• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50 
51 #include "aacraid.h"
52 
53 /**
54  *	fib_map_alloc		-	allocate the fib objects
55  *	@dev: Adapter to allocate for
56  *
57  *	Allocate and map the shared PCI space for the FIB blocks used to
58  *	talk to the Adaptec firmware.
59  */
60 
fib_map_alloc(struct aac_dev * dev)61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 	dprintk((KERN_INFO
64 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 		&dev->hw_fib_pa);
71 	if (dev->hw_fib_va == NULL)
72 		return -ENOMEM;
73 	return 0;
74 }
75 
76 /**
77  *	aac_fib_map_free		-	free the fib objects
78  *	@dev: Adapter to free
79  *
80  *	Free the PCI mappings and the memory allocated for FIB blocks
81  *	on this adapter.
82  */
83 
aac_fib_map_free(struct aac_dev * dev)84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 	pci_free_consistent(dev->pdev,
87 	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 	  dev->hw_fib_va, dev->hw_fib_pa);
89 	dev->hw_fib_va = NULL;
90 	dev->hw_fib_pa = 0;
91 }
92 
93 /**
94  *	aac_fib_setup	-	setup the fibs
95  *	@dev: Adapter to set up
96  *
97  *	Allocate the PCI space for the fibs, map it and then initialise the
98  *	fib area, the unmapped fib data and also the free list
99  */
100 
aac_fib_setup(struct aac_dev * dev)101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 	struct fib *fibptr;
104 	struct hw_fib *hw_fib;
105 	dma_addr_t hw_fib_pa;
106 	int i;
107 
108 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 	}
113 	if (i<0)
114 		return -ENOMEM;
115 
116 	/* 32 byte alignment for PMC */
117 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 		(hw_fib_pa - dev->hw_fib_pa));
120 	dev->hw_fib_pa = hw_fib_pa;
121 	memset(dev->hw_fib_va, 0,
122 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124 
125 	/* add Xport header */
126 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 		sizeof(struct aac_fib_xporthdr));
128 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129 
130 	hw_fib = dev->hw_fib_va;
131 	hw_fib_pa = dev->hw_fib_pa;
132 	/*
133 	 *	Initialise the fibs
134 	 */
135 	for (i = 0, fibptr = &dev->fibs[i];
136 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 		i++, fibptr++)
138 	{
139 		fibptr->flags = 0;
140 		fibptr->dev = dev;
141 		fibptr->hw_fib_va = hw_fib;
142 		fibptr->data = (void *) fibptr->hw_fib_va->data;
143 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
144 		sema_init(&fibptr->event_wait, 0);
145 		spin_lock_init(&fibptr->event_lock);
146 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148 		fibptr->hw_fib_pa = hw_fib_pa;
149 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151 		hw_fib_pa = hw_fib_pa +
152 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153 	}
154 	/*
155 	 *	Add the fib chain to the free list
156 	 */
157 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158 	/*
159 	 *	Enable this to debug out of queue space
160 	 */
161 	dev->free_fib = &dev->fibs[0];
162 	return 0;
163 }
164 
165 /**
166  *	aac_fib_alloc	-	allocate a fib
167  *	@dev: Adapter to allocate the fib for
168  *
169  *	Allocate a fib from the adapter fib pool. If the pool is empty we
170  *	return NULL.
171  */
172 
aac_fib_alloc(struct aac_dev * dev)173 struct fib *aac_fib_alloc(struct aac_dev *dev)
174 {
175 	struct fib * fibptr;
176 	unsigned long flags;
177 	spin_lock_irqsave(&dev->fib_lock, flags);
178 	fibptr = dev->free_fib;
179 	if(!fibptr){
180 		spin_unlock_irqrestore(&dev->fib_lock, flags);
181 		return fibptr;
182 	}
183 	dev->free_fib = fibptr->next;
184 	spin_unlock_irqrestore(&dev->fib_lock, flags);
185 	/*
186 	 *	Set the proper node type code and node byte size
187 	 */
188 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189 	fibptr->size = sizeof(struct fib);
190 	/*
191 	 *	Null out fields that depend on being zero at the start of
192 	 *	each I/O
193 	 */
194 	fibptr->hw_fib_va->header.XferState = 0;
195 	fibptr->flags = 0;
196 	fibptr->callback = NULL;
197 	fibptr->callback_data = NULL;
198 
199 	return fibptr;
200 }
201 
202 /**
203  *	aac_fib_free	-	free a fib
204  *	@fibptr: fib to free up
205  *
206  *	Frees up a fib and places it on the appropriate queue
207  */
208 
aac_fib_free(struct fib * fibptr)209 void aac_fib_free(struct fib *fibptr)
210 {
211 	unsigned long flags, flagsv;
212 
213 	spin_lock_irqsave(&fibptr->event_lock, flagsv);
214 	if (fibptr->done == 2) {
215 		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
216 		return;
217 	}
218 	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
219 
220 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
221 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
222 		aac_config.fib_timeouts++;
223 	if (fibptr->hw_fib_va->header.XferState != 0) {
224 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
225 			 (void*)fibptr,
226 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
227 	}
228 	fibptr->next = fibptr->dev->free_fib;
229 	fibptr->dev->free_fib = fibptr;
230 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
231 }
232 
233 /**
234  *	aac_fib_init	-	initialise a fib
235  *	@fibptr: The fib to initialize
236  *
237  *	Set up the generic fib fields ready for use
238  */
239 
aac_fib_init(struct fib * fibptr)240 void aac_fib_init(struct fib *fibptr)
241 {
242 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
243 
244 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
245 	hw_fib->header.StructType = FIB_MAGIC;
246 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
247 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
248 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
249 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
250 }
251 
252 /**
253  *	fib_deallocate		-	deallocate a fib
254  *	@fibptr: fib to deallocate
255  *
256  *	Will deallocate and return to the free pool the FIB pointed to by the
257  *	caller.
258  */
259 
fib_dealloc(struct fib * fibptr)260 static void fib_dealloc(struct fib * fibptr)
261 {
262 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
263 	hw_fib->header.XferState = 0;
264 }
265 
266 /*
267  *	Commuication primitives define and support the queuing method we use to
268  *	support host to adapter commuication. All queue accesses happen through
269  *	these routines and are the only routines which have a knowledge of the
270  *	 how these queues are implemented.
271  */
272 
273 /**
274  *	aac_get_entry		-	get a queue entry
275  *	@dev: Adapter
276  *	@qid: Queue Number
277  *	@entry: Entry return
278  *	@index: Index return
279  *	@nonotify: notification control
280  *
281  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
282  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283  *	returned.
284  */
285 
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287 {
288 	struct aac_queue * q;
289 	unsigned long idx;
290 
291 	/*
292 	 *	All of the queues wrap when they reach the end, so we check
293 	 *	to see if they have reached the end and if they have we just
294 	 *	set the index back to zero. This is a wrap. You could or off
295 	 *	the high bits in all updates but this is a bit faster I think.
296 	 */
297 
298 	q = &dev->queues->queue[qid];
299 
300 	idx = *index = le32_to_cpu(*(q->headers.producer));
301 	/* Interrupt Moderation, only interrupt for first two entries */
302 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
303 		if (--idx == 0) {
304 			if (qid == AdapNormCmdQueue)
305 				idx = ADAP_NORM_CMD_ENTRIES;
306 			else
307 				idx = ADAP_NORM_RESP_ENTRIES;
308 		}
309 		if (idx != le32_to_cpu(*(q->headers.consumer)))
310 			*nonotify = 1;
311 	}
312 
313 	if (qid == AdapNormCmdQueue) {
314 		if (*index >= ADAP_NORM_CMD_ENTRIES)
315 			*index = 0; /* Wrap to front of the Producer Queue. */
316 	} else {
317 		if (*index >= ADAP_NORM_RESP_ENTRIES)
318 			*index = 0; /* Wrap to front of the Producer Queue. */
319 	}
320 
321 	/* Queue is full */
322 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324 				qid, q->numpending);
325 		return 0;
326 	} else {
327 		*entry = q->base + *index;
328 		return 1;
329 	}
330 }
331 
332 /**
333  *	aac_queue_get		-	get the next free QE
334  *	@dev: Adapter
335  *	@index: Returned index
336  *	@priority: Priority of fib
337  *	@fib: Fib to associate with the queue entry
338  *	@wait: Wait if queue full
339  *	@fibptr: Driver fib object to go with fib
340  *	@nonotify: Don't notify the adapter
341  *
342  *	Gets the next free QE off the requested priorty adapter command
343  *	queue and associates the Fib with the QE. The QE represented by
344  *	index is ready to insert on the queue when this routine returns
345  *	success.
346  */
347 
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349 {
350 	struct aac_entry * entry = NULL;
351 	int map = 0;
352 
353 	if (qid == AdapNormCmdQueue) {
354 		/*  if no entries wait for some if caller wants to */
355 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356 			printk(KERN_ERR "GetEntries failed\n");
357 		}
358 		/*
359 		 *	Setup queue entry with a command, status and fib mapped
360 		 */
361 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362 		map = 1;
363 	} else {
364 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365 			/* if no entries wait for some if caller wants to */
366 		}
367 		/*
368 		 *	Setup queue entry with command, status and fib mapped
369 		 */
370 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371 		entry->addr = hw_fib->header.SenderFibAddress;
372 			/* Restore adapters pointer to the FIB */
373 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
374 		map = 0;
375 	}
376 	/*
377 	 *	If MapFib is true than we need to map the Fib and put pointers
378 	 *	in the queue entry.
379 	 */
380 	if (map)
381 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382 	return 0;
383 }
384 
385 /*
386  *	Define the highest level of host to adapter communication routines.
387  *	These routines will support host to adapter FS commuication. These
388  *	routines have no knowledge of the commuication method used. This level
389  *	sends and receives FIBs. This level has no knowledge of how these FIBs
390  *	get passed back and forth.
391  */
392 
393 /**
394  *	aac_fib_send	-	send a fib to the adapter
395  *	@command: Command to send
396  *	@fibptr: The fib
397  *	@size: Size of fib data area
398  *	@priority: Priority of Fib
399  *	@wait: Async/sync select
400  *	@reply: True if a reply is wanted
401  *	@callback: Called with reply
402  *	@callback_data: Passed to callback
403  *
404  *	Sends the requested FIB to the adapter and optionally will wait for a
405  *	response FIB. If the caller does not wish to wait for a response than
406  *	an event to wait on must be supplied. This event will be set when a
407  *	response FIB is received from the adapter.
408  */
409 
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411 		int priority, int wait, int reply, fib_callback callback,
412 		void *callback_data)
413 {
414 	struct aac_dev * dev = fibptr->dev;
415 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
416 	unsigned long flags = 0;
417 	unsigned long qflags;
418 	unsigned long mflags = 0;
419 	unsigned long sflags = 0;
420 
421 
422 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423 		return -EBUSY;
424 	/*
425 	 *	There are 5 cases with the wait and response requested flags.
426 	 *	The only invalid cases are if the caller requests to wait and
427 	 *	does not request a response and if the caller does not want a
428 	 *	response and the Fib is not allocated from pool. If a response
429 	 *	is not requesed the Fib will just be deallocaed by the DPC
430 	 *	routine when the response comes back from the adapter. No
431 	 *	further processing will be done besides deleting the Fib. We
432 	 *	will have a debug mode where the adapter can notify the host
433 	 *	it had a problem and the host can log that fact.
434 	 */
435 	fibptr->flags = 0;
436 	if (wait && !reply) {
437 		return -EINVAL;
438 	} else if (!wait && reply) {
439 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
440 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
441 	} else if (!wait && !reply) {
442 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
443 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
444 	} else if (wait && reply) {
445 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
446 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
447 	}
448 	/*
449 	 *	Map the fib into 32bits by using the fib number
450 	 */
451 
452 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
453 	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
454 	/*
455 	 *	Set FIB state to indicate where it came from and if we want a
456 	 *	response from the adapter. Also load the command from the
457 	 *	caller.
458 	 *
459 	 *	Map the hw fib pointer as a 32bit value
460 	 */
461 	hw_fib->header.Command = cpu_to_le16(command);
462 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
463 	/*
464 	 *	Set the size of the Fib we want to send to the adapter
465 	 */
466 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468 		return -EMSGSIZE;
469 	}
470 	/*
471 	 *	Get a queue entry connect the FIB to it and send an notify
472 	 *	the adapter a command is ready.
473 	 */
474 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
475 
476 	/*
477 	 *	Fill in the Callback and CallbackContext if we are not
478 	 *	going to wait.
479 	 */
480 	if (!wait) {
481 		fibptr->callback = callback;
482 		fibptr->callback_data = callback_data;
483 		fibptr->flags = FIB_CONTEXT_FLAG;
484 	}
485 
486 	fibptr->done = 0;
487 
488 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
489 
490 	dprintk((KERN_DEBUG "Fib contents:.\n"));
491 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
492 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
497 
498 	if (!dev->queues)
499 		return -EBUSY;
500 
501 	if (wait) {
502 
503 		spin_lock_irqsave(&dev->manage_lock, mflags);
504 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505 			printk(KERN_INFO "No management Fibs Available:%d\n",
506 						dev->management_fib_count);
507 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
508 			return -EBUSY;
509 		}
510 		dev->management_fib_count++;
511 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
512 		spin_lock_irqsave(&fibptr->event_lock, flags);
513 	}
514 
515 	if (dev->sync_mode) {
516 		if (wait)
517 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
518 		spin_lock_irqsave(&dev->sync_lock, sflags);
519 		if (dev->sync_fib) {
520 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
521 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
522 		} else {
523 			dev->sync_fib = fibptr;
524 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
525 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
526 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
527 				NULL, NULL, NULL, NULL, NULL);
528 		}
529 		if (wait) {
530 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
531 			if (down_interruptible(&fibptr->event_wait)) {
532 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
533 				return -EFAULT;
534 			}
535 			return 0;
536 		}
537 		return -EINPROGRESS;
538 	}
539 
540 	if (aac_adapter_deliver(fibptr) != 0) {
541 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
542 		if (wait) {
543 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
544 			spin_lock_irqsave(&dev->manage_lock, mflags);
545 			dev->management_fib_count--;
546 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
547 		}
548 		return -EBUSY;
549 	}
550 
551 
552 	/*
553 	 *	If the caller wanted us to wait for response wait now.
554 	 */
555 
556 	if (wait) {
557 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
558 		/* Only set for first known interruptable command */
559 		if (wait < 0) {
560 			/*
561 			 * *VERY* Dangerous to time out a command, the
562 			 * assumption is made that we have no hope of
563 			 * functioning because an interrupt routing or other
564 			 * hardware failure has occurred.
565 			 */
566 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
567 			while (down_trylock(&fibptr->event_wait)) {
568 				int blink;
569 				if (time_is_before_eq_jiffies(timeout)) {
570 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
571 					spin_lock_irqsave(q->lock, qflags);
572 					q->numpending--;
573 					spin_unlock_irqrestore(q->lock, qflags);
574 					if (wait == -1) {
575 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
576 						  "Usually a result of a PCI interrupt routing problem;\n"
577 						  "update mother board BIOS or consider utilizing one of\n"
578 						  "the SAFE mode kernel options (acpi, apic etc)\n");
579 					}
580 					return -ETIMEDOUT;
581 				}
582 				if ((blink = aac_adapter_check_health(dev)) > 0) {
583 					if (wait == -1) {
584 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
585 						  "Usually a result of a serious unrecoverable hardware problem\n",
586 						  blink);
587 					}
588 					return -EFAULT;
589 				}
590 				/* We used to udelay() here but that absorbed
591 				 * a CPU when a timeout occured. Not very
592 				 * useful. */
593 				cpu_relax();
594 			}
595 		} else if (down_interruptible(&fibptr->event_wait)) {
596 			/* Do nothing ... satisfy
597 			 * down_interruptible must_check */
598 		}
599 
600 		spin_lock_irqsave(&fibptr->event_lock, flags);
601 		if (fibptr->done == 0) {
602 			fibptr->done = 2; /* Tell interrupt we aborted */
603 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
604 			return -ERESTARTSYS;
605 		}
606 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
607 		BUG_ON(fibptr->done == 0);
608 
609 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
610 			return -ETIMEDOUT;
611 		return 0;
612 	}
613 	/*
614 	 *	If the user does not want a response than return success otherwise
615 	 *	return pending
616 	 */
617 	if (reply)
618 		return -EINPROGRESS;
619 	else
620 		return 0;
621 }
622 
623 /**
624  *	aac_consumer_get	-	get the top of the queue
625  *	@dev: Adapter
626  *	@q: Queue
627  *	@entry: Return entry
628  *
629  *	Will return a pointer to the entry on the top of the queue requested that
630  *	we are a consumer of, and return the address of the queue entry. It does
631  *	not change the state of the queue.
632  */
633 
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)634 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
635 {
636 	u32 index;
637 	int status;
638 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
639 		status = 0;
640 	} else {
641 		/*
642 		 *	The consumer index must be wrapped if we have reached
643 		 *	the end of the queue, else we just use the entry
644 		 *	pointed to by the header index
645 		 */
646 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647 			index = 0;
648 		else
649 			index = le32_to_cpu(*q->headers.consumer);
650 		*entry = q->base + index;
651 		status = 1;
652 	}
653 	return(status);
654 }
655 
656 /**
657  *	aac_consumer_free	-	free consumer entry
658  *	@dev: Adapter
659  *	@q: Queue
660  *	@qid: Queue ident
661  *
662  *	Frees up the current top of the queue we are a consumer of. If the
663  *	queue was full notify the producer that the queue is no longer full.
664  */
665 
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)666 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
667 {
668 	int wasfull = 0;
669 	u32 notify;
670 
671 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
672 		wasfull = 1;
673 
674 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
675 		*q->headers.consumer = cpu_to_le32(1);
676 	else
677 		le32_add_cpu(q->headers.consumer, 1);
678 
679 	if (wasfull) {
680 		switch (qid) {
681 
682 		case HostNormCmdQueue:
683 			notify = HostNormCmdNotFull;
684 			break;
685 		case HostNormRespQueue:
686 			notify = HostNormRespNotFull;
687 			break;
688 		default:
689 			BUG();
690 			return;
691 		}
692 		aac_adapter_notify(dev, notify);
693 	}
694 }
695 
696 /**
697  *	aac_fib_adapter_complete	-	complete adapter issued fib
698  *	@fibptr: fib to complete
699  *	@size: size of fib
700  *
701  *	Will do all necessary work to complete a FIB that was sent from
702  *	the adapter.
703  */
704 
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)705 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
706 {
707 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
708 	struct aac_dev * dev = fibptr->dev;
709 	struct aac_queue * q;
710 	unsigned long nointr = 0;
711 	unsigned long qflags;
712 
713 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
714 	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
715 		kfree(hw_fib);
716 		return 0;
717 	}
718 
719 	if (hw_fib->header.XferState == 0) {
720 		if (dev->comm_interface == AAC_COMM_MESSAGE)
721 			kfree(hw_fib);
722 		return 0;
723 	}
724 	/*
725 	 *	If we plan to do anything check the structure type first.
726 	 */
727 	if (hw_fib->header.StructType != FIB_MAGIC &&
728 	    hw_fib->header.StructType != FIB_MAGIC2 &&
729 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
730 		if (dev->comm_interface == AAC_COMM_MESSAGE)
731 			kfree(hw_fib);
732 		return -EINVAL;
733 	}
734 	/*
735 	 *	This block handles the case where the adapter had sent us a
736 	 *	command and we have finished processing the command. We
737 	 *	call completeFib when we are done processing the command
738 	 *	and want to send a response back to the adapter. This will
739 	 *	send the completed cdb to the adapter.
740 	 */
741 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
742 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
743 			kfree (hw_fib);
744 		} else {
745 			u32 index;
746 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
747 			if (size) {
748 				size += sizeof(struct aac_fibhdr);
749 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
750 					return -EMSGSIZE;
751 				hw_fib->header.Size = cpu_to_le16(size);
752 			}
753 			q = &dev->queues->queue[AdapNormRespQueue];
754 			spin_lock_irqsave(q->lock, qflags);
755 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
756 			*(q->headers.producer) = cpu_to_le32(index + 1);
757 			spin_unlock_irqrestore(q->lock, qflags);
758 			if (!(nointr & (int)aac_config.irq_mod))
759 				aac_adapter_notify(dev, AdapNormRespQueue);
760 		}
761 	} else {
762 		printk(KERN_WARNING "aac_fib_adapter_complete: "
763 			"Unknown xferstate detected.\n");
764 		BUG();
765 	}
766 	return 0;
767 }
768 
769 /**
770  *	aac_fib_complete	-	fib completion handler
771  *	@fib: FIB to complete
772  *
773  *	Will do all necessary work to complete a FIB.
774  */
775 
aac_fib_complete(struct fib * fibptr)776 int aac_fib_complete(struct fib *fibptr)
777 {
778 	unsigned long flags;
779 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
780 
781 	/*
782 	 *	Check for a fib which has already been completed
783 	 */
784 
785 	if (hw_fib->header.XferState == 0)
786 		return 0;
787 	/*
788 	 *	If we plan to do anything check the structure type first.
789 	 */
790 
791 	if (hw_fib->header.StructType != FIB_MAGIC &&
792 	    hw_fib->header.StructType != FIB_MAGIC2 &&
793 	    hw_fib->header.StructType != FIB_MAGIC2_64)
794 		return -EINVAL;
795 	/*
796 	 *	This block completes a cdb which orginated on the host and we
797 	 *	just need to deallocate the cdb or reinit it. At this point the
798 	 *	command is complete that we had sent to the adapter and this
799 	 *	cdb could be reused.
800 	 */
801 	spin_lock_irqsave(&fibptr->event_lock, flags);
802 	if (fibptr->done == 2) {
803 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
804 		return 0;
805 	}
806 	spin_unlock_irqrestore(&fibptr->event_lock, flags);
807 
808 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
809 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
810 	{
811 		fib_dealloc(fibptr);
812 	}
813 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
814 	{
815 		/*
816 		 *	This handles the case when the host has aborted the I/O
817 		 *	to the adapter because the adapter is not responding
818 		 */
819 		fib_dealloc(fibptr);
820 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
821 		fib_dealloc(fibptr);
822 	} else {
823 		BUG();
824 	}
825 	return 0;
826 }
827 
828 /**
829  *	aac_printf	-	handle printf from firmware
830  *	@dev: Adapter
831  *	@val: Message info
832  *
833  *	Print a message passed to us by the controller firmware on the
834  *	Adaptec board
835  */
836 
aac_printf(struct aac_dev * dev,u32 val)837 void aac_printf(struct aac_dev *dev, u32 val)
838 {
839 	char *cp = dev->printfbuf;
840 	if (dev->printf_enabled)
841 	{
842 		int length = val & 0xffff;
843 		int level = (val >> 16) & 0xffff;
844 
845 		/*
846 		 *	The size of the printfbuf is set in port.c
847 		 *	There is no variable or define for it
848 		 */
849 		if (length > 255)
850 			length = 255;
851 		if (cp[length] != 0)
852 			cp[length] = 0;
853 		if (level == LOG_AAC_HIGH_ERROR)
854 			printk(KERN_WARNING "%s:%s", dev->name, cp);
855 		else
856 			printk(KERN_INFO "%s:%s", dev->name, cp);
857 	}
858 	memset(cp, 0, 256);
859 }
860 
861 
862 /**
863  *	aac_handle_aif		-	Handle a message from the firmware
864  *	@dev: Which adapter this fib is from
865  *	@fibptr: Pointer to fibptr from adapter
866  *
867  *	This routine handles a driver notify fib from the adapter and
868  *	dispatches it to the appropriate routine for handling.
869  */
870 
871 #define AIF_SNIFF_TIMEOUT	(30*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)872 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
873 {
874 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
875 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
876 	u32 channel, id, lun, container;
877 	struct scsi_device *device;
878 	enum {
879 		NOTHING,
880 		DELETE,
881 		ADD,
882 		CHANGE
883 	} device_config_needed = NOTHING;
884 
885 	/* Sniff for container changes */
886 
887 	if (!dev || !dev->fsa_dev)
888 		return;
889 	container = channel = id = lun = (u32)-1;
890 
891 	/*
892 	 *	We have set this up to try and minimize the number of
893 	 * re-configures that take place. As a result of this when
894 	 * certain AIF's come in we will set a flag waiting for another
895 	 * type of AIF before setting the re-config flag.
896 	 */
897 	switch (le32_to_cpu(aifcmd->command)) {
898 	case AifCmdDriverNotify:
899 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
900 		/*
901 		 *	Morph or Expand complete
902 		 */
903 		case AifDenMorphComplete:
904 		case AifDenVolumeExtendComplete:
905 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
906 			if (container >= dev->maximum_num_containers)
907 				break;
908 
909 			/*
910 			 *	Find the scsi_device associated with the SCSI
911 			 * address. Make sure we have the right array, and if
912 			 * so set the flag to initiate a new re-config once we
913 			 * see an AifEnConfigChange AIF come through.
914 			 */
915 
916 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
917 				device = scsi_device_lookup(dev->scsi_host_ptr,
918 					CONTAINER_TO_CHANNEL(container),
919 					CONTAINER_TO_ID(container),
920 					CONTAINER_TO_LUN(container));
921 				if (device) {
922 					dev->fsa_dev[container].config_needed = CHANGE;
923 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
924 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
925 					scsi_device_put(device);
926 				}
927 			}
928 		}
929 
930 		/*
931 		 *	If we are waiting on something and this happens to be
932 		 * that thing then set the re-configure flag.
933 		 */
934 		if (container != (u32)-1) {
935 			if (container >= dev->maximum_num_containers)
936 				break;
937 			if ((dev->fsa_dev[container].config_waiting_on ==
938 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
939 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
940 				dev->fsa_dev[container].config_waiting_on = 0;
941 		} else for (container = 0;
942 		    container < dev->maximum_num_containers; ++container) {
943 			if ((dev->fsa_dev[container].config_waiting_on ==
944 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946 				dev->fsa_dev[container].config_waiting_on = 0;
947 		}
948 		break;
949 
950 	case AifCmdEventNotify:
951 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
952 		case AifEnBatteryEvent:
953 			dev->cache_protected =
954 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
955 			break;
956 		/*
957 		 *	Add an Array.
958 		 */
959 		case AifEnAddContainer:
960 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
961 			if (container >= dev->maximum_num_containers)
962 				break;
963 			dev->fsa_dev[container].config_needed = ADD;
964 			dev->fsa_dev[container].config_waiting_on =
965 				AifEnConfigChange;
966 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
967 			break;
968 
969 		/*
970 		 *	Delete an Array.
971 		 */
972 		case AifEnDeleteContainer:
973 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
974 			if (container >= dev->maximum_num_containers)
975 				break;
976 			dev->fsa_dev[container].config_needed = DELETE;
977 			dev->fsa_dev[container].config_waiting_on =
978 				AifEnConfigChange;
979 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
980 			break;
981 
982 		/*
983 		 *	Container change detected. If we currently are not
984 		 * waiting on something else, setup to wait on a Config Change.
985 		 */
986 		case AifEnContainerChange:
987 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
988 			if (container >= dev->maximum_num_containers)
989 				break;
990 			if (dev->fsa_dev[container].config_waiting_on &&
991 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
992 				break;
993 			dev->fsa_dev[container].config_needed = CHANGE;
994 			dev->fsa_dev[container].config_waiting_on =
995 				AifEnConfigChange;
996 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
997 			break;
998 
999 		case AifEnConfigChange:
1000 			break;
1001 
1002 		case AifEnAddJBOD:
1003 		case AifEnDeleteJBOD:
1004 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1005 			if ((container >> 28)) {
1006 				container = (u32)-1;
1007 				break;
1008 			}
1009 			channel = (container >> 24) & 0xF;
1010 			if (channel >= dev->maximum_num_channels) {
1011 				container = (u32)-1;
1012 				break;
1013 			}
1014 			id = container & 0xFFFF;
1015 			if (id >= dev->maximum_num_physicals) {
1016 				container = (u32)-1;
1017 				break;
1018 			}
1019 			lun = (container >> 16) & 0xFF;
1020 			container = (u32)-1;
1021 			channel = aac_phys_to_logical(channel);
1022 			device_config_needed =
1023 			  (((__le32 *)aifcmd->data)[0] ==
1024 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1025 			if (device_config_needed == ADD) {
1026 				device = scsi_device_lookup(dev->scsi_host_ptr,
1027 					channel,
1028 					id,
1029 					lun);
1030 				if (device) {
1031 					scsi_remove_device(device);
1032 					scsi_device_put(device);
1033 				}
1034 			}
1035 			break;
1036 
1037 		case AifEnEnclosureManagement:
1038 			/*
1039 			 * If in JBOD mode, automatic exposure of new
1040 			 * physical target to be suppressed until configured.
1041 			 */
1042 			if (dev->jbod)
1043 				break;
1044 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1045 			case EM_DRIVE_INSERTION:
1046 			case EM_DRIVE_REMOVAL:
1047 				container = le32_to_cpu(
1048 					((__le32 *)aifcmd->data)[2]);
1049 				if ((container >> 28)) {
1050 					container = (u32)-1;
1051 					break;
1052 				}
1053 				channel = (container >> 24) & 0xF;
1054 				if (channel >= dev->maximum_num_channels) {
1055 					container = (u32)-1;
1056 					break;
1057 				}
1058 				id = container & 0xFFFF;
1059 				lun = (container >> 16) & 0xFF;
1060 				container = (u32)-1;
1061 				if (id >= dev->maximum_num_physicals) {
1062 					/* legacy dev_t ? */
1063 					if ((0x2000 <= id) || lun || channel ||
1064 					  ((channel = (id >> 7) & 0x3F) >=
1065 					  dev->maximum_num_channels))
1066 						break;
1067 					lun = (id >> 4) & 7;
1068 					id &= 0xF;
1069 				}
1070 				channel = aac_phys_to_logical(channel);
1071 				device_config_needed =
1072 				  (((__le32 *)aifcmd->data)[3]
1073 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1074 				  ADD : DELETE;
1075 				break;
1076 			}
1077 			break;
1078 		}
1079 
1080 		/*
1081 		 *	If we are waiting on something and this happens to be
1082 		 * that thing then set the re-configure flag.
1083 		 */
1084 		if (container != (u32)-1) {
1085 			if (container >= dev->maximum_num_containers)
1086 				break;
1087 			if ((dev->fsa_dev[container].config_waiting_on ==
1088 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1089 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1090 				dev->fsa_dev[container].config_waiting_on = 0;
1091 		} else for (container = 0;
1092 		    container < dev->maximum_num_containers; ++container) {
1093 			if ((dev->fsa_dev[container].config_waiting_on ==
1094 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1095 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1096 				dev->fsa_dev[container].config_waiting_on = 0;
1097 		}
1098 		break;
1099 
1100 	case AifCmdJobProgress:
1101 		/*
1102 		 *	These are job progress AIF's. When a Clear is being
1103 		 * done on a container it is initially created then hidden from
1104 		 * the OS. When the clear completes we don't get a config
1105 		 * change so we monitor the job status complete on a clear then
1106 		 * wait for a container change.
1107 		 */
1108 
1109 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1110 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1111 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1112 			for (container = 0;
1113 			    container < dev->maximum_num_containers;
1114 			    ++container) {
1115 				/*
1116 				 * Stomp on all config sequencing for all
1117 				 * containers?
1118 				 */
1119 				dev->fsa_dev[container].config_waiting_on =
1120 					AifEnContainerChange;
1121 				dev->fsa_dev[container].config_needed = ADD;
1122 				dev->fsa_dev[container].config_waiting_stamp =
1123 					jiffies;
1124 			}
1125 		}
1126 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1127 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1128 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1129 			for (container = 0;
1130 			    container < dev->maximum_num_containers;
1131 			    ++container) {
1132 				/*
1133 				 * Stomp on all config sequencing for all
1134 				 * containers?
1135 				 */
1136 				dev->fsa_dev[container].config_waiting_on =
1137 					AifEnContainerChange;
1138 				dev->fsa_dev[container].config_needed = DELETE;
1139 				dev->fsa_dev[container].config_waiting_stamp =
1140 					jiffies;
1141 			}
1142 		}
1143 		break;
1144 	}
1145 
1146 	container = 0;
1147 retry_next:
1148 	if (device_config_needed == NOTHING)
1149 	for (; container < dev->maximum_num_containers; ++container) {
1150 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1151 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1152 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1153 			device_config_needed =
1154 				dev->fsa_dev[container].config_needed;
1155 			dev->fsa_dev[container].config_needed = NOTHING;
1156 			channel = CONTAINER_TO_CHANNEL(container);
1157 			id = CONTAINER_TO_ID(container);
1158 			lun = CONTAINER_TO_LUN(container);
1159 			break;
1160 		}
1161 	}
1162 	if (device_config_needed == NOTHING)
1163 		return;
1164 
1165 	/*
1166 	 *	If we decided that a re-configuration needs to be done,
1167 	 * schedule it here on the way out the door, please close the door
1168 	 * behind you.
1169 	 */
1170 
1171 	/*
1172 	 *	Find the scsi_device associated with the SCSI address,
1173 	 * and mark it as changed, invalidating the cache. This deals
1174 	 * with changes to existing device IDs.
1175 	 */
1176 
1177 	if (!dev || !dev->scsi_host_ptr)
1178 		return;
1179 	/*
1180 	 * force reload of disk info via aac_probe_container
1181 	 */
1182 	if ((channel == CONTAINER_CHANNEL) &&
1183 	  (device_config_needed != NOTHING)) {
1184 		if (dev->fsa_dev[container].valid == 1)
1185 			dev->fsa_dev[container].valid = 2;
1186 		aac_probe_container(dev, container);
1187 	}
1188 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1189 	if (device) {
1190 		switch (device_config_needed) {
1191 		case DELETE:
1192 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193 			scsi_remove_device(device);
1194 #else
1195 			if (scsi_device_online(device)) {
1196 				scsi_device_set_state(device, SDEV_OFFLINE);
1197 				sdev_printk(KERN_INFO, device,
1198 					"Device offlined - %s\n",
1199 					(channel == CONTAINER_CHANNEL) ?
1200 						"array deleted" :
1201 						"enclosure services event");
1202 			}
1203 #endif
1204 			break;
1205 		case ADD:
1206 			if (!scsi_device_online(device)) {
1207 				sdev_printk(KERN_INFO, device,
1208 					"Device online - %s\n",
1209 					(channel == CONTAINER_CHANNEL) ?
1210 						"array created" :
1211 						"enclosure services event");
1212 				scsi_device_set_state(device, SDEV_RUNNING);
1213 			}
1214 			/* FALLTHRU */
1215 		case CHANGE:
1216 			if ((channel == CONTAINER_CHANNEL)
1217 			 && (!dev->fsa_dev[container].valid)) {
1218 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219 				scsi_remove_device(device);
1220 #else
1221 				if (!scsi_device_online(device))
1222 					break;
1223 				scsi_device_set_state(device, SDEV_OFFLINE);
1224 				sdev_printk(KERN_INFO, device,
1225 					"Device offlined - %s\n",
1226 					"array failed");
1227 #endif
1228 				break;
1229 			}
1230 			scsi_rescan_device(&device->sdev_gendev);
1231 
1232 		default:
1233 			break;
1234 		}
1235 		scsi_device_put(device);
1236 		device_config_needed = NOTHING;
1237 	}
1238 	if (device_config_needed == ADD)
1239 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1240 	if (channel == CONTAINER_CHANNEL) {
1241 		container++;
1242 		device_config_needed = NOTHING;
1243 		goto retry_next;
1244 	}
1245 }
1246 
_aac_reset_adapter(struct aac_dev * aac,int forced)1247 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1248 {
1249 	int index, quirks;
1250 	int retval;
1251 	struct Scsi_Host *host;
1252 	struct scsi_device *dev;
1253 	struct scsi_cmnd *command;
1254 	struct scsi_cmnd *command_list;
1255 	int jafo = 0;
1256 
1257 	/*
1258 	 * Assumptions:
1259 	 *	- host is locked, unless called by the aacraid thread.
1260 	 *	  (a matter of convenience, due to legacy issues surrounding
1261 	 *	  eh_host_adapter_reset).
1262 	 *	- in_reset is asserted, so no new i/o is getting to the
1263 	 *	  card.
1264 	 *	- The card is dead, or will be very shortly ;-/ so no new
1265 	 *	  commands are completing in the interrupt service.
1266 	 */
1267 	host = aac->scsi_host_ptr;
1268 	scsi_block_requests(host);
1269 	aac_adapter_disable_int(aac);
1270 	if (aac->thread->pid != current->pid) {
1271 		spin_unlock_irq(host->host_lock);
1272 		kthread_stop(aac->thread);
1273 		jafo = 1;
1274 	}
1275 
1276 	/*
1277 	 *	If a positive health, means in a known DEAD PANIC
1278 	 * state and the adapter could be reset to `try again'.
1279 	 */
1280 	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1281 
1282 	if (retval)
1283 		goto out;
1284 
1285 	/*
1286 	 *	Loop through the fibs, close the synchronous FIBS
1287 	 */
1288 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1289 		struct fib *fib = &aac->fibs[index];
1290 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1291 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1292 			unsigned long flagv;
1293 			spin_lock_irqsave(&fib->event_lock, flagv);
1294 			up(&fib->event_wait);
1295 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1296 			schedule();
1297 			retval = 0;
1298 		}
1299 	}
1300 	/* Give some extra time for ioctls to complete. */
1301 	if (retval == 0)
1302 		ssleep(2);
1303 	index = aac->cardtype;
1304 
1305 	/*
1306 	 * Re-initialize the adapter, first free resources, then carefully
1307 	 * apply the initialization sequence to come back again. Only risk
1308 	 * is a change in Firmware dropping cache, it is assumed the caller
1309 	 * will ensure that i/o is queisced and the card is flushed in that
1310 	 * case.
1311 	 */
1312 	aac_fib_map_free(aac);
1313 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1314 	aac->comm_addr = NULL;
1315 	aac->comm_phys = 0;
1316 	kfree(aac->queues);
1317 	aac->queues = NULL;
1318 	free_irq(aac->pdev->irq, aac);
1319 	if (aac->msi)
1320 		pci_disable_msi(aac->pdev);
1321 	kfree(aac->fsa_dev);
1322 	aac->fsa_dev = NULL;
1323 	quirks = aac_get_driver_ident(index)->quirks;
1324 	if (quirks & AAC_QUIRK_31BIT) {
1325 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1326 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1327 			goto out;
1328 	} else {
1329 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1330 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1331 			goto out;
1332 	}
1333 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1334 		goto out;
1335 	if (quirks & AAC_QUIRK_31BIT)
1336 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1337 			goto out;
1338 	if (jafo) {
1339 		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1340 		if (IS_ERR(aac->thread)) {
1341 			retval = PTR_ERR(aac->thread);
1342 			goto out;
1343 		}
1344 	}
1345 	(void)aac_get_adapter_info(aac);
1346 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1347 		host->sg_tablesize = 34;
1348 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1349 	}
1350 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1351 		host->sg_tablesize = 17;
1352 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1353 	}
1354 	aac_get_config_status(aac, 1);
1355 	aac_get_containers(aac);
1356 	/*
1357 	 * This is where the assumption that the Adapter is quiesced
1358 	 * is important.
1359 	 */
1360 	command_list = NULL;
1361 	__shost_for_each_device(dev, host) {
1362 		unsigned long flags;
1363 		spin_lock_irqsave(&dev->list_lock, flags);
1364 		list_for_each_entry(command, &dev->cmd_list, list)
1365 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1366 				command->SCp.buffer = (struct scatterlist *)command_list;
1367 				command_list = command;
1368 			}
1369 		spin_unlock_irqrestore(&dev->list_lock, flags);
1370 	}
1371 	while ((command = command_list)) {
1372 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1373 		command->SCp.buffer = NULL;
1374 		command->result = DID_OK << 16
1375 		  | COMMAND_COMPLETE << 8
1376 		  | SAM_STAT_TASK_SET_FULL;
1377 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1378 		command->scsi_done(command);
1379 	}
1380 	retval = 0;
1381 
1382 out:
1383 	aac->in_reset = 0;
1384 	scsi_unblock_requests(host);
1385 	if (jafo) {
1386 		spin_lock_irq(host->host_lock);
1387 	}
1388 	return retval;
1389 }
1390 
aac_reset_adapter(struct aac_dev * aac,int forced)1391 int aac_reset_adapter(struct aac_dev * aac, int forced)
1392 {
1393 	unsigned long flagv = 0;
1394 	int retval;
1395 	struct Scsi_Host * host;
1396 
1397 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1398 		return -EBUSY;
1399 
1400 	if (aac->in_reset) {
1401 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1402 		return -EBUSY;
1403 	}
1404 	aac->in_reset = 1;
1405 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1406 
1407 	/*
1408 	 * Wait for all commands to complete to this specific
1409 	 * target (block maximum 60 seconds). Although not necessary,
1410 	 * it does make us a good storage citizen.
1411 	 */
1412 	host = aac->scsi_host_ptr;
1413 	scsi_block_requests(host);
1414 	if (forced < 2) for (retval = 60; retval; --retval) {
1415 		struct scsi_device * dev;
1416 		struct scsi_cmnd * command;
1417 		int active = 0;
1418 
1419 		__shost_for_each_device(dev, host) {
1420 			spin_lock_irqsave(&dev->list_lock, flagv);
1421 			list_for_each_entry(command, &dev->cmd_list, list) {
1422 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1423 					active++;
1424 					break;
1425 				}
1426 			}
1427 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1428 			if (active)
1429 				break;
1430 
1431 		}
1432 		/*
1433 		 * We can exit If all the commands are complete
1434 		 */
1435 		if (active == 0)
1436 			break;
1437 		ssleep(1);
1438 	}
1439 
1440 	/* Quiesce build, flush cache, write through mode */
1441 	if (forced < 2)
1442 		aac_send_shutdown(aac);
1443 	spin_lock_irqsave(host->host_lock, flagv);
1444 	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1445 	spin_unlock_irqrestore(host->host_lock, flagv);
1446 
1447 	if ((forced < 2) && (retval == -ENODEV)) {
1448 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1449 		struct fib * fibctx = aac_fib_alloc(aac);
1450 		if (fibctx) {
1451 			struct aac_pause *cmd;
1452 			int status;
1453 
1454 			aac_fib_init(fibctx);
1455 
1456 			cmd = (struct aac_pause *) fib_data(fibctx);
1457 
1458 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1459 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1460 			cmd->timeout = cpu_to_le32(1);
1461 			cmd->min = cpu_to_le32(1);
1462 			cmd->noRescan = cpu_to_le32(1);
1463 			cmd->count = cpu_to_le32(0);
1464 
1465 			status = aac_fib_send(ContainerCommand,
1466 			  fibctx,
1467 			  sizeof(struct aac_pause),
1468 			  FsaNormal,
1469 			  -2 /* Timeout silently */, 1,
1470 			  NULL, NULL);
1471 
1472 			if (status >= 0)
1473 				aac_fib_complete(fibctx);
1474 			/* FIB should be freed only after getting
1475 			 * the response from the F/W */
1476 			if (status != -ERESTARTSYS)
1477 				aac_fib_free(fibctx);
1478 		}
1479 	}
1480 
1481 	return retval;
1482 }
1483 
aac_check_health(struct aac_dev * aac)1484 int aac_check_health(struct aac_dev * aac)
1485 {
1486 	int BlinkLED;
1487 	unsigned long time_now, flagv = 0;
1488 	struct list_head * entry;
1489 	struct Scsi_Host * host;
1490 
1491 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1492 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1493 		return 0;
1494 
1495 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1496 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1497 		return 0; /* OK */
1498 	}
1499 
1500 	aac->in_reset = 1;
1501 
1502 	/* Fake up an AIF:
1503 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1504 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1505 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1506 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1507 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1508 	 *	aac.aifcmd.data[3] = BlinkLED
1509 	 */
1510 
1511 	time_now = jiffies/HZ;
1512 	entry = aac->fib_list.next;
1513 
1514 	/*
1515 	 * For each Context that is on the
1516 	 * fibctxList, make a copy of the
1517 	 * fib, and then set the event to wake up the
1518 	 * thread that is waiting for it.
1519 	 */
1520 	while (entry != &aac->fib_list) {
1521 		/*
1522 		 * Extract the fibctx
1523 		 */
1524 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1525 		struct hw_fib * hw_fib;
1526 		struct fib * fib;
1527 		/*
1528 		 * Check if the queue is getting
1529 		 * backlogged
1530 		 */
1531 		if (fibctx->count > 20) {
1532 			/*
1533 			 * It's *not* jiffies folks,
1534 			 * but jiffies / HZ, so do not
1535 			 * panic ...
1536 			 */
1537 			u32 time_last = fibctx->jiffies;
1538 			/*
1539 			 * Has it been > 2 minutes
1540 			 * since the last read off
1541 			 * the queue?
1542 			 */
1543 			if ((time_now - time_last) > aif_timeout) {
1544 				entry = entry->next;
1545 				aac_close_fib_context(aac, fibctx);
1546 				continue;
1547 			}
1548 		}
1549 		/*
1550 		 * Warning: no sleep allowed while
1551 		 * holding spinlock
1552 		 */
1553 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1554 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1555 		if (fib && hw_fib) {
1556 			struct aac_aifcmd * aif;
1557 
1558 			fib->hw_fib_va = hw_fib;
1559 			fib->dev = aac;
1560 			aac_fib_init(fib);
1561 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1562 			fib->size = sizeof (struct fib);
1563 			fib->data = hw_fib->data;
1564 			aif = (struct aac_aifcmd *)hw_fib->data;
1565 			aif->command = cpu_to_le32(AifCmdEventNotify);
1566 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1567 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1568 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1569 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1570 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1571 
1572 			/*
1573 			 * Put the FIB onto the
1574 			 * fibctx's fibs
1575 			 */
1576 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1577 			fibctx->count++;
1578 			/*
1579 			 * Set the event to wake up the
1580 			 * thread that will waiting.
1581 			 */
1582 			up(&fibctx->wait_sem);
1583 		} else {
1584 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1585 			kfree(fib);
1586 			kfree(hw_fib);
1587 		}
1588 		entry = entry->next;
1589 	}
1590 
1591 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1592 
1593 	if (BlinkLED < 0) {
1594 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1595 		goto out;
1596 	}
1597 
1598 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1599 
1600 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1601 		(aac->supplement_adapter_info.SupportedOptions2 &
1602 			AAC_OPTION_IGNORE_RESET)))
1603 		goto out;
1604 	host = aac->scsi_host_ptr;
1605 	if (aac->thread->pid != current->pid)
1606 		spin_lock_irqsave(host->host_lock, flagv);
1607 	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1608 	if (aac->thread->pid != current->pid)
1609 		spin_unlock_irqrestore(host->host_lock, flagv);
1610 	return BlinkLED;
1611 
1612 out:
1613 	aac->in_reset = 0;
1614 	return BlinkLED;
1615 }
1616 
1617 
1618 /**
1619  *	aac_command_thread	-	command processing thread
1620  *	@dev: Adapter to monitor
1621  *
1622  *	Waits on the commandready event in it's queue. When the event gets set
1623  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1624  *	until the queue is empty. When the queue is empty it will wait for
1625  *	more FIBs.
1626  */
1627 
aac_command_thread(void * data)1628 int aac_command_thread(void *data)
1629 {
1630 	struct aac_dev *dev = data;
1631 	struct hw_fib *hw_fib, *hw_newfib;
1632 	struct fib *fib, *newfib;
1633 	struct aac_fib_context *fibctx;
1634 	unsigned long flags;
1635 	DECLARE_WAITQUEUE(wait, current);
1636 	unsigned long next_jiffies = jiffies + HZ;
1637 	unsigned long next_check_jiffies = next_jiffies;
1638 	long difference = HZ;
1639 
1640 	/*
1641 	 *	We can only have one thread per adapter for AIF's.
1642 	 */
1643 	if (dev->aif_thread)
1644 		return -EINVAL;
1645 
1646 	/*
1647 	 *	Let the DPC know it has a place to send the AIF's to.
1648 	 */
1649 	dev->aif_thread = 1;
1650 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1651 	set_current_state(TASK_INTERRUPTIBLE);
1652 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1653 	while (1) {
1654 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1655 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1656 			struct list_head *entry;
1657 			struct aac_aifcmd * aifcmd;
1658 
1659 			set_current_state(TASK_RUNNING);
1660 
1661 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1662 			list_del(entry);
1663 
1664 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1665 			fib = list_entry(entry, struct fib, fiblink);
1666 			/*
1667 			 *	We will process the FIB here or pass it to a
1668 			 *	worker thread that is TBD. We Really can't
1669 			 *	do anything at this point since we don't have
1670 			 *	anything defined for this thread to do.
1671 			 */
1672 			hw_fib = fib->hw_fib_va;
1673 			memset(fib, 0, sizeof(struct fib));
1674 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1675 			fib->size = sizeof(struct fib);
1676 			fib->hw_fib_va = hw_fib;
1677 			fib->data = hw_fib->data;
1678 			fib->dev = dev;
1679 			/*
1680 			 *	We only handle AifRequest fibs from the adapter.
1681 			 */
1682 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1683 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1684 				/* Handle Driver Notify Events */
1685 				aac_handle_aif(dev, fib);
1686 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1687 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1688 			} else {
1689 				/* The u32 here is important and intended. We are using
1690 				   32bit wrapping time to fit the adapter field */
1691 
1692 				u32 time_now, time_last;
1693 				unsigned long flagv;
1694 				unsigned num;
1695 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1696 				struct fib ** fib_pool, ** fib_p;
1697 
1698 				/* Sniff events */
1699 				if ((aifcmd->command ==
1700 				     cpu_to_le32(AifCmdEventNotify)) ||
1701 				    (aifcmd->command ==
1702 				     cpu_to_le32(AifCmdJobProgress))) {
1703 					aac_handle_aif(dev, fib);
1704 				}
1705 
1706 				time_now = jiffies/HZ;
1707 
1708 				/*
1709 				 * Warning: no sleep allowed while
1710 				 * holding spinlock. We take the estimate
1711 				 * and pre-allocate a set of fibs outside the
1712 				 * lock.
1713 				 */
1714 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1715 				    / sizeof(struct hw_fib); /* some extra */
1716 				spin_lock_irqsave(&dev->fib_lock, flagv);
1717 				entry = dev->fib_list.next;
1718 				while (entry != &dev->fib_list) {
1719 					entry = entry->next;
1720 					++num;
1721 				}
1722 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1723 				hw_fib_pool = NULL;
1724 				fib_pool = NULL;
1725 				if (num
1726 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1727 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1728 					hw_fib_p = hw_fib_pool;
1729 					fib_p = fib_pool;
1730 					while (hw_fib_p < &hw_fib_pool[num]) {
1731 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1732 							--hw_fib_p;
1733 							break;
1734 						}
1735 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1736 							kfree(*(--hw_fib_p));
1737 							break;
1738 						}
1739 					}
1740 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1741 						kfree(fib_pool);
1742 						fib_pool = NULL;
1743 						kfree(hw_fib_pool);
1744 						hw_fib_pool = NULL;
1745 					}
1746 				} else {
1747 					kfree(hw_fib_pool);
1748 					hw_fib_pool = NULL;
1749 				}
1750 				spin_lock_irqsave(&dev->fib_lock, flagv);
1751 				entry = dev->fib_list.next;
1752 				/*
1753 				 * For each Context that is on the
1754 				 * fibctxList, make a copy of the
1755 				 * fib, and then set the event to wake up the
1756 				 * thread that is waiting for it.
1757 				 */
1758 				hw_fib_p = hw_fib_pool;
1759 				fib_p = fib_pool;
1760 				while (entry != &dev->fib_list) {
1761 					/*
1762 					 * Extract the fibctx
1763 					 */
1764 					fibctx = list_entry(entry, struct aac_fib_context, next);
1765 					/*
1766 					 * Check if the queue is getting
1767 					 * backlogged
1768 					 */
1769 					if (fibctx->count > 20)
1770 					{
1771 						/*
1772 						 * It's *not* jiffies folks,
1773 						 * but jiffies / HZ so do not
1774 						 * panic ...
1775 						 */
1776 						time_last = fibctx->jiffies;
1777 						/*
1778 						 * Has it been > 2 minutes
1779 						 * since the last read off
1780 						 * the queue?
1781 						 */
1782 						if ((time_now - time_last) > aif_timeout) {
1783 							entry = entry->next;
1784 							aac_close_fib_context(dev, fibctx);
1785 							continue;
1786 						}
1787 					}
1788 					/*
1789 					 * Warning: no sleep allowed while
1790 					 * holding spinlock
1791 					 */
1792 					if (hw_fib_p < &hw_fib_pool[num]) {
1793 						hw_newfib = *hw_fib_p;
1794 						*(hw_fib_p++) = NULL;
1795 						newfib = *fib_p;
1796 						*(fib_p++) = NULL;
1797 						/*
1798 						 * Make the copy of the FIB
1799 						 */
1800 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1801 						memcpy(newfib, fib, sizeof(struct fib));
1802 						newfib->hw_fib_va = hw_newfib;
1803 						/*
1804 						 * Put the FIB onto the
1805 						 * fibctx's fibs
1806 						 */
1807 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1808 						fibctx->count++;
1809 						/*
1810 						 * Set the event to wake up the
1811 						 * thread that is waiting.
1812 						 */
1813 						up(&fibctx->wait_sem);
1814 					} else {
1815 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1816 					}
1817 					entry = entry->next;
1818 				}
1819 				/*
1820 				 *	Set the status of this FIB
1821 				 */
1822 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1823 				aac_fib_adapter_complete(fib, sizeof(u32));
1824 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1825 				/* Free up the remaining resources */
1826 				hw_fib_p = hw_fib_pool;
1827 				fib_p = fib_pool;
1828 				while (hw_fib_p < &hw_fib_pool[num]) {
1829 					kfree(*hw_fib_p);
1830 					kfree(*fib_p);
1831 					++fib_p;
1832 					++hw_fib_p;
1833 				}
1834 				kfree(hw_fib_pool);
1835 				kfree(fib_pool);
1836 			}
1837 			kfree(fib);
1838 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1839 		}
1840 		/*
1841 		 *	There are no more AIF's
1842 		 */
1843 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1844 
1845 		/*
1846 		 *	Background activity
1847 		 */
1848 		if ((time_before(next_check_jiffies,next_jiffies))
1849 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1850 			next_check_jiffies = next_jiffies;
1851 			if (aac_check_health(dev) == 0) {
1852 				difference = ((long)(unsigned)check_interval)
1853 					   * HZ;
1854 				next_check_jiffies = jiffies + difference;
1855 			} else if (!dev->queues)
1856 				break;
1857 		}
1858 		if (!time_before(next_check_jiffies,next_jiffies)
1859 		 && ((difference = next_jiffies - jiffies) <= 0)) {
1860 			struct timeval now;
1861 			int ret;
1862 
1863 			/* Don't even try to talk to adapter if its sick */
1864 			ret = aac_check_health(dev);
1865 			if (!ret && !dev->queues)
1866 				break;
1867 			next_check_jiffies = jiffies
1868 					   + ((long)(unsigned)check_interval)
1869 					   * HZ;
1870 			do_gettimeofday(&now);
1871 
1872 			/* Synchronize our watches */
1873 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1874 			 && (now.tv_usec > (1000000 / HZ)))
1875 				difference = (((1000000 - now.tv_usec) * HZ)
1876 				  + 500000) / 1000000;
1877 			else if (ret == 0) {
1878 				struct fib *fibptr;
1879 
1880 				if ((fibptr = aac_fib_alloc(dev))) {
1881 					int status;
1882 					__le32 *info;
1883 
1884 					aac_fib_init(fibptr);
1885 
1886 					info = (__le32 *) fib_data(fibptr);
1887 					if (now.tv_usec > 500000)
1888 						++now.tv_sec;
1889 
1890 					*info = cpu_to_le32(now.tv_sec);
1891 
1892 					status = aac_fib_send(SendHostTime,
1893 						fibptr,
1894 						sizeof(*info),
1895 						FsaNormal,
1896 						1, 1,
1897 						NULL,
1898 						NULL);
1899 					/* Do not set XferState to zero unless
1900 					 * receives a response from F/W */
1901 					if (status >= 0)
1902 						aac_fib_complete(fibptr);
1903 					/* FIB should be freed only after
1904 					 * getting the response from the F/W */
1905 					if (status != -ERESTARTSYS)
1906 						aac_fib_free(fibptr);
1907 				}
1908 				difference = (long)(unsigned)update_interval*HZ;
1909 			} else {
1910 				/* retry shortly */
1911 				difference = 10 * HZ;
1912 			}
1913 			next_jiffies = jiffies + difference;
1914 			if (time_before(next_check_jiffies,next_jiffies))
1915 				difference = next_check_jiffies - jiffies;
1916 		}
1917 		if (difference <= 0)
1918 			difference = 1;
1919 		set_current_state(TASK_INTERRUPTIBLE);
1920 		schedule_timeout(difference);
1921 
1922 		if (kthread_should_stop())
1923 			break;
1924 	}
1925 	if (dev->queues)
1926 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1927 	dev->aif_thread = 0;
1928 	return 0;
1929 }
1930