1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29
30 /* SPI register offsets */
31 #define SPI_CR 0x0000
32 #define SPI_MR 0x0004
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
35 #define SPI_SR 0x0010
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET 0
67 #define SPI_MSTR_SIZE 1
68 #define SPI_PS_OFFSET 1
69 #define SPI_PS_SIZE 1
70 #define SPI_PCSDEC_OFFSET 2
71 #define SPI_PCSDEC_SIZE 1
72 #define SPI_FDIV_OFFSET 3
73 #define SPI_FDIV_SIZE 1
74 #define SPI_MODFDIS_OFFSET 4
75 #define SPI_MODFDIS_SIZE 1
76 #define SPI_WDRBT_OFFSET 5
77 #define SPI_WDRBT_SIZE 1
78 #define SPI_LLB_OFFSET 7
79 #define SPI_LLB_SIZE 1
80 #define SPI_PCS_OFFSET 16
81 #define SPI_PCS_SIZE 4
82 #define SPI_DLYBCS_OFFSET 24
83 #define SPI_DLYBCS_SIZE 8
84
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET 0
87 #define SPI_RD_SIZE 16
88
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET 0
91 #define SPI_TD_SIZE 16
92
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET 0
95 #define SPI_RDRF_SIZE 1
96 #define SPI_TDRE_OFFSET 1
97 #define SPI_TDRE_SIZE 1
98 #define SPI_MODF_OFFSET 2
99 #define SPI_MODF_SIZE 1
100 #define SPI_OVRES_OFFSET 3
101 #define SPI_OVRES_SIZE 1
102 #define SPI_ENDRX_OFFSET 4
103 #define SPI_ENDRX_SIZE 1
104 #define SPI_ENDTX_OFFSET 5
105 #define SPI_ENDTX_SIZE 1
106 #define SPI_RXBUFF_OFFSET 6
107 #define SPI_RXBUFF_SIZE 1
108 #define SPI_TXBUFE_OFFSET 7
109 #define SPI_TXBUFE_SIZE 1
110 #define SPI_NSSR_OFFSET 8
111 #define SPI_NSSR_SIZE 1
112 #define SPI_TXEMPTY_OFFSET 9
113 #define SPI_TXEMPTY_SIZE 1
114 #define SPI_SPIENS_OFFSET 16
115 #define SPI_SPIENS_SIZE 1
116
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET 0
119 #define SPI_CPOL_SIZE 1
120 #define SPI_NCPHA_OFFSET 1
121 #define SPI_NCPHA_SIZE 1
122 #define SPI_CSAAT_OFFSET 3
123 #define SPI_CSAAT_SIZE 1
124 #define SPI_BITS_OFFSET 4
125 #define SPI_BITS_SIZE 4
126 #define SPI_SCBR_OFFSET 8
127 #define SPI_SCBR_SIZE 8
128 #define SPI_DLYBS_OFFSET 16
129 #define SPI_DLYBS_SIZE 8
130 #define SPI_DLYBCT_OFFSET 24
131 #define SPI_DLYBCT_SIZE 8
132
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET 0
135 #define SPI_RXCTR_SIZE 16
136
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET 0
139 #define SPI_TXCTR_SIZE 16
140
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET 0
143 #define SPI_RXNCR_SIZE 16
144
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET 0
147 #define SPI_TXNCR_SIZE 16
148
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET 0
151 #define SPI_RXTEN_SIZE 1
152 #define SPI_RXTDIS_OFFSET 1
153 #define SPI_RXTDIS_SIZE 1
154 #define SPI_TXTEN_OFFSET 8
155 #define SPI_TXTEN_SIZE 1
156 #define SPI_TXTDIS_OFFSET 9
157 #define SPI_TXTDIS_SIZE 1
158
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT 0
161 #define SPI_BITS_9_BPT 1
162 #define SPI_BITS_10_BPT 2
163 #define SPI_BITS_11_BPT 3
164 #define SPI_BITS_12_BPT 4
165 #define SPI_BITS_13_BPT 5
166 #define SPI_BITS_14_BPT 6
167 #define SPI_BITS_15_BPT 7
168 #define SPI_BITS_16_BPT 8
169
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 (1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 | SPI_BF(name,value))
180
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183 __raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185 __raw_writel((value), (port)->regs + SPI_##reg)
186
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190 #define DMA_MIN_BYTES 16
191
192 struct atmel_spi_dma {
193 struct dma_chan *chan_rx;
194 struct dma_chan *chan_tx;
195 struct scatterlist sgrx;
196 struct scatterlist sgtx;
197 struct dma_async_tx_descriptor *data_desc_rx;
198 struct dma_async_tx_descriptor *data_desc_tx;
199
200 struct at_dma_slave dma_slave;
201 };
202
203 struct atmel_spi_caps {
204 bool is_spi2;
205 bool has_wdrbt;
206 bool has_dma_support;
207 };
208
209 /*
210 * The core SPI transfer engine just talks to a register bank to set up
211 * DMA transfers; transfer queue progress is driven by IRQs. The clock
212 * framework provides the base clock, subdivided for each spi_device.
213 */
214 struct atmel_spi {
215 spinlock_t lock;
216 unsigned long flags;
217
218 phys_addr_t phybase;
219 void __iomem *regs;
220 int irq;
221 struct clk *clk;
222 struct platform_device *pdev;
223 struct spi_device *stay;
224
225 u8 stopping;
226 struct list_head queue;
227 struct tasklet_struct tasklet;
228 struct spi_transfer *current_transfer;
229 unsigned long current_remaining_bytes;
230 struct spi_transfer *next_transfer;
231 unsigned long next_remaining_bytes;
232 int done_status;
233
234 /* scratch buffer */
235 void *buffer;
236 dma_addr_t buffer_dma;
237
238 struct atmel_spi_caps caps;
239
240 bool use_dma;
241 bool use_pdc;
242 /* dmaengine data */
243 struct atmel_spi_dma dma;
244 };
245
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248 unsigned int npcs_pin;
249 u32 csr;
250 };
251
252 #define BUFFER_SIZE PAGE_SIZE
253 #define INVALID_DMA_ADDRESS 0xffffffff
254
255 /*
256 * Version 2 of the SPI controller has
257 * - CR.LASTXFER
258 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260 * - SPI_CSRx.CSAAT
261 * - SPI_CSRx.SBCR allows faster clocking
262 */
atmel_spi_is_v2(struct atmel_spi * as)263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265 return as->caps.is_spi2;
266 }
267
268 /*
269 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270 * they assume that spi slave device state will not change on deselect, so
271 * that automagic deselection is OK. ("NPCSx rises if no data is to be
272 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
273 * controllers have CSAAT and friends.
274 *
275 * Since the CSAAT functionality is a bit weird on newer controllers as
276 * well, we use GPIO to control nCSx pins on all controllers, updating
277 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
278 * support active-high chipselects despite the controller's belief that
279 * only active-low devices/systems exists.
280 *
281 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282 * right when driven with GPIO. ("Mode Fault does not allow more than one
283 * Master on Chip Select 0.") No workaround exists for that ... so for
284 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285 * and (c) will trigger that first erratum in some cases.
286 */
287
cs_activate(struct atmel_spi * as,struct spi_device * spi)288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290 struct atmel_spi_device *asd = spi->controller_state;
291 unsigned active = spi->mode & SPI_CS_HIGH;
292 u32 mr;
293
294 if (atmel_spi_is_v2(as)) {
295 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296 /* For the low SPI version, there is a issue that PDC transfer
297 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298 */
299 spi_writel(as, CSR0, asd->csr);
300 if (as->caps.has_wdrbt) {
301 spi_writel(as, MR,
302 SPI_BF(PCS, ~(0x01 << spi->chip_select))
303 | SPI_BIT(WDRBT)
304 | SPI_BIT(MODFDIS)
305 | SPI_BIT(MSTR));
306 } else {
307 spi_writel(as, MR,
308 SPI_BF(PCS, ~(0x01 << spi->chip_select))
309 | SPI_BIT(MODFDIS)
310 | SPI_BIT(MSTR));
311 }
312
313 mr = spi_readl(as, MR);
314 gpio_set_value(asd->npcs_pin, active);
315 } else {
316 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317 int i;
318 u32 csr;
319
320 /* Make sure clock polarity is correct */
321 for (i = 0; i < spi->master->num_chipselect; i++) {
322 csr = spi_readl(as, CSR0 + 4 * i);
323 if ((csr ^ cpol) & SPI_BIT(CPOL))
324 spi_writel(as, CSR0 + 4 * i,
325 csr ^ SPI_BIT(CPOL));
326 }
327
328 mr = spi_readl(as, MR);
329 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330 if (spi->chip_select != 0)
331 gpio_set_value(asd->npcs_pin, active);
332 spi_writel(as, MR, mr);
333 }
334
335 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336 asd->npcs_pin, active ? " (high)" : "",
337 mr);
338 }
339
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342 struct atmel_spi_device *asd = spi->controller_state;
343 unsigned active = spi->mode & SPI_CS_HIGH;
344 u32 mr;
345
346 /* only deactivate *this* device; sometimes transfers to
347 * another device may be active when this routine is called.
348 */
349 mr = spi_readl(as, MR);
350 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351 mr = SPI_BFINS(PCS, 0xf, mr);
352 spi_writel(as, MR, mr);
353 }
354
355 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356 asd->npcs_pin, active ? " (low)" : "",
357 mr);
358
359 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360 gpio_set_value(asd->npcs_pin, !active);
361 }
362
atmel_spi_lock(struct atmel_spi * as)363 static void atmel_spi_lock(struct atmel_spi *as)
364 {
365 spin_lock_irqsave(&as->lock, as->flags);
366 }
367
atmel_spi_unlock(struct atmel_spi * as)368 static void atmel_spi_unlock(struct atmel_spi *as)
369 {
370 spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374 struct spi_transfer *xfer)
375 {
376 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378
atmel_spi_xfer_is_last(struct spi_message * msg,struct spi_transfer * xfer)379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380 struct spi_transfer *xfer)
381 {
382 return msg->transfers.prev == &xfer->transfer_list;
383 }
384
atmel_spi_xfer_can_be_chained(struct spi_transfer * xfer)385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387 return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391 struct dma_slave_config *slave_config,
392 u8 bits_per_word)
393 {
394 int err = 0;
395
396 if (bits_per_word > 8) {
397 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399 } else {
400 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402 }
403
404 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406 slave_config->src_maxburst = 1;
407 slave_config->dst_maxburst = 1;
408 slave_config->device_fc = false;
409
410 slave_config->direction = DMA_MEM_TO_DEV;
411 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412 dev_err(&as->pdev->dev,
413 "failed to configure tx dma channel\n");
414 err = -EINVAL;
415 }
416
417 slave_config->direction = DMA_DEV_TO_MEM;
418 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419 dev_err(&as->pdev->dev,
420 "failed to configure rx dma channel\n");
421 err = -EINVAL;
422 }
423
424 return err;
425 }
426
filter(struct dma_chan * chan,void * slave)427 static bool filter(struct dma_chan *chan, void *slave)
428 {
429 struct at_dma_slave *sl = slave;
430
431 if (sl->dma_dev == chan->device->dev) {
432 chan->private = sl;
433 return true;
434 } else {
435 return false;
436 }
437 }
438
atmel_spi_configure_dma(struct atmel_spi * as)439 static int atmel_spi_configure_dma(struct atmel_spi *as)
440 {
441 struct at_dma_slave *sdata = &as->dma.dma_slave;
442 struct dma_slave_config slave_config;
443 int err;
444
445 if (sdata && sdata->dma_dev) {
446 dma_cap_mask_t mask;
447
448 /* Try to grab two DMA channels */
449 dma_cap_zero(mask);
450 dma_cap_set(DMA_SLAVE, mask);
451 as->dma.chan_tx = dma_request_channel(mask, filter, sdata);
452 if (as->dma.chan_tx)
453 as->dma.chan_rx =
454 dma_request_channel(mask, filter, sdata);
455 }
456 if (!as->dma.chan_rx || !as->dma.chan_tx) {
457 dev_err(&as->pdev->dev,
458 "DMA channel not available, SPI unable to use DMA\n");
459 err = -EBUSY;
460 goto error;
461 }
462
463 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
464 if (err)
465 goto error;
466
467 dev_info(&as->pdev->dev,
468 "Using %s (tx) and %s (rx) for DMA transfers\n",
469 dma_chan_name(as->dma.chan_tx),
470 dma_chan_name(as->dma.chan_rx));
471 return 0;
472 error:
473 if (as->dma.chan_rx)
474 dma_release_channel(as->dma.chan_rx);
475 if (as->dma.chan_tx)
476 dma_release_channel(as->dma.chan_tx);
477 return err;
478 }
479
atmel_spi_stop_dma(struct atmel_spi * as)480 static void atmel_spi_stop_dma(struct atmel_spi *as)
481 {
482 if (as->dma.chan_rx)
483 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
484 DMA_TERMINATE_ALL, 0);
485 if (as->dma.chan_tx)
486 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
487 DMA_TERMINATE_ALL, 0);
488 }
489
atmel_spi_release_dma(struct atmel_spi * as)490 static void atmel_spi_release_dma(struct atmel_spi *as)
491 {
492 if (as->dma.chan_rx)
493 dma_release_channel(as->dma.chan_rx);
494 if (as->dma.chan_tx)
495 dma_release_channel(as->dma.chan_tx);
496 }
497
498 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)499 static void dma_callback(void *data)
500 {
501 struct spi_master *master = data;
502 struct atmel_spi *as = spi_master_get_devdata(master);
503
504 /* trigger SPI tasklet */
505 tasklet_schedule(&as->tasklet);
506 }
507
508 /*
509 * Next transfer using PIO.
510 * lock is held, spi tasklet is blocked
511 */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)512 static void atmel_spi_next_xfer_pio(struct spi_master *master,
513 struct spi_transfer *xfer)
514 {
515 struct atmel_spi *as = spi_master_get_devdata(master);
516
517 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
518
519 as->current_remaining_bytes = xfer->len;
520
521 /* Make sure data is not remaining in RDR */
522 spi_readl(as, RDR);
523 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524 spi_readl(as, RDR);
525 cpu_relax();
526 }
527
528 if (xfer->tx_buf)
529 if (xfer->bits_per_word > 8)
530 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
531 else
532 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
533 else
534 spi_writel(as, TDR, 0);
535
536 dev_dbg(master->dev.parent,
537 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
539 xfer->bits_per_word);
540
541 /* Enable relevant interrupts */
542 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
543 }
544
545 /*
546 * Submit next transfer for DMA.
547 * lock is held, spi tasklet is blocked
548 */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)549 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
550 struct spi_transfer *xfer,
551 u32 *plen)
552 {
553 struct atmel_spi *as = spi_master_get_devdata(master);
554 struct dma_chan *rxchan = as->dma.chan_rx;
555 struct dma_chan *txchan = as->dma.chan_tx;
556 struct dma_async_tx_descriptor *rxdesc;
557 struct dma_async_tx_descriptor *txdesc;
558 struct dma_slave_config slave_config;
559 dma_cookie_t cookie;
560 u32 len = *plen;
561
562 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
563
564 /* Check that the channels are available */
565 if (!rxchan || !txchan)
566 return -ENODEV;
567
568 /* release lock for DMA operations */
569 atmel_spi_unlock(as);
570
571 /* prepare the RX dma transfer */
572 sg_init_table(&as->dma.sgrx, 1);
573 if (xfer->rx_buf) {
574 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
575 } else {
576 as->dma.sgrx.dma_address = as->buffer_dma;
577 if (len > BUFFER_SIZE)
578 len = BUFFER_SIZE;
579 }
580
581 /* prepare the TX dma transfer */
582 sg_init_table(&as->dma.sgtx, 1);
583 if (xfer->tx_buf) {
584 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
585 } else {
586 as->dma.sgtx.dma_address = as->buffer_dma;
587 if (len > BUFFER_SIZE)
588 len = BUFFER_SIZE;
589 memset(as->buffer, 0, len);
590 }
591
592 sg_dma_len(&as->dma.sgtx) = len;
593 sg_dma_len(&as->dma.sgrx) = len;
594
595 *plen = len;
596
597 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
598 goto err_exit;
599
600 /* Send both scatterlists */
601 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
602 &as->dma.sgrx,
603 1,
604 DMA_FROM_DEVICE,
605 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
606 NULL);
607 if (!rxdesc)
608 goto err_dma;
609
610 txdesc = txchan->device->device_prep_slave_sg(txchan,
611 &as->dma.sgtx,
612 1,
613 DMA_TO_DEVICE,
614 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
615 NULL);
616 if (!txdesc)
617 goto err_dma;
618
619 dev_dbg(master->dev.parent,
620 " start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
621 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
622 xfer->rx_buf, xfer->rx_dma);
623
624 /* Enable relevant interrupts */
625 spi_writel(as, IER, SPI_BIT(OVRES));
626
627 /* Put the callback on the RX transfer only, that should finish last */
628 rxdesc->callback = dma_callback;
629 rxdesc->callback_param = master;
630
631 /* Submit and fire RX and TX with TX last so we're ready to read! */
632 cookie = rxdesc->tx_submit(rxdesc);
633 if (dma_submit_error(cookie))
634 goto err_dma;
635 cookie = txdesc->tx_submit(txdesc);
636 if (dma_submit_error(cookie))
637 goto err_dma;
638 rxchan->device->device_issue_pending(rxchan);
639 txchan->device->device_issue_pending(txchan);
640
641 /* take back lock */
642 atmel_spi_lock(as);
643 return 0;
644
645 err_dma:
646 spi_writel(as, IDR, SPI_BIT(OVRES));
647 atmel_spi_stop_dma(as);
648 err_exit:
649 atmel_spi_lock(as);
650 return -ENOMEM;
651 }
652
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)653 static void atmel_spi_next_xfer_data(struct spi_master *master,
654 struct spi_transfer *xfer,
655 dma_addr_t *tx_dma,
656 dma_addr_t *rx_dma,
657 u32 *plen)
658 {
659 struct atmel_spi *as = spi_master_get_devdata(master);
660 u32 len = *plen;
661
662 /* use scratch buffer only when rx or tx data is unspecified */
663 if (xfer->rx_buf)
664 *rx_dma = xfer->rx_dma + xfer->len - *plen;
665 else {
666 *rx_dma = as->buffer_dma;
667 if (len > BUFFER_SIZE)
668 len = BUFFER_SIZE;
669 }
670
671 if (xfer->tx_buf)
672 *tx_dma = xfer->tx_dma + xfer->len - *plen;
673 else {
674 *tx_dma = as->buffer_dma;
675 if (len > BUFFER_SIZE)
676 len = BUFFER_SIZE;
677 memset(as->buffer, 0, len);
678 dma_sync_single_for_device(&as->pdev->dev,
679 as->buffer_dma, len, DMA_TO_DEVICE);
680 }
681
682 *plen = len;
683 }
684
685 /*
686 * Submit next transfer for PDC.
687 * lock is held, spi irq is blocked
688 */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_message * msg)689 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
690 struct spi_message *msg)
691 {
692 struct atmel_spi *as = spi_master_get_devdata(master);
693 struct spi_transfer *xfer;
694 u32 len, remaining;
695 u32 ieval;
696 dma_addr_t tx_dma, rx_dma;
697
698 if (!as->current_transfer)
699 xfer = list_entry(msg->transfers.next,
700 struct spi_transfer, transfer_list);
701 else if (!as->next_transfer)
702 xfer = list_entry(as->current_transfer->transfer_list.next,
703 struct spi_transfer, transfer_list);
704 else
705 xfer = NULL;
706
707 if (xfer) {
708 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
709
710 len = xfer->len;
711 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
712 remaining = xfer->len - len;
713
714 spi_writel(as, RPR, rx_dma);
715 spi_writel(as, TPR, tx_dma);
716
717 if (msg->spi->bits_per_word > 8)
718 len >>= 1;
719 spi_writel(as, RCR, len);
720 spi_writel(as, TCR, len);
721
722 dev_dbg(&msg->spi->dev,
723 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
724 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
725 xfer->rx_buf, xfer->rx_dma);
726 } else {
727 xfer = as->next_transfer;
728 remaining = as->next_remaining_bytes;
729 }
730
731 as->current_transfer = xfer;
732 as->current_remaining_bytes = remaining;
733
734 if (remaining > 0)
735 len = remaining;
736 else if (!atmel_spi_xfer_is_last(msg, xfer)
737 && atmel_spi_xfer_can_be_chained(xfer)) {
738 xfer = list_entry(xfer->transfer_list.next,
739 struct spi_transfer, transfer_list);
740 len = xfer->len;
741 } else
742 xfer = NULL;
743
744 as->next_transfer = xfer;
745
746 if (xfer) {
747 u32 total;
748
749 total = len;
750 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
751 as->next_remaining_bytes = total - len;
752
753 spi_writel(as, RNPR, rx_dma);
754 spi_writel(as, TNPR, tx_dma);
755
756 if (msg->spi->bits_per_word > 8)
757 len >>= 1;
758 spi_writel(as, RNCR, len);
759 spi_writel(as, TNCR, len);
760
761 dev_dbg(&msg->spi->dev,
762 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
763 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
764 xfer->rx_buf, xfer->rx_dma);
765 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
766 } else {
767 spi_writel(as, RNCR, 0);
768 spi_writel(as, TNCR, 0);
769 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
770 }
771
772 /* REVISIT: We're waiting for ENDRX before we start the next
773 * transfer because we need to handle some difficult timing
774 * issues otherwise. If we wait for ENDTX in one transfer and
775 * then starts waiting for ENDRX in the next, it's difficult
776 * to tell the difference between the ENDRX interrupt we're
777 * actually waiting for and the ENDRX interrupt of the
778 * previous transfer.
779 *
780 * It should be doable, though. Just not now...
781 */
782 spi_writel(as, IER, ieval);
783 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
784 }
785
786 /*
787 * Choose way to submit next transfer and start it.
788 * lock is held, spi tasklet is blocked
789 */
atmel_spi_dma_next_xfer(struct spi_master * master,struct spi_message * msg)790 static void atmel_spi_dma_next_xfer(struct spi_master *master,
791 struct spi_message *msg)
792 {
793 struct atmel_spi *as = spi_master_get_devdata(master);
794 struct spi_transfer *xfer;
795 u32 remaining, len;
796
797 remaining = as->current_remaining_bytes;
798 if (remaining) {
799 xfer = as->current_transfer;
800 len = remaining;
801 } else {
802 if (!as->current_transfer)
803 xfer = list_entry(msg->transfers.next,
804 struct spi_transfer, transfer_list);
805 else
806 xfer = list_entry(
807 as->current_transfer->transfer_list.next,
808 struct spi_transfer, transfer_list);
809
810 as->current_transfer = xfer;
811 len = xfer->len;
812 }
813
814 if (atmel_spi_use_dma(as, xfer)) {
815 u32 total = len;
816 if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
817 as->current_remaining_bytes = total - len;
818 return;
819 } else {
820 dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
821 }
822 }
823
824 /* use PIO if error appened using DMA */
825 atmel_spi_next_xfer_pio(master, xfer);
826 }
827
atmel_spi_next_message(struct spi_master * master)828 static void atmel_spi_next_message(struct spi_master *master)
829 {
830 struct atmel_spi *as = spi_master_get_devdata(master);
831 struct spi_message *msg;
832 struct spi_device *spi;
833
834 BUG_ON(as->current_transfer);
835
836 msg = list_entry(as->queue.next, struct spi_message, queue);
837 spi = msg->spi;
838
839 dev_dbg(master->dev.parent, "start message %p for %s\n",
840 msg, dev_name(&spi->dev));
841
842 /* select chip if it's not still active */
843 if (as->stay) {
844 if (as->stay != spi) {
845 cs_deactivate(as, as->stay);
846 cs_activate(as, spi);
847 }
848 as->stay = NULL;
849 } else
850 cs_activate(as, spi);
851
852 if (as->use_pdc)
853 atmel_spi_pdc_next_xfer(master, msg);
854 else
855 atmel_spi_dma_next_xfer(master, msg);
856 }
857
858 /*
859 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
860 * - The buffer is either valid for CPU access, else NULL
861 * - If the buffer is valid, so is its DMA address
862 *
863 * This driver manages the dma address unless message->is_dma_mapped.
864 */
865 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)866 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
867 {
868 struct device *dev = &as->pdev->dev;
869
870 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
871 if (xfer->tx_buf) {
872 /* tx_buf is a const void* where we need a void * for the dma
873 * mapping */
874 void *nonconst_tx = (void *)xfer->tx_buf;
875
876 xfer->tx_dma = dma_map_single(dev,
877 nonconst_tx, xfer->len,
878 DMA_TO_DEVICE);
879 if (dma_mapping_error(dev, xfer->tx_dma))
880 return -ENOMEM;
881 }
882 if (xfer->rx_buf) {
883 xfer->rx_dma = dma_map_single(dev,
884 xfer->rx_buf, xfer->len,
885 DMA_FROM_DEVICE);
886 if (dma_mapping_error(dev, xfer->rx_dma)) {
887 if (xfer->tx_buf)
888 dma_unmap_single(dev,
889 xfer->tx_dma, xfer->len,
890 DMA_TO_DEVICE);
891 return -ENOMEM;
892 }
893 }
894 return 0;
895 }
896
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)897 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
898 struct spi_transfer *xfer)
899 {
900 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
901 dma_unmap_single(master->dev.parent, xfer->tx_dma,
902 xfer->len, DMA_TO_DEVICE);
903 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
904 dma_unmap_single(master->dev.parent, xfer->rx_dma,
905 xfer->len, DMA_FROM_DEVICE);
906 }
907
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)908 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
909 {
910 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
911 }
912
913 static void
atmel_spi_msg_done(struct spi_master * master,struct atmel_spi * as,struct spi_message * msg,int stay)914 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
915 struct spi_message *msg, int stay)
916 {
917 if (!stay || as->done_status < 0)
918 cs_deactivate(as, msg->spi);
919 else
920 as->stay = msg->spi;
921
922 list_del(&msg->queue);
923 msg->status = as->done_status;
924
925 dev_dbg(master->dev.parent,
926 "xfer complete: %u bytes transferred\n",
927 msg->actual_length);
928
929 atmel_spi_unlock(as);
930 msg->complete(msg->context);
931 atmel_spi_lock(as);
932
933 as->current_transfer = NULL;
934 as->next_transfer = NULL;
935 as->done_status = 0;
936
937 /* continue if needed */
938 if (list_empty(&as->queue) || as->stopping) {
939 if (as->use_pdc)
940 atmel_spi_disable_pdc_transfer(as);
941 } else {
942 atmel_spi_next_message(master);
943 }
944 }
945
946 /* Called from IRQ
947 * lock is held
948 *
949 * Must update "current_remaining_bytes" to keep track of data
950 * to transfer.
951 */
952 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)953 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
954 {
955 u8 *txp;
956 u8 *rxp;
957 u16 *txp16;
958 u16 *rxp16;
959 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
960
961 if (xfer->rx_buf) {
962 if (xfer->bits_per_word > 8) {
963 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
964 *rxp16 = spi_readl(as, RDR);
965 } else {
966 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
967 *rxp = spi_readl(as, RDR);
968 }
969 } else {
970 spi_readl(as, RDR);
971 }
972 if (xfer->bits_per_word > 8) {
973 as->current_remaining_bytes -= 2;
974 if (as->current_remaining_bytes < 0)
975 as->current_remaining_bytes = 0;
976 } else {
977 as->current_remaining_bytes--;
978 }
979
980 if (as->current_remaining_bytes) {
981 if (xfer->tx_buf) {
982 if (xfer->bits_per_word > 8) {
983 txp16 = (u16 *)(((u8 *)xfer->tx_buf)
984 + xfer_pos + 2);
985 spi_writel(as, TDR, *txp16);
986 } else {
987 txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
988 spi_writel(as, TDR, *txp);
989 }
990 } else {
991 spi_writel(as, TDR, 0);
992 }
993 }
994 }
995
996 /* Tasklet
997 * Called from DMA callback + pio transfer and overrun IRQ.
998 */
atmel_spi_tasklet_func(unsigned long data)999 static void atmel_spi_tasklet_func(unsigned long data)
1000 {
1001 struct spi_master *master = (struct spi_master *)data;
1002 struct atmel_spi *as = spi_master_get_devdata(master);
1003 struct spi_message *msg;
1004 struct spi_transfer *xfer;
1005
1006 dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
1007
1008 atmel_spi_lock(as);
1009
1010 xfer = as->current_transfer;
1011
1012 if (xfer == NULL)
1013 /* already been there */
1014 goto tasklet_out;
1015
1016 msg = list_entry(as->queue.next, struct spi_message, queue);
1017
1018 if (as->current_remaining_bytes == 0) {
1019 if (as->done_status < 0) {
1020 /* error happened (overrun) */
1021 if (atmel_spi_use_dma(as, xfer))
1022 atmel_spi_stop_dma(as);
1023 } else {
1024 /* only update length if no error */
1025 msg->actual_length += xfer->len;
1026 }
1027
1028 if (atmel_spi_use_dma(as, xfer))
1029 if (!msg->is_dma_mapped)
1030 atmel_spi_dma_unmap_xfer(master, xfer);
1031
1032 if (xfer->delay_usecs)
1033 udelay(xfer->delay_usecs);
1034
1035 if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1036 /* report completed (or erroneous) message */
1037 atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1038 } else {
1039 if (xfer->cs_change) {
1040 cs_deactivate(as, msg->spi);
1041 udelay(1);
1042 cs_activate(as, msg->spi);
1043 }
1044
1045 /*
1046 * Not done yet. Submit the next transfer.
1047 *
1048 * FIXME handle protocol options for xfer
1049 */
1050 atmel_spi_dma_next_xfer(master, msg);
1051 }
1052 } else {
1053 /*
1054 * Keep going, we still have data to send in
1055 * the current transfer.
1056 */
1057 atmel_spi_dma_next_xfer(master, msg);
1058 }
1059
1060 tasklet_out:
1061 atmel_spi_unlock(as);
1062 }
1063
1064 /* Interrupt
1065 *
1066 * No need for locking in this Interrupt handler: done_status is the
1067 * only information modified. What we need is the update of this field
1068 * before tasklet runs. This is ensured by using barrier.
1069 */
1070 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1071 atmel_spi_pio_interrupt(int irq, void *dev_id)
1072 {
1073 struct spi_master *master = dev_id;
1074 struct atmel_spi *as = spi_master_get_devdata(master);
1075 u32 status, pending, imr;
1076 struct spi_transfer *xfer;
1077 int ret = IRQ_NONE;
1078
1079 imr = spi_readl(as, IMR);
1080 status = spi_readl(as, SR);
1081 pending = status & imr;
1082
1083 if (pending & SPI_BIT(OVRES)) {
1084 ret = IRQ_HANDLED;
1085 spi_writel(as, IDR, SPI_BIT(OVRES));
1086 dev_warn(master->dev.parent, "overrun\n");
1087
1088 /*
1089 * When we get an overrun, we disregard the current
1090 * transfer. Data will not be copied back from any
1091 * bounce buffer and msg->actual_len will not be
1092 * updated with the last xfer.
1093 *
1094 * We will also not process any remaning transfers in
1095 * the message.
1096 *
1097 * All actions are done in tasklet with done_status indication
1098 */
1099 as->done_status = -EIO;
1100 smp_wmb();
1101
1102 /* Clear any overrun happening while cleaning up */
1103 spi_readl(as, SR);
1104
1105 tasklet_schedule(&as->tasklet);
1106
1107 } else if (pending & SPI_BIT(RDRF)) {
1108 atmel_spi_lock(as);
1109
1110 if (as->current_remaining_bytes) {
1111 ret = IRQ_HANDLED;
1112 xfer = as->current_transfer;
1113 atmel_spi_pump_pio_data(as, xfer);
1114 if (!as->current_remaining_bytes) {
1115 /* no more data to xfer, kick tasklet */
1116 spi_writel(as, IDR, pending);
1117 tasklet_schedule(&as->tasklet);
1118 }
1119 }
1120
1121 atmel_spi_unlock(as);
1122 } else {
1123 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1124 ret = IRQ_HANDLED;
1125 spi_writel(as, IDR, pending);
1126 }
1127
1128 return ret;
1129 }
1130
1131 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1132 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1133 {
1134 struct spi_master *master = dev_id;
1135 struct atmel_spi *as = spi_master_get_devdata(master);
1136 struct spi_message *msg;
1137 struct spi_transfer *xfer;
1138 u32 status, pending, imr;
1139 int ret = IRQ_NONE;
1140
1141 atmel_spi_lock(as);
1142
1143 xfer = as->current_transfer;
1144 msg = list_entry(as->queue.next, struct spi_message, queue);
1145
1146 imr = spi_readl(as, IMR);
1147 status = spi_readl(as, SR);
1148 pending = status & imr;
1149
1150 if (pending & SPI_BIT(OVRES)) {
1151 int timeout;
1152
1153 ret = IRQ_HANDLED;
1154
1155 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156 | SPI_BIT(OVRES)));
1157
1158 /*
1159 * When we get an overrun, we disregard the current
1160 * transfer. Data will not be copied back from any
1161 * bounce buffer and msg->actual_len will not be
1162 * updated with the last xfer.
1163 *
1164 * We will also not process any remaning transfers in
1165 * the message.
1166 *
1167 * First, stop the transfer and unmap the DMA buffers.
1168 */
1169 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1170 if (!msg->is_dma_mapped)
1171 atmel_spi_dma_unmap_xfer(master, xfer);
1172
1173 /* REVISIT: udelay in irq is unfriendly */
1174 if (xfer->delay_usecs)
1175 udelay(xfer->delay_usecs);
1176
1177 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1178 spi_readl(as, TCR), spi_readl(as, RCR));
1179
1180 /*
1181 * Clean up DMA registers and make sure the data
1182 * registers are empty.
1183 */
1184 spi_writel(as, RNCR, 0);
1185 spi_writel(as, TNCR, 0);
1186 spi_writel(as, RCR, 0);
1187 spi_writel(as, TCR, 0);
1188 for (timeout = 1000; timeout; timeout--)
1189 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1190 break;
1191 if (!timeout)
1192 dev_warn(master->dev.parent,
1193 "timeout waiting for TXEMPTY");
1194 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1195 spi_readl(as, RDR);
1196
1197 /* Clear any overrun happening while cleaning up */
1198 spi_readl(as, SR);
1199
1200 as->done_status = -EIO;
1201 atmel_spi_msg_done(master, as, msg, 0);
1202 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1203 ret = IRQ_HANDLED;
1204
1205 spi_writel(as, IDR, pending);
1206
1207 if (as->current_remaining_bytes == 0) {
1208 msg->actual_length += xfer->len;
1209
1210 if (!msg->is_dma_mapped)
1211 atmel_spi_dma_unmap_xfer(master, xfer);
1212
1213 /* REVISIT: udelay in irq is unfriendly */
1214 if (xfer->delay_usecs)
1215 udelay(xfer->delay_usecs);
1216
1217 if (atmel_spi_xfer_is_last(msg, xfer)) {
1218 /* report completed message */
1219 atmel_spi_msg_done(master, as, msg,
1220 xfer->cs_change);
1221 } else {
1222 if (xfer->cs_change) {
1223 cs_deactivate(as, msg->spi);
1224 udelay(1);
1225 cs_activate(as, msg->spi);
1226 }
1227
1228 /*
1229 * Not done yet. Submit the next transfer.
1230 *
1231 * FIXME handle protocol options for xfer
1232 */
1233 atmel_spi_pdc_next_xfer(master, msg);
1234 }
1235 } else {
1236 /*
1237 * Keep going, we still have data to send in
1238 * the current transfer.
1239 */
1240 atmel_spi_pdc_next_xfer(master, msg);
1241 }
1242 }
1243
1244 atmel_spi_unlock(as);
1245
1246 return ret;
1247 }
1248
atmel_spi_setup(struct spi_device * spi)1249 static int atmel_spi_setup(struct spi_device *spi)
1250 {
1251 struct atmel_spi *as;
1252 struct atmel_spi_device *asd;
1253 u32 scbr, csr;
1254 unsigned int bits = spi->bits_per_word;
1255 unsigned long bus_hz;
1256 unsigned int npcs_pin;
1257 int ret;
1258
1259 as = spi_master_get_devdata(spi->master);
1260
1261 if (as->stopping)
1262 return -ESHUTDOWN;
1263
1264 if (spi->chip_select > spi->master->num_chipselect) {
1265 dev_dbg(&spi->dev,
1266 "setup: invalid chipselect %u (%u defined)\n",
1267 spi->chip_select, spi->master->num_chipselect);
1268 return -EINVAL;
1269 }
1270
1271 if (bits < 8 || bits > 16) {
1272 dev_dbg(&spi->dev,
1273 "setup: invalid bits_per_word %u (8 to 16)\n",
1274 bits);
1275 return -EINVAL;
1276 }
1277
1278 /* see notes above re chipselect */
1279 if (!atmel_spi_is_v2(as)
1280 && spi->chip_select == 0
1281 && (spi->mode & SPI_CS_HIGH)) {
1282 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1283 return -EINVAL;
1284 }
1285
1286 /* v1 chips start out at half the peripheral bus speed. */
1287 bus_hz = clk_get_rate(as->clk);
1288 if (!atmel_spi_is_v2(as))
1289 bus_hz /= 2;
1290
1291 if (spi->max_speed_hz) {
1292 /*
1293 * Calculate the lowest divider that satisfies the
1294 * constraint, assuming div32/fdiv/mbz == 0.
1295 */
1296 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1297
1298 /*
1299 * If the resulting divider doesn't fit into the
1300 * register bitfield, we can't satisfy the constraint.
1301 */
1302 if (scbr >= (1 << SPI_SCBR_SIZE)) {
1303 dev_dbg(&spi->dev,
1304 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1305 spi->max_speed_hz, scbr, bus_hz/255);
1306 return -EINVAL;
1307 }
1308 } else
1309 /* speed zero means "as slow as possible" */
1310 scbr = 0xff;
1311
1312 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1313 if (spi->mode & SPI_CPOL)
1314 csr |= SPI_BIT(CPOL);
1315 if (!(spi->mode & SPI_CPHA))
1316 csr |= SPI_BIT(NCPHA);
1317
1318 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1319 *
1320 * DLYBCT would add delays between words, slowing down transfers.
1321 * It could potentially be useful to cope with DMA bottlenecks, but
1322 * in those cases it's probably best to just use a lower bitrate.
1323 */
1324 csr |= SPI_BF(DLYBS, 0);
1325 csr |= SPI_BF(DLYBCT, 0);
1326
1327 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1328 npcs_pin = (unsigned int)spi->controller_data;
1329
1330 if (gpio_is_valid(spi->cs_gpio))
1331 npcs_pin = spi->cs_gpio;
1332
1333 asd = spi->controller_state;
1334 if (!asd) {
1335 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1336 if (!asd)
1337 return -ENOMEM;
1338
1339 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1340 if (ret) {
1341 kfree(asd);
1342 return ret;
1343 }
1344
1345 asd->npcs_pin = npcs_pin;
1346 spi->controller_state = asd;
1347 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1348 } else {
1349 atmel_spi_lock(as);
1350 if (as->stay == spi)
1351 as->stay = NULL;
1352 cs_deactivate(as, spi);
1353 atmel_spi_unlock(as);
1354 }
1355
1356 asd->csr = csr;
1357
1358 dev_dbg(&spi->dev,
1359 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1360 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1361
1362 if (!atmel_spi_is_v2(as))
1363 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1364
1365 return 0;
1366 }
1367
atmel_spi_transfer(struct spi_device * spi,struct spi_message * msg)1368 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1369 {
1370 struct atmel_spi *as;
1371 struct spi_transfer *xfer;
1372 struct device *controller = spi->master->dev.parent;
1373 u8 bits;
1374 struct atmel_spi_device *asd;
1375
1376 as = spi_master_get_devdata(spi->master);
1377
1378 dev_dbg(controller, "new message %p submitted for %s\n",
1379 msg, dev_name(&spi->dev));
1380
1381 if (unlikely(list_empty(&msg->transfers)))
1382 return -EINVAL;
1383
1384 if (as->stopping)
1385 return -ESHUTDOWN;
1386
1387 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1388 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1389 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1390 return -EINVAL;
1391 }
1392
1393 if (xfer->bits_per_word) {
1394 asd = spi->controller_state;
1395 bits = (asd->csr >> 4) & 0xf;
1396 if (bits != xfer->bits_per_word - 8) {
1397 dev_dbg(&spi->dev, "you can't yet change "
1398 "bits_per_word in transfers\n");
1399 return -ENOPROTOOPT;
1400 }
1401 }
1402
1403 if (xfer->bits_per_word > 8) {
1404 if (xfer->len % 2) {
1405 dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
1406 return -EINVAL;
1407 }
1408 }
1409
1410 /* FIXME implement these protocol options!! */
1411 if (xfer->speed_hz < spi->max_speed_hz) {
1412 dev_dbg(&spi->dev, "can't change speed in transfer\n");
1413 return -ENOPROTOOPT;
1414 }
1415
1416 /*
1417 * DMA map early, for performance (empties dcache ASAP) and
1418 * better fault reporting.
1419 */
1420 if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1421 || as->use_pdc)) {
1422 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1423 return -ENOMEM;
1424 }
1425 }
1426
1427 #ifdef VERBOSE
1428 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429 dev_dbg(controller,
1430 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1431 xfer, xfer->len,
1432 xfer->tx_buf, xfer->tx_dma,
1433 xfer->rx_buf, xfer->rx_dma);
1434 }
1435 #endif
1436
1437 msg->status = -EINPROGRESS;
1438 msg->actual_length = 0;
1439
1440 atmel_spi_lock(as);
1441 list_add_tail(&msg->queue, &as->queue);
1442 if (!as->current_transfer)
1443 atmel_spi_next_message(spi->master);
1444 atmel_spi_unlock(as);
1445
1446 return 0;
1447 }
1448
atmel_spi_cleanup(struct spi_device * spi)1449 static void atmel_spi_cleanup(struct spi_device *spi)
1450 {
1451 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1452 struct atmel_spi_device *asd = spi->controller_state;
1453 unsigned gpio = (unsigned) spi->controller_data;
1454
1455 if (!asd)
1456 return;
1457
1458 atmel_spi_lock(as);
1459 if (as->stay == spi) {
1460 as->stay = NULL;
1461 cs_deactivate(as, spi);
1462 }
1463 atmel_spi_unlock(as);
1464
1465 spi->controller_state = NULL;
1466 gpio_free(gpio);
1467 kfree(asd);
1468 }
1469
atmel_get_version(struct atmel_spi * as)1470 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1471 {
1472 return spi_readl(as, VERSION) & 0x00000fff;
1473 }
1474
atmel_get_caps(struct atmel_spi * as)1475 static void atmel_get_caps(struct atmel_spi *as)
1476 {
1477 unsigned int version;
1478
1479 version = atmel_get_version(as);
1480 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1481
1482 as->caps.is_spi2 = version > 0x121;
1483 as->caps.has_wdrbt = version >= 0x210;
1484 as->caps.has_dma_support = version >= 0x212;
1485 }
1486
1487 /*-------------------------------------------------------------------------*/
1488
atmel_spi_probe(struct platform_device * pdev)1489 static int atmel_spi_probe(struct platform_device *pdev)
1490 {
1491 struct resource *regs;
1492 int irq;
1493 struct clk *clk;
1494 int ret;
1495 struct spi_master *master;
1496 struct atmel_spi *as;
1497
1498 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499 if (!regs)
1500 return -ENXIO;
1501
1502 irq = platform_get_irq(pdev, 0);
1503 if (irq < 0)
1504 return irq;
1505
1506 clk = clk_get(&pdev->dev, "spi_clk");
1507 if (IS_ERR(clk))
1508 return PTR_ERR(clk);
1509
1510 /* setup spi core then atmel-specific driver state */
1511 ret = -ENOMEM;
1512 master = spi_alloc_master(&pdev->dev, sizeof *as);
1513 if (!master)
1514 goto out_free;
1515
1516 /* the spi->mode bits understood by this driver: */
1517 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1518
1519 master->dev.of_node = pdev->dev.of_node;
1520 master->bus_num = pdev->id;
1521 master->num_chipselect = master->dev.of_node ? 0 : 4;
1522 master->setup = atmel_spi_setup;
1523 master->transfer = atmel_spi_transfer;
1524 master->cleanup = atmel_spi_cleanup;
1525 platform_set_drvdata(pdev, master);
1526
1527 as = spi_master_get_devdata(master);
1528
1529 /*
1530 * Scratch buffer is used for throwaway rx and tx data.
1531 * It's coherent to minimize dcache pollution.
1532 */
1533 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1534 &as->buffer_dma, GFP_KERNEL);
1535 if (!as->buffer)
1536 goto out_free;
1537
1538 spin_lock_init(&as->lock);
1539 INIT_LIST_HEAD(&as->queue);
1540
1541 as->pdev = pdev;
1542 as->regs = ioremap(regs->start, resource_size(regs));
1543 if (!as->regs)
1544 goto out_free_buffer;
1545 as->phybase = regs->start;
1546 as->irq = irq;
1547 as->clk = clk;
1548
1549 atmel_get_caps(as);
1550
1551 as->use_dma = false;
1552 as->use_pdc = false;
1553 if (as->caps.has_dma_support) {
1554 if (atmel_spi_configure_dma(as) == 0)
1555 as->use_dma = true;
1556 } else {
1557 as->use_pdc = true;
1558 }
1559
1560 if (as->caps.has_dma_support && !as->use_dma)
1561 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1562
1563 if (as->use_pdc) {
1564 ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1565 dev_name(&pdev->dev), master);
1566 } else {
1567 tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1568 (unsigned long)master);
1569
1570 ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1571 dev_name(&pdev->dev), master);
1572 }
1573 if (ret)
1574 goto out_unmap_regs;
1575
1576 /* Initialize the hardware */
1577 clk_enable(clk);
1578 spi_writel(as, CR, SPI_BIT(SWRST));
1579 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1580 if (as->caps.has_wdrbt) {
1581 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1582 | SPI_BIT(MSTR));
1583 } else {
1584 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1585 }
1586
1587 if (as->use_pdc)
1588 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1589 spi_writel(as, CR, SPI_BIT(SPIEN));
1590
1591 /* go! */
1592 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1593 (unsigned long)regs->start, irq);
1594
1595 ret = spi_register_master(master);
1596 if (ret)
1597 goto out_free_dma;
1598
1599 return 0;
1600
1601 out_free_dma:
1602 if (as->use_dma)
1603 atmel_spi_release_dma(as);
1604
1605 spi_writel(as, CR, SPI_BIT(SWRST));
1606 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1607 clk_disable(clk);
1608 free_irq(irq, master);
1609 out_unmap_regs:
1610 iounmap(as->regs);
1611 out_free_buffer:
1612 if (!as->use_pdc)
1613 tasklet_kill(&as->tasklet);
1614 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1615 as->buffer_dma);
1616 out_free:
1617 clk_put(clk);
1618 spi_master_put(master);
1619 return ret;
1620 }
1621
atmel_spi_remove(struct platform_device * pdev)1622 static int atmel_spi_remove(struct platform_device *pdev)
1623 {
1624 struct spi_master *master = platform_get_drvdata(pdev);
1625 struct atmel_spi *as = spi_master_get_devdata(master);
1626 struct spi_message *msg;
1627 struct spi_transfer *xfer;
1628
1629 /* reset the hardware and block queue progress */
1630 spin_lock_irq(&as->lock);
1631 as->stopping = 1;
1632 if (as->use_dma) {
1633 atmel_spi_stop_dma(as);
1634 atmel_spi_release_dma(as);
1635 }
1636
1637 spi_writel(as, CR, SPI_BIT(SWRST));
1638 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1639 spi_readl(as, SR);
1640 spin_unlock_irq(&as->lock);
1641
1642 /* Terminate remaining queued transfers */
1643 list_for_each_entry(msg, &as->queue, queue) {
1644 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1645 if (!msg->is_dma_mapped
1646 && (atmel_spi_use_dma(as, xfer)
1647 || as->use_pdc))
1648 atmel_spi_dma_unmap_xfer(master, xfer);
1649 }
1650 msg->status = -ESHUTDOWN;
1651 msg->complete(msg->context);
1652 }
1653
1654 if (!as->use_pdc)
1655 tasklet_kill(&as->tasklet);
1656 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1657 as->buffer_dma);
1658
1659 clk_disable(as->clk);
1660 clk_put(as->clk);
1661 free_irq(as->irq, master);
1662 iounmap(as->regs);
1663
1664 spi_unregister_master(master);
1665
1666 return 0;
1667 }
1668
1669 #ifdef CONFIG_PM
1670
atmel_spi_suspend(struct platform_device * pdev,pm_message_t mesg)1671 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1672 {
1673 struct spi_master *master = platform_get_drvdata(pdev);
1674 struct atmel_spi *as = spi_master_get_devdata(master);
1675
1676 clk_disable(as->clk);
1677 return 0;
1678 }
1679
atmel_spi_resume(struct platform_device * pdev)1680 static int atmel_spi_resume(struct platform_device *pdev)
1681 {
1682 struct spi_master *master = platform_get_drvdata(pdev);
1683 struct atmel_spi *as = spi_master_get_devdata(master);
1684
1685 clk_enable(as->clk);
1686 return 0;
1687 }
1688
1689 #else
1690 #define atmel_spi_suspend NULL
1691 #define atmel_spi_resume NULL
1692 #endif
1693
1694 #if defined(CONFIG_OF)
1695 static const struct of_device_id atmel_spi_dt_ids[] = {
1696 { .compatible = "atmel,at91rm9200-spi" },
1697 { /* sentinel */ }
1698 };
1699
1700 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1701 #endif
1702
1703 static struct platform_driver atmel_spi_driver = {
1704 .driver = {
1705 .name = "atmel_spi",
1706 .owner = THIS_MODULE,
1707 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1708 },
1709 .suspend = atmel_spi_suspend,
1710 .resume = atmel_spi_resume,
1711 .probe = atmel_spi_probe,
1712 .remove = atmel_spi_remove,
1713 };
1714 module_platform_driver(atmel_spi_driver);
1715
1716 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1717 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1718 MODULE_LICENSE("GPL");
1719 MODULE_ALIAS("platform:atmel_spi");
1720