• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Blackfin On-Chip Real Time Clock Driver
3  *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4  *
5  * Copyright 2004-2010 Analog Devices Inc.
6  *
7  * Enter bugs at http://blackfin.uclinux.org/
8  *
9  * Licensed under the GPL-2 or later.
10  */
11 
12 /* The biggest issue we deal with in this driver is that register writes are
13  * synced to the RTC frequency of 1Hz.  So if you write to a register and
14  * attempt to write again before the first write has completed, the new write
15  * is simply discarded.  This can easily be troublesome if userspace disables
16  * one event (say periodic) and then right after enables an event (say alarm).
17  * Since all events are maintained in the same interrupt mask register, if
18  * we wrote to it to disable the first event and then wrote to it again to
19  * enable the second event, that second event would not be enabled as the
20  * write would be discarded and things quickly fall apart.
21  *
22  * To keep this delay from significantly degrading performance (we, in theory,
23  * would have to sleep for up to 1 second every time we wanted to write a
24  * register), we only check the write pending status before we start to issue
25  * a new write.  We bank on the idea that it doesn't matter when the sync
26  * happens so long as we don't attempt another write before it does.  The only
27  * time userspace would take this penalty is when they try and do multiple
28  * operations right after another ... but in this case, they need to take the
29  * sync penalty, so we should be OK.
30  *
31  * Also note that the RTC_ISTAT register does not suffer this penalty; its
32  * writes to clear status registers complete immediately.
33  */
34 
35 /* It may seem odd that there is no SWCNT code in here (which would be exposed
36  * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral
37  * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38  * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39  * The same exact behavior can be accomplished by using the update interrupt
40  * event (UIE).  Maybe down the line the RTC peripheral will suck less in which
41  * case we can re-introduce PIE support.
42  */
43 
44 #include <linux/bcd.h>
45 #include <linux/completion.h>
46 #include <linux/delay.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/platform_device.h>
52 #include <linux/rtc.h>
53 #include <linux/seq_file.h>
54 #include <linux/slab.h>
55 
56 #include <asm/blackfin.h>
57 
58 #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59 
60 struct bfin_rtc {
61 	struct rtc_device *rtc_dev;
62 	struct rtc_time rtc_alarm;
63 	u16 rtc_wrote_regs;
64 };
65 
66 /* Bit values for the ISTAT / ICTL registers */
67 #define RTC_ISTAT_WRITE_COMPLETE  0x8000
68 #define RTC_ISTAT_WRITE_PENDING   0x4000
69 #define RTC_ISTAT_ALARM_DAY       0x0040
70 #define RTC_ISTAT_24HR            0x0020
71 #define RTC_ISTAT_HOUR            0x0010
72 #define RTC_ISTAT_MIN             0x0008
73 #define RTC_ISTAT_SEC             0x0004
74 #define RTC_ISTAT_ALARM           0x0002
75 #define RTC_ISTAT_STOPWATCH       0x0001
76 
77 /* Shift values for RTC_STAT register */
78 #define DAY_BITS_OFF    17
79 #define HOUR_BITS_OFF   12
80 #define MIN_BITS_OFF    6
81 #define SEC_BITS_OFF    0
82 
83 /* Some helper functions to convert between the common RTC notion of time
84  * and the internal Blackfin notion that is encoded in 32bits.
85  */
rtc_time_to_bfin(unsigned long now)86 static inline u32 rtc_time_to_bfin(unsigned long now)
87 {
88 	u32 sec  = (now % 60);
89 	u32 min  = (now % (60 * 60)) / 60;
90 	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
91 	u32 days = (now / (60 * 60 * 24));
92 	return (sec  << SEC_BITS_OFF) +
93 	       (min  << MIN_BITS_OFF) +
94 	       (hour << HOUR_BITS_OFF) +
95 	       (days << DAY_BITS_OFF);
96 }
rtc_bfin_to_time(u32 rtc_bfin)97 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
98 {
99 	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
100 	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
101 	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
102 	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
103 }
rtc_bfin_to_tm(u32 rtc_bfin,struct rtc_time * tm)104 static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
105 {
106 	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
107 }
108 
109 /**
110  *	bfin_rtc_sync_pending - make sure pending writes have complete
111  *
112  * Wait for the previous write to a RTC register to complete.
113  * Unfortunately, we can't sleep here as that introduces a race condition when
114  * turning on interrupt events.  Consider this:
115  *  - process sets alarm
116  *  - process enables alarm
117  *  - process sleeps while waiting for rtc write to sync
118  *  - interrupt fires while process is sleeping
119  *  - interrupt acks the event by writing to ISTAT
120  *  - interrupt sets the WRITE PENDING bit
121  *  - interrupt handler finishes
122  *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
123  *  - interrupt fires while process is sleeping
124  * If anyone can point out the obvious solution here, i'm listening :).  This
125  * shouldn't be an issue on an SMP or preempt system as this function should
126  * only be called with the rtc lock held.
127  *
128  * Other options:
129  *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130  *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131  *  - use the write complete IRQ
132  */
133 /*
134 static void bfin_rtc_sync_pending_polled(void)
135 {
136 	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
138 			break;
139 	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
140 }
141 */
142 static DECLARE_COMPLETION(bfin_write_complete);
bfin_rtc_sync_pending(struct device * dev)143 static void bfin_rtc_sync_pending(struct device *dev)
144 {
145 	dev_dbg_stamp(dev);
146 	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
147 		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
148 	dev_dbg_stamp(dev);
149 }
150 
151 /**
152  *	bfin_rtc_reset - set RTC to sane/known state
153  *
154  * Initialize the RTC.  Enable pre-scaler to scale RTC clock
155  * to 1Hz and clear interrupt/status registers.
156  */
bfin_rtc_reset(struct device * dev,u16 rtc_ictl)157 static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158 {
159 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
160 	dev_dbg_stamp(dev);
161 	bfin_rtc_sync_pending(dev);
162 	bfin_write_RTC_PREN(0x1);
163 	bfin_write_RTC_ICTL(rtc_ictl);
164 	bfin_write_RTC_ALARM(0);
165 	bfin_write_RTC_ISTAT(0xFFFF);
166 	rtc->rtc_wrote_regs = 0;
167 }
168 
169 /**
170  *	bfin_rtc_interrupt - handle interrupt from RTC
171  *
172  * Since we handle all RTC events here, we have to make sure the requested
173  * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174  * always gets updated regardless of the interrupt being enabled.  So when one
175  * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176  * and say that other events have happened as well (e.g. second).  We do not
177  * have to worry about pending writes to the RTC_ICTL register as interrupts
178  * only fire if they are enabled in the RTC_ICTL register.
179  */
bfin_rtc_interrupt(int irq,void * dev_id)180 static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
181 {
182 	struct device *dev = dev_id;
183 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
184 	unsigned long events = 0;
185 	bool write_complete = false;
186 	u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
187 
188 	dev_dbg_stamp(dev);
189 
190 	rtc_istat = bfin_read_RTC_ISTAT();
191 	rtc_ictl = bfin_read_RTC_ICTL();
192 	rtc_istat_clear = 0;
193 
194 	bits = RTC_ISTAT_WRITE_COMPLETE;
195 	if (rtc_istat & bits) {
196 		rtc_istat_clear |= bits;
197 		write_complete = true;
198 		complete(&bfin_write_complete);
199 	}
200 
201 	bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
202 	if (rtc_ictl & bits) {
203 		if (rtc_istat & bits) {
204 			rtc_istat_clear |= bits;
205 			events |= RTC_AF | RTC_IRQF;
206 		}
207 	}
208 
209 	bits = RTC_ISTAT_SEC;
210 	if (rtc_ictl & bits) {
211 		if (rtc_istat & bits) {
212 			rtc_istat_clear |= bits;
213 			events |= RTC_UF | RTC_IRQF;
214 		}
215 	}
216 
217 	if (events)
218 		rtc_update_irq(rtc->rtc_dev, 1, events);
219 
220 	if (write_complete || events) {
221 		bfin_write_RTC_ISTAT(rtc_istat_clear);
222 		return IRQ_HANDLED;
223 	} else
224 		return IRQ_NONE;
225 }
226 
bfin_rtc_int_set(u16 rtc_int)227 static void bfin_rtc_int_set(u16 rtc_int)
228 {
229 	bfin_write_RTC_ISTAT(rtc_int);
230 	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
231 }
bfin_rtc_int_clear(u16 rtc_int)232 static void bfin_rtc_int_clear(u16 rtc_int)
233 {
234 	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
235 }
bfin_rtc_int_set_alarm(struct bfin_rtc * rtc)236 static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
237 {
238 	/* Blackfin has different bits for whether the alarm is
239 	 * more than 24 hours away.
240 	 */
241 	bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
242 }
243 
bfin_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)244 static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
245 {
246 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
247 
248 	dev_dbg_stamp(dev);
249 	if (enabled)
250 		bfin_rtc_int_set_alarm(rtc);
251 	else
252 		bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
253 
254 	return 0;
255 }
256 
bfin_rtc_read_time(struct device * dev,struct rtc_time * tm)257 static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
258 {
259 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
260 
261 	dev_dbg_stamp(dev);
262 
263 	if (rtc->rtc_wrote_regs & 0x1)
264 		bfin_rtc_sync_pending(dev);
265 
266 	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
267 
268 	return 0;
269 }
270 
bfin_rtc_set_time(struct device * dev,struct rtc_time * tm)271 static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
272 {
273 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
274 	int ret;
275 	unsigned long now;
276 
277 	dev_dbg_stamp(dev);
278 
279 	ret = rtc_tm_to_time(tm, &now);
280 	if (ret == 0) {
281 		if (rtc->rtc_wrote_regs & 0x1)
282 			bfin_rtc_sync_pending(dev);
283 		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
284 		rtc->rtc_wrote_regs = 0x1;
285 	}
286 
287 	return ret;
288 }
289 
bfin_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)290 static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
291 {
292 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
293 	dev_dbg_stamp(dev);
294 	alrm->time = rtc->rtc_alarm;
295 	bfin_rtc_sync_pending(dev);
296 	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
297 	return 0;
298 }
299 
bfin_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)300 static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
301 {
302 	struct bfin_rtc *rtc = dev_get_drvdata(dev);
303 	unsigned long rtc_alarm;
304 
305 	dev_dbg_stamp(dev);
306 
307 	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
308 		return -EINVAL;
309 
310 	rtc->rtc_alarm = alrm->time;
311 
312 	bfin_rtc_sync_pending(dev);
313 	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
314 	if (alrm->enabled)
315 		bfin_rtc_int_set_alarm(rtc);
316 
317 	return 0;
318 }
319 
bfin_rtc_proc(struct device * dev,struct seq_file * seq)320 static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
321 {
322 #define yesno(x) ((x) ? "yes" : "no")
323 	u16 ictl = bfin_read_RTC_ICTL();
324 	dev_dbg_stamp(dev);
325 	seq_printf(seq,
326 		"alarm_IRQ\t: %s\n"
327 		"wkalarm_IRQ\t: %s\n"
328 		"seconds_IRQ\t: %s\n",
329 		yesno(ictl & RTC_ISTAT_ALARM),
330 		yesno(ictl & RTC_ISTAT_ALARM_DAY),
331 		yesno(ictl & RTC_ISTAT_SEC));
332 	return 0;
333 #undef yesno
334 }
335 
336 static struct rtc_class_ops bfin_rtc_ops = {
337 	.read_time     = bfin_rtc_read_time,
338 	.set_time      = bfin_rtc_set_time,
339 	.read_alarm    = bfin_rtc_read_alarm,
340 	.set_alarm     = bfin_rtc_set_alarm,
341 	.proc          = bfin_rtc_proc,
342 	.alarm_irq_enable = bfin_rtc_alarm_irq_enable,
343 };
344 
bfin_rtc_probe(struct platform_device * pdev)345 static int bfin_rtc_probe(struct platform_device *pdev)
346 {
347 	struct bfin_rtc *rtc;
348 	struct device *dev = &pdev->dev;
349 	int ret = 0;
350 	unsigned long timeout = jiffies + HZ;
351 
352 	dev_dbg_stamp(dev);
353 
354 	/* Allocate memory for our RTC struct */
355 	rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
356 	if (unlikely(!rtc))
357 		return -ENOMEM;
358 	platform_set_drvdata(pdev, rtc);
359 	device_init_wakeup(dev, 1);
360 
361 	/* Register our RTC with the RTC framework */
362 	rtc->rtc_dev = devm_rtc_device_register(dev, pdev->name, &bfin_rtc_ops,
363 						THIS_MODULE);
364 	if (unlikely(IS_ERR(rtc->rtc_dev))) {
365 		ret = PTR_ERR(rtc->rtc_dev);
366 		goto err;
367 	}
368 
369 	/* Grab the IRQ and init the hardware */
370 	ret = devm_request_irq(dev, IRQ_RTC, bfin_rtc_interrupt, 0,
371 				pdev->name, dev);
372 	if (unlikely(ret))
373 		goto err;
374 	/* sometimes the bootloader touched things, but the write complete was not
375 	 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
376 	 */
377 	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
378 		if (time_after(jiffies, timeout))
379 			break;
380 	bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
381 	bfin_write_RTC_SWCNT(0);
382 
383 	return 0;
384 
385 err:
386 	return ret;
387 }
388 
bfin_rtc_remove(struct platform_device * pdev)389 static int bfin_rtc_remove(struct platform_device *pdev)
390 {
391 	struct device *dev = &pdev->dev;
392 
393 	bfin_rtc_reset(dev, 0);
394 	platform_set_drvdata(pdev, NULL);
395 
396 	return 0;
397 }
398 
399 #ifdef CONFIG_PM_SLEEP
bfin_rtc_suspend(struct device * dev)400 static int bfin_rtc_suspend(struct device *dev)
401 {
402 	dev_dbg_stamp(dev);
403 
404 	if (device_may_wakeup(dev)) {
405 		enable_irq_wake(IRQ_RTC);
406 		bfin_rtc_sync_pending(dev);
407 	} else
408 		bfin_rtc_int_clear(0);
409 
410 	return 0;
411 }
412 
bfin_rtc_resume(struct device * dev)413 static int bfin_rtc_resume(struct device *dev)
414 {
415 	dev_dbg_stamp(dev);
416 
417 	if (device_may_wakeup(dev))
418 		disable_irq_wake(IRQ_RTC);
419 
420 	/*
421 	 * Since only some of the RTC bits are maintained externally in the
422 	 * Vbat domain, we need to wait for the RTC MMRs to be synced into
423 	 * the core after waking up.  This happens every RTC 1HZ.  Once that
424 	 * has happened, we can go ahead and re-enable the important write
425 	 * complete interrupt event.
426 	 */
427 	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
428 		continue;
429 	bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
430 
431 	return 0;
432 }
433 #endif
434 
435 static SIMPLE_DEV_PM_OPS(bfin_rtc_pm_ops, bfin_rtc_suspend, bfin_rtc_resume);
436 
437 static struct platform_driver bfin_rtc_driver = {
438 	.driver		= {
439 		.name	= "rtc-bfin",
440 		.owner	= THIS_MODULE,
441 		.pm	= &bfin_rtc_pm_ops,
442 	},
443 	.probe		= bfin_rtc_probe,
444 	.remove		= bfin_rtc_remove,
445 };
446 
447 module_platform_driver(bfin_rtc_driver);
448 
449 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
450 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
451 MODULE_LICENSE("GPL");
452 MODULE_ALIAS("platform:rtc-bfin");
453