1 /*
2 * Atheros CARL9170 driver
3 *
4 * 802.11 xmit & status routines
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
48
__carl9170_get_queue(struct ar9170 * ar,unsigned int queue)49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50 unsigned int queue)
51 {
52 if (unlikely(modparam_noht)) {
53 return queue;
54 } else {
55 /*
56 * This is just another workaround, until
57 * someone figures out how to get QoS and
58 * AMPDU to play nicely together.
59 */
60
61 return 2; /* AC_BE */
62 }
63 }
64
carl9170_get_queue(struct ar9170 * ar,struct sk_buff * skb)65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66 struct sk_buff *skb)
67 {
68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
69 }
70
is_mem_full(struct ar9170 * ar)71 static bool is_mem_full(struct ar9170 *ar)
72 {
73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
74 atomic_read(&ar->mem_free_blocks));
75 }
76
carl9170_tx_accounting(struct ar9170 * ar,struct sk_buff * skb)77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
78 {
79 int queue, i;
80 bool mem_full;
81
82 atomic_inc(&ar->tx_total_queued);
83
84 queue = skb_get_queue_mapping(skb);
85 spin_lock_bh(&ar->tx_stats_lock);
86
87 /*
88 * The driver has to accept the frame, regardless if the queue is
89 * full to the brim, or not. We have to do the queuing internally,
90 * since mac80211 assumes that a driver which can operate with
91 * aggregated frames does not reject frames for this reason.
92 */
93 ar->tx_stats[queue].len++;
94 ar->tx_stats[queue].count++;
95
96 mem_full = is_mem_full(ar);
97 for (i = 0; i < ar->hw->queues; i++) {
98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99 ieee80211_stop_queue(ar->hw, i);
100 ar->queue_stop_timeout[i] = jiffies;
101 }
102 }
103
104 spin_unlock_bh(&ar->tx_stats_lock);
105 }
106
107 /* needs rcu_read_lock */
__carl9170_get_tx_sta(struct ar9170 * ar,struct sk_buff * skb)108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
109 struct sk_buff *skb)
110 {
111 struct _carl9170_tx_superframe *super = (void *) skb->data;
112 struct ieee80211_hdr *hdr = (void *) super->frame_data;
113 struct ieee80211_vif *vif;
114 unsigned int vif_id;
115
116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
117 CARL9170_TX_SUPER_MISC_VIF_ID_S;
118
119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
120 return NULL;
121
122 vif = rcu_dereference(ar->vif_priv[vif_id].vif);
123 if (unlikely(!vif))
124 return NULL;
125
126 /*
127 * Normally we should use wrappers like ieee80211_get_DA to get
128 * the correct peer ieee80211_sta.
129 *
130 * But there is a problem with indirect traffic (broadcasts, or
131 * data which is designated for other stations) in station mode.
132 * The frame will be directed to the AP for distribution and not
133 * to the actual destination.
134 */
135
136 return ieee80211_find_sta(vif, hdr->addr1);
137 }
138
carl9170_tx_ps_unblock(struct ar9170 * ar,struct sk_buff * skb)139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
140 {
141 struct ieee80211_sta *sta;
142 struct carl9170_sta_info *sta_info;
143
144 rcu_read_lock();
145 sta = __carl9170_get_tx_sta(ar, skb);
146 if (unlikely(!sta))
147 goto out_rcu;
148
149 sta_info = (struct carl9170_sta_info *) sta->drv_priv;
150 if (atomic_dec_return(&sta_info->pending_frames) == 0)
151 ieee80211_sta_block_awake(ar->hw, sta, false);
152
153 out_rcu:
154 rcu_read_unlock();
155 }
156
carl9170_tx_accounting_free(struct ar9170 * ar,struct sk_buff * skb)157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
158 {
159 int queue;
160
161 queue = skb_get_queue_mapping(skb);
162
163 spin_lock_bh(&ar->tx_stats_lock);
164
165 ar->tx_stats[queue].len--;
166
167 if (!is_mem_full(ar)) {
168 unsigned int i;
169 for (i = 0; i < ar->hw->queues; i++) {
170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
171 continue;
172
173 if (ieee80211_queue_stopped(ar->hw, i)) {
174 unsigned long tmp;
175
176 tmp = jiffies - ar->queue_stop_timeout[i];
177 if (tmp > ar->max_queue_stop_timeout[i])
178 ar->max_queue_stop_timeout[i] = tmp;
179 }
180
181 ieee80211_wake_queue(ar->hw, i);
182 }
183 }
184
185 spin_unlock_bh(&ar->tx_stats_lock);
186
187 if (atomic_dec_and_test(&ar->tx_total_queued))
188 complete(&ar->tx_flush);
189 }
190
carl9170_alloc_dev_space(struct ar9170 * ar,struct sk_buff * skb)191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
192 {
193 struct _carl9170_tx_superframe *super = (void *) skb->data;
194 unsigned int chunks;
195 int cookie = -1;
196
197 atomic_inc(&ar->mem_allocs);
198
199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
201 atomic_add(chunks, &ar->mem_free_blocks);
202 return -ENOSPC;
203 }
204
205 spin_lock_bh(&ar->mem_lock);
206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
207 spin_unlock_bh(&ar->mem_lock);
208
209 if (unlikely(cookie < 0)) {
210 atomic_add(chunks, &ar->mem_free_blocks);
211 return -ENOSPC;
212 }
213
214 super = (void *) skb->data;
215
216 /*
217 * Cookie #0 serves two special purposes:
218 * 1. The firmware might use it generate BlockACK frames
219 * in responds of an incoming BlockAckReqs.
220 *
221 * 2. Prevent double-free bugs.
222 */
223 super->s.cookie = (u8) cookie + 1;
224 return 0;
225 }
226
carl9170_release_dev_space(struct ar9170 * ar,struct sk_buff * skb)227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
228 {
229 struct _carl9170_tx_superframe *super = (void *) skb->data;
230 int cookie;
231
232 /* make a local copy of the cookie */
233 cookie = super->s.cookie;
234 /* invalidate cookie */
235 super->s.cookie = 0;
236
237 /*
238 * Do a out-of-bounds check on the cookie:
239 *
240 * * cookie "0" is reserved and won't be assigned to any
241 * out-going frame. Internally however, it is used to
242 * mark no longer/un-accounted frames and serves as a
243 * cheap way of preventing frames from being freed
244 * twice by _accident_. NB: There is a tiny race...
245 *
246 * * obviously, cookie number is limited by the amount
247 * of available memory blocks, so the number can
248 * never execeed the mem_blocks count.
249 */
250 if (unlikely(WARN_ON_ONCE(cookie == 0) ||
251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
252 return;
253
254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
255 &ar->mem_free_blocks);
256
257 spin_lock_bh(&ar->mem_lock);
258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
259 spin_unlock_bh(&ar->mem_lock);
260 }
261
262 /* Called from any context */
carl9170_tx_release(struct kref * ref)263 static void carl9170_tx_release(struct kref *ref)
264 {
265 struct ar9170 *ar;
266 struct carl9170_tx_info *arinfo;
267 struct ieee80211_tx_info *txinfo;
268 struct sk_buff *skb;
269
270 arinfo = container_of(ref, struct carl9170_tx_info, ref);
271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
272 rate_driver_data);
273 skb = container_of((void *) txinfo, struct sk_buff, cb);
274
275 ar = arinfo->ar;
276 if (WARN_ON_ONCE(!ar))
277 return;
278
279 BUILD_BUG_ON(
280 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
281
282 memset(&txinfo->status.ack_signal, 0,
283 sizeof(struct ieee80211_tx_info) -
284 offsetof(struct ieee80211_tx_info, status.ack_signal));
285
286 if (atomic_read(&ar->tx_total_queued))
287 ar->tx_schedule = true;
288
289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 if (!atomic_read(&ar->tx_ampdu_upload))
291 ar->tx_ampdu_schedule = true;
292
293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 struct _carl9170_tx_superframe *super;
295
296 super = (void *)skb->data;
297 txinfo->status.ampdu_len = super->s.rix;
298 txinfo->status.ampdu_ack_len = super->s.cnt;
299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 /*
302 * drop redundant tx_status reports:
303 *
304 * 1. ampdu_ack_len of the final tx_status does
305 * include the feedback of this particular frame.
306 *
307 * 2. tx_status_irqsafe only queues up to 128
308 * tx feedback reports and discards the rest.
309 *
310 * 3. minstrel_ht is picky, it only accepts
311 * reports of frames with the TX_STATUS_AMPDU flag.
312 *
313 * 4. mac80211 is not particularly interested in
314 * feedback either [CTL_REQ_TX_STATUS not set]
315 */
316
317 ieee80211_free_txskb(ar->hw, skb);
318 return;
319 } else {
320 /*
321 * Either the frame transmission has failed or
322 * mac80211 requested tx status.
323 */
324 }
325 }
326
327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 ieee80211_tx_status_irqsafe(ar->hw, skb);
329 }
330
carl9170_tx_get_skb(struct sk_buff * skb)331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333 struct carl9170_tx_info *arinfo = (void *)
334 (IEEE80211_SKB_CB(skb))->rate_driver_data;
335 kref_get(&arinfo->ref);
336 }
337
carl9170_tx_put_skb(struct sk_buff * skb)338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340 struct carl9170_tx_info *arinfo = (void *)
341 (IEEE80211_SKB_CB(skb))->rate_driver_data;
342
343 return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
carl9170_tx_shift_bm(struct ar9170 * ar,struct carl9170_sta_tid * tid_info,u16 seq)347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350 u16 off;
351
352 off = SEQ_DIFF(seq, tid_info->bsn);
353
354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 return;
356
357 /*
358 * Sanity check. For each MPDU we set the bit in bitmap and
359 * clear it once we received the tx_status.
360 * But if the bit is already cleared then we've been bitten
361 * by a bug.
362 */
363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364
365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 return;
368
369 if (!bitmap_empty(tid_info->bitmap, off))
370 off = find_first_bit(tid_info->bitmap, off);
371
372 tid_info->bsn += off;
373 tid_info->bsn &= 0x0fff;
374
375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 off, CARL9170_BAW_BITS);
377 }
378
carl9170_tx_status_process_ampdu(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382 struct _carl9170_tx_superframe *super = (void *) skb->data;
383 struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 struct ieee80211_sta *sta;
385 struct carl9170_sta_info *sta_info;
386 struct carl9170_sta_tid *tid_info;
387 u8 tid;
388
389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 txinfo->flags & IEEE80211_TX_CTL_INJECTED)
391 return;
392
393 rcu_read_lock();
394 sta = __carl9170_get_tx_sta(ar, skb);
395 if (unlikely(!sta))
396 goto out_rcu;
397
398 tid = get_tid_h(hdr);
399
400 sta_info = (void *) sta->drv_priv;
401 tid_info = rcu_dereference(sta_info->agg[tid]);
402 if (!tid_info)
403 goto out_rcu;
404
405 spin_lock_bh(&tid_info->lock);
406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
408
409 if (sta_info->stats[tid].clear) {
410 sta_info->stats[tid].clear = false;
411 sta_info->stats[tid].req = false;
412 sta_info->stats[tid].ampdu_len = 0;
413 sta_info->stats[tid].ampdu_ack_len = 0;
414 }
415
416 sta_info->stats[tid].ampdu_len++;
417 if (txinfo->status.rates[0].count == 1)
418 sta_info->stats[tid].ampdu_ack_len++;
419
420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
421 sta_info->stats[tid].req = true;
422
423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
424 super->s.rix = sta_info->stats[tid].ampdu_len;
425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
427 if (sta_info->stats[tid].req)
428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
429
430 sta_info->stats[tid].clear = true;
431 }
432 spin_unlock_bh(&tid_info->lock);
433
434 out_rcu:
435 rcu_read_unlock();
436 }
437
carl9170_tx_bar_status(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * tx_info)438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
439 struct ieee80211_tx_info *tx_info)
440 {
441 struct _carl9170_tx_superframe *super = (void *) skb->data;
442 struct ieee80211_bar *bar = (void *) super->frame_data;
443
444 /*
445 * Unlike all other frames, the status report for BARs does
446 * not directly come from the hardware as it is incapable of
447 * matching a BA to a previously send BAR.
448 * Instead the RX-path will scan for incoming BAs and set the
449 * IEEE80211_TX_STAT_ACK if it sees one that was likely
450 * caused by a BAR from us.
451 */
452
453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
455 struct carl9170_bar_list_entry *entry;
456 int queue = skb_get_queue_mapping(skb);
457
458 rcu_read_lock();
459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
460 if (entry->skb == skb) {
461 spin_lock_bh(&ar->bar_list_lock[queue]);
462 list_del_rcu(&entry->list);
463 spin_unlock_bh(&ar->bar_list_lock[queue]);
464 kfree_rcu(entry, head);
465 goto out;
466 }
467 }
468
469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
470 queue, bar->ra, bar->ta, bar->control,
471 bar->start_seq_num);
472 out:
473 rcu_read_unlock();
474 }
475 }
476
carl9170_tx_status(struct ar9170 * ar,struct sk_buff * skb,const bool success)477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
478 const bool success)
479 {
480 struct ieee80211_tx_info *txinfo;
481
482 carl9170_tx_accounting_free(ar, skb);
483
484 txinfo = IEEE80211_SKB_CB(skb);
485
486 carl9170_tx_bar_status(ar, skb, txinfo);
487
488 if (success)
489 txinfo->flags |= IEEE80211_TX_STAT_ACK;
490 else
491 ar->tx_ack_failures++;
492
493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
494 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
495
496 carl9170_tx_ps_unblock(ar, skb);
497 carl9170_tx_put_skb(skb);
498 }
499
500 /* This function may be called form any context */
carl9170_tx_callback(struct ar9170 * ar,struct sk_buff * skb)501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
502 {
503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
504
505 atomic_dec(&ar->tx_total_pending);
506
507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
508 atomic_dec(&ar->tx_ampdu_upload);
509
510 if (carl9170_tx_put_skb(skb))
511 tasklet_hi_schedule(&ar->usb_tasklet);
512 }
513
carl9170_get_queued_skb(struct ar9170 * ar,u8 cookie,struct sk_buff_head * queue)514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
515 struct sk_buff_head *queue)
516 {
517 struct sk_buff *skb;
518
519 spin_lock_bh(&queue->lock);
520 skb_queue_walk(queue, skb) {
521 struct _carl9170_tx_superframe *txc = (void *) skb->data;
522
523 if (txc->s.cookie != cookie)
524 continue;
525
526 __skb_unlink(skb, queue);
527 spin_unlock_bh(&queue->lock);
528
529 carl9170_release_dev_space(ar, skb);
530 return skb;
531 }
532 spin_unlock_bh(&queue->lock);
533
534 return NULL;
535 }
536
carl9170_tx_fill_rateinfo(struct ar9170 * ar,unsigned int rix,unsigned int tries,struct ieee80211_tx_info * txinfo)537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
538 unsigned int tries, struct ieee80211_tx_info *txinfo)
539 {
540 unsigned int i;
541
542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
543 if (txinfo->status.rates[i].idx < 0)
544 break;
545
546 if (i == rix) {
547 txinfo->status.rates[i].count = tries;
548 i++;
549 break;
550 }
551 }
552
553 for (; i < IEEE80211_TX_MAX_RATES; i++) {
554 txinfo->status.rates[i].idx = -1;
555 txinfo->status.rates[i].count = 0;
556 }
557 }
558
carl9170_check_queue_stop_timeout(struct ar9170 * ar)559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
560 {
561 int i;
562 struct sk_buff *skb;
563 struct ieee80211_tx_info *txinfo;
564 struct carl9170_tx_info *arinfo;
565 bool restart = false;
566
567 for (i = 0; i < ar->hw->queues; i++) {
568 spin_lock_bh(&ar->tx_status[i].lock);
569
570 skb = skb_peek(&ar->tx_status[i]);
571
572 if (!skb)
573 goto next;
574
575 txinfo = IEEE80211_SKB_CB(skb);
576 arinfo = (void *) txinfo->rate_driver_data;
577
578 if (time_is_before_jiffies(arinfo->timeout +
579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
580 restart = true;
581
582 next:
583 spin_unlock_bh(&ar->tx_status[i].lock);
584 }
585
586 if (restart) {
587 /*
588 * At least one queue has been stuck for long enough.
589 * Give the device a kick and hope it gets back to
590 * work.
591 *
592 * possible reasons may include:
593 * - frames got lost/corrupted (bad connection to the device)
594 * - stalled rx processing/usb controller hiccups
595 * - firmware errors/bugs
596 * - every bug you can think of.
597 * - all bugs you can't...
598 * - ...
599 */
600 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
601 }
602 }
603
carl9170_tx_ampdu_timeout(struct ar9170 * ar)604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
605 {
606 struct carl9170_sta_tid *iter;
607 struct sk_buff *skb;
608 struct ieee80211_tx_info *txinfo;
609 struct carl9170_tx_info *arinfo;
610 struct ieee80211_sta *sta;
611
612 rcu_read_lock();
613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
614 if (iter->state < CARL9170_TID_STATE_IDLE)
615 continue;
616
617 spin_lock_bh(&iter->lock);
618 skb = skb_peek(&iter->queue);
619 if (!skb)
620 goto unlock;
621
622 txinfo = IEEE80211_SKB_CB(skb);
623 arinfo = (void *)txinfo->rate_driver_data;
624 if (time_is_after_jiffies(arinfo->timeout +
625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
626 goto unlock;
627
628 sta = __carl9170_get_tx_sta(ar, skb);
629 if (WARN_ON(!sta))
630 goto unlock;
631
632 ieee80211_stop_tx_ba_session(sta, iter->tid);
633 unlock:
634 spin_unlock_bh(&iter->lock);
635
636 }
637 rcu_read_unlock();
638 }
639
carl9170_tx_janitor(struct work_struct * work)640 void carl9170_tx_janitor(struct work_struct *work)
641 {
642 struct ar9170 *ar = container_of(work, struct ar9170,
643 tx_janitor.work);
644 if (!IS_STARTED(ar))
645 return;
646
647 ar->tx_janitor_last_run = jiffies;
648
649 carl9170_check_queue_stop_timeout(ar);
650 carl9170_tx_ampdu_timeout(ar);
651
652 if (!atomic_read(&ar->tx_total_queued))
653 return;
654
655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
656 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
657 }
658
__carl9170_tx_process_status(struct ar9170 * ar,const uint8_t cookie,const uint8_t info)659 static void __carl9170_tx_process_status(struct ar9170 *ar,
660 const uint8_t cookie, const uint8_t info)
661 {
662 struct sk_buff *skb;
663 struct ieee80211_tx_info *txinfo;
664 unsigned int r, t, q;
665 bool success = true;
666
667 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
668
669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
670 if (!skb) {
671 /*
672 * We have lost the race to another thread.
673 */
674
675 return ;
676 }
677
678 txinfo = IEEE80211_SKB_CB(skb);
679
680 if (!(info & CARL9170_TX_STATUS_SUCCESS))
681 success = false;
682
683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
685
686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
687 carl9170_tx_status(ar, skb, success);
688 }
689
carl9170_tx_process_status(struct ar9170 * ar,const struct carl9170_rsp * cmd)690 void carl9170_tx_process_status(struct ar9170 *ar,
691 const struct carl9170_rsp *cmd)
692 {
693 unsigned int i;
694
695 for (i = 0; i < cmd->hdr.ext; i++) {
696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
698 (void *) cmd, cmd->hdr.len + 4);
699 break;
700 }
701
702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
703 cmd->_tx_status[i].info);
704 }
705 }
706
carl9170_tx_rate_tpc_chains(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate,unsigned int * phyrate,unsigned int * tpc,unsigned int * chains)707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
710 {
711 struct ieee80211_rate *rate = NULL;
712 u8 *txpower;
713 unsigned int idx;
714
715 idx = txrate->idx;
716 *tpc = 0;
717 *phyrate = 0;
718
719 if (txrate->flags & IEEE80211_TX_RC_MCS) {
720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
721 /* +1 dBm for HT40 */
722 *tpc += 2;
723
724 if (info->band == IEEE80211_BAND_2GHZ)
725 txpower = ar->power_2G_ht40;
726 else
727 txpower = ar->power_5G_ht40;
728 } else {
729 if (info->band == IEEE80211_BAND_2GHZ)
730 txpower = ar->power_2G_ht20;
731 else
732 txpower = ar->power_5G_ht20;
733 }
734
735 *phyrate = txrate->idx;
736 *tpc += txpower[idx & 7];
737 } else {
738 if (info->band == IEEE80211_BAND_2GHZ) {
739 if (idx < 4)
740 txpower = ar->power_2G_cck;
741 else
742 txpower = ar->power_2G_ofdm;
743 } else {
744 txpower = ar->power_5G_leg;
745 idx += 4;
746 }
747
748 rate = &__carl9170_ratetable[idx];
749 *tpc += txpower[(rate->hw_value & 0x30) >> 4];
750 *phyrate = rate->hw_value & 0xf;
751 }
752
753 if (ar->eeprom.tx_mask == 1) {
754 *chains = AR9170_TX_PHY_TXCHAIN_1;
755 } else {
756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
757 rate && rate->bitrate >= 360)
758 *chains = AR9170_TX_PHY_TXCHAIN_1;
759 else
760 *chains = AR9170_TX_PHY_TXCHAIN_2;
761 }
762
763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
764 }
765
carl9170_tx_physet(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate)766 static __le32 carl9170_tx_physet(struct ar9170 *ar,
767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
768 {
769 unsigned int power = 0, chains = 0, phyrate = 0;
770 __le32 tmp;
771
772 tmp = cpu_to_le32(0);
773
774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
776 AR9170_TX_PHY_BW_S);
777 /* this works because 40 MHz is 2 and dup is 3 */
778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
780 AR9170_TX_PHY_BW_S);
781
782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
784
785 if (txrate->flags & IEEE80211_TX_RC_MCS) {
786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
787
788 /* heavy clip control */
789 tmp |= cpu_to_le32((txrate->idx & 0x7) <<
790 AR9170_TX_PHY_TX_HEAVY_CLIP_S);
791
792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
793
794 /*
795 * green field preamble does not work.
796 *
797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
799 */
800 } else {
801 if (info->band == IEEE80211_BAND_2GHZ) {
802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
804 else
805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
806 } else {
807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
808 }
809
810 /*
811 * short preamble seems to be broken too.
812 *
813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
815 */
816 }
817 carl9170_tx_rate_tpc_chains(ar, info, txrate,
818 &phyrate, &power, &chains);
819
820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
823 return tmp;
824 }
825
carl9170_tx_rts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate,bool ampdu,bool multi)826 static bool carl9170_tx_rts_check(struct ar9170 *ar,
827 struct ieee80211_tx_rate *rate,
828 bool ampdu, bool multi)
829 {
830 switch (ar->erp_mode) {
831 case CARL9170_ERP_AUTO:
832 if (ampdu)
833 break;
834
835 case CARL9170_ERP_MAC80211:
836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
837 break;
838
839 case CARL9170_ERP_RTS:
840 if (likely(!multi))
841 return true;
842
843 default:
844 break;
845 }
846
847 return false;
848 }
849
carl9170_tx_cts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate)850 static bool carl9170_tx_cts_check(struct ar9170 *ar,
851 struct ieee80211_tx_rate *rate)
852 {
853 switch (ar->erp_mode) {
854 case CARL9170_ERP_AUTO:
855 case CARL9170_ERP_MAC80211:
856 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
857 break;
858
859 case CARL9170_ERP_CTS:
860 return true;
861
862 default:
863 break;
864 }
865
866 return false;
867 }
868
carl9170_tx_prepare(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb)869 static int carl9170_tx_prepare(struct ar9170 *ar,
870 struct ieee80211_sta *sta,
871 struct sk_buff *skb)
872 {
873 struct ieee80211_hdr *hdr;
874 struct _carl9170_tx_superframe *txc;
875 struct carl9170_vif_info *cvif;
876 struct ieee80211_tx_info *info;
877 struct ieee80211_tx_rate *txrate;
878 struct carl9170_tx_info *arinfo;
879 unsigned int hw_queue;
880 int i;
881 __le16 mac_tmp;
882 u16 len;
883 bool ampdu, no_ack;
884
885 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
886 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
887 CARL9170_TX_SUPERDESC_LEN);
888
889 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
890 AR9170_TX_HWDESC_LEN);
891
892 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
893
894 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
895 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
896 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
897
898 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
899
900 hdr = (void *)skb->data;
901 info = IEEE80211_SKB_CB(skb);
902 len = skb->len;
903
904 /*
905 * Note: If the frame was sent through a monitor interface,
906 * the ieee80211_vif pointer can be NULL.
907 */
908 if (likely(info->control.vif))
909 cvif = (void *) info->control.vif->drv_priv;
910 else
911 cvif = NULL;
912
913 txc = (void *)skb_push(skb, sizeof(*txc));
914 memset(txc, 0, sizeof(*txc));
915
916 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
917
918 if (likely(cvif))
919 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
920
921 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
922 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
923
924 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
925 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
926
927 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
928 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
929
930 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
931 AR9170_TX_MAC_BACKOFF);
932 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
933 AR9170_TX_MAC_QOS);
934
935 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
936 if (unlikely(no_ack))
937 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
938
939 if (info->control.hw_key) {
940 len += info->control.hw_key->icv_len;
941
942 switch (info->control.hw_key->cipher) {
943 case WLAN_CIPHER_SUITE_WEP40:
944 case WLAN_CIPHER_SUITE_WEP104:
945 case WLAN_CIPHER_SUITE_TKIP:
946 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
947 break;
948 case WLAN_CIPHER_SUITE_CCMP:
949 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
950 break;
951 default:
952 WARN_ON(1);
953 goto err_out;
954 }
955 }
956
957 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
958 if (ampdu) {
959 unsigned int density, factor;
960
961 if (unlikely(!sta || !cvif))
962 goto err_out;
963
964 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
965 density = sta->ht_cap.ampdu_density;
966
967 if (density) {
968 /*
969 * Watch out!
970 *
971 * Otus uses slightly different density values than
972 * those from the 802.11n spec.
973 */
974
975 density = max_t(unsigned int, density + 1, 7u);
976 }
977
978 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
979 txc->s.ampdu_settings, density);
980
981 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
982 txc->s.ampdu_settings, factor);
983 }
984
985 /*
986 * NOTE: For the first rate, the ERP & AMPDU flags are directly
987 * taken from mac_control. For all fallback rate, the firmware
988 * updates the mac_control flags from the rate info field.
989 */
990 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
991 __le32 phy_set;
992 txrate = &info->control.rates[i];
993 if (txrate->idx < 0)
994 break;
995
996 phy_set = carl9170_tx_physet(ar, info, txrate);
997 if (i == 0) {
998 /* first rate - part of the hw's frame header */
999 txc->f.phy_control = phy_set;
1000
1001 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
1002 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
1003 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
1004 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
1005 else if (carl9170_tx_cts_check(ar, txrate))
1006 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
1007
1008 } else {
1009 /* fallback rates are stored in the firmware's
1010 * retry rate set array.
1011 */
1012 txc->s.rr[i - 1] = phy_set;
1013 }
1014
1015 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
1016 txrate->count);
1017
1018 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
1019 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
1020 CARL9170_TX_SUPER_RI_ERP_PROT_S);
1021 else if (carl9170_tx_cts_check(ar, txrate))
1022 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
1023 CARL9170_TX_SUPER_RI_ERP_PROT_S);
1024
1025 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
1026 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
1027 }
1028
1029 txc->s.len = cpu_to_le16(skb->len);
1030 txc->f.length = cpu_to_le16(len + FCS_LEN);
1031 txc->f.mac_control = mac_tmp;
1032
1033 arinfo = (void *)info->rate_driver_data;
1034 arinfo->timeout = jiffies;
1035 arinfo->ar = ar;
1036 kref_init(&arinfo->ref);
1037 return 0;
1038
1039 err_out:
1040 skb_pull(skb, sizeof(*txc));
1041 return -EINVAL;
1042 }
1043
carl9170_set_immba(struct ar9170 * ar,struct sk_buff * skb)1044 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1045 {
1046 struct _carl9170_tx_superframe *super;
1047
1048 super = (void *) skb->data;
1049 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1050 }
1051
carl9170_set_ampdu_params(struct ar9170 * ar,struct sk_buff * skb)1052 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1053 {
1054 struct _carl9170_tx_superframe *super;
1055 int tmp;
1056
1057 super = (void *) skb->data;
1058
1059 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1060 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1061
1062 /*
1063 * If you haven't noticed carl9170_tx_prepare has already filled
1064 * in all ampdu spacing & factor parameters.
1065 * Now it's the time to check whenever the settings have to be
1066 * updated by the firmware, or if everything is still the same.
1067 *
1068 * There's no sane way to handle different density values with
1069 * this hardware, so we may as well just do the compare in the
1070 * driver.
1071 */
1072
1073 if (tmp != ar->current_density) {
1074 ar->current_density = tmp;
1075 super->s.ampdu_settings |=
1076 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1077 }
1078
1079 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1080 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1081
1082 if (tmp != ar->current_factor) {
1083 ar->current_factor = tmp;
1084 super->s.ampdu_settings |=
1085 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1086 }
1087 }
1088
carl9170_tx_rate_check(struct ar9170 * ar,struct sk_buff * _dest,struct sk_buff * _src)1089 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
1090 struct sk_buff *_src)
1091 {
1092 struct _carl9170_tx_superframe *dest, *src;
1093
1094 dest = (void *) _dest->data;
1095 src = (void *) _src->data;
1096
1097 /*
1098 * The mac80211 rate control algorithm expects that all MPDUs in
1099 * an AMPDU share the same tx vectors.
1100 * This is not really obvious right now, because the hardware
1101 * does the AMPDU setup according to its own rulebook.
1102 * Our nicely assembled, strictly monotonic increasing mpdu
1103 * chains will be broken up, mashed back together...
1104 */
1105
1106 return (dest->f.phy_control == src->f.phy_control);
1107 }
1108
carl9170_tx_ampdu(struct ar9170 * ar)1109 static void carl9170_tx_ampdu(struct ar9170 *ar)
1110 {
1111 struct sk_buff_head agg;
1112 struct carl9170_sta_tid *tid_info;
1113 struct sk_buff *skb, *first;
1114 unsigned int i = 0, done_ampdus = 0;
1115 u16 seq, queue, tmpssn;
1116
1117 atomic_inc(&ar->tx_ampdu_scheduler);
1118 ar->tx_ampdu_schedule = false;
1119
1120 if (atomic_read(&ar->tx_ampdu_upload))
1121 return;
1122
1123 if (!ar->tx_ampdu_list_len)
1124 return;
1125
1126 __skb_queue_head_init(&agg);
1127
1128 rcu_read_lock();
1129 tid_info = rcu_dereference(ar->tx_ampdu_iter);
1130 if (WARN_ON_ONCE(!tid_info)) {
1131 rcu_read_unlock();
1132 return;
1133 }
1134
1135 retry:
1136 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1137 i++;
1138
1139 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1140 continue;
1141
1142 queue = TID_TO_WME_AC(tid_info->tid);
1143
1144 spin_lock_bh(&tid_info->lock);
1145 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1146 goto processed;
1147
1148 tid_info->counter++;
1149 first = skb_peek(&tid_info->queue);
1150 tmpssn = carl9170_get_seq(first);
1151 seq = tid_info->snx;
1152
1153 if (unlikely(tmpssn != seq)) {
1154 tid_info->state = CARL9170_TID_STATE_IDLE;
1155
1156 goto processed;
1157 }
1158
1159 while ((skb = skb_peek(&tid_info->queue))) {
1160 /* strict 0, 1, ..., n - 1, n frame sequence order */
1161 if (unlikely(carl9170_get_seq(skb) != seq))
1162 break;
1163
1164 /* don't upload more than AMPDU FACTOR allows. */
1165 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1166 (tid_info->max - 1)))
1167 break;
1168
1169 if (!carl9170_tx_rate_check(ar, skb, first))
1170 break;
1171
1172 atomic_inc(&ar->tx_ampdu_upload);
1173 tid_info->snx = seq = SEQ_NEXT(seq);
1174 __skb_unlink(skb, &tid_info->queue);
1175
1176 __skb_queue_tail(&agg, skb);
1177
1178 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1179 break;
1180 }
1181
1182 if (skb_queue_empty(&tid_info->queue) ||
1183 carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1184 tid_info->snx) {
1185 /*
1186 * stop TID, if A-MPDU frames are still missing,
1187 * or whenever the queue is empty.
1188 */
1189
1190 tid_info->state = CARL9170_TID_STATE_IDLE;
1191 }
1192 done_ampdus++;
1193
1194 processed:
1195 spin_unlock_bh(&tid_info->lock);
1196
1197 if (skb_queue_empty(&agg))
1198 continue;
1199
1200 /* apply ampdu spacing & factor settings */
1201 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1202
1203 /* set aggregation push bit */
1204 carl9170_set_immba(ar, skb_peek_tail(&agg));
1205
1206 spin_lock_bh(&ar->tx_pending[queue].lock);
1207 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1208 spin_unlock_bh(&ar->tx_pending[queue].lock);
1209 ar->tx_schedule = true;
1210 }
1211 if ((done_ampdus++ == 0) && (i++ == 0))
1212 goto retry;
1213
1214 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1215 rcu_read_unlock();
1216 }
1217
carl9170_tx_pick_skb(struct ar9170 * ar,struct sk_buff_head * queue)1218 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1219 struct sk_buff_head *queue)
1220 {
1221 struct sk_buff *skb;
1222 struct ieee80211_tx_info *info;
1223 struct carl9170_tx_info *arinfo;
1224
1225 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1226
1227 spin_lock_bh(&queue->lock);
1228 skb = skb_peek(queue);
1229 if (unlikely(!skb))
1230 goto err_unlock;
1231
1232 if (carl9170_alloc_dev_space(ar, skb))
1233 goto err_unlock;
1234
1235 __skb_unlink(skb, queue);
1236 spin_unlock_bh(&queue->lock);
1237
1238 info = IEEE80211_SKB_CB(skb);
1239 arinfo = (void *) info->rate_driver_data;
1240
1241 arinfo->timeout = jiffies;
1242 return skb;
1243
1244 err_unlock:
1245 spin_unlock_bh(&queue->lock);
1246 return NULL;
1247 }
1248
carl9170_tx_drop(struct ar9170 * ar,struct sk_buff * skb)1249 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1250 {
1251 struct _carl9170_tx_superframe *super;
1252 uint8_t q = 0;
1253
1254 ar->tx_dropped++;
1255
1256 super = (void *)skb->data;
1257 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1258 ar9170_qmap[carl9170_get_queue(ar, skb)]);
1259 __carl9170_tx_process_status(ar, super->s.cookie, q);
1260 }
1261
carl9170_tx_ps_drop(struct ar9170 * ar,struct sk_buff * skb)1262 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1263 {
1264 struct ieee80211_sta *sta;
1265 struct carl9170_sta_info *sta_info;
1266 struct ieee80211_tx_info *tx_info;
1267
1268 rcu_read_lock();
1269 sta = __carl9170_get_tx_sta(ar, skb);
1270 if (!sta)
1271 goto out_rcu;
1272
1273 sta_info = (void *) sta->drv_priv;
1274 tx_info = IEEE80211_SKB_CB(skb);
1275
1276 if (unlikely(sta_info->sleeping) &&
1277 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1278 IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1279 rcu_read_unlock();
1280
1281 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1282 atomic_dec(&ar->tx_ampdu_upload);
1283
1284 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1285 carl9170_release_dev_space(ar, skb);
1286 carl9170_tx_status(ar, skb, false);
1287 return true;
1288 }
1289
1290 out_rcu:
1291 rcu_read_unlock();
1292 return false;
1293 }
1294
carl9170_bar_check(struct ar9170 * ar,struct sk_buff * skb)1295 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1296 {
1297 struct _carl9170_tx_superframe *super = (void *) skb->data;
1298 struct ieee80211_bar *bar = (void *) super->frame_data;
1299
1300 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1301 skb->len >= sizeof(struct ieee80211_bar)) {
1302 struct carl9170_bar_list_entry *entry;
1303 unsigned int queue = skb_get_queue_mapping(skb);
1304
1305 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1306 if (!WARN_ON_ONCE(!entry)) {
1307 entry->skb = skb;
1308 spin_lock_bh(&ar->bar_list_lock[queue]);
1309 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1310 spin_unlock_bh(&ar->bar_list_lock[queue]);
1311 }
1312 }
1313 }
1314
carl9170_tx(struct ar9170 * ar)1315 static void carl9170_tx(struct ar9170 *ar)
1316 {
1317 struct sk_buff *skb;
1318 unsigned int i, q;
1319 bool schedule_garbagecollector = false;
1320
1321 ar->tx_schedule = false;
1322
1323 if (unlikely(!IS_STARTED(ar)))
1324 return;
1325
1326 carl9170_usb_handle_tx_err(ar);
1327
1328 for (i = 0; i < ar->hw->queues; i++) {
1329 while (!skb_queue_empty(&ar->tx_pending[i])) {
1330 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1331 if (unlikely(!skb))
1332 break;
1333
1334 if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1335 continue;
1336
1337 carl9170_bar_check(ar, skb);
1338
1339 atomic_inc(&ar->tx_total_pending);
1340
1341 q = __carl9170_get_queue(ar, i);
1342 /*
1343 * NB: tx_status[i] vs. tx_status[q],
1344 * TODO: Move into pick_skb or alloc_dev_space.
1345 */
1346 skb_queue_tail(&ar->tx_status[q], skb);
1347
1348 /*
1349 * increase ref count to "2".
1350 * Ref counting is the easiest way to solve the
1351 * race between the urb's completion routine:
1352 * carl9170_tx_callback
1353 * and wlan tx status functions:
1354 * carl9170_tx_status/janitor.
1355 */
1356 carl9170_tx_get_skb(skb);
1357
1358 carl9170_usb_tx(ar, skb);
1359 schedule_garbagecollector = true;
1360 }
1361 }
1362
1363 if (!schedule_garbagecollector)
1364 return;
1365
1366 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1367 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1368 }
1369
carl9170_tx_ampdu_queue(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)1370 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1371 struct ieee80211_sta *sta, struct sk_buff *skb,
1372 struct ieee80211_tx_info *txinfo)
1373 {
1374 struct carl9170_sta_info *sta_info;
1375 struct carl9170_sta_tid *agg;
1376 struct sk_buff *iter;
1377 u16 tid, seq, qseq, off;
1378 bool run = false;
1379
1380 tid = carl9170_get_tid(skb);
1381 seq = carl9170_get_seq(skb);
1382 sta_info = (void *) sta->drv_priv;
1383
1384 rcu_read_lock();
1385 agg = rcu_dereference(sta_info->agg[tid]);
1386
1387 if (!agg)
1388 goto err_unlock_rcu;
1389
1390 spin_lock_bh(&agg->lock);
1391 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1392 goto err_unlock;
1393
1394 /* check if sequence is within the BA window */
1395 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1396 goto err_unlock;
1397
1398 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1399 goto err_unlock;
1400
1401 off = SEQ_DIFF(seq, agg->bsn);
1402 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1403 goto err_unlock;
1404
1405 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1406 __skb_queue_tail(&agg->queue, skb);
1407 agg->hsn = seq;
1408 goto queued;
1409 }
1410
1411 skb_queue_reverse_walk(&agg->queue, iter) {
1412 qseq = carl9170_get_seq(iter);
1413
1414 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1415 __skb_queue_after(&agg->queue, iter, skb);
1416 goto queued;
1417 }
1418 }
1419
1420 __skb_queue_head(&agg->queue, skb);
1421 queued:
1422
1423 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1424 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1425 agg->state = CARL9170_TID_STATE_XMIT;
1426 run = true;
1427 }
1428 }
1429
1430 spin_unlock_bh(&agg->lock);
1431 rcu_read_unlock();
1432
1433 return run;
1434
1435 err_unlock:
1436 spin_unlock_bh(&agg->lock);
1437
1438 err_unlock_rcu:
1439 rcu_read_unlock();
1440 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1441 carl9170_tx_status(ar, skb, false);
1442 ar->tx_dropped++;
1443 return false;
1444 }
1445
carl9170_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)1446 void carl9170_op_tx(struct ieee80211_hw *hw,
1447 struct ieee80211_tx_control *control,
1448 struct sk_buff *skb)
1449 {
1450 struct ar9170 *ar = hw->priv;
1451 struct ieee80211_tx_info *info;
1452 struct ieee80211_sta *sta = control->sta;
1453 bool run;
1454
1455 if (unlikely(!IS_STARTED(ar)))
1456 goto err_free;
1457
1458 info = IEEE80211_SKB_CB(skb);
1459
1460 if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1461 goto err_free;
1462
1463 carl9170_tx_accounting(ar, skb);
1464 /*
1465 * from now on, one has to use carl9170_tx_status to free
1466 * all ressouces which are associated with the frame.
1467 */
1468
1469 if (sta) {
1470 struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1471 atomic_inc(&stai->pending_frames);
1472 }
1473
1474 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1475 /* to static code analyzers and reviewers:
1476 * mac80211 guarantees that a valid "sta"
1477 * reference is present, if a frame is to
1478 * be part of an ampdu. Hence any extra
1479 * sta == NULL checks are redundant in this
1480 * special case.
1481 */
1482 run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1483 if (run)
1484 carl9170_tx_ampdu(ar);
1485
1486 } else {
1487 unsigned int queue = skb_get_queue_mapping(skb);
1488
1489 skb_queue_tail(&ar->tx_pending[queue], skb);
1490 }
1491
1492 carl9170_tx(ar);
1493 return;
1494
1495 err_free:
1496 ar->tx_dropped++;
1497 ieee80211_free_txskb(ar->hw, skb);
1498 }
1499
carl9170_tx_scheduler(struct ar9170 * ar)1500 void carl9170_tx_scheduler(struct ar9170 *ar)
1501 {
1502
1503 if (ar->tx_ampdu_schedule)
1504 carl9170_tx_ampdu(ar);
1505
1506 if (ar->tx_schedule)
1507 carl9170_tx(ar);
1508 }
1509
1510 /* caller has to take rcu_read_lock */
carl9170_pick_beaconing_vif(struct ar9170 * ar)1511 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1512 {
1513 struct carl9170_vif_info *cvif;
1514 int i = 1;
1515
1516 /* The AR9170 hardware has no fancy beacon queue or some
1517 * other scheduling mechanism. So, the driver has to make
1518 * due by setting the two beacon timers (pretbtt and tbtt)
1519 * once and then swapping the beacon address in the HW's
1520 * register file each time the pretbtt fires.
1521 */
1522
1523 cvif = rcu_dereference(ar->beacon_iter);
1524 if (ar->vifs > 0 && cvif) {
1525 do {
1526 list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1527 list) {
1528 if (cvif->active && cvif->enable_beacon)
1529 goto out;
1530 }
1531 } while (ar->beacon_enabled && i--);
1532 }
1533
1534 out:
1535 rcu_assign_pointer(ar->beacon_iter, cvif);
1536 return cvif;
1537 }
1538
carl9170_tx_beacon_physet(struct ar9170 * ar,struct sk_buff * skb,u32 * ht1,u32 * plcp)1539 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1540 u32 *ht1, u32 *plcp)
1541 {
1542 struct ieee80211_tx_info *txinfo;
1543 struct ieee80211_tx_rate *rate;
1544 unsigned int power, chains;
1545 bool ht_rate;
1546
1547 txinfo = IEEE80211_SKB_CB(skb);
1548 rate = &txinfo->control.rates[0];
1549 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1550 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1551
1552 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1553 if (chains == AR9170_TX_PHY_TXCHAIN_2)
1554 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1555 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1556 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1557 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1558
1559 if (ht_rate) {
1560 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1561 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1562 *plcp |= AR9170_MAC_BCN_HT2_SGI;
1563
1564 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1565 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1566 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1567 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1568 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1569 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1570 }
1571
1572 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1573 } else {
1574 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1575 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1576 else
1577 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1578 }
1579
1580 return ht_rate;
1581 }
1582
carl9170_update_beacon(struct ar9170 * ar,const bool submit)1583 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1584 {
1585 struct sk_buff *skb = NULL;
1586 struct carl9170_vif_info *cvif;
1587 __le32 *data, *old = NULL;
1588 u32 word, ht1, plcp, off, addr, len;
1589 int i = 0, err = 0;
1590 bool ht_rate;
1591
1592 rcu_read_lock();
1593 cvif = carl9170_pick_beaconing_vif(ar);
1594 if (!cvif)
1595 goto out_unlock;
1596
1597 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1598 NULL, NULL);
1599
1600 if (!skb) {
1601 err = -ENOMEM;
1602 goto err_free;
1603 }
1604
1605 spin_lock_bh(&ar->beacon_lock);
1606 data = (__le32 *)skb->data;
1607 if (cvif->beacon)
1608 old = (__le32 *)cvif->beacon->data;
1609
1610 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1611 addr = ar->fw.beacon_addr + off;
1612 len = roundup(skb->len + FCS_LEN, 4);
1613
1614 if ((off + len) > ar->fw.beacon_max_len) {
1615 if (net_ratelimit()) {
1616 wiphy_err(ar->hw->wiphy, "beacon does not "
1617 "fit into device memory!\n");
1618 }
1619 err = -EINVAL;
1620 goto err_unlock;
1621 }
1622
1623 if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1624 if (net_ratelimit()) {
1625 wiphy_err(ar->hw->wiphy, "no support for beacons "
1626 "bigger than %d (yours:%d).\n",
1627 AR9170_MAC_BCN_LENGTH_MAX, len);
1628 }
1629
1630 err = -EMSGSIZE;
1631 goto err_unlock;
1632 }
1633
1634 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1635
1636 carl9170_async_regwrite_begin(ar);
1637 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1638 if (ht_rate)
1639 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1640 else
1641 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1642
1643 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1644 /*
1645 * XXX: This accesses beyond skb data for up
1646 * to the last 3 bytes!!
1647 */
1648
1649 if (old && (data[i] == old[i]))
1650 continue;
1651
1652 word = le32_to_cpu(data[i]);
1653 carl9170_async_regwrite(addr + 4 * i, word);
1654 }
1655 carl9170_async_regwrite_finish();
1656
1657 dev_kfree_skb_any(cvif->beacon);
1658 cvif->beacon = NULL;
1659
1660 err = carl9170_async_regwrite_result();
1661 if (!err)
1662 cvif->beacon = skb;
1663 spin_unlock_bh(&ar->beacon_lock);
1664 if (err)
1665 goto err_free;
1666
1667 if (submit) {
1668 err = carl9170_bcn_ctrl(ar, cvif->id,
1669 CARL9170_BCN_CTRL_CAB_TRIGGER,
1670 addr, skb->len + FCS_LEN);
1671
1672 if (err)
1673 goto err_free;
1674 }
1675 out_unlock:
1676 rcu_read_unlock();
1677 return 0;
1678
1679 err_unlock:
1680 spin_unlock_bh(&ar->beacon_lock);
1681
1682 err_free:
1683 rcu_read_unlock();
1684 dev_kfree_skb_any(skb);
1685 return err;
1686 }
1687