check out reg.h.
478 */
479 u32
ath5k_hw_get_rx_filter(struct ath5k_hw * ah)480 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
481 {
482 u32 data, filter = 0;
483
484 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
485
486 /*Radar detection for 5212*/
487 if (ah->ah_version == AR5K_AR5212) {
488 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
489
490 if (data & AR5K_PHY_ERR_FIL_RADAR)
491 filter |= AR5K_RX_FILTER_RADARERR;
492 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
493 filter |= AR5K_RX_FILTER_PHYERR;
494 }
495
496 return filter;
497 }
498
499 /**
500 * ath5k_hw_set_rx_filter() - Set rx filter
501 * @ah: The &struct ath5k_hw
502 * @filter: RX filter mask (see reg.h)
503 *
504 * Sets RX filter register and also handles PHY error filter
505 * register on 5212 and newer chips so that we have proper PHY
506 * error reporting.
507 */
508 void
ath5k_hw_set_rx_filter(struct ath5k_hw * ah,u32 filter)509 ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
510 {
511 u32 data = 0;
512
513 /* Set PHY error filter register on 5212*/
514 if (ah->ah_version == AR5K_AR5212) {
515 if (filter & AR5K_RX_FILTER_RADARERR)
516 data |= AR5K_PHY_ERR_FIL_RADAR;
517 if (filter & AR5K_RX_FILTER_PHYERR)
518 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
519 }
520
521 /*
522 * The AR5210 uses promiscuous mode to detect radar activity
523 */
524 if (ah->ah_version == AR5K_AR5210 &&
525 (filter & AR5K_RX_FILTER_RADARERR)) {
526 filter &= ~AR5K_RX_FILTER_RADARERR;
527 filter |= AR5K_RX_FILTER_PROM;
528 }
529
530 /*Zero length DMA (phy error reporting) */
531 if (data)
532 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
533 else
534 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
535
536 /*Write RX Filter register*/
537 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
538
539 /*Write PHY error filter register on 5212*/
540 if (ah->ah_version == AR5K_AR5212)
541 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
542
543 }
544
545
546 /****************\
547 * Beacon control *
548 \****************/
549
550 #define ATH5K_MAX_TSF_READ 10
551
552 /**
553 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
554 * @ah: The &struct ath5k_hw
555 *
556 * Returns the current TSF
557 */
558 u64
ath5k_hw_get_tsf64(struct ath5k_hw * ah)559 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
560 {
561 u32 tsf_lower, tsf_upper1, tsf_upper2;
562 int i;
563 unsigned long flags;
564
565 /* This code is time critical - we don't want to be interrupted here */
566 local_irq_save(flags);
567
568 /*
569 * While reading TSF upper and then lower part, the clock is still
570 * counting (or jumping in case of IBSS merge) so we might get
571 * inconsistent values. To avoid this, we read the upper part again
572 * and check it has not been changed. We make the hypothesis that a
573 * maximum of 3 changes can happens in a row (we use 10 as a safe
574 * value).
575 *
576 * Impact on performance is pretty small, since in most cases, only
577 * 3 register reads are needed.
578 */
579
580 tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
581 for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
582 tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
583 tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
584 if (tsf_upper2 == tsf_upper1)
585 break;
586 tsf_upper1 = tsf_upper2;
587 }
588
589 local_irq_restore(flags);
590
591 WARN_ON(i == ATH5K_MAX_TSF_READ);
592
593 return ((u64)tsf_upper1 << 32) | tsf_lower;
594 }
595
596 #undef ATH5K_MAX_TSF_READ
597
598 /**
599 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
600 * @ah: The &struct ath5k_hw
601 * @tsf64: The new 64bit TSF
602 *
603 * Sets the new TSF
604 */
605 void
ath5k_hw_set_tsf64(struct ath5k_hw * ah,u64 tsf64)606 ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
607 {
608 ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
609 ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
610 }
611
612 /**
613 * ath5k_hw_reset_tsf() - Force a TSF reset
614 * @ah: The &struct ath5k_hw
615 *
616 * Forces a TSF reset on PCU
617 */
618 void
ath5k_hw_reset_tsf(struct ath5k_hw * ah)619 ath5k_hw_reset_tsf(struct ath5k_hw *ah)
620 {
621 u32 val;
622
623 val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
624
625 /*
626 * Each write to the RESET_TSF bit toggles a hardware internal
627 * signal to reset TSF, but if left high it will cause a TSF reset
628 * on the next chip reset as well. Thus we always write the value
629 * twice to clear the signal.
630 */
631 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
632 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
633 }
634
635 /**
636 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
637 * @ah: The &struct ath5k_hw
638 * @next_beacon: Next TBTT
639 * @interval: Current beacon interval
640 *
641 * This function is used to initialize beacon timers based on current
642 * operation mode and settings.
643 */
644 void
ath5k_hw_init_beacon_timers(struct ath5k_hw * ah,u32 next_beacon,u32 interval)645 ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
646 {
647 u32 timer1, timer2, timer3;
648
649 /*
650 * Set the additional timers by mode
651 */
652 switch (ah->opmode) {
653 case NL80211_IFTYPE_MONITOR:
654 case NL80211_IFTYPE_STATION:
655 /* In STA mode timer1 is used as next wakeup
656 * timer and timer2 as next CFP duration start
657 * timer. Both in 1/8TUs. */
658 /* TODO: PCF handling */
659 if (ah->ah_version == AR5K_AR5210) {
660 timer1 = 0xffffffff;
661 timer2 = 0xffffffff;
662 } else {
663 timer1 = 0x0000ffff;
664 timer2 = 0x0007ffff;
665 }
666 /* Mark associated AP as PCF incapable for now */
667 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
668 break;
669 case NL80211_IFTYPE_ADHOC:
670 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
671 default:
672 /* On non-STA modes timer1 is used as next DMA
673 * beacon alert (DBA) timer and timer2 as next
674 * software beacon alert. Both in 1/8TUs. */
675 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
676 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
677 break;
678 }
679
680 /* Timer3 marks the end of our ATIM window
681 * a zero length window is not allowed because
682 * we 'll get no beacons */
683 timer3 = next_beacon + 1;
684
685 /*
686 * Set the beacon register and enable all timers.
687 */
688 /* When in AP or Mesh Point mode zero timer0 to start TSF */
689 if (ah->opmode == NL80211_IFTYPE_AP ||
690 ah->opmode == NL80211_IFTYPE_MESH_POINT)
691 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
692
693 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
694 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
695 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
696 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
697
698 /* Force a TSF reset if requested and enable beacons */
699 if (interval & AR5K_BEACON_RESET_TSF)
700 ath5k_hw_reset_tsf(ah);
701
702 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
703 AR5K_BEACON_ENABLE),
704 AR5K_BEACON);
705
706 /* Flush any pending BMISS interrupts on ISR by
707 * performing a clear-on-write operation on PISR
708 * register for the BMISS bit (writing a bit on
709 * ISR toggles a reset for that bit and leaves
710 * the remaining bits intact) */
711 if (ah->ah_version == AR5K_AR5210)
712 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
713 else
714 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
715
716 /* TODO: Set enhanced sleep registers on AR5212
717 * based on vif->bss_conf params, until then
718 * disable power save reporting.*/
719 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
720
721 }
722
723 /**
724 * ath5k_check_timer_win() - Check if timer B is timer A + window
725 * @a: timer a (before b)
726 * @b: timer b (after a)
727 * @window: difference between a and b
728 * @intval: timers are increased by this interval
729 *
730 * This helper function checks if timer B is timer A + window and covers
731 * cases where timer A or B might have already been updated or wrapped
732 * around (Timers are 16 bit).
733 *
734 * Returns true if O.K.
735 */
736 static inline bool
ath5k_check_timer_win(int a,int b,int window,int intval)737 ath5k_check_timer_win(int a, int b, int window, int intval)
738 {
739 /*
740 * 1.) usually B should be A + window
741 * 2.) A already updated, B not updated yet
742 * 3.) A already updated and has wrapped around
743 * 4.) B has wrapped around
744 */
745 if ((b - a == window) || /* 1.) */
746 (a - b == intval - window) || /* 2.) */
747 ((a | 0x10000) - b == intval - window) || /* 3.) */
748 ((b | 0x10000) - a == window)) /* 4.) */
749 return true; /* O.K. */
750 return false;
751 }
752
753 /**
754 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
755 * @ah: The &struct ath5k_hw
756 * @intval: beacon interval
757 *
758 * This is a workaround for IBSS mode
759 *
760 * The need for this function arises from the fact that we have 4 separate
761 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
762 * next beacon target time (NBTT), and that the HW updates these timers
763 * separately based on the current TSF value. The hardware increments each
764 * timer by the beacon interval, when the local TSF converted to TU is equal
765 * to the value stored in the timer.
766 *
767 * The reception of a beacon with the same BSSID can update the local HW TSF
768 * at any time - this is something we can't avoid. If the TSF jumps to a
769 * time which is later than the time stored in a timer, this timer will not
770 * be updated until the TSF in TU wraps around at 16 bit (the size of the
771 * timers) and reaches the time which is stored in the timer.
772 *
773 * The problem is that these timers are closely related to TIMER0 (NBTT) and
774 * that they define a time "window". When the TSF jumps between two timers
775 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
776 * updated), while the one in the future will be updated every beacon
777 * interval. This causes the window to get larger, until the TSF wraps
778 * around as described above and the timer which was left behind gets
779 * updated again. But - because the beacon interval is usually not an exact
780 * divisor of the size of the timers (16 bit), an unwanted "window" between
781 * these timers has developed!
782 *
783 * This is especially important with the ATIM window, because during
784 * the ATIM window only ATIM frames and no data frames are allowed to be
785 * sent, which creates transmission pauses after each beacon. This symptom
786 * has been described as "ramping ping" because ping times increase linearly
787 * for some time and then drop down again. A wrong window on the DMA beacon
788 * timer has the same effect, so we check for these two conditions.
789 *
790 * Returns true if O.K.
791 */
792 bool
ath5k_hw_check_beacon_timers(struct ath5k_hw * ah,int intval)793 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
794 {
795 unsigned int nbtt, atim, dma;
796
797 nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
798 atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
799 dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
800
801 /* NOTE: SWBA is different. Having a wrong window there does not
802 * stop us from sending data and this condition is caught by
803 * other means (SWBA interrupt) */
804
805 if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
806 ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
807 intval))
808 return true; /* O.K. */
809 return false;
810 }
811
812 /**
813 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
814 * @ah: The &struct ath5k_hw
815 * @coverage_class: IEEE 802.11 coverage class number
816 *
817 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
818 */
819 void
ath5k_hw_set_coverage_class(struct ath5k_hw * ah,u8 coverage_class)820 ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
821 {
822 /* As defined by IEEE 802.11-2007 17.3.8.6 */
823 int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
824 int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
825 int cts_timeout = ack_timeout;
826
827 ath5k_hw_set_ifs_intervals(ah, slot_time);
828 ath5k_hw_set_ack_timeout(ah, ack_timeout);
829 ath5k_hw_set_cts_timeout(ah, cts_timeout);
830
831 ah->ah_coverage_class = coverage_class;
832 }
833
834 /***************************\
835 * Init/Start/Stop functions *
836 \***************************/
837
838 /**
839 * ath5k_hw_start_rx_pcu() - Start RX engine
840 * @ah: The &struct ath5k_hw
841 *
842 * Starts RX engine on PCU so that hw can process RXed frames
843 * (ACK etc).
844 *
845 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
846 */
847 void
ath5k_hw_start_rx_pcu(struct ath5k_hw * ah)848 ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
849 {
850 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
851 }
852
853 /**
854 * at5k_hw_stop_rx_pcu() - Stop RX engine
855 * @ah: The &struct ath5k_hw
856 *
857 * Stops RX engine on PCU
858 */
859 void
ath5k_hw_stop_rx_pcu(struct ath5k_hw * ah)860 ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
861 {
862 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
863 }
864
865 /**
866 * ath5k_hw_set_opmode() - Set PCU operating mode
867 * @ah: The &struct ath5k_hw
868 * @op_mode: One of enum nl80211_iftype
869 *
870 * Configure PCU for the various operating modes (AP/STA etc)
871 */
872 int
ath5k_hw_set_opmode(struct ath5k_hw * ah,enum nl80211_iftype op_mode)873 ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
874 {
875 struct ath_common *common = ath5k_hw_common(ah);
876 u32 pcu_reg, beacon_reg, low_id, high_id;
877
878 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
879
880 /* Preserve rest settings */
881 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
882 pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
883 | AR5K_STA_ID1_KEYSRCH_MODE
884 | (ah->ah_version == AR5K_AR5210 ?
885 (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
886
887 beacon_reg = 0;
888
889 switch (op_mode) {
890 case NL80211_IFTYPE_ADHOC:
891 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
892 beacon_reg |= AR5K_BCR_ADHOC;
893 if (ah->ah_version == AR5K_AR5210)
894 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
895 else
896 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
897 break;
898
899 case NL80211_IFTYPE_AP:
900 case NL80211_IFTYPE_MESH_POINT:
901 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
902 beacon_reg |= AR5K_BCR_AP;
903 if (ah->ah_version == AR5K_AR5210)
904 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
905 else
906 AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
907 break;
908
909 case NL80211_IFTYPE_STATION:
910 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
911 | (ah->ah_version == AR5K_AR5210 ?
912 AR5K_STA_ID1_PWR_SV : 0);
913 case NL80211_IFTYPE_MONITOR:
914 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
915 | (ah->ah_version == AR5K_AR5210 ?
916 AR5K_STA_ID1_NO_PSPOLL : 0);
917 break;
918
919 default:
920 return -EINVAL;
921 }
922
923 /*
924 * Set PCU registers
925 */
926 low_id = get_unaligned_le32(common->macaddr);
927 high_id = get_unaligned_le16(common->macaddr + 4);
928 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
929 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
930
931 /*
932 * Set Beacon Control Register on 5210
933 */
934 if (ah->ah_version == AR5K_AR5210)
935 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
936
937 return 0;
938 }
939
940 /**
941 * ath5k_hw_pcu_init() - Initialize PCU
942 * @ah: The &struct ath5k_hw
943 * @op_mode: One of enum nl80211_iftype
944 * @mode: One of enum ath5k_driver_mode
945 *
946 * This function is used to initialize PCU by setting current
947 * operation mode and various other settings.
948 */
949 void
ath5k_hw_pcu_init(struct ath5k_hw * ah,enum nl80211_iftype op_mode)950 ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
951 {
952 /* Set bssid and bssid mask */
953 ath5k_hw_set_bssid(ah);
954
955 /* Set PCU config */
956 ath5k_hw_set_opmode(ah, op_mode);
957
958 /* Write rate duration table only on AR5212 and if
959 * virtual interface has already been brought up
960 * XXX: rethink this after new mode changes to
961 * mac80211 are integrated */
962 if (ah->ah_version == AR5K_AR5212 &&
963 ah->nvifs)
964 ath5k_hw_write_rate_duration(ah);
965
966 /* Set RSSI/BRSSI thresholds
967 *
968 * Note: If we decide to set this value
969 * dynamically, have in mind that when AR5K_RSSI_THR
970 * register is read it might return 0x40 if we haven't
971 * wrote anything to it plus BMISS RSSI threshold is zeroed.
972 * So doing a save/restore procedure here isn't the right
973 * choice. Instead store it on ath5k_hw */
974 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
975 AR5K_TUNE_BMISS_THRES <<
976 AR5K_RSSI_THR_BMISS_S),
977 AR5K_RSSI_THR);
978
979 /* MIC QoS support */
980 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
981 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
982 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
983 }
984
985 /* QoS NOACK Policy */
986 if (ah->ah_version == AR5K_AR5212) {
987 ath5k_hw_reg_write(ah,
988 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
989 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
990 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
991 AR5K_QOS_NOACK);
992 }
993
994 /* Restore slot time and ACK timeouts */
995 if (ah->ah_coverage_class > 0)
996 ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
997
998 /* Set ACK bitrate mode (see ack_rates_high) */
999 if (ah->ah_version == AR5K_AR5212) {
1000 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1001 if (ah->ah_ack_bitrate_high)
1002 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1003 else
1004 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1005 }
1006 return;
1007 }
1008