1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 * commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
56 *
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
59 */
60
fib_map_alloc(struct aac_dev * dev)61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
74 }
75
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
79 *
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
82 */
83
aac_fib_map_free(struct aac_dev * dev)84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 pci_free_consistent(dev->pdev,
87 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 dev->hw_fib_va, dev->hw_fib_pa);
89 dev->hw_fib_va = NULL;
90 dev->hw_fib_pa = 0;
91 }
92
93 /**
94 * aac_fib_setup - setup the fibs
95 * @dev: Adapter to set up
96 *
97 * Allocate the PCI space for the fibs, map it and then initialise the
98 * fib area, the unmapped fib data and also the free list
99 */
100
aac_fib_setup(struct aac_dev * dev)101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 struct fib *fibptr;
104 struct hw_fib *hw_fib;
105 dma_addr_t hw_fib_pa;
106 int i;
107
108 while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 }
113 if (i<0)
114 return -ENOMEM;
115
116 /* 32 byte alignment for PMC */
117 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 (hw_fib_pa - dev->hw_fib_pa));
120 dev->hw_fib_pa = hw_fib_pa;
121 memset(dev->hw_fib_va, 0,
122 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124
125 /* add Xport header */
126 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 sizeof(struct aac_fib_xporthdr));
128 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129
130 hw_fib = dev->hw_fib_va;
131 hw_fib_pa = dev->hw_fib_pa;
132 /*
133 * Initialise the fibs
134 */
135 for (i = 0, fibptr = &dev->fibs[i];
136 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 i++, fibptr++)
138 {
139 fibptr->flags = 0;
140 fibptr->dev = dev;
141 fibptr->hw_fib_va = hw_fib;
142 fibptr->data = (void *) fibptr->hw_fib_va->data;
143 fibptr->next = fibptr+1; /* Forward chain the fibs */
144 sema_init(&fibptr->event_wait, 0);
145 spin_lock_init(&fibptr->event_lock);
146 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148 fibptr->hw_fib_pa = hw_fib_pa;
149 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151 hw_fib_pa = hw_fib_pa +
152 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153 }
154 /*
155 * Add the fib chain to the free list
156 */
157 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158 /*
159 * Enable this to debug out of queue space
160 */
161 dev->free_fib = &dev->fibs[0];
162 return 0;
163 }
164
165 /**
166 * aac_fib_alloc - allocate a fib
167 * @dev: Adapter to allocate the fib for
168 *
169 * Allocate a fib from the adapter fib pool. If the pool is empty we
170 * return NULL.
171 */
172
aac_fib_alloc(struct aac_dev * dev)173 struct fib *aac_fib_alloc(struct aac_dev *dev)
174 {
175 struct fib * fibptr;
176 unsigned long flags;
177 spin_lock_irqsave(&dev->fib_lock, flags);
178 fibptr = dev->free_fib;
179 if(!fibptr){
180 spin_unlock_irqrestore(&dev->fib_lock, flags);
181 return fibptr;
182 }
183 dev->free_fib = fibptr->next;
184 spin_unlock_irqrestore(&dev->fib_lock, flags);
185 /*
186 * Set the proper node type code and node byte size
187 */
188 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189 fibptr->size = sizeof(struct fib);
190 /*
191 * Null out fields that depend on being zero at the start of
192 * each I/O
193 */
194 fibptr->hw_fib_va->header.XferState = 0;
195 fibptr->flags = 0;
196 fibptr->callback = NULL;
197 fibptr->callback_data = NULL;
198
199 return fibptr;
200 }
201
202 /**
203 * aac_fib_free - free a fib
204 * @fibptr: fib to free up
205 *
206 * Frees up a fib and places it on the appropriate queue
207 */
208
aac_fib_free(struct fib * fibptr)209 void aac_fib_free(struct fib *fibptr)
210 {
211 unsigned long flags, flagsv;
212
213 spin_lock_irqsave(&fibptr->event_lock, flagsv);
214 if (fibptr->done == 2) {
215 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
216 return;
217 }
218 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
219
220 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
221 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
222 aac_config.fib_timeouts++;
223 if (fibptr->hw_fib_va->header.XferState != 0) {
224 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
225 (void*)fibptr,
226 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
227 }
228 fibptr->next = fibptr->dev->free_fib;
229 fibptr->dev->free_fib = fibptr;
230 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
231 }
232
233 /**
234 * aac_fib_init - initialise a fib
235 * @fibptr: The fib to initialize
236 *
237 * Set up the generic fib fields ready for use
238 */
239
aac_fib_init(struct fib * fibptr)240 void aac_fib_init(struct fib *fibptr)
241 {
242 struct hw_fib *hw_fib = fibptr->hw_fib_va;
243
244 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
245 hw_fib->header.StructType = FIB_MAGIC;
246 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
247 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
248 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
249 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
250 }
251
252 /**
253 * fib_deallocate - deallocate a fib
254 * @fibptr: fib to deallocate
255 *
256 * Will deallocate and return to the free pool the FIB pointed to by the
257 * caller.
258 */
259
fib_dealloc(struct fib * fibptr)260 static void fib_dealloc(struct fib * fibptr)
261 {
262 struct hw_fib *hw_fib = fibptr->hw_fib_va;
263 hw_fib->header.XferState = 0;
264 }
265
266 /*
267 * Commuication primitives define and support the queuing method we use to
268 * support host to adapter commuication. All queue accesses happen through
269 * these routines and are the only routines which have a knowledge of the
270 * how these queues are implemented.
271 */
272
273 /**
274 * aac_get_entry - get a queue entry
275 * @dev: Adapter
276 * @qid: Queue Number
277 * @entry: Entry return
278 * @index: Index return
279 * @nonotify: notification control
280 *
281 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
282 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283 * returned.
284 */
285
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287 {
288 struct aac_queue * q;
289 unsigned long idx;
290
291 /*
292 * All of the queues wrap when they reach the end, so we check
293 * to see if they have reached the end and if they have we just
294 * set the index back to zero. This is a wrap. You could or off
295 * the high bits in all updates but this is a bit faster I think.
296 */
297
298 q = &dev->queues->queue[qid];
299
300 idx = *index = le32_to_cpu(*(q->headers.producer));
301 /* Interrupt Moderation, only interrupt for first two entries */
302 if (idx != le32_to_cpu(*(q->headers.consumer))) {
303 if (--idx == 0) {
304 if (qid == AdapNormCmdQueue)
305 idx = ADAP_NORM_CMD_ENTRIES;
306 else
307 idx = ADAP_NORM_RESP_ENTRIES;
308 }
309 if (idx != le32_to_cpu(*(q->headers.consumer)))
310 *nonotify = 1;
311 }
312
313 if (qid == AdapNormCmdQueue) {
314 if (*index >= ADAP_NORM_CMD_ENTRIES)
315 *index = 0; /* Wrap to front of the Producer Queue. */
316 } else {
317 if (*index >= ADAP_NORM_RESP_ENTRIES)
318 *index = 0; /* Wrap to front of the Producer Queue. */
319 }
320
321 /* Queue is full */
322 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324 qid, q->numpending);
325 return 0;
326 } else {
327 *entry = q->base + *index;
328 return 1;
329 }
330 }
331
332 /**
333 * aac_queue_get - get the next free QE
334 * @dev: Adapter
335 * @index: Returned index
336 * @priority: Priority of fib
337 * @fib: Fib to associate with the queue entry
338 * @wait: Wait if queue full
339 * @fibptr: Driver fib object to go with fib
340 * @nonotify: Don't notify the adapter
341 *
342 * Gets the next free QE off the requested priorty adapter command
343 * queue and associates the Fib with the QE. The QE represented by
344 * index is ready to insert on the queue when this routine returns
345 * success.
346 */
347
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349 {
350 struct aac_entry * entry = NULL;
351 int map = 0;
352
353 if (qid == AdapNormCmdQueue) {
354 /* if no entries wait for some if caller wants to */
355 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356 printk(KERN_ERR "GetEntries failed\n");
357 }
358 /*
359 * Setup queue entry with a command, status and fib mapped
360 */
361 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362 map = 1;
363 } else {
364 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365 /* if no entries wait for some if caller wants to */
366 }
367 /*
368 * Setup queue entry with command, status and fib mapped
369 */
370 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371 entry->addr = hw_fib->header.SenderFibAddress;
372 /* Restore adapters pointer to the FIB */
373 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
374 map = 0;
375 }
376 /*
377 * If MapFib is true than we need to map the Fib and put pointers
378 * in the queue entry.
379 */
380 if (map)
381 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382 return 0;
383 }
384
385 /*
386 * Define the highest level of host to adapter communication routines.
387 * These routines will support host to adapter FS commuication. These
388 * routines have no knowledge of the commuication method used. This level
389 * sends and receives FIBs. This level has no knowledge of how these FIBs
390 * get passed back and forth.
391 */
392
393 /**
394 * aac_fib_send - send a fib to the adapter
395 * @command: Command to send
396 * @fibptr: The fib
397 * @size: Size of fib data area
398 * @priority: Priority of Fib
399 * @wait: Async/sync select
400 * @reply: True if a reply is wanted
401 * @callback: Called with reply
402 * @callback_data: Passed to callback
403 *
404 * Sends the requested FIB to the adapter and optionally will wait for a
405 * response FIB. If the caller does not wish to wait for a response than
406 * an event to wait on must be supplied. This event will be set when a
407 * response FIB is received from the adapter.
408 */
409
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411 int priority, int wait, int reply, fib_callback callback,
412 void *callback_data)
413 {
414 struct aac_dev * dev = fibptr->dev;
415 struct hw_fib * hw_fib = fibptr->hw_fib_va;
416 unsigned long flags = 0;
417 unsigned long qflags;
418 unsigned long mflags = 0;
419 unsigned long sflags = 0;
420
421
422 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423 return -EBUSY;
424 /*
425 * There are 5 cases with the wait and response requested flags.
426 * The only invalid cases are if the caller requests to wait and
427 * does not request a response and if the caller does not want a
428 * response and the Fib is not allocated from pool. If a response
429 * is not requesed the Fib will just be deallocaed by the DPC
430 * routine when the response comes back from the adapter. No
431 * further processing will be done besides deleting the Fib. We
432 * will have a debug mode where the adapter can notify the host
433 * it had a problem and the host can log that fact.
434 */
435 fibptr->flags = 0;
436 if (wait && !reply) {
437 return -EINVAL;
438 } else if (!wait && reply) {
439 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
440 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
441 } else if (!wait && !reply) {
442 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
443 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
444 } else if (wait && reply) {
445 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
446 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
447 }
448 /*
449 * Map the fib into 32bits by using the fib number
450 */
451
452 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
453 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
454 /*
455 * Set FIB state to indicate where it came from and if we want a
456 * response from the adapter. Also load the command from the
457 * caller.
458 *
459 * Map the hw fib pointer as a 32bit value
460 */
461 hw_fib->header.Command = cpu_to_le16(command);
462 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
463 /*
464 * Set the size of the Fib we want to send to the adapter
465 */
466 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468 return -EMSGSIZE;
469 }
470 /*
471 * Get a queue entry connect the FIB to it and send an notify
472 * the adapter a command is ready.
473 */
474 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
475
476 /*
477 * Fill in the Callback and CallbackContext if we are not
478 * going to wait.
479 */
480 if (!wait) {
481 fibptr->callback = callback;
482 fibptr->callback_data = callback_data;
483 fibptr->flags = FIB_CONTEXT_FLAG;
484 }
485
486 fibptr->done = 0;
487
488 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
489
490 dprintk((KERN_DEBUG "Fib contents:.\n"));
491 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
492 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
497
498 if (!dev->queues)
499 return -EBUSY;
500
501 if (wait) {
502
503 spin_lock_irqsave(&dev->manage_lock, mflags);
504 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505 printk(KERN_INFO "No management Fibs Available:%d\n",
506 dev->management_fib_count);
507 spin_unlock_irqrestore(&dev->manage_lock, mflags);
508 return -EBUSY;
509 }
510 dev->management_fib_count++;
511 spin_unlock_irqrestore(&dev->manage_lock, mflags);
512 spin_lock_irqsave(&fibptr->event_lock, flags);
513 }
514
515 if (dev->sync_mode) {
516 if (wait)
517 spin_unlock_irqrestore(&fibptr->event_lock, flags);
518 spin_lock_irqsave(&dev->sync_lock, sflags);
519 if (dev->sync_fib) {
520 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
521 spin_unlock_irqrestore(&dev->sync_lock, sflags);
522 } else {
523 dev->sync_fib = fibptr;
524 spin_unlock_irqrestore(&dev->sync_lock, sflags);
525 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
526 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
527 NULL, NULL, NULL, NULL, NULL);
528 }
529 if (wait) {
530 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
531 if (down_interruptible(&fibptr->event_wait)) {
532 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
533 return -EFAULT;
534 }
535 return 0;
536 }
537 return -EINPROGRESS;
538 }
539
540 if (aac_adapter_deliver(fibptr) != 0) {
541 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
542 if (wait) {
543 spin_unlock_irqrestore(&fibptr->event_lock, flags);
544 spin_lock_irqsave(&dev->manage_lock, mflags);
545 dev->management_fib_count--;
546 spin_unlock_irqrestore(&dev->manage_lock, mflags);
547 }
548 return -EBUSY;
549 }
550
551
552 /*
553 * If the caller wanted us to wait for response wait now.
554 */
555
556 if (wait) {
557 spin_unlock_irqrestore(&fibptr->event_lock, flags);
558 /* Only set for first known interruptable command */
559 if (wait < 0) {
560 /*
561 * *VERY* Dangerous to time out a command, the
562 * assumption is made that we have no hope of
563 * functioning because an interrupt routing or other
564 * hardware failure has occurred.
565 */
566 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
567 while (down_trylock(&fibptr->event_wait)) {
568 int blink;
569 if (time_is_before_eq_jiffies(timeout)) {
570 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
571 spin_lock_irqsave(q->lock, qflags);
572 q->numpending--;
573 spin_unlock_irqrestore(q->lock, qflags);
574 if (wait == -1) {
575 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
576 "Usually a result of a PCI interrupt routing problem;\n"
577 "update mother board BIOS or consider utilizing one of\n"
578 "the SAFE mode kernel options (acpi, apic etc)\n");
579 }
580 return -ETIMEDOUT;
581 }
582 if ((blink = aac_adapter_check_health(dev)) > 0) {
583 if (wait == -1) {
584 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
585 "Usually a result of a serious unrecoverable hardware problem\n",
586 blink);
587 }
588 return -EFAULT;
589 }
590 /* We used to udelay() here but that absorbed
591 * a CPU when a timeout occured. Not very
592 * useful. */
593 cpu_relax();
594 }
595 } else if (down_interruptible(&fibptr->event_wait)) {
596 /* Do nothing ... satisfy
597 * down_interruptible must_check */
598 }
599
600 spin_lock_irqsave(&fibptr->event_lock, flags);
601 if (fibptr->done == 0) {
602 fibptr->done = 2; /* Tell interrupt we aborted */
603 spin_unlock_irqrestore(&fibptr->event_lock, flags);
604 return -ERESTARTSYS;
605 }
606 spin_unlock_irqrestore(&fibptr->event_lock, flags);
607 BUG_ON(fibptr->done == 0);
608
609 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
610 return -ETIMEDOUT;
611 return 0;
612 }
613 /*
614 * If the user does not want a response than return success otherwise
615 * return pending
616 */
617 if (reply)
618 return -EINPROGRESS;
619 else
620 return 0;
621 }
622
623 /**
624 * aac_consumer_get - get the top of the queue
625 * @dev: Adapter
626 * @q: Queue
627 * @entry: Return entry
628 *
629 * Will return a pointer to the entry on the top of the queue requested that
630 * we are a consumer of, and return the address of the queue entry. It does
631 * not change the state of the queue.
632 */
633
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)634 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
635 {
636 u32 index;
637 int status;
638 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
639 status = 0;
640 } else {
641 /*
642 * The consumer index must be wrapped if we have reached
643 * the end of the queue, else we just use the entry
644 * pointed to by the header index
645 */
646 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647 index = 0;
648 else
649 index = le32_to_cpu(*q->headers.consumer);
650 *entry = q->base + index;
651 status = 1;
652 }
653 return(status);
654 }
655
656 /**
657 * aac_consumer_free - free consumer entry
658 * @dev: Adapter
659 * @q: Queue
660 * @qid: Queue ident
661 *
662 * Frees up the current top of the queue we are a consumer of. If the
663 * queue was full notify the producer that the queue is no longer full.
664 */
665
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)666 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
667 {
668 int wasfull = 0;
669 u32 notify;
670
671 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
672 wasfull = 1;
673
674 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
675 *q->headers.consumer = cpu_to_le32(1);
676 else
677 le32_add_cpu(q->headers.consumer, 1);
678
679 if (wasfull) {
680 switch (qid) {
681
682 case HostNormCmdQueue:
683 notify = HostNormCmdNotFull;
684 break;
685 case HostNormRespQueue:
686 notify = HostNormRespNotFull;
687 break;
688 default:
689 BUG();
690 return;
691 }
692 aac_adapter_notify(dev, notify);
693 }
694 }
695
696 /**
697 * aac_fib_adapter_complete - complete adapter issued fib
698 * @fibptr: fib to complete
699 * @size: size of fib
700 *
701 * Will do all necessary work to complete a FIB that was sent from
702 * the adapter.
703 */
704
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)705 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
706 {
707 struct hw_fib * hw_fib = fibptr->hw_fib_va;
708 struct aac_dev * dev = fibptr->dev;
709 struct aac_queue * q;
710 unsigned long nointr = 0;
711 unsigned long qflags;
712
713 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
714 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
715 kfree(hw_fib);
716 return 0;
717 }
718
719 if (hw_fib->header.XferState == 0) {
720 if (dev->comm_interface == AAC_COMM_MESSAGE)
721 kfree(hw_fib);
722 return 0;
723 }
724 /*
725 * If we plan to do anything check the structure type first.
726 */
727 if (hw_fib->header.StructType != FIB_MAGIC &&
728 hw_fib->header.StructType != FIB_MAGIC2 &&
729 hw_fib->header.StructType != FIB_MAGIC2_64) {
730 if (dev->comm_interface == AAC_COMM_MESSAGE)
731 kfree(hw_fib);
732 return -EINVAL;
733 }
734 /*
735 * This block handles the case where the adapter had sent us a
736 * command and we have finished processing the command. We
737 * call completeFib when we are done processing the command
738 * and want to send a response back to the adapter. This will
739 * send the completed cdb to the adapter.
740 */
741 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
742 if (dev->comm_interface == AAC_COMM_MESSAGE) {
743 kfree (hw_fib);
744 } else {
745 u32 index;
746 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
747 if (size) {
748 size += sizeof(struct aac_fibhdr);
749 if (size > le16_to_cpu(hw_fib->header.SenderSize))
750 return -EMSGSIZE;
751 hw_fib->header.Size = cpu_to_le16(size);
752 }
753 q = &dev->queues->queue[AdapNormRespQueue];
754 spin_lock_irqsave(q->lock, qflags);
755 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
756 *(q->headers.producer) = cpu_to_le32(index + 1);
757 spin_unlock_irqrestore(q->lock, qflags);
758 if (!(nointr & (int)aac_config.irq_mod))
759 aac_adapter_notify(dev, AdapNormRespQueue);
760 }
761 } else {
762 printk(KERN_WARNING "aac_fib_adapter_complete: "
763 "Unknown xferstate detected.\n");
764 BUG();
765 }
766 return 0;
767 }
768
769 /**
770 * aac_fib_complete - fib completion handler
771 * @fib: FIB to complete
772 *
773 * Will do all necessary work to complete a FIB.
774 */
775
aac_fib_complete(struct fib * fibptr)776 int aac_fib_complete(struct fib *fibptr)
777 {
778 unsigned long flags;
779 struct hw_fib * hw_fib = fibptr->hw_fib_va;
780
781 /*
782 * Check for a fib which has already been completed
783 */
784
785 if (hw_fib->header.XferState == 0)
786 return 0;
787 /*
788 * If we plan to do anything check the structure type first.
789 */
790
791 if (hw_fib->header.StructType != FIB_MAGIC &&
792 hw_fib->header.StructType != FIB_MAGIC2 &&
793 hw_fib->header.StructType != FIB_MAGIC2_64)
794 return -EINVAL;
795 /*
796 * This block completes a cdb which orginated on the host and we
797 * just need to deallocate the cdb or reinit it. At this point the
798 * command is complete that we had sent to the adapter and this
799 * cdb could be reused.
800 */
801 spin_lock_irqsave(&fibptr->event_lock, flags);
802 if (fibptr->done == 2) {
803 spin_unlock_irqrestore(&fibptr->event_lock, flags);
804 return 0;
805 }
806 spin_unlock_irqrestore(&fibptr->event_lock, flags);
807
808 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
809 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
810 {
811 fib_dealloc(fibptr);
812 }
813 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
814 {
815 /*
816 * This handles the case when the host has aborted the I/O
817 * to the adapter because the adapter is not responding
818 */
819 fib_dealloc(fibptr);
820 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
821 fib_dealloc(fibptr);
822 } else {
823 BUG();
824 }
825 return 0;
826 }
827
828 /**
829 * aac_printf - handle printf from firmware
830 * @dev: Adapter
831 * @val: Message info
832 *
833 * Print a message passed to us by the controller firmware on the
834 * Adaptec board
835 */
836
aac_printf(struct aac_dev * dev,u32 val)837 void aac_printf(struct aac_dev *dev, u32 val)
838 {
839 char *cp = dev->printfbuf;
840 if (dev->printf_enabled)
841 {
842 int length = val & 0xffff;
843 int level = (val >> 16) & 0xffff;
844
845 /*
846 * The size of the printfbuf is set in port.c
847 * There is no variable or define for it
848 */
849 if (length > 255)
850 length = 255;
851 if (cp[length] != 0)
852 cp[length] = 0;
853 if (level == LOG_AAC_HIGH_ERROR)
854 printk(KERN_WARNING "%s:%s", dev->name, cp);
855 else
856 printk(KERN_INFO "%s:%s", dev->name, cp);
857 }
858 memset(cp, 0, 256);
859 }
860
861
862 /**
863 * aac_handle_aif - Handle a message from the firmware
864 * @dev: Which adapter this fib is from
865 * @fibptr: Pointer to fibptr from adapter
866 *
867 * This routine handles a driver notify fib from the adapter and
868 * dispatches it to the appropriate routine for handling.
869 */
870
871 #define AIF_SNIFF_TIMEOUT (30*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)872 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
873 {
874 struct hw_fib * hw_fib = fibptr->hw_fib_va;
875 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
876 u32 channel, id, lun, container;
877 struct scsi_device *device;
878 enum {
879 NOTHING,
880 DELETE,
881 ADD,
882 CHANGE
883 } device_config_needed = NOTHING;
884
885 /* Sniff for container changes */
886
887 if (!dev || !dev->fsa_dev)
888 return;
889 container = channel = id = lun = (u32)-1;
890
891 /*
892 * We have set this up to try and minimize the number of
893 * re-configures that take place. As a result of this when
894 * certain AIF's come in we will set a flag waiting for another
895 * type of AIF before setting the re-config flag.
896 */
897 switch (le32_to_cpu(aifcmd->command)) {
898 case AifCmdDriverNotify:
899 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
900 /*
901 * Morph or Expand complete
902 */
903 case AifDenMorphComplete:
904 case AifDenVolumeExtendComplete:
905 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
906 if (container >= dev->maximum_num_containers)
907 break;
908
909 /*
910 * Find the scsi_device associated with the SCSI
911 * address. Make sure we have the right array, and if
912 * so set the flag to initiate a new re-config once we
913 * see an AifEnConfigChange AIF come through.
914 */
915
916 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
917 device = scsi_device_lookup(dev->scsi_host_ptr,
918 CONTAINER_TO_CHANNEL(container),
919 CONTAINER_TO_ID(container),
920 CONTAINER_TO_LUN(container));
921 if (device) {
922 dev->fsa_dev[container].config_needed = CHANGE;
923 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
924 dev->fsa_dev[container].config_waiting_stamp = jiffies;
925 scsi_device_put(device);
926 }
927 }
928 }
929
930 /*
931 * If we are waiting on something and this happens to be
932 * that thing then set the re-configure flag.
933 */
934 if (container != (u32)-1) {
935 if (container >= dev->maximum_num_containers)
936 break;
937 if ((dev->fsa_dev[container].config_waiting_on ==
938 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
939 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
940 dev->fsa_dev[container].config_waiting_on = 0;
941 } else for (container = 0;
942 container < dev->maximum_num_containers; ++container) {
943 if ((dev->fsa_dev[container].config_waiting_on ==
944 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946 dev->fsa_dev[container].config_waiting_on = 0;
947 }
948 break;
949
950 case AifCmdEventNotify:
951 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
952 case AifEnBatteryEvent:
953 dev->cache_protected =
954 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
955 break;
956 /*
957 * Add an Array.
958 */
959 case AifEnAddContainer:
960 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
961 if (container >= dev->maximum_num_containers)
962 break;
963 dev->fsa_dev[container].config_needed = ADD;
964 dev->fsa_dev[container].config_waiting_on =
965 AifEnConfigChange;
966 dev->fsa_dev[container].config_waiting_stamp = jiffies;
967 break;
968
969 /*
970 * Delete an Array.
971 */
972 case AifEnDeleteContainer:
973 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
974 if (container >= dev->maximum_num_containers)
975 break;
976 dev->fsa_dev[container].config_needed = DELETE;
977 dev->fsa_dev[container].config_waiting_on =
978 AifEnConfigChange;
979 dev->fsa_dev[container].config_waiting_stamp = jiffies;
980 break;
981
982 /*
983 * Container change detected. If we currently are not
984 * waiting on something else, setup to wait on a Config Change.
985 */
986 case AifEnContainerChange:
987 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
988 if (container >= dev->maximum_num_containers)
989 break;
990 if (dev->fsa_dev[container].config_waiting_on &&
991 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
992 break;
993 dev->fsa_dev[container].config_needed = CHANGE;
994 dev->fsa_dev[container].config_waiting_on =
995 AifEnConfigChange;
996 dev->fsa_dev[container].config_waiting_stamp = jiffies;
997 break;
998
999 case AifEnConfigChange:
1000 break;
1001
1002 case AifEnAddJBOD:
1003 case AifEnDeleteJBOD:
1004 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1005 if ((container >> 28)) {
1006 container = (u32)-1;
1007 break;
1008 }
1009 channel = (container >> 24) & 0xF;
1010 if (channel >= dev->maximum_num_channels) {
1011 container = (u32)-1;
1012 break;
1013 }
1014 id = container & 0xFFFF;
1015 if (id >= dev->maximum_num_physicals) {
1016 container = (u32)-1;
1017 break;
1018 }
1019 lun = (container >> 16) & 0xFF;
1020 container = (u32)-1;
1021 channel = aac_phys_to_logical(channel);
1022 device_config_needed =
1023 (((__le32 *)aifcmd->data)[0] ==
1024 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1025 if (device_config_needed == ADD) {
1026 device = scsi_device_lookup(dev->scsi_host_ptr,
1027 channel,
1028 id,
1029 lun);
1030 if (device) {
1031 scsi_remove_device(device);
1032 scsi_device_put(device);
1033 }
1034 }
1035 break;
1036
1037 case AifEnEnclosureManagement:
1038 /*
1039 * If in JBOD mode, automatic exposure of new
1040 * physical target to be suppressed until configured.
1041 */
1042 if (dev->jbod)
1043 break;
1044 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1045 case EM_DRIVE_INSERTION:
1046 case EM_DRIVE_REMOVAL:
1047 container = le32_to_cpu(
1048 ((__le32 *)aifcmd->data)[2]);
1049 if ((container >> 28)) {
1050 container = (u32)-1;
1051 break;
1052 }
1053 channel = (container >> 24) & 0xF;
1054 if (channel >= dev->maximum_num_channels) {
1055 container = (u32)-1;
1056 break;
1057 }
1058 id = container & 0xFFFF;
1059 lun = (container >> 16) & 0xFF;
1060 container = (u32)-1;
1061 if (id >= dev->maximum_num_physicals) {
1062 /* legacy dev_t ? */
1063 if ((0x2000 <= id) || lun || channel ||
1064 ((channel = (id >> 7) & 0x3F) >=
1065 dev->maximum_num_channels))
1066 break;
1067 lun = (id >> 4) & 7;
1068 id &= 0xF;
1069 }
1070 channel = aac_phys_to_logical(channel);
1071 device_config_needed =
1072 (((__le32 *)aifcmd->data)[3]
1073 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1074 ADD : DELETE;
1075 break;
1076 }
1077 break;
1078 }
1079
1080 /*
1081 * If we are waiting on something and this happens to be
1082 * that thing then set the re-configure flag.
1083 */
1084 if (container != (u32)-1) {
1085 if (container >= dev->maximum_num_containers)
1086 break;
1087 if ((dev->fsa_dev[container].config_waiting_on ==
1088 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1089 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1090 dev->fsa_dev[container].config_waiting_on = 0;
1091 } else for (container = 0;
1092 container < dev->maximum_num_containers; ++container) {
1093 if ((dev->fsa_dev[container].config_waiting_on ==
1094 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1095 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1096 dev->fsa_dev[container].config_waiting_on = 0;
1097 }
1098 break;
1099
1100 case AifCmdJobProgress:
1101 /*
1102 * These are job progress AIF's. When a Clear is being
1103 * done on a container it is initially created then hidden from
1104 * the OS. When the clear completes we don't get a config
1105 * change so we monitor the job status complete on a clear then
1106 * wait for a container change.
1107 */
1108
1109 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1110 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1111 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1112 for (container = 0;
1113 container < dev->maximum_num_containers;
1114 ++container) {
1115 /*
1116 * Stomp on all config sequencing for all
1117 * containers?
1118 */
1119 dev->fsa_dev[container].config_waiting_on =
1120 AifEnContainerChange;
1121 dev->fsa_dev[container].config_needed = ADD;
1122 dev->fsa_dev[container].config_waiting_stamp =
1123 jiffies;
1124 }
1125 }
1126 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1127 ((__le32 *)aifcmd->data)[6] == 0 &&
1128 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1129 for (container = 0;
1130 container < dev->maximum_num_containers;
1131 ++container) {
1132 /*
1133 * Stomp on all config sequencing for all
1134 * containers?
1135 */
1136 dev->fsa_dev[container].config_waiting_on =
1137 AifEnContainerChange;
1138 dev->fsa_dev[container].config_needed = DELETE;
1139 dev->fsa_dev[container].config_waiting_stamp =
1140 jiffies;
1141 }
1142 }
1143 break;
1144 }
1145
1146 container = 0;
1147 retry_next:
1148 if (device_config_needed == NOTHING)
1149 for (; container < dev->maximum_num_containers; ++container) {
1150 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1151 (dev->fsa_dev[container].config_needed != NOTHING) &&
1152 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1153 device_config_needed =
1154 dev->fsa_dev[container].config_needed;
1155 dev->fsa_dev[container].config_needed = NOTHING;
1156 channel = CONTAINER_TO_CHANNEL(container);
1157 id = CONTAINER_TO_ID(container);
1158 lun = CONTAINER_TO_LUN(container);
1159 break;
1160 }
1161 }
1162 if (device_config_needed == NOTHING)
1163 return;
1164
1165 /*
1166 * If we decided that a re-configuration needs to be done,
1167 * schedule it here on the way out the door, please close the door
1168 * behind you.
1169 */
1170
1171 /*
1172 * Find the scsi_device associated with the SCSI address,
1173 * and mark it as changed, invalidating the cache. This deals
1174 * with changes to existing device IDs.
1175 */
1176
1177 if (!dev || !dev->scsi_host_ptr)
1178 return;
1179 /*
1180 * force reload of disk info via aac_probe_container
1181 */
1182 if ((channel == CONTAINER_CHANNEL) &&
1183 (device_config_needed != NOTHING)) {
1184 if (dev->fsa_dev[container].valid == 1)
1185 dev->fsa_dev[container].valid = 2;
1186 aac_probe_container(dev, container);
1187 }
1188 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1189 if (device) {
1190 switch (device_config_needed) {
1191 case DELETE:
1192 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193 scsi_remove_device(device);
1194 #else
1195 if (scsi_device_online(device)) {
1196 scsi_device_set_state(device, SDEV_OFFLINE);
1197 sdev_printk(KERN_INFO, device,
1198 "Device offlined - %s\n",
1199 (channel == CONTAINER_CHANNEL) ?
1200 "array deleted" :
1201 "enclosure services event");
1202 }
1203 #endif
1204 break;
1205 case ADD:
1206 if (!scsi_device_online(device)) {
1207 sdev_printk(KERN_INFO, device,
1208 "Device online - %s\n",
1209 (channel == CONTAINER_CHANNEL) ?
1210 "array created" :
1211 "enclosure services event");
1212 scsi_device_set_state(device, SDEV_RUNNING);
1213 }
1214 /* FALLTHRU */
1215 case CHANGE:
1216 if ((channel == CONTAINER_CHANNEL)
1217 && (!dev->fsa_dev[container].valid)) {
1218 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219 scsi_remove_device(device);
1220 #else
1221 if (!scsi_device_online(device))
1222 break;
1223 scsi_device_set_state(device, SDEV_OFFLINE);
1224 sdev_printk(KERN_INFO, device,
1225 "Device offlined - %s\n",
1226 "array failed");
1227 #endif
1228 break;
1229 }
1230 scsi_rescan_device(&device->sdev_gendev);
1231
1232 default:
1233 break;
1234 }
1235 scsi_device_put(device);
1236 device_config_needed = NOTHING;
1237 }
1238 if (device_config_needed == ADD)
1239 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1240 if (channel == CONTAINER_CHANNEL) {
1241 container++;
1242 device_config_needed = NOTHING;
1243 goto retry_next;
1244 }
1245 }
1246
_aac_reset_adapter(struct aac_dev * aac,int forced)1247 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1248 {
1249 int index, quirks;
1250 int retval;
1251 struct Scsi_Host *host;
1252 struct scsi_device *dev;
1253 struct scsi_cmnd *command;
1254 struct scsi_cmnd *command_list;
1255 int jafo = 0;
1256
1257 /*
1258 * Assumptions:
1259 * - host is locked, unless called by the aacraid thread.
1260 * (a matter of convenience, due to legacy issues surrounding
1261 * eh_host_adapter_reset).
1262 * - in_reset is asserted, so no new i/o is getting to the
1263 * card.
1264 * - The card is dead, or will be very shortly ;-/ so no new
1265 * commands are completing in the interrupt service.
1266 */
1267 host = aac->scsi_host_ptr;
1268 scsi_block_requests(host);
1269 aac_adapter_disable_int(aac);
1270 if (aac->thread->pid != current->pid) {
1271 spin_unlock_irq(host->host_lock);
1272 kthread_stop(aac->thread);
1273 jafo = 1;
1274 }
1275
1276 /*
1277 * If a positive health, means in a known DEAD PANIC
1278 * state and the adapter could be reset to `try again'.
1279 */
1280 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1281
1282 if (retval)
1283 goto out;
1284
1285 /*
1286 * Loop through the fibs, close the synchronous FIBS
1287 */
1288 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1289 struct fib *fib = &aac->fibs[index];
1290 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1291 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1292 unsigned long flagv;
1293 spin_lock_irqsave(&fib->event_lock, flagv);
1294 up(&fib->event_wait);
1295 spin_unlock_irqrestore(&fib->event_lock, flagv);
1296 schedule();
1297 retval = 0;
1298 }
1299 }
1300 /* Give some extra time for ioctls to complete. */
1301 if (retval == 0)
1302 ssleep(2);
1303 index = aac->cardtype;
1304
1305 /*
1306 * Re-initialize the adapter, first free resources, then carefully
1307 * apply the initialization sequence to come back again. Only risk
1308 * is a change in Firmware dropping cache, it is assumed the caller
1309 * will ensure that i/o is queisced and the card is flushed in that
1310 * case.
1311 */
1312 aac_fib_map_free(aac);
1313 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1314 aac->comm_addr = NULL;
1315 aac->comm_phys = 0;
1316 kfree(aac->queues);
1317 aac->queues = NULL;
1318 free_irq(aac->pdev->irq, aac);
1319 if (aac->msi)
1320 pci_disable_msi(aac->pdev);
1321 kfree(aac->fsa_dev);
1322 aac->fsa_dev = NULL;
1323 quirks = aac_get_driver_ident(index)->quirks;
1324 if (quirks & AAC_QUIRK_31BIT) {
1325 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1326 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1327 goto out;
1328 } else {
1329 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1330 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1331 goto out;
1332 }
1333 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1334 goto out;
1335 if (quirks & AAC_QUIRK_31BIT)
1336 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1337 goto out;
1338 if (jafo) {
1339 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1340 if (IS_ERR(aac->thread)) {
1341 retval = PTR_ERR(aac->thread);
1342 goto out;
1343 }
1344 }
1345 (void)aac_get_adapter_info(aac);
1346 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1347 host->sg_tablesize = 34;
1348 host->max_sectors = (host->sg_tablesize * 8) + 112;
1349 }
1350 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1351 host->sg_tablesize = 17;
1352 host->max_sectors = (host->sg_tablesize * 8) + 112;
1353 }
1354 aac_get_config_status(aac, 1);
1355 aac_get_containers(aac);
1356 /*
1357 * This is where the assumption that the Adapter is quiesced
1358 * is important.
1359 */
1360 command_list = NULL;
1361 __shost_for_each_device(dev, host) {
1362 unsigned long flags;
1363 spin_lock_irqsave(&dev->list_lock, flags);
1364 list_for_each_entry(command, &dev->cmd_list, list)
1365 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1366 command->SCp.buffer = (struct scatterlist *)command_list;
1367 command_list = command;
1368 }
1369 spin_unlock_irqrestore(&dev->list_lock, flags);
1370 }
1371 while ((command = command_list)) {
1372 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1373 command->SCp.buffer = NULL;
1374 command->result = DID_OK << 16
1375 | COMMAND_COMPLETE << 8
1376 | SAM_STAT_TASK_SET_FULL;
1377 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1378 command->scsi_done(command);
1379 }
1380 retval = 0;
1381
1382 out:
1383 aac->in_reset = 0;
1384 scsi_unblock_requests(host);
1385 if (jafo) {
1386 spin_lock_irq(host->host_lock);
1387 }
1388 return retval;
1389 }
1390
aac_reset_adapter(struct aac_dev * aac,int forced)1391 int aac_reset_adapter(struct aac_dev * aac, int forced)
1392 {
1393 unsigned long flagv = 0;
1394 int retval;
1395 struct Scsi_Host * host;
1396
1397 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1398 return -EBUSY;
1399
1400 if (aac->in_reset) {
1401 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1402 return -EBUSY;
1403 }
1404 aac->in_reset = 1;
1405 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1406
1407 /*
1408 * Wait for all commands to complete to this specific
1409 * target (block maximum 60 seconds). Although not necessary,
1410 * it does make us a good storage citizen.
1411 */
1412 host = aac->scsi_host_ptr;
1413 scsi_block_requests(host);
1414 if (forced < 2) for (retval = 60; retval; --retval) {
1415 struct scsi_device * dev;
1416 struct scsi_cmnd * command;
1417 int active = 0;
1418
1419 __shost_for_each_device(dev, host) {
1420 spin_lock_irqsave(&dev->list_lock, flagv);
1421 list_for_each_entry(command, &dev->cmd_list, list) {
1422 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1423 active++;
1424 break;
1425 }
1426 }
1427 spin_unlock_irqrestore(&dev->list_lock, flagv);
1428 if (active)
1429 break;
1430
1431 }
1432 /*
1433 * We can exit If all the commands are complete
1434 */
1435 if (active == 0)
1436 break;
1437 ssleep(1);
1438 }
1439
1440 /* Quiesce build, flush cache, write through mode */
1441 if (forced < 2)
1442 aac_send_shutdown(aac);
1443 spin_lock_irqsave(host->host_lock, flagv);
1444 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1445 spin_unlock_irqrestore(host->host_lock, flagv);
1446
1447 if ((forced < 2) && (retval == -ENODEV)) {
1448 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1449 struct fib * fibctx = aac_fib_alloc(aac);
1450 if (fibctx) {
1451 struct aac_pause *cmd;
1452 int status;
1453
1454 aac_fib_init(fibctx);
1455
1456 cmd = (struct aac_pause *) fib_data(fibctx);
1457
1458 cmd->command = cpu_to_le32(VM_ContainerConfig);
1459 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1460 cmd->timeout = cpu_to_le32(1);
1461 cmd->min = cpu_to_le32(1);
1462 cmd->noRescan = cpu_to_le32(1);
1463 cmd->count = cpu_to_le32(0);
1464
1465 status = aac_fib_send(ContainerCommand,
1466 fibctx,
1467 sizeof(struct aac_pause),
1468 FsaNormal,
1469 -2 /* Timeout silently */, 1,
1470 NULL, NULL);
1471
1472 if (status >= 0)
1473 aac_fib_complete(fibctx);
1474 /* FIB should be freed only after getting
1475 * the response from the F/W */
1476 if (status != -ERESTARTSYS)
1477 aac_fib_free(fibctx);
1478 }
1479 }
1480
1481 return retval;
1482 }
1483
aac_check_health(struct aac_dev * aac)1484 int aac_check_health(struct aac_dev * aac)
1485 {
1486 int BlinkLED;
1487 unsigned long time_now, flagv = 0;
1488 struct list_head * entry;
1489 struct Scsi_Host * host;
1490
1491 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1492 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1493 return 0;
1494
1495 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1496 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1497 return 0; /* OK */
1498 }
1499
1500 aac->in_reset = 1;
1501
1502 /* Fake up an AIF:
1503 * aac_aifcmd.command = AifCmdEventNotify = 1
1504 * aac_aifcmd.seqnum = 0xFFFFFFFF
1505 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1506 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1507 * aac.aifcmd.data[2] = AifHighPriority = 3
1508 * aac.aifcmd.data[3] = BlinkLED
1509 */
1510
1511 time_now = jiffies/HZ;
1512 entry = aac->fib_list.next;
1513
1514 /*
1515 * For each Context that is on the
1516 * fibctxList, make a copy of the
1517 * fib, and then set the event to wake up the
1518 * thread that is waiting for it.
1519 */
1520 while (entry != &aac->fib_list) {
1521 /*
1522 * Extract the fibctx
1523 */
1524 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1525 struct hw_fib * hw_fib;
1526 struct fib * fib;
1527 /*
1528 * Check if the queue is getting
1529 * backlogged
1530 */
1531 if (fibctx->count > 20) {
1532 /*
1533 * It's *not* jiffies folks,
1534 * but jiffies / HZ, so do not
1535 * panic ...
1536 */
1537 u32 time_last = fibctx->jiffies;
1538 /*
1539 * Has it been > 2 minutes
1540 * since the last read off
1541 * the queue?
1542 */
1543 if ((time_now - time_last) > aif_timeout) {
1544 entry = entry->next;
1545 aac_close_fib_context(aac, fibctx);
1546 continue;
1547 }
1548 }
1549 /*
1550 * Warning: no sleep allowed while
1551 * holding spinlock
1552 */
1553 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1554 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1555 if (fib && hw_fib) {
1556 struct aac_aifcmd * aif;
1557
1558 fib->hw_fib_va = hw_fib;
1559 fib->dev = aac;
1560 aac_fib_init(fib);
1561 fib->type = FSAFS_NTC_FIB_CONTEXT;
1562 fib->size = sizeof (struct fib);
1563 fib->data = hw_fib->data;
1564 aif = (struct aac_aifcmd *)hw_fib->data;
1565 aif->command = cpu_to_le32(AifCmdEventNotify);
1566 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1567 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1568 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1569 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1570 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1571
1572 /*
1573 * Put the FIB onto the
1574 * fibctx's fibs
1575 */
1576 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1577 fibctx->count++;
1578 /*
1579 * Set the event to wake up the
1580 * thread that will waiting.
1581 */
1582 up(&fibctx->wait_sem);
1583 } else {
1584 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1585 kfree(fib);
1586 kfree(hw_fib);
1587 }
1588 entry = entry->next;
1589 }
1590
1591 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1592
1593 if (BlinkLED < 0) {
1594 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1595 goto out;
1596 }
1597
1598 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1599
1600 if (!aac_check_reset || ((aac_check_reset == 1) &&
1601 (aac->supplement_adapter_info.SupportedOptions2 &
1602 AAC_OPTION_IGNORE_RESET)))
1603 goto out;
1604 host = aac->scsi_host_ptr;
1605 if (aac->thread->pid != current->pid)
1606 spin_lock_irqsave(host->host_lock, flagv);
1607 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1608 if (aac->thread->pid != current->pid)
1609 spin_unlock_irqrestore(host->host_lock, flagv);
1610 return BlinkLED;
1611
1612 out:
1613 aac->in_reset = 0;
1614 return BlinkLED;
1615 }
1616
1617
1618 /**
1619 * aac_command_thread - command processing thread
1620 * @dev: Adapter to monitor
1621 *
1622 * Waits on the commandready event in it's queue. When the event gets set
1623 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1624 * until the queue is empty. When the queue is empty it will wait for
1625 * more FIBs.
1626 */
1627
aac_command_thread(void * data)1628 int aac_command_thread(void *data)
1629 {
1630 struct aac_dev *dev = data;
1631 struct hw_fib *hw_fib, *hw_newfib;
1632 struct fib *fib, *newfib;
1633 struct aac_fib_context *fibctx;
1634 unsigned long flags;
1635 DECLARE_WAITQUEUE(wait, current);
1636 unsigned long next_jiffies = jiffies + HZ;
1637 unsigned long next_check_jiffies = next_jiffies;
1638 long difference = HZ;
1639
1640 /*
1641 * We can only have one thread per adapter for AIF's.
1642 */
1643 if (dev->aif_thread)
1644 return -EINVAL;
1645
1646 /*
1647 * Let the DPC know it has a place to send the AIF's to.
1648 */
1649 dev->aif_thread = 1;
1650 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1651 set_current_state(TASK_INTERRUPTIBLE);
1652 dprintk ((KERN_INFO "aac_command_thread start\n"));
1653 while (1) {
1654 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1655 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1656 struct list_head *entry;
1657 struct aac_aifcmd * aifcmd;
1658
1659 set_current_state(TASK_RUNNING);
1660
1661 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1662 list_del(entry);
1663
1664 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1665 fib = list_entry(entry, struct fib, fiblink);
1666 /*
1667 * We will process the FIB here or pass it to a
1668 * worker thread that is TBD. We Really can't
1669 * do anything at this point since we don't have
1670 * anything defined for this thread to do.
1671 */
1672 hw_fib = fib->hw_fib_va;
1673 memset(fib, 0, sizeof(struct fib));
1674 fib->type = FSAFS_NTC_FIB_CONTEXT;
1675 fib->size = sizeof(struct fib);
1676 fib->hw_fib_va = hw_fib;
1677 fib->data = hw_fib->data;
1678 fib->dev = dev;
1679 /*
1680 * We only handle AifRequest fibs from the adapter.
1681 */
1682 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1683 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1684 /* Handle Driver Notify Events */
1685 aac_handle_aif(dev, fib);
1686 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1687 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1688 } else {
1689 /* The u32 here is important and intended. We are using
1690 32bit wrapping time to fit the adapter field */
1691
1692 u32 time_now, time_last;
1693 unsigned long flagv;
1694 unsigned num;
1695 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1696 struct fib ** fib_pool, ** fib_p;
1697
1698 /* Sniff events */
1699 if ((aifcmd->command ==
1700 cpu_to_le32(AifCmdEventNotify)) ||
1701 (aifcmd->command ==
1702 cpu_to_le32(AifCmdJobProgress))) {
1703 aac_handle_aif(dev, fib);
1704 }
1705
1706 time_now = jiffies/HZ;
1707
1708 /*
1709 * Warning: no sleep allowed while
1710 * holding spinlock. We take the estimate
1711 * and pre-allocate a set of fibs outside the
1712 * lock.
1713 */
1714 num = le32_to_cpu(dev->init->AdapterFibsSize)
1715 / sizeof(struct hw_fib); /* some extra */
1716 spin_lock_irqsave(&dev->fib_lock, flagv);
1717 entry = dev->fib_list.next;
1718 while (entry != &dev->fib_list) {
1719 entry = entry->next;
1720 ++num;
1721 }
1722 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1723 hw_fib_pool = NULL;
1724 fib_pool = NULL;
1725 if (num
1726 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1727 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1728 hw_fib_p = hw_fib_pool;
1729 fib_p = fib_pool;
1730 while (hw_fib_p < &hw_fib_pool[num]) {
1731 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1732 --hw_fib_p;
1733 break;
1734 }
1735 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1736 kfree(*(--hw_fib_p));
1737 break;
1738 }
1739 }
1740 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1741 kfree(fib_pool);
1742 fib_pool = NULL;
1743 kfree(hw_fib_pool);
1744 hw_fib_pool = NULL;
1745 }
1746 } else {
1747 kfree(hw_fib_pool);
1748 hw_fib_pool = NULL;
1749 }
1750 spin_lock_irqsave(&dev->fib_lock, flagv);
1751 entry = dev->fib_list.next;
1752 /*
1753 * For each Context that is on the
1754 * fibctxList, make a copy of the
1755 * fib, and then set the event to wake up the
1756 * thread that is waiting for it.
1757 */
1758 hw_fib_p = hw_fib_pool;
1759 fib_p = fib_pool;
1760 while (entry != &dev->fib_list) {
1761 /*
1762 * Extract the fibctx
1763 */
1764 fibctx = list_entry(entry, struct aac_fib_context, next);
1765 /*
1766 * Check if the queue is getting
1767 * backlogged
1768 */
1769 if (fibctx->count > 20)
1770 {
1771 /*
1772 * It's *not* jiffies folks,
1773 * but jiffies / HZ so do not
1774 * panic ...
1775 */
1776 time_last = fibctx->jiffies;
1777 /*
1778 * Has it been > 2 minutes
1779 * since the last read off
1780 * the queue?
1781 */
1782 if ((time_now - time_last) > aif_timeout) {
1783 entry = entry->next;
1784 aac_close_fib_context(dev, fibctx);
1785 continue;
1786 }
1787 }
1788 /*
1789 * Warning: no sleep allowed while
1790 * holding spinlock
1791 */
1792 if (hw_fib_p < &hw_fib_pool[num]) {
1793 hw_newfib = *hw_fib_p;
1794 *(hw_fib_p++) = NULL;
1795 newfib = *fib_p;
1796 *(fib_p++) = NULL;
1797 /*
1798 * Make the copy of the FIB
1799 */
1800 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1801 memcpy(newfib, fib, sizeof(struct fib));
1802 newfib->hw_fib_va = hw_newfib;
1803 /*
1804 * Put the FIB onto the
1805 * fibctx's fibs
1806 */
1807 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1808 fibctx->count++;
1809 /*
1810 * Set the event to wake up the
1811 * thread that is waiting.
1812 */
1813 up(&fibctx->wait_sem);
1814 } else {
1815 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1816 }
1817 entry = entry->next;
1818 }
1819 /*
1820 * Set the status of this FIB
1821 */
1822 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1823 aac_fib_adapter_complete(fib, sizeof(u32));
1824 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1825 /* Free up the remaining resources */
1826 hw_fib_p = hw_fib_pool;
1827 fib_p = fib_pool;
1828 while (hw_fib_p < &hw_fib_pool[num]) {
1829 kfree(*hw_fib_p);
1830 kfree(*fib_p);
1831 ++fib_p;
1832 ++hw_fib_p;
1833 }
1834 kfree(hw_fib_pool);
1835 kfree(fib_pool);
1836 }
1837 kfree(fib);
1838 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1839 }
1840 /*
1841 * There are no more AIF's
1842 */
1843 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1844
1845 /*
1846 * Background activity
1847 */
1848 if ((time_before(next_check_jiffies,next_jiffies))
1849 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1850 next_check_jiffies = next_jiffies;
1851 if (aac_check_health(dev) == 0) {
1852 difference = ((long)(unsigned)check_interval)
1853 * HZ;
1854 next_check_jiffies = jiffies + difference;
1855 } else if (!dev->queues)
1856 break;
1857 }
1858 if (!time_before(next_check_jiffies,next_jiffies)
1859 && ((difference = next_jiffies - jiffies) <= 0)) {
1860 struct timeval now;
1861 int ret;
1862
1863 /* Don't even try to talk to adapter if its sick */
1864 ret = aac_check_health(dev);
1865 if (!ret && !dev->queues)
1866 break;
1867 next_check_jiffies = jiffies
1868 + ((long)(unsigned)check_interval)
1869 * HZ;
1870 do_gettimeofday(&now);
1871
1872 /* Synchronize our watches */
1873 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1874 && (now.tv_usec > (1000000 / HZ)))
1875 difference = (((1000000 - now.tv_usec) * HZ)
1876 + 500000) / 1000000;
1877 else if (ret == 0) {
1878 struct fib *fibptr;
1879
1880 if ((fibptr = aac_fib_alloc(dev))) {
1881 int status;
1882 __le32 *info;
1883
1884 aac_fib_init(fibptr);
1885
1886 info = (__le32 *) fib_data(fibptr);
1887 if (now.tv_usec > 500000)
1888 ++now.tv_sec;
1889
1890 *info = cpu_to_le32(now.tv_sec);
1891
1892 status = aac_fib_send(SendHostTime,
1893 fibptr,
1894 sizeof(*info),
1895 FsaNormal,
1896 1, 1,
1897 NULL,
1898 NULL);
1899 /* Do not set XferState to zero unless
1900 * receives a response from F/W */
1901 if (status >= 0)
1902 aac_fib_complete(fibptr);
1903 /* FIB should be freed only after
1904 * getting the response from the F/W */
1905 if (status != -ERESTARTSYS)
1906 aac_fib_free(fibptr);
1907 }
1908 difference = (long)(unsigned)update_interval*HZ;
1909 } else {
1910 /* retry shortly */
1911 difference = 10 * HZ;
1912 }
1913 next_jiffies = jiffies + difference;
1914 if (time_before(next_check_jiffies,next_jiffies))
1915 difference = next_check_jiffies - jiffies;
1916 }
1917 if (difference <= 0)
1918 difference = 1;
1919 set_current_state(TASK_INTERRUPTIBLE);
1920 schedule_timeout(difference);
1921
1922 if (kthread_should_stop())
1923 break;
1924 }
1925 if (dev->queues)
1926 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1927 dev->aif_thread = 0;
1928 return 0;
1929 }
1930