• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
44 
rtl92se_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46 {
47 	struct rtl_priv *rtlpriv = rtl_priv(hw);
48 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50 
51 	switch (variable) {
52 	case HW_VAR_RCR: {
53 			*((u32 *) (val)) = rtlpci->receive_config;
54 			break;
55 		}
56 	case HW_VAR_RF_STATE: {
57 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 			break;
59 		}
60 	case HW_VAR_FW_PSMODE_STATUS: {
61 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62 			break;
63 		}
64 	case HW_VAR_CORRECT_TSF: {
65 			u64 tsf;
66 			u32 *ptsf_low = (u32 *)&tsf;
67 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68 
69 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71 
72 			*((u64 *) (val)) = tsf;
73 
74 			break;
75 		}
76 	case HW_VAR_MRC: {
77 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 			break;
79 		}
80 	default: {
81 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82 			 "switch case not processed\n");
83 			break;
84 		}
85 	}
86 }
87 
rtl92se_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
89 {
90 	struct rtl_priv *rtlpriv = rtl_priv(hw);
91 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_ETHER_ADDR:{
99 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101 			break;
102 		}
103 	case HW_VAR_BASIC_RATE:{
104 			u16 rate_cfg = ((u16 *) val)[0];
105 			u8 rate_index = 0;
106 
107 			if (rtlhal->version == VERSION_8192S_ACUT)
108 				rate_cfg = rate_cfg & 0x150;
109 			else
110 				rate_cfg = rate_cfg & 0x15f;
111 
112 			rate_cfg |= 0x01;
113 
114 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115 			rtl_write_byte(rtlpriv, RRSR + 1,
116 				       (rate_cfg >> 8) & 0xff);
117 
118 			while (rate_cfg > 0x1) {
119 				rate_cfg = (rate_cfg >> 1);
120 				rate_index++;
121 			}
122 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
123 
124 			break;
125 		}
126 	case HW_VAR_BSSID:{
127 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128 			rtl_write_word(rtlpriv, BSSIDR + 4,
129 				       ((u16 *)(val + 4))[0]);
130 			break;
131 		}
132 	case HW_VAR_SIFS:{
133 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135 			break;
136 		}
137 	case HW_VAR_SLOT_TIME:{
138 			u8 e_aci;
139 
140 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
142 
143 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
144 
145 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146 				rtlpriv->cfg->ops->set_hw_reg(hw,
147 						HW_VAR_AC_PARAM,
148 						(&e_aci));
149 			}
150 			break;
151 		}
152 	case HW_VAR_ACK_PREAMBLE:{
153 			u8 reg_tmp;
154 			u8 short_preamble = (bool) (*val);
155 			reg_tmp = (mac->cur_40_prime_sc) << 5;
156 			if (short_preamble)
157 				reg_tmp |= 0x80;
158 
159 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160 			break;
161 		}
162 	case HW_VAR_AMPDU_MIN_SPACE:{
163 			u8 min_spacing_to_set;
164 			u8 sec_min_space;
165 
166 			min_spacing_to_set = *val;
167 			if (min_spacing_to_set <= 7) {
168 				if (rtlpriv->sec.pairwise_enc_algorithm ==
169 				    NO_ENCRYPTION)
170 					sec_min_space = 0;
171 				else
172 					sec_min_space = 1;
173 
174 				if (min_spacing_to_set < sec_min_space)
175 					min_spacing_to_set = sec_min_space;
176 				if (min_spacing_to_set > 5)
177 					min_spacing_to_set = 5;
178 
179 				mac->min_space_cfg =
180 						((mac->min_space_cfg & 0xf8) |
181 						min_spacing_to_set);
182 
183 				*val = min_spacing_to_set;
184 
185 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 					 mac->min_space_cfg);
188 
189 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190 					       mac->min_space_cfg);
191 			}
192 			break;
193 		}
194 	case HW_VAR_SHORTGI_DENSITY:{
195 			u8 density_to_set;
196 
197 			density_to_set = *val;
198 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199 			mac->min_space_cfg |= (density_to_set << 3);
200 
201 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 				 mac->min_space_cfg);
204 
205 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206 				       mac->min_space_cfg);
207 
208 			break;
209 		}
210 	case HW_VAR_AMPDU_FACTOR:{
211 			u8 factor_toset;
212 			u8 regtoset;
213 			u8 factorlevel[18] = {
214 				2, 4, 4, 7, 7, 13, 13,
215 				13, 2, 7, 7, 13, 13,
216 				15, 15, 15, 15, 0};
217 			u8 index = 0;
218 
219 			factor_toset = *val;
220 			if (factor_toset <= 3) {
221 				factor_toset = (1 << (factor_toset + 2));
222 				if (factor_toset > 0xf)
223 					factor_toset = 0xf;
224 
225 				for (index = 0; index < 17; index++) {
226 					if (factorlevel[index] > factor_toset)
227 						factorlevel[index] =
228 								 factor_toset;
229 				}
230 
231 				for (index = 0; index < 8; index++) {
232 					regtoset = ((factorlevel[index * 2]) |
233 						    (factorlevel[index *
234 						    2 + 1] << 4));
235 					rtl_write_byte(rtlpriv,
236 						       AGGLEN_LMT_L + index,
237 						       regtoset);
238 				}
239 
240 				regtoset = ((factorlevel[16]) |
241 					    (factorlevel[17] << 4));
242 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
243 
244 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246 					 factor_toset);
247 			}
248 			break;
249 		}
250 	case HW_VAR_AC_PARAM:{
251 			u8 e_aci = *val;
252 			rtl92s_dm_init_edca_turbo(hw);
253 
254 			if (rtlpci->acm_method != eAcmWay2_SW)
255 				rtlpriv->cfg->ops->set_hw_reg(hw,
256 						 HW_VAR_ACM_CTRL,
257 						 &e_aci);
258 			break;
259 		}
260 	case HW_VAR_ACM_CTRL:{
261 			u8 e_aci = *val;
262 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263 							mac->ac[0].aifs));
264 			u8 acm = p_aci_aifsn->f.acm;
265 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
266 
267 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268 				   0x0 : 0x1);
269 
270 			if (acm) {
271 				switch (e_aci) {
272 				case AC0_BE:
273 					acm_ctrl |= AcmHw_BeqEn;
274 					break;
275 				case AC2_VI:
276 					acm_ctrl |= AcmHw_ViqEn;
277 					break;
278 				case AC3_VO:
279 					acm_ctrl |= AcmHw_VoqEn;
280 					break;
281 				default:
282 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284 						 acm);
285 					break;
286 				}
287 			} else {
288 				switch (e_aci) {
289 				case AC0_BE:
290 					acm_ctrl &= (~AcmHw_BeqEn);
291 					break;
292 				case AC2_VI:
293 					acm_ctrl &= (~AcmHw_ViqEn);
294 					break;
295 				case AC3_VO:
296 					acm_ctrl &= (~AcmHw_BeqEn);
297 					break;
298 				default:
299 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300 						 "switch case not processed\n");
301 					break;
302 				}
303 			}
304 
305 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308 			break;
309 		}
310 	case HW_VAR_RCR:{
311 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312 			rtlpci->receive_config = ((u32 *) (val))[0];
313 			break;
314 		}
315 	case HW_VAR_RETRY_LIMIT:{
316 			u8 retry_limit = val[0];
317 
318 			rtl_write_word(rtlpriv, RETRY_LIMIT,
319 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
321 			break;
322 		}
323 	case HW_VAR_DUAL_TSF_RST: {
324 			break;
325 		}
326 	case HW_VAR_EFUSE_BYTES: {
327 			rtlefuse->efuse_usedbytes = *((u16 *) val);
328 			break;
329 		}
330 	case HW_VAR_EFUSE_USAGE: {
331 			rtlefuse->efuse_usedpercentage = *val;
332 			break;
333 		}
334 	case HW_VAR_IO_CMD: {
335 			break;
336 		}
337 	case HW_VAR_WPA_CONFIG: {
338 			rtl_write_byte(rtlpriv, REG_SECR, *val);
339 			break;
340 		}
341 	case HW_VAR_SET_RPWM:{
342 			break;
343 		}
344 	case HW_VAR_H2C_FW_PWRMODE:{
345 			break;
346 		}
347 	case HW_VAR_FW_PSMODE_STATUS: {
348 			ppsc->fw_current_inpsmode = *((bool *) val);
349 			break;
350 		}
351 	case HW_VAR_H2C_FW_JOINBSSRPT:{
352 			break;
353 		}
354 	case HW_VAR_AID:{
355 			break;
356 		}
357 	case HW_VAR_CORRECT_TSF:{
358 			break;
359 		}
360 	case HW_VAR_MRC: {
361 			bool bmrc_toset = *((bool *)val);
362 			u8 u1bdata = 0;
363 
364 			if (bmrc_toset) {
365 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366 					      MASKBYTE0, 0x33);
367 				u1bdata = (u8)rtl_get_bbreg(hw,
368 						ROFDM1_TRXPATHENABLE,
369 						MASKBYTE0);
370 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371 					      MASKBYTE0,
372 					      ((u1bdata & 0xf0) | 0x03));
373 				u1bdata = (u8)rtl_get_bbreg(hw,
374 						ROFDM0_TRXPATHENABLE,
375 						MASKBYTE1);
376 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377 					      MASKBYTE1,
378 					      (u1bdata | 0x04));
379 
380 				/* Update current settings. */
381 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
382 			} else {
383 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384 					      MASKBYTE0, 0x13);
385 				u1bdata = (u8)rtl_get_bbreg(hw,
386 						 ROFDM1_TRXPATHENABLE,
387 						 MASKBYTE0);
388 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389 					      MASKBYTE0,
390 					      ((u1bdata & 0xf0) | 0x01));
391 				u1bdata = (u8)rtl_get_bbreg(hw,
392 						ROFDM0_TRXPATHENABLE,
393 						MASKBYTE1);
394 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395 					      MASKBYTE1, (u1bdata & 0xfb));
396 
397 				/* Update current settings. */
398 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
399 			}
400 
401 			break;
402 		}
403 	case HW_VAR_FW_LPS_ACTION: {
404 		bool enter_fwlps = *((bool *)val);
405 		u8 rpwm_val, fw_pwrmode;
406 		bool fw_current_inps;
407 
408 		if (enter_fwlps) {
409 			rpwm_val = 0x02;	/* RF off */
410 			fw_current_inps = true;
411 			rtlpriv->cfg->ops->set_hw_reg(hw,
412 					HW_VAR_FW_PSMODE_STATUS,
413 					(u8 *)(&fw_current_inps));
414 			rtlpriv->cfg->ops->set_hw_reg(hw,
415 					HW_VAR_H2C_FW_PWRMODE,
416 					(u8 *)(&ppsc->fwctrl_psmode));
417 
418 			rtlpriv->cfg->ops->set_hw_reg(hw,
419 					HW_VAR_SET_RPWM,
420 					(u8 *)(&rpwm_val));
421 		} else {
422 			rpwm_val = 0x0C;	/* RF on */
423 			fw_pwrmode = FW_PS_ACTIVE_MODE;
424 			fw_current_inps = false;
425 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
426 					(u8 *)(&rpwm_val));
427 			rtlpriv->cfg->ops->set_hw_reg(hw,
428 					HW_VAR_H2C_FW_PWRMODE,
429 					(u8 *)(&fw_pwrmode));
430 
431 			rtlpriv->cfg->ops->set_hw_reg(hw,
432 					HW_VAR_FW_PSMODE_STATUS,
433 					(u8 *)(&fw_current_inps));
434 		}
435 		break; }
436 	default:
437 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
438 			 "switch case not processed\n");
439 		break;
440 	}
441 
442 }
443 
rtl92se_enable_hw_security_config(struct ieee80211_hw * hw)444 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
445 {
446 	struct rtl_priv *rtlpriv = rtl_priv(hw);
447 	u8 sec_reg_value = 0x0;
448 
449 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
450 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
451 		 rtlpriv->sec.pairwise_enc_algorithm,
452 		 rtlpriv->sec.group_enc_algorithm);
453 
454 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
455 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
456 			 "not open hw encryption\n");
457 		return;
458 	}
459 
460 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
461 
462 	if (rtlpriv->sec.use_defaultkey) {
463 		sec_reg_value |= SCR_TXUSEDK;
464 		sec_reg_value |= SCR_RXUSEDK;
465 	}
466 
467 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
468 		 sec_reg_value);
469 
470 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
471 
472 }
473 
_rtl92se_halset_sysclk(struct ieee80211_hw * hw,u8 data)474 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
475 {
476 	struct rtl_priv *rtlpriv = rtl_priv(hw);
477 	u8 waitcount = 100;
478 	bool bresult = false;
479 	u8 tmpvalue;
480 
481 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
482 
483 	/* Wait the MAC synchronized. */
484 	udelay(400);
485 
486 	/* Check if it is set ready. */
487 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
488 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
489 
490 	if ((data & (BIT(6) | BIT(7))) == false) {
491 		waitcount = 100;
492 		tmpvalue = 0;
493 
494 		while (1) {
495 			waitcount--;
496 
497 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
498 			if ((tmpvalue & BIT(6)))
499 				break;
500 
501 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
502 			if (waitcount == 0)
503 				break;
504 
505 			udelay(10);
506 		}
507 
508 		if (waitcount == 0)
509 			bresult = false;
510 		else
511 			bresult = true;
512 	}
513 
514 	return bresult;
515 }
516 
rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw * hw)517 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
518 {
519 	struct rtl_priv *rtlpriv = rtl_priv(hw);
520 	u8 u1tmp;
521 
522 	/* The following config GPIO function */
523 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
524 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
525 
526 	/* config GPIO3 to input */
527 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
528 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
529 
530 }
531 
_rtl92se_rf_onoff_detect(struct ieee80211_hw * hw)532 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
533 {
534 	struct rtl_priv *rtlpriv = rtl_priv(hw);
535 	u8 u1tmp;
536 	u8 retval = ERFON;
537 
538 	/* The following config GPIO function */
539 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
540 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
541 
542 	/* config GPIO3 to input */
543 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
544 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
545 
546 	/* On some of the platform, driver cannot read correct
547 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
548 	mdelay(10);
549 
550 	/* check GPIO3 */
551 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
552 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
553 
554 	return retval;
555 }
556 
_rtl92se_macconfig_before_fwdownload(struct ieee80211_hw * hw)557 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
558 {
559 	struct rtl_priv *rtlpriv = rtl_priv(hw);
560 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
561 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
562 
563 	u8 i;
564 	u8 tmpu1b;
565 	u16 tmpu2b;
566 	u8 pollingcnt = 20;
567 
568 	if (rtlpci->first_init) {
569 		/* Reset PCIE Digital */
570 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
571 		tmpu1b &= 0xFE;
572 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
573 		udelay(1);
574 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
575 	}
576 
577 	/* Switch to SW IO control */
578 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
579 	if (tmpu1b & BIT(7)) {
580 		tmpu1b &= ~(BIT(6) | BIT(7));
581 
582 		/* Set failed, return to prevent hang. */
583 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
584 			return;
585 	}
586 
587 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
588 	udelay(50);
589 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
590 	udelay(50);
591 
592 	/* Clear FW RPWM for FW control LPS.*/
593 	rtl_write_byte(rtlpriv, RPWM, 0x0);
594 
595 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
596 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
597 	tmpu1b &= 0x73;
598 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
599 	/* wait for BIT 10/11/15 to pull high automatically!! */
600 	mdelay(1);
601 
602 	rtl_write_byte(rtlpriv, CMDR, 0);
603 	rtl_write_byte(rtlpriv, TCR, 0);
604 
605 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
606 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
607 	tmpu1b |= 0x08;
608 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
609 	tmpu1b &= ~(BIT(3));
610 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
611 
612 	/* Enable AFE clock source */
613 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
614 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
615 	/* Delay 1.5ms */
616 	mdelay(2);
617 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
618 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
619 
620 	/* Enable AFE Macro Block's Bandgap */
621 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
622 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
623 	mdelay(1);
624 
625 	/* Enable AFE Mbias */
626 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
627 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
628 	mdelay(1);
629 
630 	/* Enable LDOA15 block	*/
631 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
632 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
633 
634 	/* Set Digital Vdd to Retention isolation Path. */
635 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
636 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
637 
638 	/* For warm reboot NIC disappera bug. */
639 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
640 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
641 
642 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
643 
644 	/* Enable AFE PLL Macro Block */
645 	/* We need to delay 100u before enabling PLL. */
646 	udelay(200);
647 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
648 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
649 
650 	/* for divider reset  */
651 	udelay(100);
652 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
653 		       BIT(4) | BIT(6)));
654 	udelay(10);
655 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
656 	udelay(10);
657 
658 	/* Enable MAC 80MHZ clock  */
659 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
660 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
661 	mdelay(1);
662 
663 	/* Release isolation AFE PLL & MD */
664 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
665 
666 	/* Enable MAC clock */
667 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
668 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
669 
670 	/* Enable Core digital and enable IOREG R/W */
671 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
672 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
673 
674 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
675 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
676 
677 	/* enable REG_EN */
678 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
679 
680 	/* Switch the control path. */
681 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
682 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
683 
684 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
685 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
686 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
687 		return; /* Set failed, return to prevent hang. */
688 
689 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
690 
691 	/* MH We must enable the section of code to prevent load IMEM fail. */
692 	/* Load MAC register from WMAc temporarily We simulate macreg. */
693 	/* txt HW will provide MAC txt later  */
694 	rtl_write_byte(rtlpriv, 0x6, 0x30);
695 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
696 
697 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
698 
699 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
700 
701 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
702 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
703 	rtl_write_byte(rtlpriv, 0xde, 0xff);
704 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
705 
706 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
707 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
708 
709 	for (i = 0; i < 32; i++)
710 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
711 
712 	rtl_write_byte(rtlpriv, 0x236, 0xff);
713 
714 	rtl_write_byte(rtlpriv, 0x503, 0x22);
715 
716 	if (ppsc->support_aspm && !ppsc->support_backdoor)
717 		rtl_write_byte(rtlpriv, 0x560, 0x40);
718 	else
719 		rtl_write_byte(rtlpriv, 0x560, 0x00);
720 
721 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
722 
723 	/* Set RX Desc Address */
724 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
725 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
726 
727 	/* Set TX Desc Address */
728 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
729 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
730 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
734 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
735 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
736 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
737 
738 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
739 
740 	/* To make sure that TxDMA can ready to download FW. */
741 	/* We should reset TxDMA if IMEM RPT was not ready. */
742 	do {
743 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
744 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
745 			break;
746 
747 		udelay(5);
748 	} while (pollingcnt--);
749 
750 	if (pollingcnt <= 0) {
751 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
752 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
753 			 tmpu1b);
754 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
755 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
756 		udelay(2);
757 		/* Reset TxDMA */
758 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
759 	}
760 
761 	/* After MACIO reset,we must refresh LED state. */
762 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
763 	   (ppsc->rfoff_reason == 0)) {
764 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
765 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
766 		enum rf_pwrstate rfpwr_state_toset;
767 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
768 
769 		if (rfpwr_state_toset == ERFON)
770 			rtl92se_sw_led_on(hw, pLed0);
771 	}
772 }
773 
_rtl92se_macconfig_after_fwdownload(struct ieee80211_hw * hw)774 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
775 {
776 	struct rtl_priv *rtlpriv = rtl_priv(hw);
777 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
778 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
779 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
780 	u8 i;
781 	u16 tmpu2b;
782 
783 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
784 
785 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
786 	/* Turn on 0x40 Command register */
787 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
788 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
789 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
790 
791 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
792 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
793 			TXDMAPRE2FULL);
794 
795 	/* Set RCR	*/
796 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
797 
798 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
799 
800 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
801 	/* Set CCK/OFDM SIFS */
802 	/* CCK SIFS shall always be 10us. */
803 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
804 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
805 
806 	/* Set AckTimeout */
807 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
808 
809 	/* Beacon related */
810 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
811 	rtl_write_word(rtlpriv, ATIMWND, 2);
812 
813 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
814 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
815 	/* Firmware allocate now, associate with FW internal setting.!!! */
816 
817 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
818 	/* 5.3 Set driver info, we only accept PHY status now. */
819 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
820 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
821 
822 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
823 	/* Set RRSR to all legacy rate and HT rate
824 	 * CCK rate is supported by default.
825 	 * CCK rate will be filtered out only when associated
826 	 * AP does not support it.
827 	 * Only enable ACK rate to OFDM 24M
828 	 * Disable RRSR for CCK rate in A-Cut	*/
829 
830 	if (rtlhal->version == VERSION_8192S_ACUT)
831 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
832 	else if (rtlhal->version == VERSION_8192S_BCUT)
833 		rtl_write_byte(rtlpriv, RRSR, 0xff);
834 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
835 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
836 
837 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
838 	/* fallback to CCK rate */
839 	for (i = 0; i < 8; i++) {
840 		/*Disable RRSR for CCK rate in A-Cut */
841 		if (rtlhal->version == VERSION_8192S_ACUT)
842 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
843 	}
844 
845 	/* Different rate use different AMPDU size */
846 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
847 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
848 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
849 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
850 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
851 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
852 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
853 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
854 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
855 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
856 
857 	/* Set Data / Response auto rate fallack retry count */
858 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
859 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
860 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
861 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
862 
863 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
864 	/* Set all rate to support SG */
865 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
866 
867 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
868 	/* Set NAV protection length */
869 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
870 	/* CF-END Threshold */
871 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
872 	/* Set AMPDU minimum space */
873 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
874 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
875 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
876 
877 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
878 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
879 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
880 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
881 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
882 
883 	/* 14. Set driver info, we only accept PHY status now. */
884 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
885 
886 	/* 15. For EEPROM R/W Workaround */
887 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
888 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
889 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
890 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
891 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
892 
893 	/* 17. For EFUSE */
894 	/* We may R/W EFUSE in EEPROM mode */
895 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
896 		u8	tempval;
897 
898 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
899 		tempval &= 0xFE;
900 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
901 
902 		/* Change Program timing */
903 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
904 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
905 	}
906 
907 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
908 
909 }
910 
_rtl92se_hw_configure(struct ieee80211_hw * hw)911 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
912 {
913 	struct rtl_priv *rtlpriv = rtl_priv(hw);
914 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
915 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
916 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
917 
918 	u8 reg_bw_opmode = 0;
919 	u32 reg_rrsr = 0;
920 	u8 regtmp = 0;
921 
922 	reg_bw_opmode = BW_OPMODE_20MHZ;
923 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
924 
925 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
926 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
927 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
928 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
929 
930 	/* Set Retry Limit here */
931 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
932 			(u8 *)(&rtlpci->shortretry_limit));
933 
934 	rtl_write_byte(rtlpriv, MLT, 0x8f);
935 
936 	/* For Min Spacing configuration. */
937 	switch (rtlphy->rf_type) {
938 	case RF_1T2R:
939 	case RF_1T1R:
940 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
941 		break;
942 	case RF_2T2R:
943 	case RF_2T2R_GREEN:
944 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
945 		break;
946 	}
947 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
948 }
949 
rtl92se_hw_init(struct ieee80211_hw * hw)950 int rtl92se_hw_init(struct ieee80211_hw *hw)
951 {
952 	struct rtl_priv *rtlpriv = rtl_priv(hw);
953 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
954 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
955 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
956 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
957 	u8 tmp_byte = 0;
958 
959 	bool rtstatus = true;
960 	u8 tmp_u1b;
961 	int err = false;
962 	u8 i;
963 	int wdcapra_add[] = {
964 		EDCAPARA_BE, EDCAPARA_BK,
965 		EDCAPARA_VI, EDCAPARA_VO};
966 	u8 secr_value = 0x0;
967 
968 	rtlpci->being_init_adapter = true;
969 
970 	rtlpriv->intf_ops->disable_aspm(hw);
971 
972 	/* 1. MAC Initialize */
973 	/* Before FW download, we have to set some MAC register */
974 	_rtl92se_macconfig_before_fwdownload(hw);
975 
976 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
977 			PMC_FSM) >> 16) & 0xF);
978 
979 	rtl8192se_gpiobit3_cfg_inputmode(hw);
980 
981 	/* 2. download firmware */
982 	rtstatus = rtl92s_download_fw(hw);
983 	if (!rtstatus) {
984 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
985 			 "Failed to download FW. Init HW without FW now... "
986 			 "Please copy FW into /lib/firmware/rtlwifi\n");
987 		return 1;
988 	}
989 
990 	/* After FW download, we have to reset MAC register */
991 	_rtl92se_macconfig_after_fwdownload(hw);
992 
993 	/*Retrieve default FW Cmd IO map. */
994 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
995 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
996 
997 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
998 	if (!rtl92s_phy_mac_config(hw)) {
999 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1000 		return rtstatus;
1001 	}
1002 
1003 	/* because last function modify RCR, so we update
1004 	 * rcr var here, or TP will unstable for receive_config
1005 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1006 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1007 	 */
1008 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1009 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1010 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1011 
1012 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1013 	/* We must set flag avoid BB/RF config period later!! */
1014 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1015 
1016 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1017 	if (!rtl92s_phy_bb_config(hw)) {
1018 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1019 		return rtstatus;
1020 	}
1021 
1022 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1023 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1024 
1025 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1026 
1027 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1028 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1029 	if (rtlhal->version == VERSION_8192S_ACUT)
1030 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1031 	else
1032 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1033 
1034 	if (!rtl92s_phy_rf_config(hw)) {
1035 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1036 		return rtstatus;
1037 	}
1038 
1039 	/* After read predefined TXT, we must set BB/MAC/RF
1040 	 * register as our requirement */
1041 
1042 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1043 							   (enum radio_path)0,
1044 							   RF_CHNLBW,
1045 							   RFREG_OFFSET_MASK);
1046 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1047 							   (enum radio_path)1,
1048 							   RF_CHNLBW,
1049 							   RFREG_OFFSET_MASK);
1050 
1051 	/*---- Set CCK and OFDM Block "ON"----*/
1052 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1053 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1054 
1055 	/*3 Set Hardware(Do nothing now) */
1056 	_rtl92se_hw_configure(hw);
1057 
1058 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1059 	/* TX power index for different rate set. */
1060 	/* Get original hw reg values */
1061 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1062 	/* Write correct tx power index */
1063 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1064 
1065 	/* We must set MAC address after firmware download. */
1066 	for (i = 0; i < 6; i++)
1067 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1068 
1069 	/* EEPROM R/W workaround */
1070 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1071 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1072 
1073 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1074 
1075 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1076 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1077 		tmp_byte = tmp_byte | BIT(5);
1078 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1079 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1080 	}
1081 
1082 	/* We enable high power and RA related mechanism after NIC
1083 	 * initialized. */
1084 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1085 		/* Fw v.53 and later. */
1086 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1087 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1088 		/* Fw v.52. */
1089 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1090 		rtl92s_phy_chk_fwcmd_iodone(hw);
1091 	} else {
1092 		/* Compatible earlier FW version. */
1093 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1094 		rtl92s_phy_chk_fwcmd_iodone(hw);
1095 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1096 		rtl92s_phy_chk_fwcmd_iodone(hw);
1097 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1098 		rtl92s_phy_chk_fwcmd_iodone(hw);
1099 	}
1100 
1101 	/* Add to prevent ASPM bug. */
1102 	/* Always enable hst and NIC clock request. */
1103 	rtl92s_phy_switch_ephy_parameter(hw);
1104 
1105 	/* Security related
1106 	 * 1. Clear all H/W keys.
1107 	 * 2. Enable H/W encryption/decryption. */
1108 	rtl_cam_reset_all_entry(hw);
1109 	secr_value |= SCR_TXENCENABLE;
1110 	secr_value |= SCR_RXENCENABLE;
1111 	secr_value |= SCR_NOSKMC;
1112 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1113 
1114 	for (i = 0; i < 4; i++)
1115 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1116 
1117 	if (rtlphy->rf_type == RF_1T2R) {
1118 		bool mrc2set = true;
1119 		/* Turn on B-Path */
1120 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1121 	}
1122 
1123 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1124 	rtl92s_dm_init(hw);
1125 	rtlpci->being_init_adapter = false;
1126 
1127 	return err;
1128 }
1129 
rtl92se_set_mac_addr(struct rtl_io * io,const u8 * addr)1130 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1131 {
1132 	/* This is a stub. */
1133 }
1134 
rtl92se_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1135 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1136 {
1137 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1138 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1139 	u32 reg_rcr = rtlpci->receive_config;
1140 
1141 	if (rtlpriv->psc.rfpwr_state != ERFON)
1142 		return;
1143 
1144 	if (check_bssid) {
1145 		reg_rcr |= (RCR_CBSSID);
1146 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1147 	} else if (!check_bssid) {
1148 		reg_rcr &= (~RCR_CBSSID);
1149 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1150 	}
1151 
1152 }
1153 
_rtl92se_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1154 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1155 				     enum nl80211_iftype type)
1156 {
1157 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1158 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1159 	u32 temp;
1160 	bt_msr &= ~MSR_LINK_MASK;
1161 
1162 	switch (type) {
1163 	case NL80211_IFTYPE_UNSPECIFIED:
1164 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1165 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1166 			 "Set Network type to NO LINK!\n");
1167 		break;
1168 	case NL80211_IFTYPE_ADHOC:
1169 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1170 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1171 			 "Set Network type to Ad Hoc!\n");
1172 		break;
1173 	case NL80211_IFTYPE_STATION:
1174 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1175 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1176 			 "Set Network type to STA!\n");
1177 		break;
1178 	case NL80211_IFTYPE_AP:
1179 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1180 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1181 			 "Set Network type to AP!\n");
1182 		break;
1183 	default:
1184 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1185 			 "Network type %d not supported!\n", type);
1186 		return 1;
1187 		break;
1188 
1189 	}
1190 
1191 	rtl_write_byte(rtlpriv, (MSR), bt_msr);
1192 
1193 	temp = rtl_read_dword(rtlpriv, TCR);
1194 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1195 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1196 
1197 
1198 	return 0;
1199 }
1200 
1201 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
rtl92se_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1202 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1203 {
1204 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1205 
1206 	if (_rtl92se_set_media_status(hw, type))
1207 		return -EOPNOTSUPP;
1208 
1209 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1210 		if (type != NL80211_IFTYPE_AP)
1211 			rtl92se_set_check_bssid(hw, true);
1212 	} else {
1213 		rtl92se_set_check_bssid(hw, false);
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
rtl92se_set_qos(struct ieee80211_hw * hw,int aci)1220 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1221 {
1222 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1223 	rtl92s_dm_init_edca_turbo(hw);
1224 
1225 	switch (aci) {
1226 	case AC1_BK:
1227 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1228 		break;
1229 	case AC0_BE:
1230 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1231 		break;
1232 	case AC2_VI:
1233 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1234 		break;
1235 	case AC3_VO:
1236 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1237 		break;
1238 	default:
1239 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1240 		break;
1241 	}
1242 }
1243 
rtl92se_enable_interrupt(struct ieee80211_hw * hw)1244 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1245 {
1246 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1247 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1248 
1249 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1250 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1251 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1252 }
1253 
rtl92se_disable_interrupt(struct ieee80211_hw * hw)1254 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1255 {
1256 	struct rtl_priv *rtlpriv;
1257 	struct rtl_pci *rtlpci;
1258 
1259 	rtlpriv = rtl_priv(hw);
1260 	/* if firmware not available, no interrupts */
1261 	if (!rtlpriv || !rtlpriv->max_fw_size)
1262 		return;
1263 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1264 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1265 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1266 
1267 	synchronize_irq(rtlpci->pdev->irq);
1268 }
1269 
_rtl92s_set_sysclk(struct ieee80211_hw * hw,u8 data)1270 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1271 {
1272 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1273 	u8 waitcnt = 100;
1274 	bool result = false;
1275 	u8 tmp;
1276 
1277 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1278 
1279 	/* Wait the MAC synchronized. */
1280 	udelay(400);
1281 
1282 	/* Check if it is set ready. */
1283 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1284 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1285 
1286 	if ((data & (BIT(6) | BIT(7))) == false) {
1287 		waitcnt = 100;
1288 		tmp = 0;
1289 
1290 		while (1) {
1291 			waitcnt--;
1292 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1293 
1294 			if ((tmp & BIT(6)))
1295 				break;
1296 
1297 			pr_err("wait for BIT(6) return value %x\n", tmp);
1298 
1299 			if (waitcnt == 0)
1300 				break;
1301 			udelay(10);
1302 		}
1303 
1304 		if (waitcnt == 0)
1305 			result = false;
1306 		else
1307 			result = true;
1308 	}
1309 
1310 	return result;
1311 }
1312 
_rtl92s_phy_set_rfhalt(struct ieee80211_hw * hw)1313 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1314 {
1315 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1316 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1317 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1318 	u8 u1btmp;
1319 
1320 	if (rtlhal->driver_going2unload)
1321 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1322 
1323 	/* Power save for BB/RF */
1324 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1325 	u1btmp |= BIT(0);
1326 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1327 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1328 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1329 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1330 	udelay(100);
1331 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1332 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1333 	udelay(10);
1334 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1335 	udelay(10);
1336 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1337 	udelay(10);
1338 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1339 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1340 
1341 	if (rtlhal->driver_going2unload) {
1342 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1343 		u1btmp &= ~(BIT(0));
1344 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1345 	}
1346 
1347 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1348 
1349 	/* Add description. After switch control path. register
1350 	 * after page1 will be invisible. We can not do any IO
1351 	 * for register>0x40. After resume&MACIO reset, we need
1352 	 * to remember previous reg content. */
1353 	if (u1btmp & BIT(7)) {
1354 		u1btmp &= ~(BIT(6) | BIT(7));
1355 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1356 			pr_err("Switch ctrl path fail\n");
1357 			return;
1358 		}
1359 	}
1360 
1361 	/* Power save for MAC */
1362 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1363 		!rtlhal->driver_going2unload) {
1364 		/* enable LED function */
1365 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1366 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1367 	} else {
1368 		/* LED function disable. Power range is about 8mA now. */
1369 		/* if write 0xF1 disconnet_pci power
1370 		 *	 ifconfig wlan0 down power are both high 35:70 */
1371 		/* if write oxF9 disconnet_pci power
1372 		 * ifconfig wlan0 down power are both low  12:45*/
1373 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1374 	}
1375 
1376 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1377 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1378 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1379 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1380 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1381 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1382 
1383 }
1384 
_rtl92se_gen_refreshledstate(struct ieee80211_hw * hw)1385 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1386 {
1387 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1388 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1389 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1390 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1391 
1392 	if (rtlpci->up_first_time == 1)
1393 		return;
1394 
1395 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1396 		rtl92se_sw_led_on(hw, pLed0);
1397 	else
1398 		rtl92se_sw_led_off(hw, pLed0);
1399 }
1400 
1401 
_rtl92se_power_domain_init(struct ieee80211_hw * hw)1402 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1403 {
1404 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1405 	u16 tmpu2b;
1406 	u8 tmpu1b;
1407 
1408 	rtlpriv->psc.pwrdomain_protect = true;
1409 
1410 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1411 	if (tmpu1b & BIT(7)) {
1412 		tmpu1b &= ~(BIT(6) | BIT(7));
1413 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1414 			rtlpriv->psc.pwrdomain_protect = false;
1415 			return;
1416 		}
1417 	}
1418 
1419 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1420 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1421 
1422 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1423 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1424 
1425 	/* If IPS we need to turn LED on. So we not
1426 	 * not disable BIT 3/7 of reg3. */
1427 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1428 		tmpu1b &= 0xFB;
1429 	else
1430 		tmpu1b &= 0x73;
1431 
1432 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1433 	/* wait for BIT 10/11/15 to pull high automatically!! */
1434 	mdelay(1);
1435 
1436 	rtl_write_byte(rtlpriv, CMDR, 0);
1437 	rtl_write_byte(rtlpriv, TCR, 0);
1438 
1439 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1440 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1441 	tmpu1b |= 0x08;
1442 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1443 	tmpu1b &= ~(BIT(3));
1444 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1445 
1446 	/* Enable AFE clock source */
1447 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1448 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1449 	/* Delay 1.5ms */
1450 	udelay(1500);
1451 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1452 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1453 
1454 	/* Enable AFE Macro Block's Bandgap */
1455 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1456 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1457 	mdelay(1);
1458 
1459 	/* Enable AFE Mbias */
1460 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1461 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1462 	mdelay(1);
1463 
1464 	/* Enable LDOA15 block */
1465 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1466 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1467 
1468 	/* Set Digital Vdd to Retention isolation Path. */
1469 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1470 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1471 
1472 
1473 	/* For warm reboot NIC disappera bug. */
1474 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1475 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1476 
1477 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1478 
1479 	/* Enable AFE PLL Macro Block */
1480 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1481 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1482 	/* Enable MAC 80MHZ clock */
1483 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1484 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1485 	mdelay(1);
1486 
1487 	/* Release isolation AFE PLL & MD */
1488 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1489 
1490 	/* Enable MAC clock */
1491 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1492 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1493 
1494 	/* Enable Core digital and enable IOREG R/W */
1495 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1496 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1497 	/* enable REG_EN */
1498 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1499 
1500 	/* Switch the control path. */
1501 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1502 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1503 
1504 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1505 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1506 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1507 		rtlpriv->psc.pwrdomain_protect = false;
1508 		return;
1509 	}
1510 
1511 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1512 
1513 	/* After MACIO reset,we must refresh LED state. */
1514 	_rtl92se_gen_refreshledstate(hw);
1515 
1516 	rtlpriv->psc.pwrdomain_protect = false;
1517 }
1518 
rtl92se_card_disable(struct ieee80211_hw * hw)1519 void rtl92se_card_disable(struct ieee80211_hw *hw)
1520 {
1521 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1522 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1523 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1524 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1525 	enum nl80211_iftype opmode;
1526 	u8 wait = 30;
1527 
1528 	rtlpriv->intf_ops->enable_aspm(hw);
1529 
1530 	if (rtlpci->driver_is_goingto_unload ||
1531 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1532 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1533 
1534 	/* we should chnge GPIO to input mode
1535 	 * this will drop away current about 25mA*/
1536 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1537 
1538 	/* this is very important for ips power save */
1539 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1540 		if (rtlpriv->psc.pwrdomain_protect)
1541 			mdelay(20);
1542 		else
1543 			break;
1544 	}
1545 
1546 	mac->link_state = MAC80211_NOLINK;
1547 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1548 	_rtl92se_set_media_status(hw, opmode);
1549 
1550 	_rtl92s_phy_set_rfhalt(hw);
1551 	udelay(100);
1552 }
1553 
rtl92se_interrupt_recognized(struct ieee80211_hw * hw,u32 * p_inta,u32 * p_intb)1554 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1555 			     u32 *p_intb)
1556 {
1557 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1558 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1559 
1560 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1561 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1562 
1563 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1564 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1565 }
1566 
rtl92se_set_beacon_related_registers(struct ieee80211_hw * hw)1567 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1568 {
1569 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1570 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1571 	u16 bcntime_cfg = 0;
1572 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1573 	u16 atim_window = 2;
1574 
1575 	/* ATIM Window (in unit of TU). */
1576 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1577 
1578 	/* Beacon interval (in unit of TU). */
1579 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1580 
1581 	/* DrvErlyInt (in unit of TU). (Time to send
1582 	 * interrupt to notify driver to change
1583 	 * beacon content) */
1584 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1585 
1586 	/* BcnDMATIM(in unit of us). Indicates the
1587 	 * time before TBTT to perform beacon queue DMA  */
1588 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1589 
1590 	/* Force beacon frame transmission even
1591 	 * after receiving beacon frame from
1592 	 * other ad hoc STA */
1593 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1594 
1595 	/* Beacon Time Configuration */
1596 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1597 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1598 
1599 	/* TODO: bcn_ifs may required to be changed on ASIC */
1600 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1601 
1602 	/*for beacon changed */
1603 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1604 }
1605 
rtl92se_set_beacon_interval(struct ieee80211_hw * hw)1606 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1607 {
1608 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1609 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1610 	u16 bcn_interval = mac->beacon_interval;
1611 
1612 	/* Beacon interval (in unit of TU). */
1613 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1614 	/* 2008.10.24 added by tynli for beacon changed. */
1615 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1616 }
1617 
rtl92se_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1618 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1619 		u32 add_msr, u32 rm_msr)
1620 {
1621 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1622 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1623 
1624 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1625 		 add_msr, rm_msr);
1626 
1627 	if (add_msr)
1628 		rtlpci->irq_mask[0] |= add_msr;
1629 
1630 	if (rm_msr)
1631 		rtlpci->irq_mask[0] &= (~rm_msr);
1632 
1633 	rtl92se_disable_interrupt(hw);
1634 	rtl92se_enable_interrupt(hw);
1635 }
1636 
_rtl8192se_get_IC_Inferiority(struct ieee80211_hw * hw)1637 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1638 {
1639 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1640 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1641 	u8 efuse_id;
1642 
1643 	rtlhal->ic_class = IC_INFERIORITY_A;
1644 
1645 	/* Only retrieving while using EFUSE. */
1646 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1647 		!rtlefuse->autoload_failflag) {
1648 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1649 
1650 		if (efuse_id == 0xfe)
1651 			rtlhal->ic_class = IC_INFERIORITY_B;
1652 	}
1653 }
1654 
_rtl92se_read_adapter_info(struct ieee80211_hw * hw)1655 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1656 {
1657 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1658 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1659 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1660 	u16 i, usvalue;
1661 	u16	eeprom_id;
1662 	u8 tempval;
1663 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1664 	u8 rf_path, index;
1665 
1666 	if (rtlefuse->epromtype == EEPROM_93C46) {
1667 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1668 			 "RTL819X Not boot from eeprom, check it !!\n");
1669 	} else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1670 		rtl_efuse_shadow_map_update(hw);
1671 
1672 		memcpy((void *)hwinfo, (void *)
1673 			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1674 			HWSET_MAX_SIZE_92S);
1675 	}
1676 
1677 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1678 		      hwinfo, HWSET_MAX_SIZE_92S);
1679 
1680 	eeprom_id = *((u16 *)&hwinfo[0]);
1681 	if (eeprom_id != RTL8190_EEPROM_ID) {
1682 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1683 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1684 		rtlefuse->autoload_failflag = true;
1685 	} else {
1686 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1687 		rtlefuse->autoload_failflag = false;
1688 	}
1689 
1690 	if (rtlefuse->autoload_failflag)
1691 		return;
1692 
1693 	_rtl8192se_get_IC_Inferiority(hw);
1694 
1695 	/* Read IC Version && Channel Plan */
1696 	/* VID, DID	 SE	0xA-D */
1697 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1698 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1699 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1700 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1701 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1702 
1703 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1704 		 "EEPROMId = 0x%4x\n", eeprom_id);
1705 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1706 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1707 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1708 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1709 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1710 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1711 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1712 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1713 
1714 	for (i = 0; i < 6; i += 2) {
1715 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1716 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1717 	}
1718 
1719 	for (i = 0; i < 6; i++)
1720 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1721 
1722 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1723 
1724 	/* Get Tx Power Level by Channel */
1725 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1726 	/* 92S suupport RF A & B */
1727 	for (rf_path = 0; rf_path < 2; rf_path++) {
1728 		for (i = 0; i < 3; i++) {
1729 			/* Read CCK RF A & B Tx power  */
1730 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1731 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1732 
1733 			/* Read OFDM RF A & B Tx power for 1T */
1734 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1735 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1736 
1737 			/* Read OFDM RF A & B Tx power for 2T */
1738 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1739 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1740 				   rf_path * 3 + i];
1741 		}
1742 	}
1743 
1744 	for (rf_path = 0; rf_path < 2; rf_path++)
1745 		for (i = 0; i < 3; i++)
1746 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1747 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1748 				rf_path, i,
1749 				rtlefuse->eeprom_chnlarea_txpwr_cck
1750 				[rf_path][i]);
1751 	for (rf_path = 0; rf_path < 2; rf_path++)
1752 		for (i = 0; i < 3; i++)
1753 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1754 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1755 				rf_path, i,
1756 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1757 				[rf_path][i]);
1758 	for (rf_path = 0; rf_path < 2; rf_path++)
1759 		for (i = 0; i < 3; i++)
1760 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1761 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1762 				rf_path, i,
1763 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1764 				[rf_path][i]);
1765 
1766 	for (rf_path = 0; rf_path < 2; rf_path++) {
1767 
1768 		/* Assign dedicated channel tx power */
1769 		for (i = 0; i < 14; i++)	{
1770 			/* channel 1~3 use the same Tx Power Level. */
1771 			if (i < 3)
1772 				index = 0;
1773 			/* Channel 4-8 */
1774 			else if (i < 8)
1775 				index = 1;
1776 			/* Channel 9-14 */
1777 			else
1778 				index = 2;
1779 
1780 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1781 			 * tx power */
1782 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1783 				rtlefuse->eeprom_chnlarea_txpwr_cck
1784 							[rf_path][index];
1785 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1786 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1787 							[rf_path][index];
1788 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1789 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1790 							[rf_path][index];
1791 		}
1792 
1793 		for (i = 0; i < 14; i++) {
1794 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1795 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1796 				rf_path, i,
1797 				rtlefuse->txpwrlevel_cck[rf_path][i],
1798 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1799 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1800 		}
1801 	}
1802 
1803 	for (rf_path = 0; rf_path < 2; rf_path++) {
1804 		for (i = 0; i < 3; i++) {
1805 			/* Read Power diff limit. */
1806 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1807 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1808 		}
1809 	}
1810 
1811 	for (rf_path = 0; rf_path < 2; rf_path++) {
1812 		/* Fill Pwr group */
1813 		for (i = 0; i < 14; i++) {
1814 			/* Chanel 1-3 */
1815 			if (i < 3)
1816 				index = 0;
1817 			/* Channel 4-8 */
1818 			else if (i < 8)
1819 				index = 1;
1820 			/* Channel 9-13 */
1821 			else
1822 				index = 2;
1823 
1824 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1825 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1826 				0xf);
1827 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1828 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1829 				0xf0) >> 4);
1830 
1831 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1832 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1833 				rf_path, i,
1834 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1835 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1836 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1837 				rf_path, i,
1838 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1839 			}
1840 	}
1841 
1842 	for (i = 0; i < 14; i++) {
1843 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1844 		/* channel 1-3 */
1845 		if (i < 3)
1846 			index = 0;
1847 		/* Channel 4-8 */
1848 		else if (i < 8)
1849 			index = 1;
1850 		/* Channel 9-14 */
1851 		else
1852 			index = 2;
1853 
1854 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1855 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1856 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1857 						 ((tempval >> 4) & 0xF);
1858 
1859 		/* Read OFDM<->HT tx power diff */
1860 		/* Channel 1-3 */
1861 		if (i < 3)
1862 			index = 0;
1863 		/* Channel 4-8 */
1864 		else if (i < 8)
1865 			index = 0x11;
1866 		/* Channel 9-14 */
1867 		else
1868 			index = 1;
1869 
1870 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1871 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1872 				 (tempval & 0xF);
1873 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1874 				 ((tempval >> 4) & 0xF);
1875 
1876 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1877 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1878 	}
1879 
1880 	rtlefuse->eeprom_regulatory = 0;
1881 	if (rtlefuse->eeprom_version >= 2) {
1882 		/* BIT(0)~2 */
1883 		if (rtlefuse->eeprom_version >= 4)
1884 			rtlefuse->eeprom_regulatory =
1885 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1886 		else /* BIT(0) */
1887 			rtlefuse->eeprom_regulatory =
1888 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1889 	}
1890 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1891 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1892 
1893 	for (i = 0; i < 14; i++)
1894 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1895 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1896 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1897 	for (i = 0; i < 14; i++)
1898 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1899 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1900 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1901 	for (i = 0; i < 14; i++)
1902 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1903 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1904 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1905 	for (i = 0; i < 14; i++)
1906 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1907 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1908 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1909 
1910 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1911 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1912 
1913 	/* Read RF-indication and Tx Power gain
1914 	 * index diff of legacy to HT OFDM rate. */
1915 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1916 	rtlefuse->eeprom_txpowerdiff = tempval;
1917 	rtlefuse->legacy_httxpowerdiff =
1918 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1919 
1920 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1921 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1922 
1923 	/* Get TSSI value for each path. */
1924 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1925 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1926 	usvalue = hwinfo[EEPROM_TSSI_B];
1927 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1928 
1929 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1930 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1931 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1932 
1933 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1934 	/* and read ThermalMeter from EEPROM */
1935 	tempval = hwinfo[EEPROM_THERMALMETER];
1936 	rtlefuse->eeprom_thermalmeter = tempval;
1937 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1938 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1939 
1940 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1941 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1942 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1943 
1944 	/* Read CrystalCap from EEPROM */
1945 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1946 	rtlefuse->eeprom_crystalcap = tempval;
1947 	/* CrystalCap, BIT(12)~15 */
1948 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1949 
1950 	/* Read IC Version && Channel Plan */
1951 	/* Version ID, Channel plan */
1952 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1953 	rtlefuse->txpwr_fromeprom = true;
1954 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1955 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1956 
1957 	/* Read Customer ID or Board Type!!! */
1958 	tempval = hwinfo[EEPROM_BOARDTYPE];
1959 	/* Change RF type definition */
1960 	if (tempval == 0)
1961 		rtlphy->rf_type = RF_2T2R;
1962 	else if (tempval == 1)
1963 		rtlphy->rf_type = RF_1T2R;
1964 	else if (tempval == 2)
1965 		rtlphy->rf_type = RF_1T2R;
1966 	else if (tempval == 3)
1967 		rtlphy->rf_type = RF_1T1R;
1968 
1969 	/* 1T2R but 1SS (1x1 receive combining) */
1970 	rtlefuse->b1x1_recvcombine = false;
1971 	if (rtlphy->rf_type == RF_1T2R) {
1972 		tempval = rtl_read_byte(rtlpriv, 0x07);
1973 		if (!(tempval & BIT(0))) {
1974 			rtlefuse->b1x1_recvcombine = true;
1975 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1976 				 "RF_TYPE=1T2R but only 1SS\n");
1977 		}
1978 	}
1979 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1980 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1981 
1982 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1983 		 rtlefuse->eeprom_oemid);
1984 
1985 	/* set channel paln to world wide 13 */
1986 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1987 }
1988 
rtl92se_read_eeprom_info(struct ieee80211_hw * hw)1989 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1990 {
1991 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1992 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1993 	u8 tmp_u1b = 0;
1994 
1995 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1996 
1997 	if (tmp_u1b & BIT(4)) {
1998 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1999 		rtlefuse->epromtype = EEPROM_93C46;
2000 	} else {
2001 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2002 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2003 	}
2004 
2005 	if (tmp_u1b & BIT(5)) {
2006 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2007 		rtlefuse->autoload_failflag = false;
2008 		_rtl92se_read_adapter_info(hw);
2009 	} else {
2010 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2011 		rtlefuse->autoload_failflag = true;
2012 	}
2013 }
2014 
rtl92se_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)2015 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2016 					  struct ieee80211_sta *sta)
2017 {
2018 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2019 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2020 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2021 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2022 	u32 ratr_value;
2023 	u8 ratr_index = 0;
2024 	u8 nmode = mac->ht_enable;
2025 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2026 	u16 shortgi_rate = 0;
2027 	u32 tmp_ratr_value = 0;
2028 	u8 curtxbw_40mhz = mac->bw_40;
2029 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2030 				1 : 0;
2031 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2032 				1 : 0;
2033 	enum wireless_mode wirelessmode = mac->mode;
2034 
2035 	if (rtlhal->current_bandtype == BAND_ON_5G)
2036 		ratr_value = sta->supp_rates[1] << 4;
2037 	else
2038 		ratr_value = sta->supp_rates[0];
2039 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2040 		ratr_value = 0xfff;
2041 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2042 			sta->ht_cap.mcs.rx_mask[0] << 12);
2043 	switch (wirelessmode) {
2044 	case WIRELESS_MODE_B:
2045 		ratr_value &= 0x0000000D;
2046 		break;
2047 	case WIRELESS_MODE_G:
2048 		ratr_value &= 0x00000FF5;
2049 		break;
2050 	case WIRELESS_MODE_N_24G:
2051 	case WIRELESS_MODE_N_5G:
2052 		nmode = 1;
2053 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2054 			ratr_value &= 0x0007F005;
2055 		} else {
2056 			u32 ratr_mask;
2057 
2058 			if (get_rf_type(rtlphy) == RF_1T2R ||
2059 			    get_rf_type(rtlphy) == RF_1T1R) {
2060 				if (curtxbw_40mhz)
2061 					ratr_mask = 0x000ff015;
2062 				else
2063 					ratr_mask = 0x000ff005;
2064 			} else {
2065 				if (curtxbw_40mhz)
2066 					ratr_mask = 0x0f0ff015;
2067 				else
2068 					ratr_mask = 0x0f0ff005;
2069 			}
2070 
2071 			ratr_value &= ratr_mask;
2072 		}
2073 		break;
2074 	default:
2075 		if (rtlphy->rf_type == RF_1T2R)
2076 			ratr_value &= 0x000ff0ff;
2077 		else
2078 			ratr_value &= 0x0f0ff0ff;
2079 
2080 		break;
2081 	}
2082 
2083 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2084 		ratr_value &= 0x0FFFFFFF;
2085 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2086 		ratr_value &= 0x0FFFFFF0;
2087 
2088 	if (nmode && ((curtxbw_40mhz &&
2089 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2090 						 curshortgi_20mhz))) {
2091 
2092 		ratr_value |= 0x10000000;
2093 		tmp_ratr_value = (ratr_value >> 12);
2094 
2095 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2096 			if ((1 << shortgi_rate) & tmp_ratr_value)
2097 				break;
2098 		}
2099 
2100 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2101 		    (shortgi_rate << 4) | (shortgi_rate);
2102 
2103 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2104 	}
2105 
2106 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2107 	if (ratr_value & 0xfffff000)
2108 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2109 	else
2110 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2111 
2112 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2113 		 rtl_read_dword(rtlpriv, ARFR0));
2114 }
2115 
rtl92se_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2116 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2117 					 struct ieee80211_sta *sta,
2118 					 u8 rssi_level)
2119 {
2120 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2121 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2122 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2123 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2124 	struct rtl_sta_info *sta_entry = NULL;
2125 	u32 ratr_bitmap;
2126 	u8 ratr_index = 0;
2127 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2128 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2129 				1 : 0;
2130 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2131 				1 : 0;
2132 	enum wireless_mode wirelessmode = 0;
2133 	bool shortgi = false;
2134 	u32 ratr_value = 0;
2135 	u8 shortgi_rate = 0;
2136 	u32 mask = 0;
2137 	u32 band = 0;
2138 	bool bmulticast = false;
2139 	u8 macid = 0;
2140 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2141 
2142 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2143 	wirelessmode = sta_entry->wireless_mode;
2144 	if (mac->opmode == NL80211_IFTYPE_STATION)
2145 		curtxbw_40mhz = mac->bw_40;
2146 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2147 		mac->opmode == NL80211_IFTYPE_ADHOC)
2148 		macid = sta->aid + 1;
2149 
2150 	if (rtlhal->current_bandtype == BAND_ON_5G)
2151 		ratr_bitmap = sta->supp_rates[1] << 4;
2152 	else
2153 		ratr_bitmap = sta->supp_rates[0];
2154 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2155 		ratr_bitmap = 0xfff;
2156 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2157 			sta->ht_cap.mcs.rx_mask[0] << 12);
2158 	switch (wirelessmode) {
2159 	case WIRELESS_MODE_B:
2160 		band |= WIRELESS_11B;
2161 		ratr_index = RATR_INX_WIRELESS_B;
2162 		if (ratr_bitmap & 0x0000000c)
2163 			ratr_bitmap &= 0x0000000d;
2164 		else
2165 			ratr_bitmap &= 0x0000000f;
2166 		break;
2167 	case WIRELESS_MODE_G:
2168 		band |= (WIRELESS_11G | WIRELESS_11B);
2169 		ratr_index = RATR_INX_WIRELESS_GB;
2170 
2171 		if (rssi_level == 1)
2172 			ratr_bitmap &= 0x00000f00;
2173 		else if (rssi_level == 2)
2174 			ratr_bitmap &= 0x00000ff0;
2175 		else
2176 			ratr_bitmap &= 0x00000ff5;
2177 		break;
2178 	case WIRELESS_MODE_A:
2179 		band |= WIRELESS_11A;
2180 		ratr_index = RATR_INX_WIRELESS_A;
2181 		ratr_bitmap &= 0x00000ff0;
2182 		break;
2183 	case WIRELESS_MODE_N_24G:
2184 	case WIRELESS_MODE_N_5G:
2185 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2186 		ratr_index = RATR_INX_WIRELESS_NGB;
2187 
2188 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2189 			if (rssi_level == 1)
2190 				ratr_bitmap &= 0x00070000;
2191 			else if (rssi_level == 2)
2192 				ratr_bitmap &= 0x0007f000;
2193 			else
2194 				ratr_bitmap &= 0x0007f005;
2195 		} else {
2196 			if (rtlphy->rf_type == RF_1T2R ||
2197 				rtlphy->rf_type == RF_1T1R) {
2198 				if (rssi_level == 1) {
2199 						ratr_bitmap &= 0x000f0000;
2200 				} else if (rssi_level == 3) {
2201 					ratr_bitmap &= 0x000fc000;
2202 				} else if (rssi_level == 5) {
2203 						ratr_bitmap &= 0x000ff000;
2204 				} else {
2205 					if (curtxbw_40mhz)
2206 						ratr_bitmap &= 0x000ff015;
2207 					else
2208 						ratr_bitmap &= 0x000ff005;
2209 				}
2210 			} else {
2211 				if (rssi_level == 1) {
2212 					ratr_bitmap &= 0x0f8f0000;
2213 				} else if (rssi_level == 3) {
2214 					ratr_bitmap &= 0x0f8fc000;
2215 				} else if (rssi_level == 5) {
2216 					ratr_bitmap &= 0x0f8ff000;
2217 				} else {
2218 					if (curtxbw_40mhz)
2219 						ratr_bitmap &= 0x0f8ff015;
2220 					else
2221 						ratr_bitmap &= 0x0f8ff005;
2222 				}
2223 			}
2224 		}
2225 
2226 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2227 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2228 			if (macid == 0)
2229 				shortgi = true;
2230 			else if (macid == 1)
2231 				shortgi = false;
2232 		}
2233 		break;
2234 	default:
2235 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2236 		ratr_index = RATR_INX_WIRELESS_NGB;
2237 
2238 		if (rtlphy->rf_type == RF_1T2R)
2239 			ratr_bitmap &= 0x000ff0ff;
2240 		else
2241 			ratr_bitmap &= 0x0f8ff0ff;
2242 		break;
2243 	}
2244 	sta_entry->ratr_index = ratr_index;
2245 
2246 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2247 		ratr_bitmap &= 0x0FFFFFFF;
2248 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2249 		ratr_bitmap &= 0x0FFFFFF0;
2250 
2251 	if (shortgi) {
2252 		ratr_bitmap |= 0x10000000;
2253 		/* Get MAX MCS available. */
2254 		ratr_value = (ratr_bitmap >> 12);
2255 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2256 			if ((1 << shortgi_rate) & ratr_value)
2257 				break;
2258 		}
2259 
2260 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2261 			(shortgi_rate << 4) | (shortgi_rate);
2262 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2263 	}
2264 
2265 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2266 
2267 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2268 		 mask, ratr_bitmap);
2269 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2270 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2271 
2272 	if (macid != 0)
2273 		sta_entry->ratr_index = ratr_index;
2274 }
2275 
rtl92se_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2276 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2277 		struct ieee80211_sta *sta, u8 rssi_level)
2278 {
2279 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2280 
2281 	if (rtlpriv->dm.useramask)
2282 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2283 	else
2284 		rtl92se_update_hal_rate_table(hw, sta);
2285 }
2286 
rtl92se_update_channel_access_setting(struct ieee80211_hw * hw)2287 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2288 {
2289 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2290 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2291 	u16 sifs_timer;
2292 
2293 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2294 				      &mac->slot_time);
2295 	sifs_timer = 0x0e0e;
2296 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2297 
2298 }
2299 
2300 /* this ifunction is for RFKILL, it's different with windows,
2301  * because UI will disable wireless when GPIO Radio Off.
2302  * And here we not check or Disable/Enable ASPM like windows*/
rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2303 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2304 {
2305 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2306 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2307 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2308 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2309 	unsigned long flag = 0;
2310 	bool actuallyset = false;
2311 	bool turnonbypowerdomain = false;
2312 
2313 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2314 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2315 		return false;
2316 
2317 	if (ppsc->swrf_processing)
2318 		return false;
2319 
2320 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2321 	if (ppsc->rfchange_inprogress) {
2322 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2323 		return false;
2324 	} else {
2325 		ppsc->rfchange_inprogress = true;
2326 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2327 	}
2328 
2329 	/* cur_rfstate = ppsc->rfpwr_state;*/
2330 
2331 	/* because after _rtl92s_phy_set_rfhalt, all power
2332 	 * closed, so we must open some power for GPIO check,
2333 	 * or we will always check GPIO RFOFF here,
2334 	 * And we should close power after GPIO check */
2335 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2336 		_rtl92se_power_domain_init(hw);
2337 		turnonbypowerdomain = true;
2338 	}
2339 
2340 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2341 
2342 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2343 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2344 			 "RFKILL-HW Radio ON, RF ON\n");
2345 
2346 		rfpwr_toset = ERFON;
2347 		ppsc->hwradiooff = false;
2348 		actuallyset = true;
2349 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2350 		RT_TRACE(rtlpriv, COMP_RF,
2351 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2352 
2353 		rfpwr_toset = ERFOFF;
2354 		ppsc->hwradiooff = true;
2355 		actuallyset = true;
2356 	}
2357 
2358 	if (actuallyset) {
2359 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2360 		ppsc->rfchange_inprogress = false;
2361 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2362 
2363 	/* this not include ifconfig wlan0 down case */
2364 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2365 	} else {
2366 		/* because power_domain_init may be happen when
2367 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2368 		 * and cause current increasing about 40 mA for ips,
2369 		 * rfoff and ifconfig down, so we set
2370 		 * _rtl92s_phy_set_rfhalt again here */
2371 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2372 			turnonbypowerdomain) {
2373 			_rtl92s_phy_set_rfhalt(hw);
2374 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2375 		}
2376 
2377 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2378 		ppsc->rfchange_inprogress = false;
2379 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2380 	}
2381 
2382 	*valid = 1;
2383 	return !ppsc->hwradiooff;
2384 
2385 }
2386 
2387 /* Is_wepkey just used for WEP used as group & pairwise key
2388  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
rtl92se_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2389 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2390 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2391 {
2392 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2393 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2394 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2395 	u8 *macaddr = p_macaddr;
2396 
2397 	u32 entry_id = 0;
2398 	bool is_pairwise = false;
2399 
2400 	static u8 cam_const_addr[4][6] = {
2401 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2402 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2403 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2404 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2405 	};
2406 	static u8 cam_const_broad[] = {
2407 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2408 	};
2409 
2410 	if (clear_all) {
2411 		u8 idx = 0;
2412 		u8 cam_offset = 0;
2413 		u8 clear_number = 5;
2414 
2415 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2416 
2417 		for (idx = 0; idx < clear_number; idx++) {
2418 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2419 			rtl_cam_empty_entry(hw, cam_offset + idx);
2420 
2421 			if (idx < 5) {
2422 				memset(rtlpriv->sec.key_buf[idx], 0,
2423 				       MAX_KEY_LEN);
2424 				rtlpriv->sec.key_len[idx] = 0;
2425 			}
2426 		}
2427 
2428 	} else {
2429 		switch (enc_algo) {
2430 		case WEP40_ENCRYPTION:
2431 			enc_algo = CAM_WEP40;
2432 			break;
2433 		case WEP104_ENCRYPTION:
2434 			enc_algo = CAM_WEP104;
2435 			break;
2436 		case TKIP_ENCRYPTION:
2437 			enc_algo = CAM_TKIP;
2438 			break;
2439 		case AESCCMP_ENCRYPTION:
2440 			enc_algo = CAM_AES;
2441 			break;
2442 		default:
2443 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2444 				 "switch case not processed\n");
2445 			enc_algo = CAM_TKIP;
2446 			break;
2447 		}
2448 
2449 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2450 			macaddr = cam_const_addr[key_index];
2451 			entry_id = key_index;
2452 		} else {
2453 			if (is_group) {
2454 				macaddr = cam_const_broad;
2455 				entry_id = key_index;
2456 			} else {
2457 				if (mac->opmode == NL80211_IFTYPE_AP) {
2458 					entry_id = rtl_cam_get_free_entry(hw,
2459 								 p_macaddr);
2460 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2461 						RT_TRACE(rtlpriv,
2462 							 COMP_SEC, DBG_EMERG,
2463 							 "Can not find free hw security cam entry\n");
2464 						return;
2465 					}
2466 				} else {
2467 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2468 				}
2469 
2470 				key_index = PAIRWISE_KEYIDX;
2471 				is_pairwise = true;
2472 			}
2473 		}
2474 
2475 		if (rtlpriv->sec.key_len[key_index] == 0) {
2476 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2477 				 "delete one entry, entry_id is %d\n",
2478 				 entry_id);
2479 			if (mac->opmode == NL80211_IFTYPE_AP)
2480 				rtl_cam_del_entry(hw, p_macaddr);
2481 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2482 		} else {
2483 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2484 				 "add one entry\n");
2485 			if (is_pairwise) {
2486 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2487 					 "set Pairwise key\n");
2488 
2489 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2490 					entry_id, enc_algo,
2491 					CAM_CONFIG_NO_USEDK,
2492 					rtlpriv->sec.key_buf[key_index]);
2493 			} else {
2494 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2495 					 "set group key\n");
2496 
2497 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2498 					rtl_cam_add_one_entry(hw,
2499 						rtlefuse->dev_addr,
2500 						PAIRWISE_KEYIDX,
2501 						CAM_PAIRWISE_KEY_POSITION,
2502 						enc_algo, CAM_CONFIG_NO_USEDK,
2503 						rtlpriv->sec.key_buf[entry_id]);
2504 				}
2505 
2506 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2507 					      entry_id, enc_algo,
2508 					      CAM_CONFIG_NO_USEDK,
2509 					      rtlpriv->sec.key_buf[entry_id]);
2510 			}
2511 
2512 		}
2513 	}
2514 }
2515 
rtl92se_suspend(struct ieee80211_hw * hw)2516 void rtl92se_suspend(struct ieee80211_hw *hw)
2517 {
2518 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2519 
2520 	rtlpci->up_first_time = true;
2521 }
2522 
rtl92se_resume(struct ieee80211_hw * hw)2523 void rtl92se_resume(struct ieee80211_hw *hw)
2524 {
2525 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2526 	u32 val;
2527 
2528 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2529 	if ((val & 0x0000ff00) != 0)
2530 		pci_write_config_dword(rtlpci->pdev, 0x40,
2531 			val & 0xffff00ff);
2532 }
2533 
2534 /* Turn on AAP (RCR:bit 0) for promicuous mode. */
rtl92se_allow_all_destaddr(struct ieee80211_hw * hw,bool allow_all_da,bool write_into_reg)2535 void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw,
2536 				bool allow_all_da, bool write_into_reg)
2537 {
2538 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2539 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2540 
2541 	if (allow_all_da) /* Set BIT0 */
2542 		rtlpci->receive_config |= RCR_AAP;
2543 	else /* Clear BIT0 */
2544 		rtlpci->receive_config &= ~RCR_AAP;
2545 
2546 	if (write_into_reg)
2547 		rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
2548 
2549 	RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
2550 		 "receive_config=0x%08X, write_into_reg=%d\n",
2551 		 rtlpci->receive_config, write_into_reg);
2552 }
2553