• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79  *                      DWORD aligned
80  * @xfer_len:           Total number of bytes to transfer
81  * @xfer_count:         Number of bytes transferred so far
82  * @start_pkt_count:    Packet count at start of transfer
83  * @xfer_started:       True if the transfer has been started
84  * @ping:               True if a PING request should be issued on this channel
85  * @error_state:        True if the error count for this transaction is non-zero
86  * @halt_on_queue:      True if this channel should be halted the next time a
87  *                      request is queued for the channel. This is necessary in
88  *                      slave mode if no request queue space is available when
89  *                      an attempt is made to halt the channel.
90  * @halt_pending:       True if the host channel has been halted, but the core
91  *                      is not finished flushing queued requests
92  * @do_split:           Enable split for the channel
93  * @complete_split:     Enable complete split
94  * @hub_addr:           Address of high speed hub for the split
95  * @hub_port:           Port of the low/full speed device for the split
96  * @xact_pos:           Split transaction position. One of the following values:
97  *                       - DWC2_HCSPLT_XACTPOS_MID
98  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99  *                       - DWC2_HCSPLT_XACTPOS_END
100  *                       - DWC2_HCSPLT_XACTPOS_ALL
101  * @requests:           Number of requests issued for this channel since it was
102  *                      assigned to the current transfer (not counting PINGs)
103  * @schinfo:            Scheduling micro-frame bitmap
104  * @ntd:                Number of transfer descriptors for the transfer
105  * @halt_status:        Reason for halting the host channel
106  * @hcint               Contents of the HCINT register when the interrupt came
107  * @qh:                 QH for the transfer being processed by this channel
108  * @hc_list_entry:      For linking to list of host channels
109  * @desc_list_addr:     Current QH's descriptor list DMA address
110  *
111  * This structure represents the state of a single host channel when acting in
112  * host mode. It contains the data items needed to transfer packets to an
113  * endpoint via a host channel.
114  */
115 struct dwc2_host_chan {
116 	u8 hc_num;
117 
118 	unsigned dev_addr:7;
119 	unsigned ep_num:4;
120 	unsigned ep_is_in:1;
121 	unsigned speed:4;
122 	unsigned ep_type:2;
123 	unsigned max_packet:11;
124 	unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0	(TSIZ_SC_MC_PID_DATA0 >> TSIZ_SC_MC_PID_SHIFT)
126 #define DWC2_HC_PID_DATA2	(TSIZ_SC_MC_PID_DATA2 >> TSIZ_SC_MC_PID_SHIFT)
127 #define DWC2_HC_PID_DATA1	(TSIZ_SC_MC_PID_DATA1 >> TSIZ_SC_MC_PID_SHIFT)
128 #define DWC2_HC_PID_MDATA	(TSIZ_SC_MC_PID_MDATA >> TSIZ_SC_MC_PID_SHIFT)
129 #define DWC2_HC_PID_SETUP	(TSIZ_SC_MC_PID_SETUP >> TSIZ_SC_MC_PID_SHIFT)
130 
131 	unsigned multi_count:2;
132 
133 	u8 *xfer_buf;
134 	dma_addr_t xfer_dma;
135 	dma_addr_t align_buf;
136 	u32 xfer_len;
137 	u32 xfer_count;
138 	u16 start_pkt_count;
139 	u8 xfer_started;
140 	u8 do_ping;
141 	u8 error_state;
142 	u8 halt_on_queue;
143 	u8 halt_pending;
144 	u8 do_split;
145 	u8 complete_split;
146 	u8 hub_addr;
147 	u8 hub_port;
148 	u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID	(HCSPLT_XACTPOS_MID >> HCSPLT_XACTPOS_SHIFT)
150 #define DWC2_HCSPLT_XACTPOS_END	(HCSPLT_XACTPOS_END >> HCSPLT_XACTPOS_SHIFT)
151 #define DWC2_HCSPLT_XACTPOS_BEGIN (HCSPLT_XACTPOS_BEGIN >> HCSPLT_XACTPOS_SHIFT)
152 #define DWC2_HCSPLT_XACTPOS_ALL	(HCSPLT_XACTPOS_ALL >> HCSPLT_XACTPOS_SHIFT)
153 
154 	u8 requests;
155 	u8 schinfo;
156 	u16 ntd;
157 	enum dwc2_halt_status halt_status;
158 	u32 hcint;
159 	struct dwc2_qh *qh;
160 	struct list_head hc_list_entry;
161 	dma_addr_t desc_list_addr;
162 };
163 
164 struct dwc2_hcd_pipe_info {
165 	u8 dev_addr;
166 	u8 ep_num;
167 	u8 pipe_type;
168 	u8 pipe_dir;
169 	u16 mps;
170 };
171 
172 struct dwc2_hcd_iso_packet_desc {
173 	u32 offset;
174 	u32 length;
175 	u32 actual_length;
176 	u32 status;
177 };
178 
179 struct dwc2_qtd;
180 
181 struct dwc2_hcd_urb {
182 	void *priv;
183 	struct dwc2_qtd *qtd;
184 	void *buf;
185 	dma_addr_t dma;
186 	void *setup_packet;
187 	dma_addr_t setup_dma;
188 	u32 length;
189 	u32 actual_length;
190 	u32 status;
191 	u32 error_count;
192 	u32 packet_count;
193 	u32 flags;
194 	u16 interval;
195 	struct dwc2_hcd_pipe_info pipe_info;
196 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
197 };
198 
199 /* Phases for control transfers */
200 enum dwc2_control_phase {
201 	DWC2_CONTROL_SETUP,
202 	DWC2_CONTROL_DATA,
203 	DWC2_CONTROL_STATUS,
204 };
205 
206 /* Transaction types */
207 enum dwc2_transaction_type {
208 	DWC2_TRANSACTION_NONE,
209 	DWC2_TRANSACTION_PERIODIC,
210 	DWC2_TRANSACTION_NON_PERIODIC,
211 	DWC2_TRANSACTION_ALL,
212 };
213 
214 /**
215  * struct dwc2_qh - Software queue head structure
216  *
217  * @ep_type:            Endpoint type. One of the following values:
218  *                       - USB_ENDPOINT_XFER_CONTROL
219  *                       - USB_ENDPOINT_XFER_BULK
220  *                       - USB_ENDPOINT_XFER_INT
221  *                       - USB_ENDPOINT_XFER_ISOC
222  * @ep_is_in:           Endpoint direction
223  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
224  * @dev_speed:          Device speed. One of the following values:
225  *                       - USB_SPEED_LOW
226  *                       - USB_SPEED_FULL
227  *                       - USB_SPEED_HIGH
228  * @data_toggle:        Determines the PID of the next data packet for
229  *                      non-controltransfers. Ignored for control transfers.
230  *                      One of the following values:
231  *                       - DWC2_HC_PID_DATA0
232  *                       - DWC2_HC_PID_DATA1
233  * @ping_state:         Ping state
234  * @do_split:           Full/low speed endpoint on high-speed hub requires split
235  * @qtd_list:           List of QTDs for this QH
236  * @channel:            Host channel currently processing transfers for this QH
237  * @usecs:              Bandwidth in microseconds per (micro)frame
238  * @interval:           Interval between transfers in (micro)frames
239  * @sched_frame:        (micro)frame to initialize a periodic transfer.
240  *                      The transfer executes in the following (micro)frame.
241  * @start_split_frame:  (Micro)frame at which last start split was initialized
242  * @dw_align_buf:       Used instead of original buffer if its physical address
243  *                      is not dword-aligned
244  * @dw_align_buf_dma:   DMA address for align_buf
245  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
246  *                      schedule
247  * @desc_list:          List of transfer descriptors
248  * @desc_list_dma:      Physical address of desc_list
249  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
250  *                      descriptor and indicates original XferSize value for the
251  *                      descriptor
252  * @ntd:                Actual number of transfer descriptors in a list
253  * @td_first:           Index of first activated isochronous transfer descriptor
254  * @td_last:            Index of last activated isochronous transfer descriptor
255  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
256  *
257  * A Queue Head (QH) holds the static characteristics of an endpoint and
258  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
259  * be entered in either the non-periodic or periodic schedule.
260  */
261 struct dwc2_qh {
262 	u8 ep_type;
263 	u8 ep_is_in;
264 	u16 maxp;
265 	u8 dev_speed;
266 	u8 data_toggle;
267 	u8 ping_state;
268 	u8 do_split;
269 	struct list_head qtd_list;
270 	struct dwc2_host_chan *channel;
271 	u16 usecs;
272 	u16 interval;
273 	u16 sched_frame;
274 	u16 start_split_frame;
275 	u8 *dw_align_buf;
276 	dma_addr_t dw_align_buf_dma;
277 	struct list_head qh_list_entry;
278 	struct dwc2_hcd_dma_desc *desc_list;
279 	dma_addr_t desc_list_dma;
280 	u32 *n_bytes;
281 	u16 ntd;
282 	u8 td_first;
283 	u8 td_last;
284 	unsigned tt_buffer_dirty:1;
285 };
286 
287 /**
288  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
289  *
290  * @control_phase:      Current phase for control transfers (Setup, Data, or
291  *                      Status)
292  * @in_process:         Indicates if this QTD is currently processed by HW
293  * @data_toggle:        Determines the PID of the next data packet for the
294  *                      data phase of control transfers. Ignored for other
295  *                      transfer types. One of the following values:
296  *                       - DWC2_HC_PID_DATA0
297  *                       - DWC2_HC_PID_DATA1
298  * @complete_split:     Keeps track of the current split type for FS/LS
299  *                      endpoints on a HS Hub
300  * @isoc_split_pos:     Position of the ISOC split in full/low speed
301  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
302  *                      transfer. A frame descriptor describes the buffer
303  *                      position and length of the data to be transferred in the
304  *                      next scheduled (micro)frame of an isochronous transfer.
305  *                      It also holds status for that transaction. The frame
306  *                      index starts at 0.
307  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
308  *                      current frame
309  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
310  * @error_count:        Holds the number of bus errors that have occurred for
311  *                      a transaction within this transfer
312  * @n_desc:             Number of DMA descriptors for this QTD
313  * @isoc_frame_index_last: Last activated frame (packet) index, used in
314  *                      descriptor DMA mode only
315  * @urb:                URB for this transfer
316  * @qh:                 Queue head for this QTD
317  * @qtd_list_entry:     For linking to the QH's list of QTDs
318  *
319  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
320  * interrupt, or isochronous transfer. A single QTD is created for each URB
321  * (of one of these types) submitted to the HCD. The transfer associated with
322  * a QTD may require one or multiple transactions.
323  *
324  * A QTD is linked to a Queue Head, which is entered in either the
325  * non-periodic or periodic schedule for execution. When a QTD is chosen for
326  * execution, some or all of its transactions may be executed. After
327  * execution, the state of the QTD is updated. The QTD may be retired if all
328  * its transactions are complete or if an error occurred. Otherwise, it
329  * remains in the schedule so more transactions can be executed later.
330  */
331 struct dwc2_qtd {
332 	enum dwc2_control_phase control_phase;
333 	u8 in_process;
334 	u8 data_toggle;
335 	u8 complete_split;
336 	u8 isoc_split_pos;
337 	u16 isoc_frame_index;
338 	u16 isoc_split_offset;
339 	u32 ssplit_out_xfer_count;
340 	u8 error_count;
341 	u8 n_desc;
342 	u16 isoc_frame_index_last;
343 	struct dwc2_hcd_urb *urb;
344 	struct dwc2_qh *qh;
345 	struct list_head qtd_list_entry;
346 };
347 
348 #ifdef DEBUG
349 struct hc_xfer_info {
350 	struct dwc2_hsotg *hsotg;
351 	struct dwc2_host_chan *chan;
352 };
353 #endif
354 
355 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
dwc2_hsotg_to_hcd(struct dwc2_hsotg * hsotg)356 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
357 {
358 	return (struct usb_hcd *)hsotg->priv;
359 }
360 
361 /*
362  * Inline used to disable one channel interrupt. Channel interrupts are
363  * disabled when the channel is halted or released by the interrupt handler.
364  * There is no need to handle further interrupts of that type until the
365  * channel is re-assigned. In fact, subsequent handling may cause crashes
366  * because the channel structures are cleaned up when the channel is released.
367  */
disable_hc_int(struct dwc2_hsotg * hsotg,int chnum,u32 intr)368 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
369 {
370 	u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
371 
372 	mask &= ~intr;
373 	writel(mask, hsotg->regs + HCINTMSK(chnum));
374 }
375 
376 /*
377  * Returns the mode of operation, host or device
378  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)379 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
380 {
381 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
382 }
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)383 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
384 {
385 	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
386 }
387 
388 /*
389  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
390  * are read as 1, they won't clear when written back.
391  */
dwc2_read_hprt0(struct dwc2_hsotg * hsotg)392 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
393 {
394 	u32 hprt0 = readl(hsotg->regs + HPRT0);
395 
396 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
397 	return hprt0;
398 }
399 
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info * pipe)400 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
401 {
402 	return pipe->ep_num;
403 }
404 
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info * pipe)405 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
406 {
407 	return pipe->pipe_type;
408 }
409 
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info * pipe)410 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
411 {
412 	return pipe->mps;
413 }
414 
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info * pipe)415 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
416 {
417 	return pipe->dev_addr;
418 }
419 
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info * pipe)420 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
421 {
422 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
423 }
424 
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info * pipe)425 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
426 {
427 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
428 }
429 
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info * pipe)430 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
431 {
432 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
433 }
434 
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info * pipe)435 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
436 {
437 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
438 }
439 
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info * pipe)440 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
441 {
442 	return pipe->pipe_dir == USB_DIR_IN;
443 }
444 
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info * pipe)445 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
446 {
447 	return !dwc2_hcd_is_pipe_in(pipe);
448 }
449 
450 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
451 			 struct dwc2_core_params *params);
452 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
453 extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
454 			       struct dwc2_core_params *params);
455 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
456 
457 /* Transaction Execution Functions */
458 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
459 						struct dwc2_hsotg *hsotg);
460 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
461 					enum dwc2_transaction_type tr_type);
462 
463 /* Schedule Queue Functions */
464 /* Implemented in hcd_queue.c */
465 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
466 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
467 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
468 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
469 				   int sched_csplit);
470 
471 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
472 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
473 			    struct dwc2_qh **qh, gfp_t mem_flags);
474 
475 /* Unlinks and frees a QTD */
dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)476 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
477 						struct dwc2_qtd *qtd,
478 						struct dwc2_qh *qh)
479 {
480 	list_del(&qtd->qtd_list_entry);
481 	kfree(qtd);
482 }
483 
484 /* Descriptor DMA support functions */
485 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
486 				     struct dwc2_qh *qh);
487 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
488 					struct dwc2_host_chan *chan, int chnum,
489 					enum dwc2_halt_status halt_status);
490 
491 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
492 				 gfp_t mem_flags);
493 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
494 
495 /* Check if QH is non-periodic */
496 #define dwc2_qh_is_non_per(_qh_ptr_) \
497 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
498 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
499 
500 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
dbg_hc(struct dwc2_host_chan * hc)501 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
dbg_qh(struct dwc2_qh * qh)502 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
dbg_urb(struct urb * urb)503 static inline bool dbg_urb(struct urb *urb) { return true; }
dbg_perio(void)504 static inline bool dbg_perio(void) { return true; }
505 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
dbg_hc(struct dwc2_host_chan * hc)506 static inline bool dbg_hc(struct dwc2_host_chan *hc)
507 {
508 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
509 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
510 }
511 
dbg_qh(struct dwc2_qh * qh)512 static inline bool dbg_qh(struct dwc2_qh *qh)
513 {
514 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
515 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
516 }
517 
dbg_urb(struct urb * urb)518 static inline bool dbg_urb(struct urb *urb)
519 {
520 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
521 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
522 }
523 
dbg_perio(void)524 static inline bool dbg_perio(void) { return false; }
525 #endif
526 
527 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
528 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
529 
530 /* Packet size for any kind of endpoint descriptor */
531 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
532 
533 /*
534  * Returns true if frame1 is less than or equal to frame2. The comparison is
535  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
536  * frame number when the max frame number is reached.
537  */
dwc2_frame_num_le(u16 frame1,u16 frame2)538 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
539 {
540 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
541 }
542 
543 /*
544  * Returns true if frame1 is greater than frame2. The comparison is done
545  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
546  * number when the max frame number is reached.
547  */
dwc2_frame_num_gt(u16 frame1,u16 frame2)548 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
549 {
550 	return (frame1 != frame2) &&
551 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
552 }
553 
554 /*
555  * Increments frame by the amount specified by inc. The addition is done
556  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
557  */
dwc2_frame_num_inc(u16 frame,u16 inc)558 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
559 {
560 	return (frame + inc) & HFNUM_MAX_FRNUM;
561 }
562 
dwc2_full_frame_num(u16 frame)563 static inline u16 dwc2_full_frame_num(u16 frame)
564 {
565 	return (frame & HFNUM_MAX_FRNUM) >> 3;
566 }
567 
dwc2_micro_frame_num(u16 frame)568 static inline u16 dwc2_micro_frame_num(u16 frame)
569 {
570 	return frame & 0x7;
571 }
572 
573 /*
574  * Returns the Core Interrupt Status register contents, ANDed with the Core
575  * Interrupt Mask register contents
576  */
dwc2_read_core_intr(struct dwc2_hsotg * hsotg)577 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
578 {
579 	return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
580 }
581 
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb * dwc2_urb)582 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
583 {
584 	return dwc2_urb->status;
585 }
586 
dwc2_hcd_urb_get_actual_length(struct dwc2_hcd_urb * dwc2_urb)587 static inline u32 dwc2_hcd_urb_get_actual_length(
588 		struct dwc2_hcd_urb *dwc2_urb)
589 {
590 	return dwc2_urb->actual_length;
591 }
592 
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb * dwc2_urb)593 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
594 {
595 	return dwc2_urb->error_count;
596 }
597 
dwc2_hcd_urb_set_iso_desc_params(struct dwc2_hcd_urb * dwc2_urb,int desc_num,u32 offset,u32 length)598 static inline void dwc2_hcd_urb_set_iso_desc_params(
599 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
600 		u32 length)
601 {
602 	dwc2_urb->iso_descs[desc_num].offset = offset;
603 	dwc2_urb->iso_descs[desc_num].length = length;
604 }
605 
dwc2_hcd_urb_get_iso_desc_status(struct dwc2_hcd_urb * dwc2_urb,int desc_num)606 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
607 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
608 {
609 	return dwc2_urb->iso_descs[desc_num].status;
610 }
611 
dwc2_hcd_urb_get_iso_desc_actual_length(struct dwc2_hcd_urb * dwc2_urb,int desc_num)612 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
613 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
614 {
615 	return dwc2_urb->iso_descs[desc_num].actual_length;
616 }
617 
dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)618 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
619 						  struct usb_host_endpoint *ep)
620 {
621 	struct dwc2_qh *qh = ep->hcpriv;
622 
623 	if (qh && !list_empty(&qh->qh_list_entry))
624 		return 1;
625 
626 	return 0;
627 }
628 
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)629 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
630 					    struct usb_host_endpoint *ep)
631 {
632 	struct dwc2_qh *qh = ep->hcpriv;
633 
634 	if (!qh) {
635 		WARN_ON(1);
636 		return 0;
637 	}
638 
639 	return qh->usecs;
640 }
641 
642 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
643 				      struct dwc2_host_chan *chan, int chnum,
644 				      struct dwc2_qtd *qtd);
645 
646 /* HCD Core API */
647 
648 /**
649  * dwc2_hcd_intr() - Called on every hardware interrupt
650  *
651  * @hsotg: The DWC2 HCD
652  *
653  * Returns non zero if interrupt is handled
654  * Return 0 if interrupt is not handled
655  */
656 extern int dwc2_hcd_intr(struct dwc2_hsotg *hsotg);
657 
658 /**
659  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
660  *
661  * @hsotg: The DWC2 HCD
662  */
663 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
664 
665 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
666 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
667 
668 /**
669  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
670  * and 0 otherwise
671  *
672  * @hsotg: The DWC2 HCD
673  */
674 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
675 
676 /**
677  * dwc2_hcd_get_frame_number() - Returns current frame number
678  *
679  * @hsotg: The DWC2 HCD
680  */
681 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
682 
683 /**
684  * dwc2_hcd_dump_state() - Dumps hsotg state
685  *
686  * @hsotg: The DWC2 HCD
687  *
688  * NOTE: This function will be removed once the peripheral controller code
689  * is integrated and the driver is stable
690  */
691 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
692 
693 /**
694  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
695  *
696  * @hsotg: The DWC2 HCD
697  *
698  * This can be used to determine average interrupt latency. Frame remaining is
699  * also shown for start transfer and two additional sample points.
700  *
701  * NOTE: This function will be removed once the peripheral controller code
702  * is integrated and the driver is stable
703  */
704 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
705 
706 /* URB interface */
707 
708 /* Transfer flags */
709 #define URB_GIVEBACK_ASAP	0x1
710 #define URB_SEND_ZERO_PACKET	0x2
711 
712 /* Host driver callbacks */
713 
714 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
715 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
716 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
717 			       int *hub_addr, int *hub_port);
718 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
719 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, void *context,
720 			       struct dwc2_hcd_urb *dwc2_urb, int status);
721 
722 #ifdef DEBUG
723 /*
724  * Macro to sample the remaining PHY clocks left in the current frame. This
725  * may be used during debugging to determine the average time it takes to
726  * execute sections of code. There are two possible sample points, "a" and
727  * "b", so the _letter_ argument must be one of these values.
728  *
729  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
730  * example, "cat /sys/devices/lm0/hcd_frrem".
731  */
732 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
733 do {									\
734 	struct hfnum_data _hfnum_;					\
735 	struct dwc2_qtd *_qtd_;						\
736 									\
737 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
738 			   qtd_list_entry);				\
739 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
740 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
741 		_hfnum_.d32 = readl((_hcd_)->regs + HFNUM);		\
742 		switch (_hfnum_.b.frnum & 0x7) {			\
743 		case 7:							\
744 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
745 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
746 				_hfnum_.b.frrem;			\
747 			break;						\
748 		case 0:							\
749 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
750 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
751 				_hfnum_.b.frrem;			\
752 			break;						\
753 		default:						\
754 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
755 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
756 				_hfnum_.b.frrem;			\
757 			break;						\
758 		}							\
759 	}								\
760 } while (0)
761 #else
762 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
763 #endif
764 
765 #endif /* __DWC2_HCD_H__ */
766