• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 /**
58  * dwc2_dump_channel_info() - Prints the state of a host channel
59  *
60  * @hsotg: Programming view of DWC_otg controller
61  * @chan:  Pointer to the channel to dump
62  *
63  * Must be called with interrupt disabled and spinlock held
64  *
65  * NOTE: This function will be removed once the peripheral controller code
66  * is integrated and the driver is stable
67  */
dwc2_dump_channel_info(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
69 				   struct dwc2_host_chan *chan)
70 {
71 #ifdef VERBOSE_DEBUG
72 	int num_channels = hsotg->core_params->host_channels;
73 	struct dwc2_qh *qh;
74 	u32 hcchar;
75 	u32 hcsplt;
76 	u32 hctsiz;
77 	u32 hc_dma;
78 	int i;
79 
80 	if (chan == NULL)
81 		return;
82 
83 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
84 	hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
85 	hctsiz = readl(hsotg->regs + HCTSIZ(chan->hc_num));
86 	hc_dma = readl(hsotg->regs + HCDMA(chan->hc_num));
87 
88 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
89 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
90 		hcchar, hcsplt);
91 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
92 		hctsiz, hc_dma);
93 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
94 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
95 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
96 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
97 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
98 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
99 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
100 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
101 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
102 		(unsigned long)chan->xfer_dma);
103 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
104 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
105 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
106 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
107 			    qh_list_entry)
108 		dev_dbg(hsotg->dev, "    %p\n", qh);
109 	dev_dbg(hsotg->dev, "  NP active sched:\n");
110 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
111 			    qh_list_entry)
112 		dev_dbg(hsotg->dev, "    %p\n", qh);
113 	dev_dbg(hsotg->dev, "  Channels:\n");
114 	for (i = 0; i < num_channels; i++) {
115 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
116 
117 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
118 	}
119 #endif /* VERBOSE_DEBUG */
120 }
121 
122 /*
123  * Processes all the URBs in a single list of QHs. Completes them with
124  * -ETIMEDOUT and frees the QTD.
125  *
126  * Must be called with interrupt disabled and spinlock held
127  */
dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg * hsotg,struct list_head * qh_list)128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
129 				      struct list_head *qh_list)
130 {
131 	struct dwc2_qh *qh, *qh_tmp;
132 	struct dwc2_qtd *qtd, *qtd_tmp;
133 
134 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
135 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
136 					 qtd_list_entry) {
137 			if (qtd->urb != NULL) {
138 				dwc2_host_complete(hsotg, qtd->urb->priv,
139 						   qtd->urb, -ETIMEDOUT);
140 				dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
141 			}
142 		}
143 	}
144 }
145 
dwc2_qh_list_free(struct dwc2_hsotg * hsotg,struct list_head * qh_list)146 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
147 			      struct list_head *qh_list)
148 {
149 	struct dwc2_qtd *qtd, *qtd_tmp;
150 	struct dwc2_qh *qh, *qh_tmp;
151 	unsigned long flags;
152 
153 	if (!qh_list->next)
154 		/* The list hasn't been initialized yet */
155 		return;
156 
157 	spin_lock_irqsave(&hsotg->lock, flags);
158 
159 	/* Ensure there are no QTDs or URBs left */
160 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
161 
162 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
163 		dwc2_hcd_qh_unlink(hsotg, qh);
164 
165 		/* Free each QTD in the QH's QTD list */
166 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
167 					 qtd_list_entry)
168 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
169 
170 		spin_unlock_irqrestore(&hsotg->lock, flags);
171 		dwc2_hcd_qh_free(hsotg, qh);
172 		spin_lock_irqsave(&hsotg->lock, flags);
173 	}
174 
175 	spin_unlock_irqrestore(&hsotg->lock, flags);
176 }
177 
178 /*
179  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
180  * and periodic schedules. The QTD associated with each URB is removed from
181  * the schedule and freed. This function may be called when a disconnect is
182  * detected or when the HCD is being stopped.
183  *
184  * Must be called with interrupt disabled and spinlock held
185  */
dwc2_kill_all_urbs(struct dwc2_hsotg * hsotg)186 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
187 {
188 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
189 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
190 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
191 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
192 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
193 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
194 }
195 
196 /**
197  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
198  *
199  * @hsotg: Pointer to struct dwc2_hsotg
200  */
dwc2_hcd_start(struct dwc2_hsotg * hsotg)201 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
202 {
203 	u32 hprt0;
204 
205 	if (hsotg->op_state == OTG_STATE_B_HOST) {
206 		/*
207 		 * Reset the port. During a HNP mode switch the reset
208 		 * needs to occur within 1ms and have a duration of at
209 		 * least 50ms.
210 		 */
211 		hprt0 = dwc2_read_hprt0(hsotg);
212 		hprt0 |= HPRT0_RST;
213 		writel(hprt0, hsotg->regs + HPRT0);
214 	}
215 
216 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
217 			   msecs_to_jiffies(50));
218 }
219 
220 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_cleanup_channels(struct dwc2_hsotg * hsotg)221 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
222 {
223 	int num_channels = hsotg->core_params->host_channels;
224 	struct dwc2_host_chan *channel;
225 	u32 hcchar;
226 	int i;
227 
228 	if (hsotg->core_params->dma_enable <= 0) {
229 		/* Flush out any channel requests in slave mode */
230 		for (i = 0; i < num_channels; i++) {
231 			channel = hsotg->hc_ptr_array[i];
232 			if (!list_empty(&channel->hc_list_entry))
233 				continue;
234 			hcchar = readl(hsotg->regs + HCCHAR(i));
235 			if (hcchar & HCCHAR_CHENA) {
236 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
237 				hcchar |= HCCHAR_CHDIS;
238 				writel(hcchar, hsotg->regs + HCCHAR(i));
239 			}
240 		}
241 	}
242 
243 	for (i = 0; i < num_channels; i++) {
244 		channel = hsotg->hc_ptr_array[i];
245 		if (!list_empty(&channel->hc_list_entry))
246 			continue;
247 		hcchar = readl(hsotg->regs + HCCHAR(i));
248 		if (hcchar & HCCHAR_CHENA) {
249 			/* Halt the channel */
250 			hcchar |= HCCHAR_CHDIS;
251 			writel(hcchar, hsotg->regs + HCCHAR(i));
252 		}
253 
254 		dwc2_hc_cleanup(hsotg, channel);
255 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
256 		/*
257 		 * Added for Descriptor DMA to prevent channel double cleanup in
258 		 * release_channel_ddma(), which is called from ep_disable when
259 		 * device disconnects
260 		 */
261 		channel->qh = NULL;
262 	}
263 }
264 
265 /**
266  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
267  *
268  * @hsotg: Pointer to struct dwc2_hsotg
269  *
270  * Must be called with interrupt disabled and spinlock held
271  */
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg)272 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg)
273 {
274 	u32 intr;
275 
276 	/* Set status flags for the hub driver */
277 	hsotg->flags.b.port_connect_status_change = 1;
278 	hsotg->flags.b.port_connect_status = 0;
279 
280 	/*
281 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
282 	 * interrupt mask and status bits and disabling subsequent host
283 	 * channel interrupts.
284 	 */
285 	intr = readl(hsotg->regs + GINTMSK);
286 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
287 	writel(intr, hsotg->regs + GINTMSK);
288 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
289 	writel(intr, hsotg->regs + GINTSTS);
290 
291 	/*
292 	 * Turn off the vbus power only if the core has transitioned to device
293 	 * mode. If still in host mode, need to keep power on to detect a
294 	 * reconnection.
295 	 */
296 	if (dwc2_is_device_mode(hsotg)) {
297 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
298 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
299 			writel(0, hsotg->regs + HPRT0);
300 		}
301 
302 		dwc2_disable_host_interrupts(hsotg);
303 	}
304 
305 	/* Respond with an error status to all URBs in the schedule */
306 	dwc2_kill_all_urbs(hsotg);
307 
308 	if (dwc2_is_host_mode(hsotg))
309 		/* Clean up any host channels that were in use */
310 		dwc2_hcd_cleanup_channels(hsotg);
311 
312 	dwc2_host_disconnect(hsotg);
313 }
314 
315 /**
316  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
317  *
318  * @hsotg: Pointer to struct dwc2_hsotg
319  */
dwc2_hcd_rem_wakeup(struct dwc2_hsotg * hsotg)320 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
321 {
322 	if (hsotg->lx_state == DWC2_L2)
323 		hsotg->flags.b.port_suspend_change = 1;
324 	else
325 		hsotg->flags.b.port_l1_change = 1;
326 }
327 
328 /**
329  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
330  *
331  * @hsotg: Pointer to struct dwc2_hsotg
332  *
333  * Must be called with interrupt disabled and spinlock held
334  */
dwc2_hcd_stop(struct dwc2_hsotg * hsotg)335 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
336 {
337 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
338 
339 	/*
340 	 * The root hub should be disconnected before this function is called.
341 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
342 	 * and the QH lists (via ..._hcd_endpoint_disable).
343 	 */
344 
345 	/* Turn off all host-specific interrupts */
346 	dwc2_disable_host_interrupts(hsotg);
347 
348 	/* Turn off the vbus power */
349 	dev_dbg(hsotg->dev, "PortPower off\n");
350 	writel(0, hsotg->regs + HPRT0);
351 }
352 
dwc2_hcd_urb_enqueue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,void ** ep_handle,gfp_t mem_flags)353 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
354 				struct dwc2_hcd_urb *urb, void **ep_handle,
355 				gfp_t mem_flags)
356 {
357 	struct dwc2_qtd *qtd;
358 	unsigned long flags;
359 	u32 intr_mask;
360 	int retval;
361 
362 	if (!hsotg->flags.b.port_connect_status) {
363 		/* No longer connected */
364 		dev_err(hsotg->dev, "Not connected\n");
365 		return -ENODEV;
366 	}
367 
368 	qtd = kzalloc(sizeof(*qtd), mem_flags);
369 	if (!qtd)
370 		return -ENOMEM;
371 
372 	dwc2_hcd_qtd_init(qtd, urb);
373 	retval = dwc2_hcd_qtd_add(hsotg, qtd, (struct dwc2_qh **)ep_handle,
374 				  mem_flags);
375 	if (retval < 0) {
376 		dev_err(hsotg->dev,
377 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
378 			retval);
379 		kfree(qtd);
380 		return retval;
381 	}
382 
383 	intr_mask = readl(hsotg->regs + GINTMSK);
384 	if (!(intr_mask & GINTSTS_SOF) && retval == 0) {
385 		enum dwc2_transaction_type tr_type;
386 
387 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
388 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
389 			/*
390 			 * Do not schedule SG transactions until qtd has
391 			 * URB_GIVEBACK_ASAP set
392 			 */
393 			return 0;
394 
395 		spin_lock_irqsave(&hsotg->lock, flags);
396 		tr_type = dwc2_hcd_select_transactions(hsotg);
397 		if (tr_type != DWC2_TRANSACTION_NONE)
398 			dwc2_hcd_queue_transactions(hsotg, tr_type);
399 		spin_unlock_irqrestore(&hsotg->lock, flags);
400 	}
401 
402 	return retval;
403 }
404 
405 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_urb_dequeue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb)406 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
407 				struct dwc2_hcd_urb *urb)
408 {
409 	struct dwc2_qh *qh;
410 	struct dwc2_qtd *urb_qtd;
411 
412 	urb_qtd = urb->qtd;
413 	if (!urb_qtd) {
414 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
415 		return -EINVAL;
416 	}
417 
418 	qh = urb_qtd->qh;
419 	if (!qh) {
420 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
421 		return -EINVAL;
422 	}
423 
424 	if (urb_qtd->in_process && qh->channel) {
425 		dwc2_dump_channel_info(hsotg, qh->channel);
426 
427 		/* The QTD is in process (it has been assigned to a channel) */
428 		if (hsotg->flags.b.port_connect_status)
429 			/*
430 			 * If still connected (i.e. in host mode), halt the
431 			 * channel so it can be used for other transfers. If
432 			 * no longer connected, the host registers can't be
433 			 * written to halt the channel since the core is in
434 			 * device mode.
435 			 */
436 			dwc2_hc_halt(hsotg, qh->channel,
437 				     DWC2_HC_XFER_URB_DEQUEUE);
438 	}
439 
440 	/*
441 	 * Free the QTD and clean up the associated QH. Leave the QH in the
442 	 * schedule if it has any remaining QTDs.
443 	 */
444 	if (hsotg->core_params->dma_desc_enable <= 0) {
445 		u8 in_process = urb_qtd->in_process;
446 
447 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
448 		if (in_process) {
449 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
450 			qh->channel = NULL;
451 		} else if (list_empty(&qh->qtd_list)) {
452 			dwc2_hcd_qh_unlink(hsotg, qh);
453 		}
454 	} else {
455 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
456 	}
457 
458 	return 0;
459 }
460 
461 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_hcd_endpoint_disable(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep,int retry)462 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
463 				     struct usb_host_endpoint *ep, int retry)
464 {
465 	struct dwc2_qtd *qtd, *qtd_tmp;
466 	struct dwc2_qh *qh;
467 	unsigned long flags;
468 	int rc;
469 
470 	spin_lock_irqsave(&hsotg->lock, flags);
471 
472 	qh = ep->hcpriv;
473 	if (!qh) {
474 		rc = -EINVAL;
475 		goto err;
476 	}
477 
478 	while (!list_empty(&qh->qtd_list) && retry--) {
479 		if (retry == 0) {
480 			dev_err(hsotg->dev,
481 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
482 			rc = -EBUSY;
483 			goto err;
484 		}
485 
486 		spin_unlock_irqrestore(&hsotg->lock, flags);
487 		usleep_range(20000, 40000);
488 		spin_lock_irqsave(&hsotg->lock, flags);
489 		qh = ep->hcpriv;
490 		if (!qh) {
491 			rc = -EINVAL;
492 			goto err;
493 		}
494 	}
495 
496 	dwc2_hcd_qh_unlink(hsotg, qh);
497 
498 	/* Free each QTD in the QH's QTD list */
499 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
500 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
501 
502 	ep->hcpriv = NULL;
503 	spin_unlock_irqrestore(&hsotg->lock, flags);
504 	dwc2_hcd_qh_free(hsotg, qh);
505 
506 	return 0;
507 
508 err:
509 	ep->hcpriv = NULL;
510 	spin_unlock_irqrestore(&hsotg->lock, flags);
511 
512 	return rc;
513 }
514 
515 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_endpoint_reset(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)516 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
517 				   struct usb_host_endpoint *ep)
518 {
519 	struct dwc2_qh *qh = ep->hcpriv;
520 
521 	if (!qh)
522 		return -EINVAL;
523 
524 	qh->data_toggle = DWC2_HC_PID_DATA0;
525 
526 	return 0;
527 }
528 
529 /*
530  * Initializes dynamic portions of the DWC_otg HCD state
531  *
532  * Must be called with interrupt disabled and spinlock held
533  */
dwc2_hcd_reinit(struct dwc2_hsotg * hsotg)534 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
535 {
536 	struct dwc2_host_chan *chan, *chan_tmp;
537 	int num_channels;
538 	int i;
539 
540 	hsotg->flags.d32 = 0;
541 
542 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
543 	hsotg->non_periodic_channels = 0;
544 	hsotg->periodic_channels = 0;
545 
546 	/*
547 	 * Put all channels in the free channel list and clean up channel
548 	 * states
549 	 */
550 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
551 				 hc_list_entry)
552 		list_del_init(&chan->hc_list_entry);
553 
554 	num_channels = hsotg->core_params->host_channels;
555 	for (i = 0; i < num_channels; i++) {
556 		chan = hsotg->hc_ptr_array[i];
557 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
558 		dwc2_hc_cleanup(hsotg, chan);
559 	}
560 
561 	/* Initialize the DWC core for host mode operation */
562 	dwc2_core_host_init(hsotg);
563 }
564 
dwc2_hc_init_split(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)565 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
566 			       struct dwc2_host_chan *chan,
567 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
568 {
569 	int hub_addr, hub_port;
570 
571 	chan->do_split = 1;
572 	chan->xact_pos = qtd->isoc_split_pos;
573 	chan->complete_split = qtd->complete_split;
574 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
575 	chan->hub_addr = (u8)hub_addr;
576 	chan->hub_port = (u8)hub_port;
577 }
578 
dwc2_hc_init_xfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,void * bufptr)579 static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
580 			       struct dwc2_host_chan *chan,
581 			       struct dwc2_qtd *qtd, void *bufptr)
582 {
583 	struct dwc2_hcd_urb *urb = qtd->urb;
584 	struct dwc2_hcd_iso_packet_desc *frame_desc;
585 
586 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
587 	case USB_ENDPOINT_XFER_CONTROL:
588 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
589 
590 		switch (qtd->control_phase) {
591 		case DWC2_CONTROL_SETUP:
592 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
593 			chan->do_ping = 0;
594 			chan->ep_is_in = 0;
595 			chan->data_pid_start = DWC2_HC_PID_SETUP;
596 			if (hsotg->core_params->dma_enable > 0)
597 				chan->xfer_dma = urb->setup_dma;
598 			else
599 				chan->xfer_buf = urb->setup_packet;
600 			chan->xfer_len = 8;
601 			bufptr = NULL;
602 			break;
603 
604 		case DWC2_CONTROL_DATA:
605 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
606 			chan->data_pid_start = qtd->data_toggle;
607 			break;
608 
609 		case DWC2_CONTROL_STATUS:
610 			/*
611 			 * Direction is opposite of data direction or IN if no
612 			 * data
613 			 */
614 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
615 			if (urb->length == 0)
616 				chan->ep_is_in = 1;
617 			else
618 				chan->ep_is_in =
619 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
620 			if (chan->ep_is_in)
621 				chan->do_ping = 0;
622 			chan->data_pid_start = DWC2_HC_PID_DATA1;
623 			chan->xfer_len = 0;
624 			if (hsotg->core_params->dma_enable > 0)
625 				chan->xfer_dma = hsotg->status_buf_dma;
626 			else
627 				chan->xfer_buf = hsotg->status_buf;
628 			bufptr = NULL;
629 			break;
630 		}
631 		break;
632 
633 	case USB_ENDPOINT_XFER_BULK:
634 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
635 		break;
636 
637 	case USB_ENDPOINT_XFER_INT:
638 		chan->ep_type = USB_ENDPOINT_XFER_INT;
639 		break;
640 
641 	case USB_ENDPOINT_XFER_ISOC:
642 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
643 		if (hsotg->core_params->dma_desc_enable > 0)
644 			break;
645 
646 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
647 		frame_desc->status = 0;
648 
649 		if (hsotg->core_params->dma_enable > 0) {
650 			chan->xfer_dma = urb->dma;
651 			chan->xfer_dma += frame_desc->offset +
652 					qtd->isoc_split_offset;
653 		} else {
654 			chan->xfer_buf = urb->buf;
655 			chan->xfer_buf += frame_desc->offset +
656 					qtd->isoc_split_offset;
657 		}
658 
659 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
660 
661 		/* For non-dword aligned buffers */
662 		if (hsotg->core_params->dma_enable > 0 &&
663 		    (chan->xfer_dma & 0x3))
664 			bufptr = (u8 *)urb->buf + frame_desc->offset +
665 					qtd->isoc_split_offset;
666 		else
667 			bufptr = NULL;
668 
669 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
670 			if (chan->xfer_len <= 188)
671 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
672 			else
673 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
674 		}
675 		break;
676 	}
677 
678 	return bufptr;
679 }
680 
dwc2_hc_setup_align_buf(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_host_chan * chan,void * bufptr)681 static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
682 				   struct dwc2_host_chan *chan, void *bufptr)
683 {
684 	u32 buf_size;
685 
686 	if (chan->ep_type != USB_ENDPOINT_XFER_ISOC)
687 		buf_size = hsotg->core_params->max_transfer_size;
688 	else
689 		buf_size = 4096;
690 
691 	if (!qh->dw_align_buf) {
692 		qh->dw_align_buf = dma_alloc_coherent(hsotg->dev, buf_size,
693 						      &qh->dw_align_buf_dma,
694 						      GFP_ATOMIC);
695 		if (!qh->dw_align_buf)
696 			return -ENOMEM;
697 	}
698 
699 	if (!chan->ep_is_in && chan->xfer_len) {
700 		dma_sync_single_for_cpu(hsotg->dev, chan->xfer_dma, buf_size,
701 					DMA_TO_DEVICE);
702 		memcpy(qh->dw_align_buf, bufptr, chan->xfer_len);
703 		dma_sync_single_for_device(hsotg->dev, chan->xfer_dma, buf_size,
704 					   DMA_TO_DEVICE);
705 	}
706 
707 	chan->align_buf = qh->dw_align_buf_dma;
708 	return 0;
709 }
710 
711 /**
712  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
713  * channel and initializes the host channel to perform the transactions. The
714  * host channel is removed from the free list.
715  *
716  * @hsotg: The HCD state structure
717  * @qh:    Transactions from the first QTD for this QH are selected and assigned
718  *         to a free host channel
719  */
dwc2_assign_and_init_hc(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)720 static void dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg,
721 				    struct dwc2_qh *qh)
722 {
723 	struct dwc2_host_chan *chan;
724 	struct dwc2_hcd_urb *urb;
725 	struct dwc2_qtd *qtd;
726 	void *bufptr = NULL;
727 
728 	if (dbg_qh(qh))
729 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
730 
731 	if (list_empty(&qh->qtd_list)) {
732 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
733 		return;
734 	}
735 
736 	if (list_empty(&hsotg->free_hc_list)) {
737 		dev_dbg(hsotg->dev, "No free channel to assign\n");
738 		return;
739 	}
740 
741 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
742 				hc_list_entry);
743 
744 	/* Remove the host channel from the free list */
745 	list_del_init(&chan->hc_list_entry);
746 
747 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
748 	urb = qtd->urb;
749 	qh->channel = chan;
750 	qtd->in_process = 1;
751 
752 	/*
753 	 * Use usb_pipedevice to determine device address. This address is
754 	 * 0 before the SET_ADDRESS command and the correct address afterward.
755 	 */
756 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
757 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
758 	chan->speed = qh->dev_speed;
759 	chan->max_packet = dwc2_max_packet(qh->maxp);
760 
761 	chan->xfer_started = 0;
762 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
763 	chan->error_state = (qtd->error_count > 0);
764 	chan->halt_on_queue = 0;
765 	chan->halt_pending = 0;
766 	chan->requests = 0;
767 
768 	/*
769 	 * The following values may be modified in the transfer type section
770 	 * below. The xfer_len value may be reduced when the transfer is
771 	 * started to accommodate the max widths of the XferSize and PktCnt
772 	 * fields in the HCTSIZn register.
773 	 */
774 
775 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
776 	if (chan->ep_is_in)
777 		chan->do_ping = 0;
778 	else
779 		chan->do_ping = qh->ping_state;
780 
781 	chan->data_pid_start = qh->data_toggle;
782 	chan->multi_count = 1;
783 
784 	if (hsotg->core_params->dma_enable > 0) {
785 		chan->xfer_dma = urb->dma + urb->actual_length;
786 
787 		/* For non-dword aligned case */
788 		if (hsotg->core_params->dma_desc_enable <= 0 &&
789 		    (chan->xfer_dma & 0x3))
790 			bufptr = (u8 *)urb->buf + urb->actual_length;
791 	} else {
792 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
793 	}
794 
795 	chan->xfer_len = urb->length - urb->actual_length;
796 	chan->xfer_count = 0;
797 
798 	/* Set the split attributes if required */
799 	if (qh->do_split)
800 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
801 	else
802 		chan->do_split = 0;
803 
804 	/* Set the transfer attributes */
805 	bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr);
806 
807 	/* Non DWORD-aligned buffer case */
808 	if (bufptr) {
809 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
810 		if (dwc2_hc_setup_align_buf(hsotg, qh, chan, bufptr)) {
811 			dev_err(hsotg->dev,
812 				"%s: Failed to allocate memory to handle non-dword aligned buffer\n",
813 				__func__);
814 			/* Add channel back to free list */
815 			chan->align_buf = 0;
816 			chan->multi_count = 0;
817 			list_add_tail(&chan->hc_list_entry,
818 				      &hsotg->free_hc_list);
819 			qtd->in_process = 0;
820 			qh->channel = NULL;
821 			return;
822 		}
823 	} else {
824 		chan->align_buf = 0;
825 	}
826 
827 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
828 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
829 		/*
830 		 * This value may be modified when the transfer is started
831 		 * to reflect the actual transfer length
832 		 */
833 		chan->multi_count = dwc2_hb_mult(qh->maxp);
834 
835 	if (hsotg->core_params->dma_desc_enable > 0)
836 		chan->desc_list_addr = qh->desc_list_dma;
837 
838 	dwc2_hc_init(hsotg, chan);
839 	chan->qh = qh;
840 }
841 
842 /**
843  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
844  * schedule and assigns them to available host channels. Called from the HCD
845  * interrupt handler functions.
846  *
847  * @hsotg: The HCD state structure
848  *
849  * Return: The types of new transactions that were assigned to host channels
850  */
dwc2_hcd_select_transactions(struct dwc2_hsotg * hsotg)851 enum dwc2_transaction_type dwc2_hcd_select_transactions(
852 		struct dwc2_hsotg *hsotg)
853 {
854 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
855 	struct list_head *qh_ptr;
856 	struct dwc2_qh *qh;
857 	int num_channels;
858 
859 #ifdef DWC2_DEBUG_SOF
860 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
861 #endif
862 
863 	/* Process entries in the periodic ready list */
864 	qh_ptr = hsotg->periodic_sched_ready.next;
865 	while (qh_ptr != &hsotg->periodic_sched_ready) {
866 		if (list_empty(&hsotg->free_hc_list))
867 			break;
868 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
869 		dwc2_assign_and_init_hc(hsotg, qh);
870 
871 		/*
872 		 * Move the QH from the periodic ready schedule to the
873 		 * periodic assigned schedule
874 		 */
875 		qh_ptr = qh_ptr->next;
876 		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned);
877 		ret_val = DWC2_TRANSACTION_PERIODIC;
878 	}
879 
880 	/*
881 	 * Process entries in the inactive portion of the non-periodic
882 	 * schedule. Some free host channels may not be used if they are
883 	 * reserved for periodic transfers.
884 	 */
885 	num_channels = hsotg->core_params->host_channels;
886 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
887 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
888 		if (hsotg->non_periodic_channels >= num_channels -
889 						hsotg->periodic_channels)
890 			break;
891 		if (list_empty(&hsotg->free_hc_list))
892 			break;
893 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
894 		dwc2_assign_and_init_hc(hsotg, qh);
895 
896 		/*
897 		 * Move the QH from the non-periodic inactive schedule to the
898 		 * non-periodic active schedule
899 		 */
900 		qh_ptr = qh_ptr->next;
901 		list_move(&qh->qh_list_entry,
902 			  &hsotg->non_periodic_sched_active);
903 
904 		if (ret_val == DWC2_TRANSACTION_NONE)
905 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
906 		else
907 			ret_val = DWC2_TRANSACTION_ALL;
908 
909 		hsotg->non_periodic_channels++;
910 	}
911 
912 	return ret_val;
913 }
914 
915 /**
916  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
917  * a host channel associated with either a periodic or non-periodic transfer
918  *
919  * @hsotg: The HCD state structure
920  * @chan:  Host channel descriptor associated with either a periodic or
921  *         non-periodic transfer
922  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
923  *                     for periodic transfers or the non-periodic Tx FIFO
924  *                     for non-periodic transfers
925  *
926  * Return: 1 if a request is queued and more requests may be needed to
927  * complete the transfer, 0 if no more requests are required for this
928  * transfer, -1 if there is insufficient space in the Tx FIFO
929  *
930  * This function assumes that there is space available in the appropriate
931  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
932  * it checks whether space is available in the appropriate Tx FIFO.
933  *
934  * Must be called with interrupt disabled and spinlock held
935  */
dwc2_queue_transaction(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u16 fifo_dwords_avail)936 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
937 				  struct dwc2_host_chan *chan,
938 				  u16 fifo_dwords_avail)
939 {
940 	int retval = 0;
941 
942 	if (hsotg->core_params->dma_enable > 0) {
943 		if (hsotg->core_params->dma_desc_enable > 0) {
944 			if (!chan->xfer_started ||
945 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
946 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
947 				chan->qh->ping_state = 0;
948 			}
949 		} else if (!chan->xfer_started) {
950 			dwc2_hc_start_transfer(hsotg, chan);
951 			chan->qh->ping_state = 0;
952 		}
953 	} else if (chan->halt_pending) {
954 		/* Don't queue a request if the channel has been halted */
955 	} else if (chan->halt_on_queue) {
956 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
957 	} else if (chan->do_ping) {
958 		if (!chan->xfer_started)
959 			dwc2_hc_start_transfer(hsotg, chan);
960 	} else if (!chan->ep_is_in ||
961 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
962 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
963 			if (!chan->xfer_started) {
964 				dwc2_hc_start_transfer(hsotg, chan);
965 				retval = 1;
966 			} else {
967 				retval = dwc2_hc_continue_transfer(hsotg, chan);
968 			}
969 		} else {
970 			retval = -1;
971 		}
972 	} else {
973 		if (!chan->xfer_started) {
974 			dwc2_hc_start_transfer(hsotg, chan);
975 			retval = 1;
976 		} else {
977 			retval = dwc2_hc_continue_transfer(hsotg, chan);
978 		}
979 	}
980 
981 	return retval;
982 }
983 
984 /*
985  * Processes periodic channels for the next frame and queues transactions for
986  * these channels to the DWC_otg controller. After queueing transactions, the
987  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
988  * to queue as Periodic Tx FIFO or request queue space becomes available.
989  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
990  *
991  * Must be called with interrupt disabled and spinlock held
992  */
dwc2_process_periodic_channels(struct dwc2_hsotg * hsotg)993 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
994 {
995 	struct list_head *qh_ptr;
996 	struct dwc2_qh *qh;
997 	u32 tx_status;
998 	u32 fspcavail;
999 	u32 gintmsk;
1000 	int status;
1001 	int no_queue_space = 0;
1002 	int no_fifo_space = 0;
1003 	u32 qspcavail;
1004 
1005 	if (dbg_perio())
1006 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1007 
1008 	tx_status = readl(hsotg->regs + HPTXSTS);
1009 	qspcavail = tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1010 		    TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT;
1011 	fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1012 		    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1013 
1014 	if (dbg_perio()) {
1015 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
1016 			 qspcavail);
1017 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
1018 			 fspcavail);
1019 	}
1020 
1021 	qh_ptr = hsotg->periodic_sched_assigned.next;
1022 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
1023 		tx_status = readl(hsotg->regs + HPTXSTS);
1024 		if ((tx_status & TXSTS_QSPCAVAIL_MASK) == 0) {
1025 			no_queue_space = 1;
1026 			break;
1027 		}
1028 
1029 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
1030 		if (!qh->channel) {
1031 			qh_ptr = qh_ptr->next;
1032 			continue;
1033 		}
1034 
1035 		/* Make sure EP's TT buffer is clean before queueing qtds */
1036 		if (qh->tt_buffer_dirty) {
1037 			qh_ptr = qh_ptr->next;
1038 			continue;
1039 		}
1040 
1041 		/*
1042 		 * Set a flag if we're queuing high-bandwidth in slave mode.
1043 		 * The flag prevents any halts to get into the request queue in
1044 		 * the middle of multiple high-bandwidth packets getting queued.
1045 		 */
1046 		if (hsotg->core_params->dma_enable <= 0 &&
1047 				qh->channel->multi_count > 1)
1048 			hsotg->queuing_high_bandwidth = 1;
1049 
1050 		fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1051 			    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1052 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1053 		if (status < 0) {
1054 			no_fifo_space = 1;
1055 			break;
1056 		}
1057 
1058 		/*
1059 		 * In Slave mode, stay on the current transfer until there is
1060 		 * nothing more to do or the high-bandwidth request count is
1061 		 * reached. In DMA mode, only need to queue one request. The
1062 		 * controller automatically handles multiple packets for
1063 		 * high-bandwidth transfers.
1064 		 */
1065 		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
1066 		    qh->channel->requests == qh->channel->multi_count) {
1067 			qh_ptr = qh_ptr->next;
1068 			/*
1069 			 * Move the QH from the periodic assigned schedule to
1070 			 * the periodic queued schedule
1071 			 */
1072 			list_move(&qh->qh_list_entry,
1073 				  &hsotg->periodic_sched_queued);
1074 
1075 			/* done queuing high bandwidth */
1076 			hsotg->queuing_high_bandwidth = 0;
1077 		}
1078 	}
1079 
1080 	if (hsotg->core_params->dma_enable <= 0) {
1081 		tx_status = readl(hsotg->regs + HPTXSTS);
1082 		qspcavail = tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1083 			    TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT;
1084 		fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1085 			    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1086 		if (dbg_perio()) {
1087 			dev_vdbg(hsotg->dev,
1088 				 "  P Tx Req Queue Space Avail (after queue): %d\n",
1089 				 qspcavail);
1090 			dev_vdbg(hsotg->dev,
1091 				 "  P Tx FIFO Space Avail (after queue): %d\n",
1092 				 fspcavail);
1093 		}
1094 
1095 		if (!list_empty(&hsotg->periodic_sched_assigned) ||
1096 		    no_queue_space || no_fifo_space) {
1097 			/*
1098 			 * May need to queue more transactions as the request
1099 			 * queue or Tx FIFO empties. Enable the periodic Tx
1100 			 * FIFO empty interrupt. (Always use the half-empty
1101 			 * level to ensure that new requests are loaded as
1102 			 * soon as possible.)
1103 			 */
1104 			gintmsk = readl(hsotg->regs + GINTMSK);
1105 			gintmsk |= GINTSTS_PTXFEMP;
1106 			writel(gintmsk, hsotg->regs + GINTMSK);
1107 		} else {
1108 			/*
1109 			 * Disable the Tx FIFO empty interrupt since there are
1110 			 * no more transactions that need to be queued right
1111 			 * now. This function is called from interrupt
1112 			 * handlers to queue more transactions as transfer
1113 			 * states change.
1114 			 */
1115 			gintmsk = readl(hsotg->regs + GINTMSK);
1116 			gintmsk &= ~GINTSTS_PTXFEMP;
1117 			writel(gintmsk, hsotg->regs + GINTMSK);
1118 		}
1119 	}
1120 }
1121 
1122 /*
1123  * Processes active non-periodic channels and queues transactions for these
1124  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
1125  * FIFO Empty interrupt is enabled if there are more transactions to queue as
1126  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
1127  * FIFO Empty interrupt is disabled.
1128  *
1129  * Must be called with interrupt disabled and spinlock held
1130  */
dwc2_process_non_periodic_channels(struct dwc2_hsotg * hsotg)1131 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
1132 {
1133 	struct list_head *orig_qh_ptr;
1134 	struct dwc2_qh *qh;
1135 	u32 tx_status;
1136 	u32 qspcavail;
1137 	u32 fspcavail;
1138 	u32 gintmsk;
1139 	int status;
1140 	int no_queue_space = 0;
1141 	int no_fifo_space = 0;
1142 	int more_to_do = 0;
1143 
1144 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
1145 
1146 	tx_status = readl(hsotg->regs + GNPTXSTS);
1147 	qspcavail = tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1148 		    TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT;
1149 	fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1150 		    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1151 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
1152 		 qspcavail);
1153 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
1154 		 fspcavail);
1155 
1156 	/*
1157 	 * Keep track of the starting point. Skip over the start-of-list
1158 	 * entry.
1159 	 */
1160 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
1161 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1162 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
1163 
1164 	/*
1165 	 * Process once through the active list or until no more space is
1166 	 * available in the request queue or the Tx FIFO
1167 	 */
1168 	do {
1169 		tx_status = readl(hsotg->regs + GNPTXSTS);
1170 		qspcavail = tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1171 			    TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT;
1172 		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
1173 			no_queue_space = 1;
1174 			break;
1175 		}
1176 
1177 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
1178 				qh_list_entry);
1179 		if (!qh->channel)
1180 			goto next;
1181 
1182 		/* Make sure EP's TT buffer is clean before queueing qtds */
1183 		if (qh->tt_buffer_dirty)
1184 			goto next;
1185 
1186 		fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1187 			    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1188 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1189 
1190 		if (status > 0) {
1191 			more_to_do = 1;
1192 		} else if (status < 0) {
1193 			no_fifo_space = 1;
1194 			break;
1195 		}
1196 next:
1197 		/* Advance to next QH, skipping start-of-list entry */
1198 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1199 		if (hsotg->non_periodic_qh_ptr ==
1200 				&hsotg->non_periodic_sched_active)
1201 			hsotg->non_periodic_qh_ptr =
1202 					hsotg->non_periodic_qh_ptr->next;
1203 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
1204 
1205 	if (hsotg->core_params->dma_enable <= 0) {
1206 		tx_status = readl(hsotg->regs + GNPTXSTS);
1207 		qspcavail = tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1208 			    TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT;
1209 		fspcavail = tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1210 			    TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT;
1211 		dev_vdbg(hsotg->dev,
1212 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
1213 			 qspcavail);
1214 		dev_vdbg(hsotg->dev,
1215 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
1216 			 fspcavail);
1217 
1218 		if (more_to_do || no_queue_space || no_fifo_space) {
1219 			/*
1220 			 * May need to queue more transactions as the request
1221 			 * queue or Tx FIFO empties. Enable the non-periodic
1222 			 * Tx FIFO empty interrupt. (Always use the half-empty
1223 			 * level to ensure that new requests are loaded as
1224 			 * soon as possible.)
1225 			 */
1226 			gintmsk = readl(hsotg->regs + GINTMSK);
1227 			gintmsk |= GINTSTS_NPTXFEMP;
1228 			writel(gintmsk, hsotg->regs + GINTMSK);
1229 		} else {
1230 			/*
1231 			 * Disable the Tx FIFO empty interrupt since there are
1232 			 * no more transactions that need to be queued right
1233 			 * now. This function is called from interrupt
1234 			 * handlers to queue more transactions as transfer
1235 			 * states change.
1236 			 */
1237 			gintmsk = readl(hsotg->regs + GINTMSK);
1238 			gintmsk &= ~GINTSTS_NPTXFEMP;
1239 			writel(gintmsk, hsotg->regs + GINTMSK);
1240 		}
1241 	}
1242 }
1243 
1244 /**
1245  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
1246  * and queues transactions for these channels to the DWC_otg controller. Called
1247  * from the HCD interrupt handler functions.
1248  *
1249  * @hsotg:   The HCD state structure
1250  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
1251  *           or both)
1252  *
1253  * Must be called with interrupt disabled and spinlock held
1254  */
dwc2_hcd_queue_transactions(struct dwc2_hsotg * hsotg,enum dwc2_transaction_type tr_type)1255 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
1256 				 enum dwc2_transaction_type tr_type)
1257 {
1258 #ifdef DWC2_DEBUG_SOF
1259 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
1260 #endif
1261 	/* Process host channels associated with periodic transfers */
1262 	if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
1263 	     tr_type == DWC2_TRANSACTION_ALL) &&
1264 	    !list_empty(&hsotg->periodic_sched_assigned))
1265 		dwc2_process_periodic_channels(hsotg);
1266 
1267 	/* Process host channels associated with non-periodic transfers */
1268 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
1269 	    tr_type == DWC2_TRANSACTION_ALL) {
1270 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
1271 			dwc2_process_non_periodic_channels(hsotg);
1272 		} else {
1273 			/*
1274 			 * Ensure NP Tx FIFO empty interrupt is disabled when
1275 			 * there are no non-periodic transfers to process
1276 			 */
1277 			u32 gintmsk = readl(hsotg->regs + GINTMSK);
1278 
1279 			gintmsk &= ~GINTSTS_NPTXFEMP;
1280 			writel(gintmsk, hsotg->regs + GINTMSK);
1281 		}
1282 	}
1283 }
1284 
dwc2_conn_id_status_change(struct work_struct * work)1285 static void dwc2_conn_id_status_change(struct work_struct *work)
1286 {
1287 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
1288 						wf_otg);
1289 	u32 count = 0;
1290 	u32 gotgctl;
1291 
1292 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1293 
1294 	gotgctl = readl(hsotg->regs + GOTGCTL);
1295 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
1296 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
1297 		!!(gotgctl & GOTGCTL_CONID_B));
1298 
1299 	/* B-Device connector (Device Mode) */
1300 	if (gotgctl & GOTGCTL_CONID_B) {
1301 		/* Wait for switch to device mode */
1302 		dev_dbg(hsotg->dev, "connId B\n");
1303 		while (!dwc2_is_device_mode(hsotg)) {
1304 			dev_info(hsotg->dev,
1305 				 "Waiting for Peripheral Mode, Mode=%s\n",
1306 				 dwc2_is_host_mode(hsotg) ? "Host" :
1307 				 "Peripheral");
1308 			usleep_range(20000, 40000);
1309 			if (++count > 250)
1310 				break;
1311 		}
1312 		if (count > 250)
1313 			dev_err(hsotg->dev,
1314 				"Connection id status change timed out\n");
1315 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1316 		dwc2_core_init(hsotg, false, -1);
1317 		dwc2_enable_global_interrupts(hsotg);
1318 	} else {
1319 		/* A-Device connector (Host Mode) */
1320 		dev_dbg(hsotg->dev, "connId A\n");
1321 		while (!dwc2_is_host_mode(hsotg)) {
1322 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
1323 				 dwc2_is_host_mode(hsotg) ?
1324 				 "Host" : "Peripheral");
1325 			usleep_range(20000, 40000);
1326 			if (++count > 250)
1327 				break;
1328 		}
1329 		if (count > 250)
1330 			dev_err(hsotg->dev,
1331 				"Connection id status change timed out\n");
1332 		hsotg->op_state = OTG_STATE_A_HOST;
1333 
1334 		/* Initialize the Core for Host mode */
1335 		dwc2_core_init(hsotg, false, -1);
1336 		dwc2_enable_global_interrupts(hsotg);
1337 		dwc2_hcd_start(hsotg);
1338 	}
1339 }
1340 
dwc2_wakeup_detected(unsigned long data)1341 static void dwc2_wakeup_detected(unsigned long data)
1342 {
1343 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
1344 	u32 hprt0;
1345 
1346 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1347 
1348 	/*
1349 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
1350 	 * so that OPT tests pass with all PHYs.)
1351 	 */
1352 	hprt0 = dwc2_read_hprt0(hsotg);
1353 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
1354 	hprt0 &= ~HPRT0_RES;
1355 	writel(hprt0, hsotg->regs + HPRT0);
1356 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
1357 		readl(hsotg->regs + HPRT0));
1358 
1359 	dwc2_hcd_rem_wakeup(hsotg);
1360 
1361 	/* Change to L0 state */
1362 	hsotg->lx_state = DWC2_L0;
1363 }
1364 
dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg * hsotg)1365 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
1366 {
1367 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
1368 
1369 	return hcd->self.b_hnp_enable;
1370 }
1371 
1372 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)1373 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1374 {
1375 	unsigned long flags;
1376 	u32 hprt0;
1377 	u32 pcgctl;
1378 	u32 gotgctl;
1379 
1380 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1381 
1382 	spin_lock_irqsave(&hsotg->lock, flags);
1383 
1384 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
1385 		gotgctl = readl(hsotg->regs + GOTGCTL);
1386 		gotgctl |= GOTGCTL_HSTSETHNPEN;
1387 		writel(gotgctl, hsotg->regs + GOTGCTL);
1388 		hsotg->op_state = OTG_STATE_A_SUSPEND;
1389 	}
1390 
1391 	hprt0 = dwc2_read_hprt0(hsotg);
1392 	hprt0 |= HPRT0_SUSP;
1393 	writel(hprt0, hsotg->regs + HPRT0);
1394 
1395 	/* Update lx_state */
1396 	hsotg->lx_state = DWC2_L2;
1397 
1398 	/* Suspend the Phy Clock */
1399 	pcgctl = readl(hsotg->regs + PCGCTL);
1400 	pcgctl |= PCGCTL_STOPPCLK;
1401 	writel(pcgctl, hsotg->regs + PCGCTL);
1402 	udelay(10);
1403 
1404 	/* For HNP the bus must be suspended for at least 200ms */
1405 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
1406 		pcgctl = readl(hsotg->regs + PCGCTL);
1407 		pcgctl &= ~PCGCTL_STOPPCLK;
1408 		writel(pcgctl, hsotg->regs + PCGCTL);
1409 
1410 		spin_unlock_irqrestore(&hsotg->lock, flags);
1411 
1412 		usleep_range(200000, 250000);
1413 	} else {
1414 		spin_unlock_irqrestore(&hsotg->lock, flags);
1415 	}
1416 }
1417 
1418 /* Handles hub class-specific requests */
dwc2_hcd_hub_control(struct dwc2_hsotg * hsotg,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)1419 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
1420 				u16 wvalue, u16 windex, char *buf, u16 wlength)
1421 {
1422 	struct usb_hub_descriptor *hub_desc;
1423 	int retval = 0;
1424 	u32 hprt0;
1425 	u32 port_status;
1426 	u32 speed;
1427 	u32 pcgctl;
1428 
1429 	switch (typereq) {
1430 	case ClearHubFeature:
1431 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
1432 
1433 		switch (wvalue) {
1434 		case C_HUB_LOCAL_POWER:
1435 		case C_HUB_OVER_CURRENT:
1436 			/* Nothing required here */
1437 			break;
1438 
1439 		default:
1440 			retval = -EINVAL;
1441 			dev_err(hsotg->dev,
1442 				"ClearHubFeature request %1xh unknown\n",
1443 				wvalue);
1444 		}
1445 		break;
1446 
1447 	case ClearPortFeature:
1448 		if (wvalue != USB_PORT_FEAT_L1)
1449 			if (!windex || windex > 1)
1450 				goto error;
1451 		switch (wvalue) {
1452 		case USB_PORT_FEAT_ENABLE:
1453 			dev_dbg(hsotg->dev,
1454 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
1455 			hprt0 = dwc2_read_hprt0(hsotg);
1456 			hprt0 |= HPRT0_ENA;
1457 			writel(hprt0, hsotg->regs + HPRT0);
1458 			break;
1459 
1460 		case USB_PORT_FEAT_SUSPEND:
1461 			dev_dbg(hsotg->dev,
1462 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1463 			writel(0, hsotg->regs + PCGCTL);
1464 			usleep_range(20000, 40000);
1465 
1466 			hprt0 = dwc2_read_hprt0(hsotg);
1467 			hprt0 |= HPRT0_RES;
1468 			writel(hprt0, hsotg->regs + HPRT0);
1469 			hprt0 &= ~HPRT0_SUSP;
1470 			usleep_range(100000, 150000);
1471 
1472 			hprt0 &= ~HPRT0_RES;
1473 			writel(hprt0, hsotg->regs + HPRT0);
1474 			break;
1475 
1476 		case USB_PORT_FEAT_POWER:
1477 			dev_dbg(hsotg->dev,
1478 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
1479 			hprt0 = dwc2_read_hprt0(hsotg);
1480 			hprt0 &= ~HPRT0_PWR;
1481 			writel(hprt0, hsotg->regs + HPRT0);
1482 			break;
1483 
1484 		case USB_PORT_FEAT_INDICATOR:
1485 			dev_dbg(hsotg->dev,
1486 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
1487 			/* Port indicator not supported */
1488 			break;
1489 
1490 		case USB_PORT_FEAT_C_CONNECTION:
1491 			/*
1492 			 * Clears driver's internal Connect Status Change flag
1493 			 */
1494 			dev_dbg(hsotg->dev,
1495 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
1496 			hsotg->flags.b.port_connect_status_change = 0;
1497 			break;
1498 
1499 		case USB_PORT_FEAT_C_RESET:
1500 			/* Clears driver's internal Port Reset Change flag */
1501 			dev_dbg(hsotg->dev,
1502 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
1503 			hsotg->flags.b.port_reset_change = 0;
1504 			break;
1505 
1506 		case USB_PORT_FEAT_C_ENABLE:
1507 			/*
1508 			 * Clears the driver's internal Port Enable/Disable
1509 			 * Change flag
1510 			 */
1511 			dev_dbg(hsotg->dev,
1512 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
1513 			hsotg->flags.b.port_enable_change = 0;
1514 			break;
1515 
1516 		case USB_PORT_FEAT_C_SUSPEND:
1517 			/*
1518 			 * Clears the driver's internal Port Suspend Change
1519 			 * flag, which is set when resume signaling on the host
1520 			 * port is complete
1521 			 */
1522 			dev_dbg(hsotg->dev,
1523 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
1524 			hsotg->flags.b.port_suspend_change = 0;
1525 			break;
1526 
1527 		case USB_PORT_FEAT_C_PORT_L1:
1528 			dev_dbg(hsotg->dev,
1529 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
1530 			hsotg->flags.b.port_l1_change = 0;
1531 			break;
1532 
1533 		case USB_PORT_FEAT_C_OVER_CURRENT:
1534 			dev_dbg(hsotg->dev,
1535 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
1536 			hsotg->flags.b.port_over_current_change = 0;
1537 			break;
1538 
1539 		default:
1540 			retval = -EINVAL;
1541 			dev_err(hsotg->dev,
1542 				"ClearPortFeature request %1xh unknown or unsupported\n",
1543 				wvalue);
1544 		}
1545 		break;
1546 
1547 	case GetHubDescriptor:
1548 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
1549 		hub_desc = (struct usb_hub_descriptor *)buf;
1550 		hub_desc->bDescLength = 9;
1551 		hub_desc->bDescriptorType = 0x29;
1552 		hub_desc->bNbrPorts = 1;
1553 		hub_desc->wHubCharacteristics = cpu_to_le16(0x08);
1554 		hub_desc->bPwrOn2PwrGood = 1;
1555 		hub_desc->bHubContrCurrent = 0;
1556 		hub_desc->u.hs.DeviceRemovable[0] = 0;
1557 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
1558 		break;
1559 
1560 	case GetHubStatus:
1561 		dev_dbg(hsotg->dev, "GetHubStatus\n");
1562 		memset(buf, 0, 4);
1563 		break;
1564 
1565 	case GetPortStatus:
1566 		dev_dbg(hsotg->dev,
1567 			"GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
1568 			hsotg->flags.d32);
1569 		if (!windex || windex > 1)
1570 			goto error;
1571 
1572 		port_status = 0;
1573 		if (hsotg->flags.b.port_connect_status_change)
1574 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
1575 		if (hsotg->flags.b.port_enable_change)
1576 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
1577 		if (hsotg->flags.b.port_suspend_change)
1578 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
1579 		if (hsotg->flags.b.port_l1_change)
1580 			port_status |= USB_PORT_STAT_C_L1 << 16;
1581 		if (hsotg->flags.b.port_reset_change)
1582 			port_status |= USB_PORT_STAT_C_RESET << 16;
1583 		if (hsotg->flags.b.port_over_current_change) {
1584 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
1585 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1586 		}
1587 
1588 		if (!hsotg->flags.b.port_connect_status) {
1589 			/*
1590 			 * The port is disconnected, which means the core is
1591 			 * either in device mode or it soon will be. Just
1592 			 * return 0's for the remainder of the port status
1593 			 * since the port register can't be read if the core
1594 			 * is in device mode.
1595 			 */
1596 			*(__le32 *)buf = cpu_to_le32(port_status);
1597 			break;
1598 		}
1599 
1600 		hprt0 = readl(hsotg->regs + HPRT0);
1601 		dev_dbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
1602 
1603 		if (hprt0 & HPRT0_CONNSTS)
1604 			port_status |= USB_PORT_STAT_CONNECTION;
1605 		if (hprt0 & HPRT0_ENA)
1606 			port_status |= USB_PORT_STAT_ENABLE;
1607 		if (hprt0 & HPRT0_SUSP)
1608 			port_status |= USB_PORT_STAT_SUSPEND;
1609 		if (hprt0 & HPRT0_OVRCURRACT)
1610 			port_status |= USB_PORT_STAT_OVERCURRENT;
1611 		if (hprt0 & HPRT0_RST)
1612 			port_status |= USB_PORT_STAT_RESET;
1613 		if (hprt0 & HPRT0_PWR)
1614 			port_status |= USB_PORT_STAT_POWER;
1615 
1616 		speed = hprt0 & HPRT0_SPD_MASK;
1617 		if (speed == HPRT0_SPD_HIGH_SPEED)
1618 			port_status |= USB_PORT_STAT_HIGH_SPEED;
1619 		else if (speed == HPRT0_SPD_LOW_SPEED)
1620 			port_status |= USB_PORT_STAT_LOW_SPEED;
1621 
1622 		if (hprt0 & HPRT0_TSTCTL_MASK)
1623 			port_status |= USB_PORT_STAT_TEST;
1624 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
1625 
1626 		dev_dbg(hsotg->dev, "port_status=%08x\n", port_status);
1627 		*(__le32 *)buf = cpu_to_le32(port_status);
1628 		break;
1629 
1630 	case SetHubFeature:
1631 		dev_dbg(hsotg->dev, "SetHubFeature\n");
1632 		/* No HUB features supported */
1633 		break;
1634 
1635 	case SetPortFeature:
1636 		dev_dbg(hsotg->dev, "SetPortFeature\n");
1637 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
1638 			goto error;
1639 
1640 		if (!hsotg->flags.b.port_connect_status) {
1641 			/*
1642 			 * The port is disconnected, which means the core is
1643 			 * either in device mode or it soon will be. Just
1644 			 * return without doing anything since the port
1645 			 * register can't be written if the core is in device
1646 			 * mode.
1647 			 */
1648 			break;
1649 		}
1650 
1651 		switch (wvalue) {
1652 		case USB_PORT_FEAT_SUSPEND:
1653 			dev_dbg(hsotg->dev,
1654 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
1655 			if (windex != hsotg->otg_port)
1656 				goto error;
1657 			dwc2_port_suspend(hsotg, windex);
1658 			break;
1659 
1660 		case USB_PORT_FEAT_POWER:
1661 			dev_dbg(hsotg->dev,
1662 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
1663 			hprt0 = dwc2_read_hprt0(hsotg);
1664 			hprt0 |= HPRT0_PWR;
1665 			writel(hprt0, hsotg->regs + HPRT0);
1666 			break;
1667 
1668 		case USB_PORT_FEAT_RESET:
1669 			hprt0 = dwc2_read_hprt0(hsotg);
1670 			dev_dbg(hsotg->dev,
1671 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
1672 			pcgctl = readl(hsotg->regs + PCGCTL);
1673 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
1674 			writel(pcgctl, hsotg->regs + PCGCTL);
1675 			/* ??? Original driver does this */
1676 			writel(0, hsotg->regs + PCGCTL);
1677 
1678 			hprt0 = dwc2_read_hprt0(hsotg);
1679 			/* Clear suspend bit if resetting from suspend state */
1680 			hprt0 &= ~HPRT0_SUSP;
1681 
1682 			/*
1683 			 * When B-Host the Port reset bit is set in the Start
1684 			 * HCD Callback function, so that the reset is started
1685 			 * within 1ms of the HNP success interrupt
1686 			 */
1687 			if (!dwc2_hcd_is_b_host(hsotg)) {
1688 				hprt0 |= HPRT0_PWR | HPRT0_RST;
1689 				dev_dbg(hsotg->dev,
1690 					"In host mode, hprt0=%08x\n", hprt0);
1691 				writel(hprt0, hsotg->regs + HPRT0);
1692 			}
1693 
1694 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
1695 			usleep_range(50000, 70000);
1696 			hprt0 &= ~HPRT0_RST;
1697 			writel(hprt0, hsotg->regs + HPRT0);
1698 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
1699 			break;
1700 
1701 		case USB_PORT_FEAT_INDICATOR:
1702 			dev_dbg(hsotg->dev,
1703 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
1704 			/* Not supported */
1705 			break;
1706 
1707 		default:
1708 			retval = -EINVAL;
1709 			dev_err(hsotg->dev,
1710 				"SetPortFeature %1xh unknown or unsupported\n",
1711 				wvalue);
1712 			break;
1713 		}
1714 		break;
1715 
1716 	default:
1717 error:
1718 		retval = -EINVAL;
1719 		dev_dbg(hsotg->dev,
1720 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
1721 			typereq, windex, wvalue);
1722 		break;
1723 	}
1724 
1725 	return retval;
1726 }
1727 
dwc2_hcd_is_status_changed(struct dwc2_hsotg * hsotg,int port)1728 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
1729 {
1730 	int retval;
1731 
1732 	if (port != 1)
1733 		return -EINVAL;
1734 
1735 	retval = (hsotg->flags.b.port_connect_status_change ||
1736 		  hsotg->flags.b.port_reset_change ||
1737 		  hsotg->flags.b.port_enable_change ||
1738 		  hsotg->flags.b.port_suspend_change ||
1739 		  hsotg->flags.b.port_over_current_change);
1740 
1741 	if (retval) {
1742 		dev_dbg(hsotg->dev,
1743 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
1744 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
1745 			hsotg->flags.b.port_connect_status_change);
1746 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
1747 			hsotg->flags.b.port_reset_change);
1748 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
1749 			hsotg->flags.b.port_enable_change);
1750 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
1751 			hsotg->flags.b.port_suspend_change);
1752 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
1753 			hsotg->flags.b.port_over_current_change);
1754 	}
1755 
1756 	return retval;
1757 }
1758 
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1759 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1760 {
1761 	u32 hfnum = readl(hsotg->regs + HFNUM);
1762 
1763 #ifdef DWC2_DEBUG_SOF
1764 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1765 		 hfnum >> HFNUM_FRNUM_SHIFT &
1766 		 HFNUM_FRNUM_MASK >> HFNUM_FRNUM_SHIFT);
1767 #endif
1768 	return hfnum >> HFNUM_FRNUM_SHIFT &
1769 	       HFNUM_FRNUM_MASK >> HFNUM_FRNUM_SHIFT;
1770 }
1771 
dwc2_hcd_is_b_host(struct dwc2_hsotg * hsotg)1772 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
1773 {
1774 	return (hsotg->op_state == OTG_STATE_B_HOST);
1775 }
1776 
dwc2_hcd_urb_alloc(struct dwc2_hsotg * hsotg,int iso_desc_count,gfp_t mem_flags)1777 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
1778 					       int iso_desc_count,
1779 					       gfp_t mem_flags)
1780 {
1781 	struct dwc2_hcd_urb *urb;
1782 	u32 size = sizeof(*urb) + iso_desc_count *
1783 		   sizeof(struct dwc2_hcd_iso_packet_desc);
1784 
1785 	urb = kzalloc(size, mem_flags);
1786 	if (urb)
1787 		urb->packet_count = iso_desc_count;
1788 	return urb;
1789 }
1790 
dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,u8 dev_addr,u8 ep_num,u8 ep_type,u8 ep_dir,u16 mps)1791 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
1792 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
1793 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
1794 {
1795 	if (dbg_perio() ||
1796 	    ep_type == USB_ENDPOINT_XFER_BULK ||
1797 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
1798 		dev_vdbg(hsotg->dev,
1799 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
1800 			 dev_addr, ep_num, ep_dir, ep_type, mps);
1801 	urb->pipe_info.dev_addr = dev_addr;
1802 	urb->pipe_info.ep_num = ep_num;
1803 	urb->pipe_info.pipe_type = ep_type;
1804 	urb->pipe_info.pipe_dir = ep_dir;
1805 	urb->pipe_info.mps = mps;
1806 }
1807 
1808 /*
1809  * NOTE: This function will be removed once the peripheral controller code
1810  * is integrated and the driver is stable
1811  */
dwc2_hcd_dump_state(struct dwc2_hsotg * hsotg)1812 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
1813 {
1814 #ifdef DEBUG
1815 	struct dwc2_host_chan *chan;
1816 	struct dwc2_hcd_urb *urb;
1817 	struct dwc2_qtd *qtd;
1818 	int num_channels;
1819 	u32 np_tx_status;
1820 	u32 p_tx_status;
1821 	int i;
1822 
1823 	num_channels = hsotg->core_params->host_channels;
1824 	dev_dbg(hsotg->dev, "\n");
1825 	dev_dbg(hsotg->dev,
1826 		"************************************************************\n");
1827 	dev_dbg(hsotg->dev, "HCD State:\n");
1828 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
1829 
1830 	for (i = 0; i < num_channels; i++) {
1831 		chan = hsotg->hc_ptr_array[i];
1832 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
1833 		dev_dbg(hsotg->dev,
1834 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
1835 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
1836 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
1837 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
1838 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
1839 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
1840 			chan->data_pid_start);
1841 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
1842 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
1843 			chan->xfer_started);
1844 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
1845 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
1846 			(unsigned long)chan->xfer_dma);
1847 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
1848 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
1849 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
1850 			chan->halt_on_queue);
1851 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
1852 			chan->halt_pending);
1853 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
1854 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
1855 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
1856 			chan->complete_split);
1857 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
1858 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
1859 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
1860 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
1861 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
1862 
1863 		if (chan->xfer_started) {
1864 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
1865 
1866 			hfnum = readl(hsotg->regs + HFNUM);
1867 			hcchar = readl(hsotg->regs + HCCHAR(i));
1868 			hctsiz = readl(hsotg->regs + HCTSIZ(i));
1869 			hcint = readl(hsotg->regs + HCINT(i));
1870 			hcintmsk = readl(hsotg->regs + HCINTMSK(i));
1871 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
1872 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
1873 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
1874 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
1875 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
1876 		}
1877 
1878 		if (!(chan->xfer_started && chan->qh))
1879 			continue;
1880 
1881 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
1882 			if (!qtd->in_process)
1883 				break;
1884 			urb = qtd->urb;
1885 			dev_dbg(hsotg->dev, "    URB Info:\n");
1886 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
1887 				qtd, urb);
1888 			if (urb) {
1889 				dev_dbg(hsotg->dev,
1890 					"      Dev: %d, EP: %d %s\n",
1891 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
1892 					dwc2_hcd_get_ep_num(&urb->pipe_info),
1893 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
1894 					"IN" : "OUT");
1895 				dev_dbg(hsotg->dev,
1896 					"      Max packet size: %d\n",
1897 					dwc2_hcd_get_mps(&urb->pipe_info));
1898 				dev_dbg(hsotg->dev,
1899 					"      transfer_buffer: %p\n",
1900 					urb->buf);
1901 				dev_dbg(hsotg->dev,
1902 					"      transfer_dma: %08lx\n",
1903 					(unsigned long)urb->dma);
1904 				dev_dbg(hsotg->dev,
1905 					"      transfer_buffer_length: %d\n",
1906 					urb->length);
1907 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
1908 					urb->actual_length);
1909 			}
1910 		}
1911 	}
1912 
1913 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
1914 		hsotg->non_periodic_channels);
1915 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
1916 		hsotg->periodic_channels);
1917 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
1918 	np_tx_status = readl(hsotg->regs + GNPTXSTS);
1919 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
1920 		np_tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1921 		TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT);
1922 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
1923 		np_tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1924 		TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT);
1925 	p_tx_status = readl(hsotg->regs + HPTXSTS);
1926 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
1927 		p_tx_status >> TXSTS_QSPCAVAIL_SHIFT &
1928 		TXSTS_QSPCAVAIL_MASK >> TXSTS_QSPCAVAIL_SHIFT);
1929 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
1930 		p_tx_status >> TXSTS_FSPCAVAIL_SHIFT &
1931 		TXSTS_FSPCAVAIL_MASK >> TXSTS_FSPCAVAIL_SHIFT);
1932 	dwc2_hcd_dump_frrem(hsotg);
1933 	dwc2_dump_global_registers(hsotg);
1934 	dwc2_dump_host_registers(hsotg);
1935 	dev_dbg(hsotg->dev,
1936 		"************************************************************\n");
1937 	dev_dbg(hsotg->dev, "\n");
1938 #endif
1939 }
1940 
1941 /*
1942  * NOTE: This function will be removed once the peripheral controller code
1943  * is integrated and the driver is stable
1944  */
dwc2_hcd_dump_frrem(struct dwc2_hsotg * hsotg)1945 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
1946 {
1947 #ifdef DWC2_DUMP_FRREM
1948 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
1949 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1950 		hsotg->frrem_samples, hsotg->frrem_accum,
1951 		hsotg->frrem_samples > 0 ?
1952 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
1953 	dev_dbg(hsotg->dev, "\n");
1954 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
1955 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1956 		hsotg->hfnum_7_samples,
1957 		hsotg->hfnum_7_frrem_accum,
1958 		hsotg->hfnum_7_samples > 0 ?
1959 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
1960 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
1961 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1962 		hsotg->hfnum_0_samples,
1963 		hsotg->hfnum_0_frrem_accum,
1964 		hsotg->hfnum_0_samples > 0 ?
1965 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
1966 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
1967 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1968 		hsotg->hfnum_other_samples,
1969 		hsotg->hfnum_other_frrem_accum,
1970 		hsotg->hfnum_other_samples > 0 ?
1971 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
1972 		0);
1973 	dev_dbg(hsotg->dev, "\n");
1974 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
1975 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1976 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
1977 		hsotg->hfnum_7_samples_a > 0 ?
1978 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
1979 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
1980 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1981 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
1982 		hsotg->hfnum_0_samples_a > 0 ?
1983 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
1984 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
1985 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1986 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
1987 		hsotg->hfnum_other_samples_a > 0 ?
1988 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
1989 		: 0);
1990 	dev_dbg(hsotg->dev, "\n");
1991 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
1992 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1993 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
1994 		hsotg->hfnum_7_samples_b > 0 ?
1995 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
1996 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
1997 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1998 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
1999 		(hsotg->hfnum_0_samples_b > 0) ?
2000 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
2001 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
2002 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2003 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
2004 		(hsotg->hfnum_other_samples_b > 0) ?
2005 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
2006 		: 0);
2007 #endif
2008 }
2009 
2010 struct wrapper_priv_data {
2011 	struct dwc2_hsotg *hsotg;
2012 };
2013 
2014 /* Gets the dwc2_hsotg from a usb_hcd */
dwc2_hcd_to_hsotg(struct usb_hcd * hcd)2015 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
2016 {
2017 	struct wrapper_priv_data *p;
2018 
2019 	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
2020 	return p->hsotg;
2021 }
2022 
2023 static int _dwc2_hcd_start(struct usb_hcd *hcd);
2024 
dwc2_host_start(struct dwc2_hsotg * hsotg)2025 void dwc2_host_start(struct dwc2_hsotg *hsotg)
2026 {
2027 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2028 
2029 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
2030 	_dwc2_hcd_start(hcd);
2031 }
2032 
dwc2_host_disconnect(struct dwc2_hsotg * hsotg)2033 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
2034 {
2035 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2036 
2037 	hcd->self.is_b_host = 0;
2038 }
2039 
dwc2_host_hub_info(struct dwc2_hsotg * hsotg,void * context,int * hub_addr,int * hub_port)2040 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
2041 			int *hub_port)
2042 {
2043 	struct urb *urb = context;
2044 
2045 	if (urb->dev->tt)
2046 		*hub_addr = urb->dev->tt->hub->devnum;
2047 	else
2048 		*hub_addr = 0;
2049 	*hub_port = urb->dev->ttport;
2050 }
2051 
dwc2_host_get_speed(struct dwc2_hsotg * hsotg,void * context)2052 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
2053 {
2054 	struct urb *urb = context;
2055 
2056 	return urb->dev->speed;
2057 }
2058 
dwc2_allocate_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)2059 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2060 					struct urb *urb)
2061 {
2062 	struct usb_bus *bus = hcd_to_bus(hcd);
2063 
2064 	if (urb->interval)
2065 		bus->bandwidth_allocated += bw / urb->interval;
2066 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2067 		bus->bandwidth_isoc_reqs++;
2068 	else
2069 		bus->bandwidth_int_reqs++;
2070 }
2071 
dwc2_free_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)2072 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2073 				    struct urb *urb)
2074 {
2075 	struct usb_bus *bus = hcd_to_bus(hcd);
2076 
2077 	if (urb->interval)
2078 		bus->bandwidth_allocated -= bw / urb->interval;
2079 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2080 		bus->bandwidth_isoc_reqs--;
2081 	else
2082 		bus->bandwidth_int_reqs--;
2083 }
2084 
2085 /*
2086  * Sets the final status of an URB and returns it to the upper layer. Any
2087  * required cleanup of the URB is performed.
2088  *
2089  * Must be called with interrupt disabled and spinlock held
2090  */
dwc2_host_complete(struct dwc2_hsotg * hsotg,void * context,struct dwc2_hcd_urb * dwc2_urb,int status)2091 void dwc2_host_complete(struct dwc2_hsotg *hsotg, void *context,
2092 			struct dwc2_hcd_urb *dwc2_urb, int status)
2093 {
2094 	struct urb *urb = context;
2095 	int i;
2096 
2097 	if (!urb) {
2098 		dev_dbg(hsotg->dev, "## %s: context is NULL ##\n", __func__);
2099 		return;
2100 	}
2101 
2102 	if (!dwc2_urb) {
2103 		dev_dbg(hsotg->dev, "## %s: dwc2_urb is NULL ##\n", __func__);
2104 		return;
2105 	}
2106 
2107 	urb->actual_length = dwc2_hcd_urb_get_actual_length(dwc2_urb);
2108 
2109 	if (dbg_urb(urb))
2110 		dev_vdbg(hsotg->dev,
2111 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
2112 			 __func__, urb, usb_pipedevice(urb->pipe),
2113 			 usb_pipeendpoint(urb->pipe),
2114 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
2115 			 urb->actual_length);
2116 
2117 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2118 		for (i = 0; i < urb->number_of_packets; i++)
2119 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
2120 				 i, urb->iso_frame_desc[i].status);
2121 	}
2122 
2123 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2124 		urb->error_count = dwc2_hcd_urb_get_error_count(dwc2_urb);
2125 		for (i = 0; i < urb->number_of_packets; ++i) {
2126 			urb->iso_frame_desc[i].actual_length =
2127 				dwc2_hcd_urb_get_iso_desc_actual_length(
2128 						dwc2_urb, i);
2129 			urb->iso_frame_desc[i].status =
2130 				dwc2_hcd_urb_get_iso_desc_status(dwc2_urb, i);
2131 		}
2132 	}
2133 
2134 	urb->status = status;
2135 	urb->hcpriv = NULL;
2136 	if (!status) {
2137 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
2138 		    urb->actual_length < urb->transfer_buffer_length)
2139 			urb->status = -EREMOTEIO;
2140 	}
2141 
2142 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2143 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2144 		struct usb_host_endpoint *ep = urb->ep;
2145 
2146 		if (ep)
2147 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
2148 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2149 					urb);
2150 	}
2151 
2152 	kfree(dwc2_urb);
2153 
2154 	spin_unlock(&hsotg->lock);
2155 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
2156 	spin_lock(&hsotg->lock);
2157 }
2158 
2159 /*
2160  * Work queue function for starting the HCD when A-Cable is connected
2161  */
dwc2_hcd_start_func(struct work_struct * work)2162 static void dwc2_hcd_start_func(struct work_struct *work)
2163 {
2164 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2165 						start_work.work);
2166 
2167 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
2168 	dwc2_host_start(hsotg);
2169 }
2170 
2171 /*
2172  * Reset work queue function
2173  */
dwc2_hcd_reset_func(struct work_struct * work)2174 static void dwc2_hcd_reset_func(struct work_struct *work)
2175 {
2176 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2177 						reset_work.work);
2178 	u32 hprt0;
2179 
2180 	dev_dbg(hsotg->dev, "USB RESET function called\n");
2181 	hprt0 = dwc2_read_hprt0(hsotg);
2182 	hprt0 &= ~HPRT0_RST;
2183 	writel(hprt0, hsotg->regs + HPRT0);
2184 	hsotg->flags.b.port_reset_change = 1;
2185 }
2186 
2187 /*
2188  * =========================================================================
2189  *  Linux HC Driver Functions
2190  * =========================================================================
2191  */
2192 
2193 /*
2194  * Initializes the DWC_otg controller and its root hub and prepares it for host
2195  * mode operation. Activates the root port. Returns 0 on success and a negative
2196  * error code on failure.
2197  */
_dwc2_hcd_start(struct usb_hcd * hcd)2198 static int _dwc2_hcd_start(struct usb_hcd *hcd)
2199 {
2200 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2201 	struct usb_bus *bus = hcd_to_bus(hcd);
2202 	unsigned long flags;
2203 
2204 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
2205 
2206 	spin_lock_irqsave(&hsotg->lock, flags);
2207 
2208 	hcd->state = HC_STATE_RUNNING;
2209 
2210 	if (dwc2_is_device_mode(hsotg)) {
2211 		spin_unlock_irqrestore(&hsotg->lock, flags);
2212 		return 0;	/* why 0 ?? */
2213 	}
2214 
2215 	dwc2_hcd_reinit(hsotg);
2216 
2217 	/* Initialize and connect root hub if one is not already attached */
2218 	if (bus->root_hub) {
2219 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
2220 		/* Inform the HUB driver to resume */
2221 		usb_hcd_resume_root_hub(hcd);
2222 	}
2223 
2224 	spin_unlock_irqrestore(&hsotg->lock, flags);
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
2230  * stopped.
2231  */
_dwc2_hcd_stop(struct usb_hcd * hcd)2232 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
2233 {
2234 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2235 	unsigned long flags;
2236 
2237 	spin_lock_irqsave(&hsotg->lock, flags);
2238 	dwc2_hcd_stop(hsotg);
2239 	spin_unlock_irqrestore(&hsotg->lock, flags);
2240 
2241 	usleep_range(1000, 3000);
2242 }
2243 
2244 /* Returns the current frame number */
_dwc2_hcd_get_frame_number(struct usb_hcd * hcd)2245 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
2246 {
2247 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2248 
2249 	return dwc2_hcd_get_frame_number(hsotg);
2250 }
2251 
dwc2_dump_urb_info(struct usb_hcd * hcd,struct urb * urb,char * fn_name)2252 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
2253 			       char *fn_name)
2254 {
2255 #ifdef VERBOSE_DEBUG
2256 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2257 	char *pipetype;
2258 	char *speed;
2259 
2260 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
2261 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
2262 		 usb_pipedevice(urb->pipe));
2263 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
2264 		 usb_pipeendpoint(urb->pipe),
2265 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
2266 
2267 	switch (usb_pipetype(urb->pipe)) {
2268 	case PIPE_CONTROL:
2269 		pipetype = "CONTROL";
2270 		break;
2271 	case PIPE_BULK:
2272 		pipetype = "BULK";
2273 		break;
2274 	case PIPE_INTERRUPT:
2275 		pipetype = "INTERRUPT";
2276 		break;
2277 	case PIPE_ISOCHRONOUS:
2278 		pipetype = "ISOCHRONOUS";
2279 		break;
2280 	default:
2281 		pipetype = "UNKNOWN";
2282 		break;
2283 	}
2284 
2285 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
2286 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
2287 		 "IN" : "OUT");
2288 
2289 	switch (urb->dev->speed) {
2290 	case USB_SPEED_HIGH:
2291 		speed = "HIGH";
2292 		break;
2293 	case USB_SPEED_FULL:
2294 		speed = "FULL";
2295 		break;
2296 	case USB_SPEED_LOW:
2297 		speed = "LOW";
2298 		break;
2299 	default:
2300 		speed = "UNKNOWN";
2301 		break;
2302 	}
2303 
2304 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
2305 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
2306 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
2307 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
2308 		 urb->transfer_buffer_length);
2309 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
2310 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
2311 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
2312 		 urb->setup_packet, (unsigned long)urb->setup_dma);
2313 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
2314 
2315 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2316 		int i;
2317 
2318 		for (i = 0; i < urb->number_of_packets; i++) {
2319 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
2320 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
2321 				 urb->iso_frame_desc[i].offset,
2322 				 urb->iso_frame_desc[i].length);
2323 		}
2324 	}
2325 #endif
2326 }
2327 
2328 /*
2329  * Starts processing a USB transfer request specified by a USB Request Block
2330  * (URB). mem_flags indicates the type of memory allocation to use while
2331  * processing this URB.
2332  */
_dwc2_hcd_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)2333 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2334 				 gfp_t mem_flags)
2335 {
2336 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2337 	struct usb_host_endpoint *ep = urb->ep;
2338 	struct dwc2_hcd_urb *dwc2_urb;
2339 	int i;
2340 	int alloc_bandwidth = 0;
2341 	int retval = 0;
2342 	u8 ep_type = 0;
2343 	u32 tflags = 0;
2344 	void *buf;
2345 	unsigned long flags;
2346 
2347 	if (dbg_urb(urb)) {
2348 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
2349 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
2350 	}
2351 
2352 	if (ep == NULL)
2353 		return -EINVAL;
2354 
2355 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2356 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2357 		spin_lock_irqsave(&hsotg->lock, flags);
2358 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
2359 			alloc_bandwidth = 1;
2360 		spin_unlock_irqrestore(&hsotg->lock, flags);
2361 	}
2362 
2363 	switch (usb_pipetype(urb->pipe)) {
2364 	case PIPE_CONTROL:
2365 		ep_type = USB_ENDPOINT_XFER_CONTROL;
2366 		break;
2367 	case PIPE_ISOCHRONOUS:
2368 		ep_type = USB_ENDPOINT_XFER_ISOC;
2369 		break;
2370 	case PIPE_BULK:
2371 		ep_type = USB_ENDPOINT_XFER_BULK;
2372 		break;
2373 	case PIPE_INTERRUPT:
2374 		ep_type = USB_ENDPOINT_XFER_INT;
2375 		break;
2376 	default:
2377 		dev_warn(hsotg->dev, "Wrong ep type\n");
2378 	}
2379 
2380 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
2381 				      mem_flags);
2382 	if (!dwc2_urb)
2383 		return -ENOMEM;
2384 
2385 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
2386 				  usb_pipeendpoint(urb->pipe), ep_type,
2387 				  usb_pipein(urb->pipe),
2388 				  usb_maxpacket(urb->dev, urb->pipe,
2389 						!(usb_pipein(urb->pipe))));
2390 
2391 	buf = urb->transfer_buffer;
2392 	if (hcd->self.uses_dma) {
2393 		/*
2394 		 * Calculate virtual address from physical address, because
2395 		 * some class driver may not fill transfer_buffer.
2396 		 * In Buffer DMA mode virtual address is used, when handling
2397 		 * non-DWORD aligned buffers.
2398 		 */
2399 		buf = bus_to_virt(urb->transfer_dma);
2400 	}
2401 
2402 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
2403 		tflags |= URB_GIVEBACK_ASAP;
2404 	if (urb->transfer_flags & URB_ZERO_PACKET)
2405 		tflags |= URB_SEND_ZERO_PACKET;
2406 
2407 	dwc2_urb->priv = urb;
2408 	dwc2_urb->buf = buf;
2409 	dwc2_urb->dma = urb->transfer_dma;
2410 	dwc2_urb->length = urb->transfer_buffer_length;
2411 	dwc2_urb->setup_packet = urb->setup_packet;
2412 	dwc2_urb->setup_dma = urb->setup_dma;
2413 	dwc2_urb->flags = tflags;
2414 	dwc2_urb->interval = urb->interval;
2415 	dwc2_urb->status = -EINPROGRESS;
2416 
2417 	for (i = 0; i < urb->number_of_packets; ++i)
2418 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
2419 						 urb->iso_frame_desc[i].offset,
2420 						 urb->iso_frame_desc[i].length);
2421 
2422 	urb->hcpriv = dwc2_urb;
2423 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, &ep->hcpriv,
2424 				      mem_flags);
2425 	if (retval) {
2426 		urb->hcpriv = NULL;
2427 		kfree(dwc2_urb);
2428 	} else {
2429 		if (alloc_bandwidth) {
2430 			spin_lock_irqsave(&hsotg->lock, flags);
2431 			dwc2_allocate_bus_bandwidth(hcd,
2432 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2433 					urb);
2434 			spin_unlock_irqrestore(&hsotg->lock, flags);
2435 		}
2436 	}
2437 
2438 	return retval;
2439 }
2440 
2441 /*
2442  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
2443  */
_dwc2_hcd_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)2444 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
2445 				 int status)
2446 {
2447 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2448 	int rc = 0;
2449 	unsigned long flags;
2450 
2451 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
2452 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
2453 
2454 	spin_lock_irqsave(&hsotg->lock, flags);
2455 
2456 	if (!urb->hcpriv) {
2457 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
2458 		goto out;
2459 	}
2460 
2461 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
2462 
2463 	kfree(urb->hcpriv);
2464 	urb->hcpriv = NULL;
2465 
2466 	/* Higher layer software sets URB status */
2467 	spin_unlock(&hsotg->lock);
2468 	usb_hcd_giveback_urb(hcd, urb, status);
2469 	spin_lock(&hsotg->lock);
2470 
2471 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
2472 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
2473 out:
2474 	spin_unlock_irqrestore(&hsotg->lock, flags);
2475 
2476 	return rc;
2477 }
2478 
2479 /*
2480  * Frees resources in the DWC_otg controller related to a given endpoint. Also
2481  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
2482  * must already be dequeued.
2483  */
_dwc2_hcd_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2484 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
2485 				       struct usb_host_endpoint *ep)
2486 {
2487 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2488 
2489 	dev_dbg(hsotg->dev,
2490 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
2491 		ep->desc.bEndpointAddress, ep->hcpriv);
2492 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
2493 }
2494 
2495 /*
2496  * Resets endpoint specific parameter values, in current version used to reset
2497  * the data toggle (as a WA). This function can be called from usb_clear_halt
2498  * routine.
2499  */
_dwc2_hcd_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2500 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
2501 				     struct usb_host_endpoint *ep)
2502 {
2503 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2504 	int is_control = usb_endpoint_xfer_control(&ep->desc);
2505 	int is_out = usb_endpoint_dir_out(&ep->desc);
2506 	int epnum = usb_endpoint_num(&ep->desc);
2507 	struct usb_device *udev;
2508 	unsigned long flags;
2509 
2510 	dev_dbg(hsotg->dev,
2511 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
2512 		ep->desc.bEndpointAddress);
2513 
2514 	udev = to_usb_device(hsotg->dev);
2515 
2516 	spin_lock_irqsave(&hsotg->lock, flags);
2517 
2518 	usb_settoggle(udev, epnum, is_out, 0);
2519 	if (is_control)
2520 		usb_settoggle(udev, epnum, !is_out, 0);
2521 	dwc2_hcd_endpoint_reset(hsotg, ep);
2522 
2523 	spin_unlock_irqrestore(&hsotg->lock, flags);
2524 }
2525 
2526 /*
2527  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
2528  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
2529  * interrupt.
2530  *
2531  * This function is called by the USB core when an interrupt occurs
2532  */
_dwc2_hcd_irq(struct usb_hcd * hcd)2533 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
2534 {
2535 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2536 	int retval = dwc2_hcd_intr(hsotg);
2537 
2538 	return IRQ_RETVAL(retval);
2539 }
2540 
2541 /*
2542  * Creates Status Change bitmap for the root hub and root port. The bitmap is
2543  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
2544  * is the status change indicator for the single root port. Returns 1 if either
2545  * change indicator is 1, otherwise returns 0.
2546  */
_dwc2_hcd_hub_status_data(struct usb_hcd * hcd,char * buf)2547 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
2548 {
2549 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2550 
2551 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
2552 	return buf[0] != 0;
2553 }
2554 
2555 /* Handles hub class-specific requests */
_dwc2_hcd_hub_control(struct usb_hcd * hcd,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)2556 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
2557 				 u16 windex, char *buf, u16 wlength)
2558 {
2559 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
2560 					  wvalue, windex, buf, wlength);
2561 	return retval;
2562 }
2563 
2564 /* Handles hub TT buffer clear completions */
_dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2565 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
2566 					       struct usb_host_endpoint *ep)
2567 {
2568 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2569 	struct dwc2_qh *qh;
2570 	unsigned long flags;
2571 
2572 	qh = ep->hcpriv;
2573 	if (!qh)
2574 		return;
2575 
2576 	spin_lock_irqsave(&hsotg->lock, flags);
2577 	qh->tt_buffer_dirty = 0;
2578 
2579 	if (hsotg->flags.b.port_connect_status)
2580 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
2581 
2582 	spin_unlock_irqrestore(&hsotg->lock, flags);
2583 }
2584 
2585 static struct hc_driver dwc2_hc_driver = {
2586 	.description = "dwc2_hsotg",
2587 	.product_desc = "DWC OTG Controller",
2588 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
2589 
2590 	.irq = _dwc2_hcd_irq,
2591 	.flags = HCD_MEMORY | HCD_USB2,
2592 
2593 	.start = _dwc2_hcd_start,
2594 	.stop = _dwc2_hcd_stop,
2595 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
2596 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
2597 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
2598 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
2599 	.get_frame_number = _dwc2_hcd_get_frame_number,
2600 
2601 	.hub_status_data = _dwc2_hcd_hub_status_data,
2602 	.hub_control = _dwc2_hcd_hub_control,
2603 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
2604 };
2605 
2606 /*
2607  * Frees secondary storage associated with the dwc2_hsotg structure contained
2608  * in the struct usb_hcd field
2609  */
dwc2_hcd_free(struct dwc2_hsotg * hsotg)2610 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
2611 {
2612 	u32 ahbcfg;
2613 	u32 dctl;
2614 	int i;
2615 
2616 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
2617 
2618 	/* Free memory for QH/QTD lists */
2619 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
2620 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
2621 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
2622 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
2623 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
2624 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
2625 
2626 	/* Free memory for the host channels */
2627 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
2628 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
2629 
2630 		if (chan != NULL) {
2631 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
2632 				i, chan);
2633 			hsotg->hc_ptr_array[i] = NULL;
2634 			kfree(chan);
2635 		}
2636 	}
2637 
2638 	if (hsotg->core_params->dma_enable > 0) {
2639 		if (hsotg->status_buf) {
2640 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
2641 					  hsotg->status_buf,
2642 					  hsotg->status_buf_dma);
2643 			hsotg->status_buf = NULL;
2644 		}
2645 	} else {
2646 		kfree(hsotg->status_buf);
2647 		hsotg->status_buf = NULL;
2648 	}
2649 
2650 	ahbcfg = readl(hsotg->regs + GAHBCFG);
2651 
2652 	/* Disable all interrupts */
2653 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
2654 	writel(ahbcfg, hsotg->regs + GAHBCFG);
2655 	writel(0, hsotg->regs + GINTMSK);
2656 
2657 	if (hsotg->snpsid >= DWC2_CORE_REV_3_00a) {
2658 		dctl = readl(hsotg->regs + DCTL);
2659 		dctl |= DCTL_SFTDISCON;
2660 		writel(dctl, hsotg->regs + DCTL);
2661 	}
2662 
2663 	if (hsotg->wq_otg) {
2664 		if (!cancel_work_sync(&hsotg->wf_otg))
2665 			flush_workqueue(hsotg->wq_otg);
2666 		destroy_workqueue(hsotg->wq_otg);
2667 	}
2668 
2669 	kfree(hsotg->core_params);
2670 	hsotg->core_params = NULL;
2671 	del_timer(&hsotg->wkp_timer);
2672 }
2673 
dwc2_hcd_release(struct dwc2_hsotg * hsotg)2674 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
2675 {
2676 	/* Turn off all host-specific interrupts */
2677 	dwc2_disable_host_interrupts(hsotg);
2678 
2679 	dwc2_hcd_free(hsotg);
2680 }
2681 
2682 /*
2683  * Sets all parameters to the given value.
2684  *
2685  * Assumes that the dwc2_core_params struct contains only integers.
2686  */
dwc2_set_all_params(struct dwc2_core_params * params,int value)2687 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
2688 {
2689 	int *p = (int *)params;
2690 	size_t size = sizeof(*params) / sizeof(*p);
2691 	int i;
2692 
2693 	for (i = 0; i < size; i++)
2694 		p[i] = -1;
2695 }
2696 EXPORT_SYMBOL_GPL(dwc2_set_all_params);
2697 
2698 /*
2699  * Initializes the HCD. This function allocates memory for and initializes the
2700  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
2701  * USB bus with the core and calls the hc_driver->start() function. It returns
2702  * a negative error on failure.
2703  */
dwc2_hcd_init(struct dwc2_hsotg * hsotg,int irq,struct dwc2_core_params * params)2704 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
2705 		  struct dwc2_core_params *params)
2706 {
2707 	struct usb_hcd *hcd;
2708 	struct dwc2_host_chan *channel;
2709 	u32 snpsid, gusbcfg, hcfg;
2710 	int i, num_channels;
2711 	int retval = -ENOMEM;
2712 
2713 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
2714 
2715 	/*
2716 	 * Attempt to ensure this device is really a DWC_otg Controller.
2717 	 * Read and verify the GSNPSID register contents. The value should be
2718 	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
2719 	 * as in "OTG version 2.xx" or "OTG version 3.xx".
2720 	 */
2721 	snpsid = readl(hsotg->regs + GSNPSID);
2722 	if ((snpsid & 0xfffff000) != 0x4f542000 &&
2723 	    (snpsid & 0xfffff000) != 0x4f543000) {
2724 		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n", snpsid);
2725 		retval = -ENODEV;
2726 		goto error1;
2727 	}
2728 
2729 	/*
2730 	 * Store the contents of the hardware configuration registers here for
2731 	 * easy access later
2732 	 */
2733 	hsotg->hwcfg1 = readl(hsotg->regs + GHWCFG1);
2734 	hsotg->hwcfg2 = readl(hsotg->regs + GHWCFG2);
2735 	hsotg->hwcfg3 = readl(hsotg->regs + GHWCFG3);
2736 	hsotg->hwcfg4 = readl(hsotg->regs + GHWCFG4);
2737 
2738 	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hsotg->hwcfg1);
2739 	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hsotg->hwcfg2);
2740 	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hsotg->hwcfg3);
2741 	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hsotg->hwcfg4);
2742 
2743 	/* Force host mode to get HPTXFSIZ exact power on value */
2744 	gusbcfg = readl(hsotg->regs + GUSBCFG);
2745 	gusbcfg |= GUSBCFG_FORCEHOSTMODE;
2746 	writel(gusbcfg, hsotg->regs + GUSBCFG);
2747 	usleep_range(100000, 150000);
2748 
2749 	hsotg->hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
2750 	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hsotg->hptxfsiz);
2751 	gusbcfg = readl(hsotg->regs + GUSBCFG);
2752 	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
2753 	writel(gusbcfg, hsotg->regs + GUSBCFG);
2754 	usleep_range(100000, 150000);
2755 
2756 	hcfg = readl(hsotg->regs + HCFG);
2757 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
2758 	dev_dbg(hsotg->dev, "op_mode=%0x\n",
2759 		hsotg->hwcfg2 >> GHWCFG2_OP_MODE_SHIFT &
2760 		GHWCFG2_OP_MODE_MASK >> GHWCFG2_OP_MODE_SHIFT);
2761 	dev_dbg(hsotg->dev, "arch=%0x\n",
2762 		hsotg->hwcfg2 >> GHWCFG2_ARCHITECTURE_SHIFT &
2763 		GHWCFG2_ARCHITECTURE_MASK >> GHWCFG2_ARCHITECTURE_SHIFT);
2764 	dev_dbg(hsotg->dev, "num_dev_ep=%d\n",
2765 		hsotg->hwcfg2 >> GHWCFG2_NUM_DEV_EP_SHIFT &
2766 		GHWCFG2_NUM_DEV_EP_MASK >> GHWCFG2_NUM_DEV_EP_SHIFT);
2767 	dev_dbg(hsotg->dev, "max_host_chan=%d\n",
2768 		hsotg->hwcfg2 >> GHWCFG2_NUM_HOST_CHAN_SHIFT &
2769 		GHWCFG2_NUM_HOST_CHAN_MASK >> GHWCFG2_NUM_HOST_CHAN_SHIFT);
2770 	dev_dbg(hsotg->dev, "nonperio_tx_q_depth=0x%0x\n",
2771 		hsotg->hwcfg2 >> GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT &
2772 		GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK >>
2773 				GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT);
2774 	dev_dbg(hsotg->dev, "host_perio_tx_q_depth=0x%0x\n",
2775 		hsotg->hwcfg2 >> GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT &
2776 		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK >>
2777 				GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT);
2778 	dev_dbg(hsotg->dev, "dev_token_q_depth=0x%0x\n",
2779 		hsotg->hwcfg2 >> GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT &
2780 		GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK >>
2781 				GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT);
2782 
2783 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2784 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
2785 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2786 	if (!hsotg->frame_num_array)
2787 		goto error1;
2788 	hsotg->last_frame_num_array = kzalloc(
2789 			sizeof(*hsotg->last_frame_num_array) *
2790 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2791 	if (!hsotg->last_frame_num_array)
2792 		goto error1;
2793 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
2794 #endif
2795 
2796 	hsotg->core_params = kzalloc(sizeof(*hsotg->core_params), GFP_KERNEL);
2797 	if (!hsotg->core_params)
2798 		goto error1;
2799 
2800 	dwc2_set_all_params(hsotg->core_params, -1);
2801 
2802 	/* Validate parameter values */
2803 	dwc2_set_parameters(hsotg, params);
2804 
2805 	/* Set device flags indicating whether the HCD supports DMA */
2806 	if (hsotg->core_params->dma_enable > 0) {
2807 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
2808 			dev_warn(hsotg->dev, "can't set DMA mask\n");
2809 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(31)) < 0)
2810 			dev_warn(hsotg->dev,
2811 				 "can't enable workaround for >2GB RAM\n");
2812 	} else {
2813 		dma_set_mask(hsotg->dev, 0);
2814 		dma_set_coherent_mask(hsotg->dev, 0);
2815 	}
2816 
2817 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
2818 	if (!hcd)
2819 		goto error1;
2820 
2821 	hcd->has_tt = 1;
2822 
2823 	spin_lock_init(&hsotg->lock);
2824 	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
2825 	hsotg->priv = hcd;
2826 
2827 	/*
2828 	 * Disable the global interrupt until all the interrupt handlers are
2829 	 * installed
2830 	 */
2831 	dwc2_disable_global_interrupts(hsotg);
2832 
2833 	/* Initialize the DWC_otg core, and select the Phy type */
2834 	retval = dwc2_core_init(hsotg, true, irq);
2835 	if (retval)
2836 		goto error2;
2837 
2838 	/* Create new workqueue and init work */
2839 	retval = -ENOMEM;
2840 	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
2841 	if (!hsotg->wq_otg) {
2842 		dev_err(hsotg->dev, "Failed to create workqueue\n");
2843 		goto error2;
2844 	}
2845 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
2846 
2847 	hsotg->snpsid = readl(hsotg->regs + GSNPSID);
2848 	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x\n",
2849 		hsotg->snpsid >> 12 & 0xf, hsotg->snpsid >> 8 & 0xf,
2850 		hsotg->snpsid >> 4 & 0xf, hsotg->snpsid & 0xf);
2851 
2852 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
2853 		    (unsigned long)hsotg);
2854 
2855 	/* Initialize the non-periodic schedule */
2856 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
2857 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
2858 
2859 	/* Initialize the periodic schedule */
2860 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
2861 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
2862 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
2863 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
2864 
2865 	/*
2866 	 * Create a host channel descriptor for each host channel implemented
2867 	 * in the controller. Initialize the channel descriptor array.
2868 	 */
2869 	INIT_LIST_HEAD(&hsotg->free_hc_list);
2870 	num_channels = hsotg->core_params->host_channels;
2871 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
2872 
2873 	for (i = 0; i < num_channels; i++) {
2874 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
2875 		if (channel == NULL)
2876 			goto error3;
2877 		channel->hc_num = i;
2878 		hsotg->hc_ptr_array[i] = channel;
2879 	}
2880 
2881 	/* Initialize hsotg start work */
2882 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
2883 
2884 	/* Initialize port reset work */
2885 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
2886 
2887 	/*
2888 	 * Allocate space for storing data on status transactions. Normally no
2889 	 * data is sent, but this space acts as a bit bucket. This must be
2890 	 * done after usb_add_hcd since that function allocates the DMA buffer
2891 	 * pool.
2892 	 */
2893 	if (hsotg->core_params->dma_enable > 0)
2894 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
2895 					DWC2_HCD_STATUS_BUF_SIZE,
2896 					&hsotg->status_buf_dma, GFP_KERNEL);
2897 	else
2898 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
2899 					  GFP_KERNEL);
2900 
2901 	if (!hsotg->status_buf)
2902 		goto error3;
2903 
2904 	hsotg->otg_port = 1;
2905 	hsotg->frame_list = NULL;
2906 	hsotg->frame_list_dma = 0;
2907 	hsotg->periodic_qh_count = 0;
2908 
2909 	/* Initiate lx_state to L3 disconnected state */
2910 	hsotg->lx_state = DWC2_L3;
2911 
2912 	hcd->self.otg_port = hsotg->otg_port;
2913 
2914 	/* Don't support SG list at this point */
2915 	hcd->self.sg_tablesize = 0;
2916 
2917 	/*
2918 	 * Finish generic HCD initialization and start the HCD. This function
2919 	 * allocates the DMA buffer pool, registers the USB bus, requests the
2920 	 * IRQ line, and calls hcd_start method.
2921 	 */
2922 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED | IRQF_DISABLED);
2923 	if (retval < 0)
2924 		goto error3;
2925 
2926 	dwc2_dump_global_registers(hsotg);
2927 	dwc2_dump_host_registers(hsotg);
2928 	dwc2_hcd_dump_state(hsotg);
2929 
2930 	dwc2_enable_global_interrupts(hsotg);
2931 
2932 	return 0;
2933 
2934 error3:
2935 	dwc2_hcd_release(hsotg);
2936 error2:
2937 	usb_put_hcd(hcd);
2938 error1:
2939 	kfree(hsotg->core_params);
2940 
2941 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2942 	kfree(hsotg->last_frame_num_array);
2943 	kfree(hsotg->frame_num_array);
2944 #endif
2945 
2946 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
2947 	return retval;
2948 }
2949 EXPORT_SYMBOL_GPL(dwc2_hcd_init);
2950 
2951 /*
2952  * Removes the HCD.
2953  * Frees memory and resources associated with the HCD and deregisters the bus.
2954  */
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)2955 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
2956 {
2957 	struct usb_hcd *hcd;
2958 
2959 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
2960 
2961 	hcd = dwc2_hsotg_to_hcd(hsotg);
2962 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
2963 
2964 	if (!hcd) {
2965 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
2966 			__func__);
2967 		return;
2968 	}
2969 
2970 	usb_remove_hcd(hcd);
2971 	hsotg->priv = NULL;
2972 	dwc2_hcd_release(hsotg);
2973 	usb_put_hcd(hcd);
2974 
2975 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2976 	kfree(hsotg->last_frame_num_array);
2977 	kfree(hsotg->frame_num_array);
2978 #endif
2979 }
2980 EXPORT_SYMBOL_GPL(dwc2_hcd_remove);
2981