1 /*
2 * Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12 #include <linux/init.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtc.h>
20
21 /* These register offsets are relative to LP (Low Power) range */
22 #define SNVS_LPCR 0x04
23 #define SNVS_LPSR 0x18
24 #define SNVS_LPSRTCMR 0x1c
25 #define SNVS_LPSRTCLR 0x20
26 #define SNVS_LPTAR 0x24
27 #define SNVS_LPPGDR 0x30
28
29 #define SNVS_LPCR_SRTC_ENV (1 << 0)
30 #define SNVS_LPCR_LPTA_EN (1 << 1)
31 #define SNVS_LPCR_LPWUI_EN (1 << 3)
32 #define SNVS_LPSR_LPTA (1 << 0)
33
34 #define SNVS_LPPGDR_INIT 0x41736166
35 #define CNTR_TO_SECS_SH 15
36
37 struct snvs_rtc_data {
38 struct rtc_device *rtc;
39 void __iomem *ioaddr;
40 int irq;
41 spinlock_t lock;
42 };
43
rtc_read_lp_counter(void __iomem * ioaddr)44 static u32 rtc_read_lp_counter(void __iomem *ioaddr)
45 {
46 u64 read1, read2;
47
48 do {
49 read1 = readl(ioaddr + SNVS_LPSRTCMR);
50 read1 <<= 32;
51 read1 |= readl(ioaddr + SNVS_LPSRTCLR);
52
53 read2 = readl(ioaddr + SNVS_LPSRTCMR);
54 read2 <<= 32;
55 read2 |= readl(ioaddr + SNVS_LPSRTCLR);
56 } while (read1 != read2);
57
58 /* Convert 47-bit counter to 32-bit raw second count */
59 return (u32) (read1 >> CNTR_TO_SECS_SH);
60 }
61
rtc_write_sync_lp(void __iomem * ioaddr)62 static void rtc_write_sync_lp(void __iomem *ioaddr)
63 {
64 u32 count1, count2, count3;
65 int i;
66
67 /* Wait for 3 CKIL cycles */
68 for (i = 0; i < 3; i++) {
69 do {
70 count1 = readl(ioaddr + SNVS_LPSRTCLR);
71 count2 = readl(ioaddr + SNVS_LPSRTCLR);
72 } while (count1 != count2);
73
74 /* Now wait until counter value changes */
75 do {
76 do {
77 count2 = readl(ioaddr + SNVS_LPSRTCLR);
78 count3 = readl(ioaddr + SNVS_LPSRTCLR);
79 } while (count2 != count3);
80 } while (count3 == count1);
81 }
82 }
83
snvs_rtc_enable(struct snvs_rtc_data * data,bool enable)84 static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
85 {
86 unsigned long flags;
87 int timeout = 1000;
88 u32 lpcr;
89
90 spin_lock_irqsave(&data->lock, flags);
91
92 lpcr = readl(data->ioaddr + SNVS_LPCR);
93 if (enable)
94 lpcr |= SNVS_LPCR_SRTC_ENV;
95 else
96 lpcr &= ~SNVS_LPCR_SRTC_ENV;
97 writel(lpcr, data->ioaddr + SNVS_LPCR);
98
99 spin_unlock_irqrestore(&data->lock, flags);
100
101 while (--timeout) {
102 lpcr = readl(data->ioaddr + SNVS_LPCR);
103
104 if (enable) {
105 if (lpcr & SNVS_LPCR_SRTC_ENV)
106 break;
107 } else {
108 if (!(lpcr & SNVS_LPCR_SRTC_ENV))
109 break;
110 }
111 }
112
113 if (!timeout)
114 return -ETIMEDOUT;
115
116 return 0;
117 }
118
snvs_rtc_read_time(struct device * dev,struct rtc_time * tm)119 static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
120 {
121 struct snvs_rtc_data *data = dev_get_drvdata(dev);
122 unsigned long time = rtc_read_lp_counter(data->ioaddr);
123
124 rtc_time_to_tm(time, tm);
125
126 return 0;
127 }
128
snvs_rtc_set_time(struct device * dev,struct rtc_time * tm)129 static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
130 {
131 struct snvs_rtc_data *data = dev_get_drvdata(dev);
132 unsigned long time;
133
134 rtc_tm_to_time(tm, &time);
135
136 /* Disable RTC first */
137 snvs_rtc_enable(data, false);
138
139 /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
140 writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR);
141 writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR);
142
143 /* Enable RTC again */
144 snvs_rtc_enable(data, true);
145
146 return 0;
147 }
148
snvs_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)149 static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
150 {
151 struct snvs_rtc_data *data = dev_get_drvdata(dev);
152 u32 lptar, lpsr;
153
154 lptar = readl(data->ioaddr + SNVS_LPTAR);
155 rtc_time_to_tm(lptar, &alrm->time);
156
157 lpsr = readl(data->ioaddr + SNVS_LPSR);
158 alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
159
160 return 0;
161 }
162
snvs_rtc_alarm_irq_enable(struct device * dev,unsigned int enable)163 static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
164 {
165 struct snvs_rtc_data *data = dev_get_drvdata(dev);
166 u32 lpcr;
167 unsigned long flags;
168
169 spin_lock_irqsave(&data->lock, flags);
170
171 lpcr = readl(data->ioaddr + SNVS_LPCR);
172 if (enable)
173 lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
174 else
175 lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
176 writel(lpcr, data->ioaddr + SNVS_LPCR);
177
178 spin_unlock_irqrestore(&data->lock, flags);
179
180 rtc_write_sync_lp(data->ioaddr);
181
182 return 0;
183 }
184
snvs_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)185 static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
186 {
187 struct snvs_rtc_data *data = dev_get_drvdata(dev);
188 struct rtc_time *alrm_tm = &alrm->time;
189 unsigned long time;
190 unsigned long flags;
191 u32 lpcr;
192
193 rtc_tm_to_time(alrm_tm, &time);
194
195 spin_lock_irqsave(&data->lock, flags);
196
197 /* Have to clear LPTA_EN before programming new alarm time in LPTAR */
198 lpcr = readl(data->ioaddr + SNVS_LPCR);
199 lpcr &= ~SNVS_LPCR_LPTA_EN;
200 writel(lpcr, data->ioaddr + SNVS_LPCR);
201
202 spin_unlock_irqrestore(&data->lock, flags);
203
204 writel(time, data->ioaddr + SNVS_LPTAR);
205
206 /* Clear alarm interrupt status bit */
207 writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR);
208
209 return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
210 }
211
212 static const struct rtc_class_ops snvs_rtc_ops = {
213 .read_time = snvs_rtc_read_time,
214 .set_time = snvs_rtc_set_time,
215 .read_alarm = snvs_rtc_read_alarm,
216 .set_alarm = snvs_rtc_set_alarm,
217 .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
218 };
219
snvs_rtc_irq_handler(int irq,void * dev_id)220 static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
221 {
222 struct device *dev = dev_id;
223 struct snvs_rtc_data *data = dev_get_drvdata(dev);
224 u32 lpsr;
225 u32 events = 0;
226
227 lpsr = readl(data->ioaddr + SNVS_LPSR);
228
229 if (lpsr & SNVS_LPSR_LPTA) {
230 events |= (RTC_AF | RTC_IRQF);
231
232 /* RTC alarm should be one-shot */
233 snvs_rtc_alarm_irq_enable(dev, 0);
234
235 rtc_update_irq(data->rtc, 1, events);
236 }
237
238 /* clear interrupt status */
239 writel(lpsr, data->ioaddr + SNVS_LPSR);
240
241 return events ? IRQ_HANDLED : IRQ_NONE;
242 }
243
snvs_rtc_probe(struct platform_device * pdev)244 static int snvs_rtc_probe(struct platform_device *pdev)
245 {
246 struct snvs_rtc_data *data;
247 struct resource *res;
248 int ret;
249
250 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
251 if (!data)
252 return -ENOMEM;
253
254 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
255 data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
256 if (IS_ERR(data->ioaddr))
257 return PTR_ERR(data->ioaddr);
258
259 data->irq = platform_get_irq(pdev, 0);
260 if (data->irq < 0)
261 return data->irq;
262
263 platform_set_drvdata(pdev, data);
264
265 spin_lock_init(&data->lock);
266
267 /* Initialize glitch detect */
268 writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR);
269
270 /* Clear interrupt status */
271 writel(0xffffffff, data->ioaddr + SNVS_LPSR);
272
273 /* Enable RTC */
274 snvs_rtc_enable(data, true);
275
276 device_init_wakeup(&pdev->dev, true);
277
278 ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
279 IRQF_SHARED, "rtc alarm", &pdev->dev);
280 if (ret) {
281 dev_err(&pdev->dev, "failed to request irq %d: %d\n",
282 data->irq, ret);
283 return ret;
284 }
285
286 data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
287 &snvs_rtc_ops, THIS_MODULE);
288 if (IS_ERR(data->rtc)) {
289 ret = PTR_ERR(data->rtc);
290 dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
291 return ret;
292 }
293
294 return 0;
295 }
296
snvs_rtc_remove(struct platform_device * pdev)297 static int snvs_rtc_remove(struct platform_device *pdev)
298 {
299 return 0;
300 }
301
302 #ifdef CONFIG_PM_SLEEP
snvs_rtc_suspend(struct device * dev)303 static int snvs_rtc_suspend(struct device *dev)
304 {
305 struct snvs_rtc_data *data = dev_get_drvdata(dev);
306
307 if (device_may_wakeup(dev))
308 enable_irq_wake(data->irq);
309
310 return 0;
311 }
312
snvs_rtc_resume(struct device * dev)313 static int snvs_rtc_resume(struct device *dev)
314 {
315 struct snvs_rtc_data *data = dev_get_drvdata(dev);
316
317 if (device_may_wakeup(dev))
318 disable_irq_wake(data->irq);
319
320 return 0;
321 }
322 #endif
323
324 static SIMPLE_DEV_PM_OPS(snvs_rtc_pm_ops, snvs_rtc_suspend, snvs_rtc_resume);
325
326 static const struct of_device_id snvs_dt_ids[] = {
327 { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
328 { /* sentinel */ }
329 };
330 MODULE_DEVICE_TABLE(of, snvs_dt_ids);
331
332 static struct platform_driver snvs_rtc_driver = {
333 .driver = {
334 .name = "snvs_rtc",
335 .owner = THIS_MODULE,
336 .pm = &snvs_rtc_pm_ops,
337 .of_match_table = of_match_ptr(snvs_dt_ids),
338 },
339 .probe = snvs_rtc_probe,
340 .remove = snvs_rtc_remove,
341 };
342 module_platform_driver(snvs_rtc_driver);
343
344 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
345 MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
346 MODULE_LICENSE("GPL");
347