1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include <linux/relay.h>
19 #include "ath9k.h"
20 #include "ar9003_mac.h"
21
22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
23
ath9k_check_auto_sleep(struct ath_softc * sc)24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
25 {
26 return sc->ps_enabled &&
27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
28 }
29
30 /*
31 * Setup and link descriptors.
32 *
33 * 11N: we can no longer afford to self link the last descriptor.
34 * MAC acknowledges BA status as long as it copies frames to host
35 * buffer (or rx fifo). This can incorrectly acknowledge packets
36 * to a sender if last desc is self-linked.
37 */
ath_rx_buf_link(struct ath_softc * sc,struct ath_buf * bf)38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
39 {
40 struct ath_hw *ah = sc->sc_ah;
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath_desc *ds;
43 struct sk_buff *skb;
44
45 ATH_RXBUF_RESET(bf);
46
47 ds = bf->bf_desc;
48 ds->ds_link = 0; /* link to null */
49 ds->ds_data = bf->bf_buf_addr;
50
51 /* virtual addr of the beginning of the buffer. */
52 skb = bf->bf_mpdu;
53 BUG_ON(skb == NULL);
54 ds->ds_vdata = skb->data;
55
56 /*
57 * setup rx descriptors. The rx_bufsize here tells the hardware
58 * how much data it can DMA to us and that we are prepared
59 * to process
60 */
61 ath9k_hw_setuprxdesc(ah, ds,
62 common->rx_bufsize,
63 0);
64
65 if (sc->rx.rxlink == NULL)
66 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 else
68 *sc->rx.rxlink = bf->bf_daddr;
69
70 sc->rx.rxlink = &ds->ds_link;
71 }
72
ath_setdefantenna(struct ath_softc * sc,u32 antenna)73 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
74 {
75 /* XXX block beacon interrupts */
76 ath9k_hw_setantenna(sc->sc_ah, antenna);
77 sc->rx.defant = antenna;
78 sc->rx.rxotherant = 0;
79 }
80
ath_opmode_init(struct ath_softc * sc)81 static void ath_opmode_init(struct ath_softc *sc)
82 {
83 struct ath_hw *ah = sc->sc_ah;
84 struct ath_common *common = ath9k_hw_common(ah);
85
86 u32 rfilt, mfilt[2];
87
88 /* configure rx filter */
89 rfilt = ath_calcrxfilter(sc);
90 ath9k_hw_setrxfilter(ah, rfilt);
91
92 /* configure bssid mask */
93 ath_hw_setbssidmask(common);
94
95 /* configure operational mode */
96 ath9k_hw_setopmode(ah);
97
98 /* calculate and install multicast filter */
99 mfilt[0] = mfilt[1] = ~0;
100 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
101 }
102
ath_rx_edma_buf_link(struct ath_softc * sc,enum ath9k_rx_qtype qtype)103 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
104 enum ath9k_rx_qtype qtype)
105 {
106 struct ath_hw *ah = sc->sc_ah;
107 struct ath_rx_edma *rx_edma;
108 struct sk_buff *skb;
109 struct ath_buf *bf;
110
111 rx_edma = &sc->rx.rx_edma[qtype];
112 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
113 return false;
114
115 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
116 list_del_init(&bf->list);
117
118 skb = bf->bf_mpdu;
119
120 ATH_RXBUF_RESET(bf);
121 memset(skb->data, 0, ah->caps.rx_status_len);
122 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
123 ah->caps.rx_status_len, DMA_TO_DEVICE);
124
125 SKB_CB_ATHBUF(skb) = bf;
126 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
127 __skb_queue_tail(&rx_edma->rx_fifo, skb);
128
129 return true;
130 }
131
ath_rx_addbuffer_edma(struct ath_softc * sc,enum ath9k_rx_qtype qtype)132 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
133 enum ath9k_rx_qtype qtype)
134 {
135 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
136 struct ath_buf *bf, *tbf;
137
138 if (list_empty(&sc->rx.rxbuf)) {
139 ath_dbg(common, QUEUE, "No free rx buf available\n");
140 return;
141 }
142
143 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
144 if (!ath_rx_edma_buf_link(sc, qtype))
145 break;
146
147 }
148
ath_rx_remove_buffer(struct ath_softc * sc,enum ath9k_rx_qtype qtype)149 static void ath_rx_remove_buffer(struct ath_softc *sc,
150 enum ath9k_rx_qtype qtype)
151 {
152 struct ath_buf *bf;
153 struct ath_rx_edma *rx_edma;
154 struct sk_buff *skb;
155
156 rx_edma = &sc->rx.rx_edma[qtype];
157
158 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
159 bf = SKB_CB_ATHBUF(skb);
160 BUG_ON(!bf);
161 list_add_tail(&bf->list, &sc->rx.rxbuf);
162 }
163 }
164
ath_rx_edma_cleanup(struct ath_softc * sc)165 static void ath_rx_edma_cleanup(struct ath_softc *sc)
166 {
167 struct ath_hw *ah = sc->sc_ah;
168 struct ath_common *common = ath9k_hw_common(ah);
169 struct ath_buf *bf;
170
171 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
172 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
173
174 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
175 if (bf->bf_mpdu) {
176 dma_unmap_single(sc->dev, bf->bf_buf_addr,
177 common->rx_bufsize,
178 DMA_BIDIRECTIONAL);
179 dev_kfree_skb_any(bf->bf_mpdu);
180 bf->bf_buf_addr = 0;
181 bf->bf_mpdu = NULL;
182 }
183 }
184 }
185
ath_rx_edma_init_queue(struct ath_rx_edma * rx_edma,int size)186 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
187 {
188 skb_queue_head_init(&rx_edma->rx_fifo);
189 rx_edma->rx_fifo_hwsize = size;
190 }
191
ath_rx_edma_init(struct ath_softc * sc,int nbufs)192 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
193 {
194 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
195 struct ath_hw *ah = sc->sc_ah;
196 struct sk_buff *skb;
197 struct ath_buf *bf;
198 int error = 0, i;
199 u32 size;
200
201 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
202 ah->caps.rx_status_len);
203
204 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
205 ah->caps.rx_lp_qdepth);
206 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
207 ah->caps.rx_hp_qdepth);
208
209 size = sizeof(struct ath_buf) * nbufs;
210 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
211 if (!bf)
212 return -ENOMEM;
213
214 INIT_LIST_HEAD(&sc->rx.rxbuf);
215
216 for (i = 0; i < nbufs; i++, bf++) {
217 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
218 if (!skb) {
219 error = -ENOMEM;
220 goto rx_init_fail;
221 }
222
223 memset(skb->data, 0, common->rx_bufsize);
224 bf->bf_mpdu = skb;
225
226 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
227 common->rx_bufsize,
228 DMA_BIDIRECTIONAL);
229 if (unlikely(dma_mapping_error(sc->dev,
230 bf->bf_buf_addr))) {
231 dev_kfree_skb_any(skb);
232 bf->bf_mpdu = NULL;
233 bf->bf_buf_addr = 0;
234 ath_err(common,
235 "dma_mapping_error() on RX init\n");
236 error = -ENOMEM;
237 goto rx_init_fail;
238 }
239
240 list_add_tail(&bf->list, &sc->rx.rxbuf);
241 }
242
243 return 0;
244
245 rx_init_fail:
246 ath_rx_edma_cleanup(sc);
247 return error;
248 }
249
ath_edma_start_recv(struct ath_softc * sc)250 static void ath_edma_start_recv(struct ath_softc *sc)
251 {
252 ath9k_hw_rxena(sc->sc_ah);
253 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
254 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
255 ath_opmode_init(sc);
256 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
257 }
258
ath_edma_stop_recv(struct ath_softc * sc)259 static void ath_edma_stop_recv(struct ath_softc *sc)
260 {
261 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
262 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
263 }
264
ath_rx_init(struct ath_softc * sc,int nbufs)265 int ath_rx_init(struct ath_softc *sc, int nbufs)
266 {
267 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
268 struct sk_buff *skb;
269 struct ath_buf *bf;
270 int error = 0;
271
272 spin_lock_init(&sc->sc_pcu_lock);
273
274 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
275 sc->sc_ah->caps.rx_status_len;
276
277 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
278 return ath_rx_edma_init(sc, nbufs);
279
280 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
281 common->cachelsz, common->rx_bufsize);
282
283 /* Initialize rx descriptors */
284
285 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
286 "rx", nbufs, 1, 0);
287 if (error != 0) {
288 ath_err(common,
289 "failed to allocate rx descriptors: %d\n",
290 error);
291 goto err;
292 }
293
294 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
295 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
296 GFP_KERNEL);
297 if (skb == NULL) {
298 error = -ENOMEM;
299 goto err;
300 }
301
302 bf->bf_mpdu = skb;
303 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
304 common->rx_bufsize,
305 DMA_FROM_DEVICE);
306 if (unlikely(dma_mapping_error(sc->dev,
307 bf->bf_buf_addr))) {
308 dev_kfree_skb_any(skb);
309 bf->bf_mpdu = NULL;
310 bf->bf_buf_addr = 0;
311 ath_err(common,
312 "dma_mapping_error() on RX init\n");
313 error = -ENOMEM;
314 goto err;
315 }
316 }
317 sc->rx.rxlink = NULL;
318 err:
319 if (error)
320 ath_rx_cleanup(sc);
321
322 return error;
323 }
324
ath_rx_cleanup(struct ath_softc * sc)325 void ath_rx_cleanup(struct ath_softc *sc)
326 {
327 struct ath_hw *ah = sc->sc_ah;
328 struct ath_common *common = ath9k_hw_common(ah);
329 struct sk_buff *skb;
330 struct ath_buf *bf;
331
332 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
333 ath_rx_edma_cleanup(sc);
334 return;
335 }
336
337 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
338 skb = bf->bf_mpdu;
339 if (skb) {
340 dma_unmap_single(sc->dev, bf->bf_buf_addr,
341 common->rx_bufsize,
342 DMA_FROM_DEVICE);
343 dev_kfree_skb(skb);
344 bf->bf_buf_addr = 0;
345 bf->bf_mpdu = NULL;
346 }
347 }
348 }
349
350 /*
351 * Calculate the receive filter according to the
352 * operating mode and state:
353 *
354 * o always accept unicast, broadcast, and multicast traffic
355 * o maintain current state of phy error reception (the hal
356 * may enable phy error frames for noise immunity work)
357 * o probe request frames are accepted only when operating in
358 * hostap, adhoc, or monitor modes
359 * o enable promiscuous mode according to the interface state
360 * o accept beacons:
361 * - when operating in adhoc mode so the 802.11 layer creates
362 * node table entries for peers,
363 * - when operating in station mode for collecting rssi data when
364 * the station is otherwise quiet, or
365 * - when operating as a repeater so we see repeater-sta beacons
366 * - when scanning
367 */
368
ath_calcrxfilter(struct ath_softc * sc)369 u32 ath_calcrxfilter(struct ath_softc *sc)
370 {
371 u32 rfilt;
372
373 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
374 | ATH9K_RX_FILTER_MCAST;
375
376 /* if operating on a DFS channel, enable radar pulse detection */
377 if (sc->hw->conf.radar_enabled)
378 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
379
380 if (sc->rx.rxfilter & FIF_PROBE_REQ)
381 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
382
383 /*
384 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
385 * mode interface or when in monitor mode. AP mode does not need this
386 * since it receives all in-BSS frames anyway.
387 */
388 if (sc->sc_ah->is_monitoring)
389 rfilt |= ATH9K_RX_FILTER_PROM;
390
391 if (sc->rx.rxfilter & FIF_CONTROL)
392 rfilt |= ATH9K_RX_FILTER_CONTROL;
393
394 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
395 (sc->nvifs <= 1) &&
396 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
397 rfilt |= ATH9K_RX_FILTER_MYBEACON;
398 else
399 rfilt |= ATH9K_RX_FILTER_BEACON;
400
401 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
402 (sc->rx.rxfilter & FIF_PSPOLL))
403 rfilt |= ATH9K_RX_FILTER_PSPOLL;
404
405 if (conf_is_ht(&sc->hw->conf))
406 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
407
408 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
409 /* This is needed for older chips */
410 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
411 rfilt |= ATH9K_RX_FILTER_PROM;
412 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
413 }
414
415 if (AR_SREV_9550(sc->sc_ah))
416 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
417
418 return rfilt;
419
420 }
421
ath_startrecv(struct ath_softc * sc)422 int ath_startrecv(struct ath_softc *sc)
423 {
424 struct ath_hw *ah = sc->sc_ah;
425 struct ath_buf *bf, *tbf;
426
427 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
428 ath_edma_start_recv(sc);
429 return 0;
430 }
431
432 if (list_empty(&sc->rx.rxbuf))
433 goto start_recv;
434
435 sc->rx.rxlink = NULL;
436 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
437 ath_rx_buf_link(sc, bf);
438 }
439
440 /* We could have deleted elements so the list may be empty now */
441 if (list_empty(&sc->rx.rxbuf))
442 goto start_recv;
443
444 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
445 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
446 ath9k_hw_rxena(ah);
447
448 start_recv:
449 ath_opmode_init(sc);
450 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
451
452 return 0;
453 }
454
ath_flushrecv(struct ath_softc * sc)455 static void ath_flushrecv(struct ath_softc *sc)
456 {
457 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
458 ath_rx_tasklet(sc, 1, true);
459 ath_rx_tasklet(sc, 1, false);
460 }
461
ath_stoprecv(struct ath_softc * sc)462 bool ath_stoprecv(struct ath_softc *sc)
463 {
464 struct ath_hw *ah = sc->sc_ah;
465 bool stopped, reset = false;
466
467 ath9k_hw_abortpcurecv(ah);
468 ath9k_hw_setrxfilter(ah, 0);
469 stopped = ath9k_hw_stopdmarecv(ah, &reset);
470
471 ath_flushrecv(sc);
472
473 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
474 ath_edma_stop_recv(sc);
475 else
476 sc->rx.rxlink = NULL;
477
478 if (!(ah->ah_flags & AH_UNPLUGGED) &&
479 unlikely(!stopped)) {
480 ath_err(ath9k_hw_common(sc->sc_ah),
481 "Could not stop RX, we could be "
482 "confusing the DMA engine when we start RX up\n");
483 ATH_DBG_WARN_ON_ONCE(!stopped);
484 }
485 return stopped && !reset;
486 }
487
ath_beacon_dtim_pending_cab(struct sk_buff * skb)488 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
489 {
490 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
491 struct ieee80211_mgmt *mgmt;
492 u8 *pos, *end, id, elen;
493 struct ieee80211_tim_ie *tim;
494
495 mgmt = (struct ieee80211_mgmt *)skb->data;
496 pos = mgmt->u.beacon.variable;
497 end = skb->data + skb->len;
498
499 while (pos + 2 < end) {
500 id = *pos++;
501 elen = *pos++;
502 if (pos + elen > end)
503 break;
504
505 if (id == WLAN_EID_TIM) {
506 if (elen < sizeof(*tim))
507 break;
508 tim = (struct ieee80211_tim_ie *) pos;
509 if (tim->dtim_count != 0)
510 break;
511 return tim->bitmap_ctrl & 0x01;
512 }
513
514 pos += elen;
515 }
516
517 return false;
518 }
519
ath_rx_ps_beacon(struct ath_softc * sc,struct sk_buff * skb)520 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
521 {
522 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
523
524 if (skb->len < 24 + 8 + 2 + 2)
525 return;
526
527 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
528
529 if (sc->ps_flags & PS_BEACON_SYNC) {
530 sc->ps_flags &= ~PS_BEACON_SYNC;
531 ath_dbg(common, PS,
532 "Reconfigure beacon timers based on synchronized timestamp\n");
533 ath9k_set_beacon(sc);
534 }
535
536 if (ath_beacon_dtim_pending_cab(skb)) {
537 /*
538 * Remain awake waiting for buffered broadcast/multicast
539 * frames. If the last broadcast/multicast frame is not
540 * received properly, the next beacon frame will work as
541 * a backup trigger for returning into NETWORK SLEEP state,
542 * so we are waiting for it as well.
543 */
544 ath_dbg(common, PS,
545 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
546 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
547 return;
548 }
549
550 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
551 /*
552 * This can happen if a broadcast frame is dropped or the AP
553 * fails to send a frame indicating that all CAB frames have
554 * been delivered.
555 */
556 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
557 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
558 }
559 }
560
ath_rx_ps(struct ath_softc * sc,struct sk_buff * skb,bool mybeacon)561 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
562 {
563 struct ieee80211_hdr *hdr;
564 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
565
566 hdr = (struct ieee80211_hdr *)skb->data;
567
568 /* Process Beacon and CAB receive in PS state */
569 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
570 && mybeacon) {
571 ath_rx_ps_beacon(sc, skb);
572 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
573 (ieee80211_is_data(hdr->frame_control) ||
574 ieee80211_is_action(hdr->frame_control)) &&
575 is_multicast_ether_addr(hdr->addr1) &&
576 !ieee80211_has_moredata(hdr->frame_control)) {
577 /*
578 * No more broadcast/multicast frames to be received at this
579 * point.
580 */
581 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
582 ath_dbg(common, PS,
583 "All PS CAB frames received, back to sleep\n");
584 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
585 !is_multicast_ether_addr(hdr->addr1) &&
586 !ieee80211_has_morefrags(hdr->frame_control)) {
587 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
588 ath_dbg(common, PS,
589 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
590 sc->ps_flags & (PS_WAIT_FOR_BEACON |
591 PS_WAIT_FOR_CAB |
592 PS_WAIT_FOR_PSPOLL_DATA |
593 PS_WAIT_FOR_TX_ACK));
594 }
595 }
596
ath_edma_get_buffers(struct ath_softc * sc,enum ath9k_rx_qtype qtype,struct ath_rx_status * rs,struct ath_buf ** dest)597 static bool ath_edma_get_buffers(struct ath_softc *sc,
598 enum ath9k_rx_qtype qtype,
599 struct ath_rx_status *rs,
600 struct ath_buf **dest)
601 {
602 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
603 struct ath_hw *ah = sc->sc_ah;
604 struct ath_common *common = ath9k_hw_common(ah);
605 struct sk_buff *skb;
606 struct ath_buf *bf;
607 int ret;
608
609 skb = skb_peek(&rx_edma->rx_fifo);
610 if (!skb)
611 return false;
612
613 bf = SKB_CB_ATHBUF(skb);
614 BUG_ON(!bf);
615
616 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
617 common->rx_bufsize, DMA_FROM_DEVICE);
618
619 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
620 if (ret == -EINPROGRESS) {
621 /*let device gain the buffer again*/
622 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
623 common->rx_bufsize, DMA_FROM_DEVICE);
624 return false;
625 }
626
627 __skb_unlink(skb, &rx_edma->rx_fifo);
628 if (ret == -EINVAL) {
629 /* corrupt descriptor, skip this one and the following one */
630 list_add_tail(&bf->list, &sc->rx.rxbuf);
631 ath_rx_edma_buf_link(sc, qtype);
632
633 skb = skb_peek(&rx_edma->rx_fifo);
634 if (skb) {
635 bf = SKB_CB_ATHBUF(skb);
636 BUG_ON(!bf);
637
638 __skb_unlink(skb, &rx_edma->rx_fifo);
639 list_add_tail(&bf->list, &sc->rx.rxbuf);
640 ath_rx_edma_buf_link(sc, qtype);
641 }
642
643 bf = NULL;
644 }
645
646 *dest = bf;
647 return true;
648 }
649
ath_edma_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs,enum ath9k_rx_qtype qtype)650 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
651 struct ath_rx_status *rs,
652 enum ath9k_rx_qtype qtype)
653 {
654 struct ath_buf *bf = NULL;
655
656 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
657 if (!bf)
658 continue;
659
660 return bf;
661 }
662 return NULL;
663 }
664
ath_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs)665 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
666 struct ath_rx_status *rs)
667 {
668 struct ath_hw *ah = sc->sc_ah;
669 struct ath_common *common = ath9k_hw_common(ah);
670 struct ath_desc *ds;
671 struct ath_buf *bf;
672 int ret;
673
674 if (list_empty(&sc->rx.rxbuf)) {
675 sc->rx.rxlink = NULL;
676 return NULL;
677 }
678
679 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
680 ds = bf->bf_desc;
681
682 /*
683 * Must provide the virtual address of the current
684 * descriptor, the physical address, and the virtual
685 * address of the next descriptor in the h/w chain.
686 * This allows the HAL to look ahead to see if the
687 * hardware is done with a descriptor by checking the
688 * done bit in the following descriptor and the address
689 * of the current descriptor the DMA engine is working
690 * on. All this is necessary because of our use of
691 * a self-linked list to avoid rx overruns.
692 */
693 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
694 if (ret == -EINPROGRESS) {
695 struct ath_rx_status trs;
696 struct ath_buf *tbf;
697 struct ath_desc *tds;
698
699 memset(&trs, 0, sizeof(trs));
700 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
701 sc->rx.rxlink = NULL;
702 return NULL;
703 }
704
705 tbf = list_entry(bf->list.next, struct ath_buf, list);
706
707 /*
708 * On some hardware the descriptor status words could
709 * get corrupted, including the done bit. Because of
710 * this, check if the next descriptor's done bit is
711 * set or not.
712 *
713 * If the next descriptor's done bit is set, the current
714 * descriptor has been corrupted. Force s/w to discard
715 * this descriptor and continue...
716 */
717
718 tds = tbf->bf_desc;
719 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
720 if (ret == -EINPROGRESS)
721 return NULL;
722
723 /*
724 * mark descriptor as zero-length and set the 'more'
725 * flag to ensure that both buffers get discarded
726 */
727 rs->rs_datalen = 0;
728 rs->rs_more = true;
729 }
730
731 list_del(&bf->list);
732 if (!bf->bf_mpdu)
733 return bf;
734
735 /*
736 * Synchronize the DMA transfer with CPU before
737 * 1. accessing the frame
738 * 2. requeueing the same buffer to h/w
739 */
740 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
741 common->rx_bufsize,
742 DMA_FROM_DEVICE);
743
744 return bf;
745 }
746
747 /* Assumes you've already done the endian to CPU conversion */
ath9k_rx_accept(struct ath_common * common,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * rxs,struct ath_rx_status * rx_stats,bool * decrypt_error)748 static bool ath9k_rx_accept(struct ath_common *common,
749 struct ieee80211_hdr *hdr,
750 struct ieee80211_rx_status *rxs,
751 struct ath_rx_status *rx_stats,
752 bool *decrypt_error)
753 {
754 struct ath_softc *sc = (struct ath_softc *) common->priv;
755 bool is_mc, is_valid_tkip, strip_mic, mic_error;
756 struct ath_hw *ah = common->ah;
757 __le16 fc;
758 u8 rx_status_len = ah->caps.rx_status_len;
759
760 fc = hdr->frame_control;
761
762 is_mc = !!is_multicast_ether_addr(hdr->addr1);
763 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
764 test_bit(rx_stats->rs_keyix, common->tkip_keymap);
765 strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
766 ieee80211_has_protected(fc) &&
767 !(rx_stats->rs_status &
768 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
769 ATH9K_RXERR_KEYMISS));
770
771 /*
772 * Key miss events are only relevant for pairwise keys where the
773 * descriptor does contain a valid key index. This has been observed
774 * mostly with CCMP encryption.
775 */
776 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
777 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
778 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
779
780 if (!rx_stats->rs_datalen) {
781 RX_STAT_INC(rx_len_err);
782 return false;
783 }
784
785 /*
786 * rs_status follows rs_datalen so if rs_datalen is too large
787 * we can take a hint that hardware corrupted it, so ignore
788 * those frames.
789 */
790 if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
791 RX_STAT_INC(rx_len_err);
792 return false;
793 }
794
795 /* Only use error bits from the last fragment */
796 if (rx_stats->rs_more)
797 return true;
798
799 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
800 !ieee80211_has_morefrags(fc) &&
801 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
802 (rx_stats->rs_status & ATH9K_RXERR_MIC);
803
804 /*
805 * The rx_stats->rs_status will not be set until the end of the
806 * chained descriptors so it can be ignored if rs_more is set. The
807 * rs_more will be false at the last element of the chained
808 * descriptors.
809 */
810 if (rx_stats->rs_status != 0) {
811 u8 status_mask;
812
813 if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
814 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
815 mic_error = false;
816 }
817 if (rx_stats->rs_status & ATH9K_RXERR_PHY)
818 return false;
819
820 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
821 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
822 *decrypt_error = true;
823 mic_error = false;
824 }
825
826 /*
827 * Reject error frames with the exception of
828 * decryption and MIC failures. For monitor mode,
829 * we also ignore the CRC error.
830 */
831 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
832 ATH9K_RXERR_KEYMISS;
833
834 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
835 status_mask |= ATH9K_RXERR_CRC;
836
837 if (rx_stats->rs_status & ~status_mask)
838 return false;
839 }
840
841 /*
842 * For unicast frames the MIC error bit can have false positives,
843 * so all MIC error reports need to be validated in software.
844 * False negatives are not common, so skip software verification
845 * if the hardware considers the MIC valid.
846 */
847 if (strip_mic)
848 rxs->flag |= RX_FLAG_MMIC_STRIPPED;
849 else if (is_mc && mic_error)
850 rxs->flag |= RX_FLAG_MMIC_ERROR;
851
852 return true;
853 }
854
ath9k_process_rate(struct ath_common * common,struct ieee80211_hw * hw,struct ath_rx_status * rx_stats,struct ieee80211_rx_status * rxs)855 static int ath9k_process_rate(struct ath_common *common,
856 struct ieee80211_hw *hw,
857 struct ath_rx_status *rx_stats,
858 struct ieee80211_rx_status *rxs)
859 {
860 struct ieee80211_supported_band *sband;
861 enum ieee80211_band band;
862 unsigned int i = 0;
863 struct ath_softc __maybe_unused *sc = common->priv;
864
865 band = hw->conf.chandef.chan->band;
866 sband = hw->wiphy->bands[band];
867
868 if (rx_stats->rs_rate & 0x80) {
869 /* HT rate */
870 rxs->flag |= RX_FLAG_HT;
871 if (rx_stats->rs_flags & ATH9K_RX_2040)
872 rxs->flag |= RX_FLAG_40MHZ;
873 if (rx_stats->rs_flags & ATH9K_RX_GI)
874 rxs->flag |= RX_FLAG_SHORT_GI;
875 rxs->rate_idx = rx_stats->rs_rate & 0x7f;
876 return 0;
877 }
878
879 for (i = 0; i < sband->n_bitrates; i++) {
880 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
881 rxs->rate_idx = i;
882 return 0;
883 }
884 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
885 rxs->flag |= RX_FLAG_SHORTPRE;
886 rxs->rate_idx = i;
887 return 0;
888 }
889 }
890
891 /*
892 * No valid hardware bitrate found -- we should not get here
893 * because hardware has already validated this frame as OK.
894 */
895 ath_dbg(common, ANY,
896 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
897 rx_stats->rs_rate);
898 RX_STAT_INC(rx_rate_err);
899 return -EINVAL;
900 }
901
ath9k_process_rssi(struct ath_common * common,struct ieee80211_hw * hw,struct ieee80211_hdr * hdr,struct ath_rx_status * rx_stats)902 static void ath9k_process_rssi(struct ath_common *common,
903 struct ieee80211_hw *hw,
904 struct ieee80211_hdr *hdr,
905 struct ath_rx_status *rx_stats)
906 {
907 struct ath_softc *sc = hw->priv;
908 struct ath_hw *ah = common->ah;
909 int last_rssi;
910 int rssi = rx_stats->rs_rssi;
911
912 if (!rx_stats->is_mybeacon ||
913 ((ah->opmode != NL80211_IFTYPE_STATION) &&
914 (ah->opmode != NL80211_IFTYPE_ADHOC)))
915 return;
916
917 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
918 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
919
920 last_rssi = sc->last_rssi;
921 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
922 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
923 if (rssi < 0)
924 rssi = 0;
925
926 /* Update Beacon RSSI, this is used by ANI. */
927 ah->stats.avgbrssi = rssi;
928 }
929
930 /*
931 * For Decrypt or Demic errors, we only mark packet status here and always push
932 * up the frame up to let mac80211 handle the actual error case, be it no
933 * decryption key or real decryption error. This let us keep statistics there.
934 */
ath9k_rx_skb_preprocess(struct ath_softc * sc,struct ieee80211_hdr * hdr,struct ath_rx_status * rx_stats,struct ieee80211_rx_status * rx_status,bool * decrypt_error)935 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
936 struct ieee80211_hdr *hdr,
937 struct ath_rx_status *rx_stats,
938 struct ieee80211_rx_status *rx_status,
939 bool *decrypt_error)
940 {
941 struct ieee80211_hw *hw = sc->hw;
942 struct ath_hw *ah = sc->sc_ah;
943 struct ath_common *common = ath9k_hw_common(ah);
944 bool discard_current = sc->rx.discard_next;
945
946 sc->rx.discard_next = rx_stats->rs_more;
947 if (discard_current)
948 return -EINVAL;
949
950 /*
951 * everything but the rate is checked here, the rate check is done
952 * separately to avoid doing two lookups for a rate for each frame.
953 */
954 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
955 return -EINVAL;
956
957 /* Only use status info from the last fragment */
958 if (rx_stats->rs_more)
959 return 0;
960
961 ath9k_process_rssi(common, hw, hdr, rx_stats);
962
963 if (ath9k_process_rate(common, hw, rx_stats, rx_status))
964 return -EINVAL;
965
966 rx_status->band = hw->conf.chandef.chan->band;
967 rx_status->freq = hw->conf.chandef.chan->center_freq;
968 rx_status->signal = ah->noise + rx_stats->rs_rssi;
969 rx_status->antenna = rx_stats->rs_antenna;
970 rx_status->flag |= RX_FLAG_MACTIME_END;
971 if (rx_stats->rs_moreaggr)
972 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
973
974 sc->rx.discard_next = false;
975 return 0;
976 }
977
ath9k_rx_skb_postprocess(struct ath_common * common,struct sk_buff * skb,struct ath_rx_status * rx_stats,struct ieee80211_rx_status * rxs,bool decrypt_error)978 static void ath9k_rx_skb_postprocess(struct ath_common *common,
979 struct sk_buff *skb,
980 struct ath_rx_status *rx_stats,
981 struct ieee80211_rx_status *rxs,
982 bool decrypt_error)
983 {
984 struct ath_hw *ah = common->ah;
985 struct ieee80211_hdr *hdr;
986 int hdrlen, padpos, padsize;
987 u8 keyix;
988 __le16 fc;
989
990 /* see if any padding is done by the hw and remove it */
991 hdr = (struct ieee80211_hdr *) skb->data;
992 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
993 fc = hdr->frame_control;
994 padpos = ieee80211_hdrlen(fc);
995
996 /* The MAC header is padded to have 32-bit boundary if the
997 * packet payload is non-zero. The general calculation for
998 * padsize would take into account odd header lengths:
999 * padsize = (4 - padpos % 4) % 4; However, since only
1000 * even-length headers are used, padding can only be 0 or 2
1001 * bytes and we can optimize this a bit. In addition, we must
1002 * not try to remove padding from short control frames that do
1003 * not have payload. */
1004 padsize = padpos & 3;
1005 if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1006 memmove(skb->data + padsize, skb->data, padpos);
1007 skb_pull(skb, padsize);
1008 }
1009
1010 keyix = rx_stats->rs_keyix;
1011
1012 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1013 ieee80211_has_protected(fc)) {
1014 rxs->flag |= RX_FLAG_DECRYPTED;
1015 } else if (ieee80211_has_protected(fc)
1016 && !decrypt_error && skb->len >= hdrlen + 4) {
1017 keyix = skb->data[hdrlen + 3] >> 6;
1018
1019 if (test_bit(keyix, common->keymap))
1020 rxs->flag |= RX_FLAG_DECRYPTED;
1021 }
1022 if (ah->sw_mgmt_crypto &&
1023 (rxs->flag & RX_FLAG_DECRYPTED) &&
1024 ieee80211_is_mgmt(fc))
1025 /* Use software decrypt for management frames. */
1026 rxs->flag &= ~RX_FLAG_DECRYPTED;
1027 }
1028
1029 #ifdef CONFIG_ATH9K_DEBUGFS
fix_rssi_inv_only(u8 rssi_val)1030 static s8 fix_rssi_inv_only(u8 rssi_val)
1031 {
1032 if (rssi_val == 128)
1033 rssi_val = 0;
1034 return (s8) rssi_val;
1035 }
1036 #endif
1037
1038 /* returns 1 if this was a spectral frame, even if not handled. */
ath_process_fft(struct ath_softc * sc,struct ieee80211_hdr * hdr,struct ath_rx_status * rs,u64 tsf)1039 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
1040 struct ath_rx_status *rs, u64 tsf)
1041 {
1042 #ifdef CONFIG_ATH9K_DEBUGFS
1043 struct ath_hw *ah = sc->sc_ah;
1044 u8 bins[SPECTRAL_HT20_NUM_BINS];
1045 u8 *vdata = (u8 *)hdr;
1046 struct fft_sample_ht20 fft_sample;
1047 struct ath_radar_info *radar_info;
1048 struct ath_ht20_mag_info *mag_info;
1049 int len = rs->rs_datalen;
1050 int dc_pos;
1051 u16 length, max_magnitude;
1052
1053 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
1054 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
1055 * yet, but this is supposed to be possible as well.
1056 */
1057 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
1058 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
1059 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
1060 return 0;
1061
1062 /* check if spectral scan bit is set. This does not have to be checked
1063 * if received through a SPECTRAL phy error, but shouldn't hurt.
1064 */
1065 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
1066 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
1067 return 0;
1068
1069 /* Variation in the data length is possible and will be fixed later.
1070 * Note that we only support HT20 for now.
1071 *
1072 * TODO: add HT20_40 support as well.
1073 */
1074 if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
1075 (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
1076 return 1;
1077
1078 fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
1079 length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
1080 fft_sample.tlv.length = __cpu_to_be16(length);
1081
1082 fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq);
1083 fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1084 fft_sample.noise = ah->noise;
1085
1086 switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
1087 case 0:
1088 /* length correct, nothing to do. */
1089 memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
1090 break;
1091 case -1:
1092 /* first byte missing, duplicate it. */
1093 memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
1094 bins[0] = vdata[0];
1095 break;
1096 case 2:
1097 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */
1098 memcpy(bins, vdata, 30);
1099 bins[30] = vdata[31];
1100 memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
1101 break;
1102 case 1:
1103 /* MAC added 2 extra bytes AND first byte is missing. */
1104 bins[0] = vdata[0];
1105 memcpy(&bins[0], vdata, 30);
1106 bins[31] = vdata[31];
1107 memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
1108 break;
1109 default:
1110 return 1;
1111 }
1112
1113 /* DC value (value in the middle) is the blind spot of the spectral
1114 * sample and invalid, interpolate it.
1115 */
1116 dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
1117 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
1118
1119 /* mag data is at the end of the frame, in front of radar_info */
1120 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
1121
1122 /* copy raw bins without scaling them */
1123 memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS);
1124 fft_sample.max_exp = mag_info->max_exp & 0xf;
1125
1126 max_magnitude = spectral_max_magnitude(mag_info->all_bins);
1127 fft_sample.max_magnitude = __cpu_to_be16(max_magnitude);
1128 fft_sample.max_index = spectral_max_index(mag_info->all_bins);
1129 fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
1130 fft_sample.tsf = __cpu_to_be64(tsf);
1131
1132 ath_debug_send_fft_sample(sc, &fft_sample.tlv);
1133 return 1;
1134 #else
1135 return 0;
1136 #endif
1137 }
1138
ath9k_apply_ampdu_details(struct ath_softc * sc,struct ath_rx_status * rs,struct ieee80211_rx_status * rxs)1139 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
1140 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
1141 {
1142 if (rs->rs_isaggr) {
1143 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1144
1145 rxs->ampdu_reference = sc->rx.ampdu_ref;
1146
1147 if (!rs->rs_moreaggr) {
1148 rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1149 sc->rx.ampdu_ref++;
1150 }
1151
1152 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1153 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1154 }
1155 }
1156
ath_rx_tasklet(struct ath_softc * sc,int flush,bool hp)1157 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1158 {
1159 struct ath_buf *bf;
1160 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1161 struct ieee80211_rx_status *rxs;
1162 struct ath_hw *ah = sc->sc_ah;
1163 struct ath_common *common = ath9k_hw_common(ah);
1164 struct ieee80211_hw *hw = sc->hw;
1165 struct ieee80211_hdr *hdr;
1166 int retval;
1167 struct ath_rx_status rs;
1168 enum ath9k_rx_qtype qtype;
1169 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1170 int dma_type;
1171 u8 rx_status_len = ah->caps.rx_status_len;
1172 u64 tsf = 0;
1173 u32 tsf_lower = 0;
1174 unsigned long flags;
1175 dma_addr_t new_buf_addr;
1176
1177 if (edma)
1178 dma_type = DMA_BIDIRECTIONAL;
1179 else
1180 dma_type = DMA_FROM_DEVICE;
1181
1182 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1183
1184 tsf = ath9k_hw_gettsf64(ah);
1185 tsf_lower = tsf & 0xffffffff;
1186
1187 do {
1188 bool decrypt_error = false;
1189
1190 memset(&rs, 0, sizeof(rs));
1191 if (edma)
1192 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1193 else
1194 bf = ath_get_next_rx_buf(sc, &rs);
1195
1196 if (!bf)
1197 break;
1198
1199 skb = bf->bf_mpdu;
1200 if (!skb)
1201 continue;
1202
1203 /*
1204 * Take frame header from the first fragment and RX status from
1205 * the last one.
1206 */
1207 if (sc->rx.frag)
1208 hdr_skb = sc->rx.frag;
1209 else
1210 hdr_skb = skb;
1211
1212 hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1213 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1214 if (ieee80211_is_beacon(hdr->frame_control)) {
1215 RX_STAT_INC(rx_beacons);
1216 if (!is_zero_ether_addr(common->curbssid) &&
1217 ether_addr_equal(hdr->addr3, common->curbssid))
1218 rs.is_mybeacon = true;
1219 else
1220 rs.is_mybeacon = false;
1221 }
1222 else
1223 rs.is_mybeacon = false;
1224
1225 if (ieee80211_is_data_present(hdr->frame_control) &&
1226 !ieee80211_is_qos_nullfunc(hdr->frame_control))
1227 sc->rx.num_pkts++;
1228
1229 ath_debug_stat_rx(sc, &rs);
1230
1231 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1232
1233 rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1234 if (rs.rs_tstamp > tsf_lower &&
1235 unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1236 rxs->mactime -= 0x100000000ULL;
1237
1238 if (rs.rs_tstamp < tsf_lower &&
1239 unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1240 rxs->mactime += 0x100000000ULL;
1241
1242 if (rs.rs_phyerr == ATH9K_PHYERR_RADAR)
1243 ath9k_dfs_process_phyerr(sc, hdr, &rs, rxs->mactime);
1244
1245 if (rs.rs_status & ATH9K_RXERR_PHY) {
1246 if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) {
1247 RX_STAT_INC(rx_spectral);
1248 goto requeue_drop_frag;
1249 }
1250 }
1251
1252 retval = ath9k_rx_skb_preprocess(sc, hdr, &rs, rxs,
1253 &decrypt_error);
1254 if (retval)
1255 goto requeue_drop_frag;
1256
1257 if (rs.is_mybeacon) {
1258 sc->hw_busy_count = 0;
1259 ath_start_rx_poll(sc, 3);
1260 }
1261 /* Ensure we always have an skb to requeue once we are done
1262 * processing the current buffer's skb */
1263 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1264
1265 /* If there is no memory we ignore the current RX'd frame,
1266 * tell hardware it can give us a new frame using the old
1267 * skb and put it at the tail of the sc->rx.rxbuf list for
1268 * processing. */
1269 if (!requeue_skb) {
1270 RX_STAT_INC(rx_oom_err);
1271 goto requeue_drop_frag;
1272 }
1273
1274 /* We will now give hardware our shiny new allocated skb */
1275 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1276 common->rx_bufsize, dma_type);
1277 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1278 dev_kfree_skb_any(requeue_skb);
1279 goto requeue_drop_frag;
1280 }
1281
1282 /* Unmap the frame */
1283 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1284 common->rx_bufsize, dma_type);
1285
1286 bf->bf_mpdu = requeue_skb;
1287 bf->bf_buf_addr = new_buf_addr;
1288
1289 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1290 if (ah->caps.rx_status_len)
1291 skb_pull(skb, ah->caps.rx_status_len);
1292
1293 if (!rs.rs_more)
1294 ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1295 rxs, decrypt_error);
1296
1297 if (rs.rs_more) {
1298 RX_STAT_INC(rx_frags);
1299 /*
1300 * rs_more indicates chained descriptors which can be
1301 * used to link buffers together for a sort of
1302 * scatter-gather operation.
1303 */
1304 if (sc->rx.frag) {
1305 /* too many fragments - cannot handle frame */
1306 dev_kfree_skb_any(sc->rx.frag);
1307 dev_kfree_skb_any(skb);
1308 RX_STAT_INC(rx_too_many_frags_err);
1309 skb = NULL;
1310 }
1311 sc->rx.frag = skb;
1312 goto requeue;
1313 }
1314 if (rs.rs_status & ATH9K_RXERR_CORRUPT_DESC)
1315 goto requeue_drop_frag;
1316
1317 if (sc->rx.frag) {
1318 int space = skb->len - skb_tailroom(hdr_skb);
1319
1320 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1321 dev_kfree_skb(skb);
1322 RX_STAT_INC(rx_oom_err);
1323 goto requeue_drop_frag;
1324 }
1325
1326 sc->rx.frag = NULL;
1327
1328 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1329 skb->len);
1330 dev_kfree_skb_any(skb);
1331 skb = hdr_skb;
1332 }
1333
1334
1335 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1336
1337 /*
1338 * change the default rx antenna if rx diversity
1339 * chooses the other antenna 3 times in a row.
1340 */
1341 if (sc->rx.defant != rs.rs_antenna) {
1342 if (++sc->rx.rxotherant >= 3)
1343 ath_setdefantenna(sc, rs.rs_antenna);
1344 } else {
1345 sc->rx.rxotherant = 0;
1346 }
1347
1348 }
1349
1350 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1351 skb_trim(skb, skb->len - 8);
1352
1353 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1354 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1355 PS_WAIT_FOR_CAB |
1356 PS_WAIT_FOR_PSPOLL_DATA)) ||
1357 ath9k_check_auto_sleep(sc))
1358 ath_rx_ps(sc, skb, rs.is_mybeacon);
1359 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1360
1361 if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1362 ath_ant_comb_scan(sc, &rs);
1363
1364 ath9k_apply_ampdu_details(sc, &rs, rxs);
1365
1366 ieee80211_rx(hw, skb);
1367
1368 requeue_drop_frag:
1369 if (sc->rx.frag) {
1370 dev_kfree_skb_any(sc->rx.frag);
1371 sc->rx.frag = NULL;
1372 }
1373 requeue:
1374 list_add_tail(&bf->list, &sc->rx.rxbuf);
1375 if (flush)
1376 continue;
1377
1378 if (edma) {
1379 ath_rx_edma_buf_link(sc, qtype);
1380 } else {
1381 ath_rx_buf_link(sc, bf);
1382 ath9k_hw_rxena(ah);
1383 }
1384 } while (1);
1385
1386 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1387 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1388 ath9k_hw_set_interrupts(ah);
1389 }
1390
1391 return 0;
1392 }
1393