• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *	- make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/module.h>
40 
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60 
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63 
64 #define LCD_MINOR		156
65 #define KEYPAD_MINOR		185
66 
67 #define PANEL_VERSION		"0.9.5"
68 
69 #define LCD_MAXBYTES		256	/* max burst write */
70 
71 #define KEYPAD_BUFFER		64
72 
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME		(HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START	(10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY	(2)
79 
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO	(200)
82 
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
85 
86 #define PNL_PBUSY		0x80	/* inverted input, active low */
87 #define PNL_PACK		0x40	/* direct input, active low */
88 #define PNL_POUTPA		0x20	/* direct input, active high */
89 #define PNL_PSELECD		0x10	/* direct input, active high */
90 #define PNL_PERRORP		0x08	/* direct input, active low */
91 
92 #define PNL_PBIDIR		0x20	/* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN		0x10
95 #define PNL_PSELECP		0x08	/* inverted output, active low */
96 #define PNL_PINITP		0x04	/* direct output, active low */
97 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
98 #define PNL_PSTROBE		0x01	/* inverted output */
99 
100 #define PNL_PD0			0x01
101 #define PNL_PD1			0x02
102 #define PNL_PD2			0x04
103 #define PNL_PD3			0x08
104 #define PNL_PD4			0x10
105 #define PNL_PD5			0x20
106 #define PNL_PD6			0x40
107 #define PNL_PD7			0x80
108 
109 #define PIN_NONE		0
110 #define PIN_STROBE		1
111 #define PIN_D0			2
112 #define PIN_D1			3
113 #define PIN_D2			4
114 #define PIN_D3			5
115 #define PIN_D4			6
116 #define PIN_D5			7
117 #define PIN_D6			8
118 #define PIN_D7			9
119 #define PIN_AUTOLF		14
120 #define PIN_INITP		16
121 #define PIN_SELECP		17
122 #define PIN_NOT_SET		127
123 
124 #define LCD_FLAG_S		0x0001
125 #define LCD_FLAG_ID		0x0002
126 #define LCD_FLAG_B		0x0004	/* blink on */
127 #define LCD_FLAG_C		0x0008	/* cursor on */
128 #define LCD_FLAG_D		0x0010	/* display on */
129 #define LCD_FLAG_F		0x0020	/* large font mode */
130 #define LCD_FLAG_N		0x0040	/* 2-rows mode */
131 #define LCD_FLAG_L		0x0080	/* backlight enabled */
132 
133 #define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
135 
136 /* macros to simplify use of the parallel port */
137 #define r_ctr(x)        (parport_read_control((x)->port))
138 #define r_dtr(x)        (parport_read_data((x)->port))
139 #define r_str(x)        (parport_read_status((x)->port))
140 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
141 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
142 
143 /* this defines which bits are to be used and which ones to be ignored */
144 /* logical or of the output bits involved in the scan matrix */
145 static __u8 scan_mask_o;
146 /* logical or of the input bits involved in the scan matrix */
147 static __u8 scan_mask_i;
148 
149 typedef __u64 pmask_t;
150 
151 enum input_type {
152 	INPUT_TYPE_STD,
153 	INPUT_TYPE_KBD,
154 };
155 
156 enum input_state {
157 	INPUT_ST_LOW,
158 	INPUT_ST_RISING,
159 	INPUT_ST_HIGH,
160 	INPUT_ST_FALLING,
161 };
162 
163 struct logical_input {
164 	struct list_head list;
165 	pmask_t mask;
166 	pmask_t value;
167 	enum input_type type;
168 	enum input_state state;
169 	__u8 rise_time, fall_time;
170 	__u8 rise_timer, fall_timer, high_timer;
171 
172 	union {
173 		struct {	/* valid when type == INPUT_TYPE_STD */
174 			void (*press_fct) (int);
175 			void (*release_fct) (int);
176 			int press_data;
177 			int release_data;
178 		} std;
179 		struct {	/* valid when type == INPUT_TYPE_KBD */
180 			/* strings can be non null-terminated */
181 			char press_str[sizeof(void *) + sizeof(int)];
182 			char repeat_str[sizeof(void *) + sizeof(int)];
183 			char release_str[sizeof(void *) + sizeof(int)];
184 		} kbd;
185 	} u;
186 };
187 
188 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
189 
190 /* physical contacts history
191  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
192  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
193  * corresponds to the ground.
194  * Within each group, bits are stored in the same order as read on the port :
195  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
196  * So, each __u64 (or pmask_t) is represented like this :
197  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
198  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199  */
200 
201 /* what has just been read from the I/O ports */
202 static pmask_t phys_read;
203 /* previous phys_read */
204 static pmask_t phys_read_prev;
205 /* stabilized phys_read (phys_read|phys_read_prev) */
206 static pmask_t phys_curr;
207 /* previous phys_curr */
208 static pmask_t phys_prev;
209 /* 0 means that at least one logical signal needs be computed */
210 static char inputs_stable;
211 
212 /* these variables are specific to the keypad */
213 static char keypad_buffer[KEYPAD_BUFFER];
214 static int keypad_buflen;
215 static int keypad_start;
216 static char keypressed;
217 static wait_queue_head_t keypad_read_wait;
218 
219 /* lcd-specific variables */
220 
221 /* contains the LCD config state */
222 static unsigned long int lcd_flags;
223 /* contains the LCD X offset */
224 static unsigned long int lcd_addr_x;
225 /* contains the LCD Y offset */
226 static unsigned long int lcd_addr_y;
227 /* current escape sequence, 0 terminated */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1];
229 /* not in escape state. >=0 = escape cmd len */
230 static int lcd_escape_len = -1;
231 
232 /*
233  * Bit masks to convert LCD signals to parallel port outputs.
234  * _d_ are values for data port, _c_ are for control port.
235  * [0] = signal OFF, [1] = signal ON, [2] = mask
236  */
237 #define BIT_CLR		0
238 #define BIT_SET		1
239 #define BIT_MSK		2
240 #define BIT_STATES	3
241 /*
242  * one entry for each bit on the LCD
243  */
244 #define LCD_BIT_E	0
245 #define LCD_BIT_RS	1
246 #define LCD_BIT_RW	2
247 #define LCD_BIT_BL	3
248 #define LCD_BIT_CL	4
249 #define LCD_BIT_DA	5
250 #define LCD_BITS	6
251 
252 /*
253  * each bit can be either connected to a DATA or CTRL port
254  */
255 #define LCD_PORT_C	0
256 #define LCD_PORT_D	1
257 #define LCD_PORTS	2
258 
259 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260 
261 /*
262  * LCD protocols
263  */
264 #define LCD_PROTO_PARALLEL      0
265 #define LCD_PROTO_SERIAL        1
266 #define LCD_PROTO_TI_DA8XX_LCD	2
267 
268 /*
269  * LCD character sets
270  */
271 #define LCD_CHARSET_NORMAL      0
272 #define LCD_CHARSET_KS0074      1
273 
274 /*
275  * LCD types
276  */
277 #define LCD_TYPE_NONE		0
278 #define LCD_TYPE_OLD		1
279 #define LCD_TYPE_KS0074		2
280 #define LCD_TYPE_HANTRONIX	3
281 #define LCD_TYPE_NEXCOM		4
282 #define LCD_TYPE_CUSTOM		5
283 
284 /*
285  * keypad types
286  */
287 #define KEYPAD_TYPE_NONE	0
288 #define KEYPAD_TYPE_OLD		1
289 #define KEYPAD_TYPE_NEW		2
290 #define KEYPAD_TYPE_NEXCOM	3
291 
292 /*
293  * panel profiles
294  */
295 #define PANEL_PROFILE_CUSTOM	0
296 #define PANEL_PROFILE_OLD	1
297 #define PANEL_PROFILE_NEW	2
298 #define PANEL_PROFILE_HANTRONIX	3
299 #define PANEL_PROFILE_NEXCOM	4
300 #define PANEL_PROFILE_LARGE	5
301 
302 /*
303  * Construct custom config from the kernel's configuration
304  */
305 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
306 #define DEFAULT_PARPORT         0
307 #define DEFAULT_LCD             LCD_TYPE_OLD
308 #define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
309 #define DEFAULT_LCD_WIDTH       40
310 #define DEFAULT_LCD_BWIDTH      40
311 #define DEFAULT_LCD_HWIDTH      64
312 #define DEFAULT_LCD_HEIGHT      2
313 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
314 
315 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
316 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
317 #define DEFAULT_LCD_PIN_RW      PIN_INITP
318 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
319 #define DEFAULT_LCD_PIN_SDA     PIN_D0
320 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
321 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
322 
323 #ifdef CONFIG_PANEL_PROFILE
324 #undef DEFAULT_PROFILE
325 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
326 #endif
327 
328 #ifdef CONFIG_PANEL_PARPORT
329 #undef DEFAULT_PARPORT
330 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
331 #endif
332 
333 #if DEFAULT_PROFILE == 0	/* custom */
334 #ifdef CONFIG_PANEL_KEYPAD
335 #undef DEFAULT_KEYPAD
336 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
337 #endif
338 
339 #ifdef CONFIG_PANEL_LCD
340 #undef DEFAULT_LCD
341 #define DEFAULT_LCD CONFIG_PANEL_LCD
342 #endif
343 
344 #ifdef CONFIG_PANEL_LCD_WIDTH
345 #undef DEFAULT_LCD_WIDTH
346 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
347 #endif
348 
349 #ifdef CONFIG_PANEL_LCD_BWIDTH
350 #undef DEFAULT_LCD_BWIDTH
351 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
352 #endif
353 
354 #ifdef CONFIG_PANEL_LCD_HWIDTH
355 #undef DEFAULT_LCD_HWIDTH
356 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
357 #endif
358 
359 #ifdef CONFIG_PANEL_LCD_HEIGHT
360 #undef DEFAULT_LCD_HEIGHT
361 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
362 #endif
363 
364 #ifdef CONFIG_PANEL_LCD_PROTO
365 #undef DEFAULT_LCD_PROTO
366 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
367 #endif
368 
369 #ifdef CONFIG_PANEL_LCD_PIN_E
370 #undef DEFAULT_LCD_PIN_E
371 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
372 #endif
373 
374 #ifdef CONFIG_PANEL_LCD_PIN_RS
375 #undef DEFAULT_LCD_PIN_RS
376 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
377 #endif
378 
379 #ifdef CONFIG_PANEL_LCD_PIN_RW
380 #undef DEFAULT_LCD_PIN_RW
381 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
382 #endif
383 
384 #ifdef CONFIG_PANEL_LCD_PIN_SCL
385 #undef DEFAULT_LCD_PIN_SCL
386 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
387 #endif
388 
389 #ifdef CONFIG_PANEL_LCD_PIN_SDA
390 #undef DEFAULT_LCD_PIN_SDA
391 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
392 #endif
393 
394 #ifdef CONFIG_PANEL_LCD_PIN_BL
395 #undef DEFAULT_LCD_PIN_BL
396 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
397 #endif
398 
399 #ifdef CONFIG_PANEL_LCD_CHARSET
400 #undef DEFAULT_LCD_CHARSET
401 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
402 #endif
403 
404 #endif /* DEFAULT_PROFILE == 0 */
405 
406 /* global variables */
407 static int keypad_open_cnt;	/* #times opened */
408 static int lcd_open_cnt;	/* #times opened */
409 static struct pardevice *pprt;
410 
411 static int lcd_initialized;
412 static int keypad_initialized;
413 
414 static int light_tempo;
415 
416 static char lcd_must_clear;
417 static char lcd_left_shift;
418 static char init_in_progress;
419 
420 static void (*lcd_write_cmd) (int);
421 static void (*lcd_write_data) (int);
422 static void (*lcd_clear_fast) (void);
423 
424 static DEFINE_SPINLOCK(pprt_lock);
425 static struct timer_list scan_timer;
426 
427 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428 
429 static int parport = -1;
430 module_param(parport, int, 0000);
431 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432 
433 static int lcd_height = -1;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436 
437 static int lcd_width = -1;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440 
441 static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444 
445 static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448 
449 static int lcd_enabled = -1;
450 module_param(lcd_enabled, int, 0000);
451 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452 
453 static int keypad_enabled = -1;
454 module_param(keypad_enabled, int, 0000);
455 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456 
457 static int lcd_type = -1;
458 module_param(lcd_type, int, 0000);
459 MODULE_PARM_DESC(lcd_type,
460 		 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
461 		 "3=hantronix //, 4=nexcom //, 5=compiled-in");
462 
463 static int lcd_proto = -1;
464 module_param(lcd_proto, int, 0000);
465 MODULE_PARM_DESC(lcd_proto,
466 		"LCD communication: 0=parallel (//), 1=serial,"
467 		"2=TI LCD Interface");
468 
469 static int lcd_charset = -1;
470 module_param(lcd_charset, int, 0000);
471 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
472 
473 static int keypad_type = -1;
474 module_param(keypad_type, int, 0000);
475 MODULE_PARM_DESC(keypad_type,
476 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
477 		 "3=nexcom 4 keys");
478 
479 static int profile = DEFAULT_PROFILE;
480 module_param(profile, int, 0000);
481 MODULE_PARM_DESC(profile,
482 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
483 		 "4=16x2 nexcom; default=40x2, old kp");
484 
485 /*
486  * These are the parallel port pins the LCD control signals are connected to.
487  * Set this to 0 if the signal is not used. Set it to its opposite value
488  * (negative) if the signal is negated. -MAXINT is used to indicate that the
489  * pin has not been explicitly specified.
490  *
491  * WARNING! no check will be performed about collisions with keypad !
492  */
493 
494 static int lcd_e_pin  = PIN_NOT_SET;
495 module_param(lcd_e_pin, int, 0000);
496 MODULE_PARM_DESC(lcd_e_pin,
497 		 "# of the // port pin connected to LCD 'E' signal, "
498 		 "with polarity (-17..17)");
499 
500 static int lcd_rs_pin = PIN_NOT_SET;
501 module_param(lcd_rs_pin, int, 0000);
502 MODULE_PARM_DESC(lcd_rs_pin,
503 		 "# of the // port pin connected to LCD 'RS' signal, "
504 		 "with polarity (-17..17)");
505 
506 static int lcd_rw_pin = PIN_NOT_SET;
507 module_param(lcd_rw_pin, int, 0000);
508 MODULE_PARM_DESC(lcd_rw_pin,
509 		 "# of the // port pin connected to LCD 'RW' signal, "
510 		 "with polarity (-17..17)");
511 
512 static int lcd_bl_pin = PIN_NOT_SET;
513 module_param(lcd_bl_pin, int, 0000);
514 MODULE_PARM_DESC(lcd_bl_pin,
515 		 "# of the // port pin connected to LCD backlight, "
516 		 "with polarity (-17..17)");
517 
518 static int lcd_da_pin = PIN_NOT_SET;
519 module_param(lcd_da_pin, int, 0000);
520 MODULE_PARM_DESC(lcd_da_pin,
521 		 "# of the // port pin connected to serial LCD 'SDA' "
522 		 "signal, with polarity (-17..17)");
523 
524 static int lcd_cl_pin = PIN_NOT_SET;
525 module_param(lcd_cl_pin, int, 0000);
526 MODULE_PARM_DESC(lcd_cl_pin,
527 		 "# of the // port pin connected to serial LCD 'SCL' "
528 		 "signal, with polarity (-17..17)");
529 
530 static const unsigned char *lcd_char_conv;
531 
532 /* for some LCD drivers (ks0074) we need a charset conversion table. */
533 static const unsigned char lcd_char_conv_ks0074[256] = {
534 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
535 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
536 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
537 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
538 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
539 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
540 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
541 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
542 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
543 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
544 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
545 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
546 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
547 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
548 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
549 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
550 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
551 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
552 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
553 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
554 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
555 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
556 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
557 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
558 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
559 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
560 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
561 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
562 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
563 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
564 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
565 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
566 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
567 };
568 
569 static const char old_keypad_profile[][4][9] = {
570 	{"S0", "Left\n", "Left\n", ""},
571 	{"S1", "Down\n", "Down\n", ""},
572 	{"S2", "Up\n", "Up\n", ""},
573 	{"S3", "Right\n", "Right\n", ""},
574 	{"S4", "Esc\n", "Esc\n", ""},
575 	{"S5", "Ret\n", "Ret\n", ""},
576 	{"", "", "", ""}
577 };
578 
579 /* signals, press, repeat, release */
580 static const char new_keypad_profile[][4][9] = {
581 	{"S0", "Left\n", "Left\n", ""},
582 	{"S1", "Down\n", "Down\n", ""},
583 	{"S2", "Up\n", "Up\n", ""},
584 	{"S3", "Right\n", "Right\n", ""},
585 	{"S4s5", "", "Esc\n", "Esc\n"},
586 	{"s4S5", "", "Ret\n", "Ret\n"},
587 	{"S4S5", "Help\n", "", ""},
588 	/* add new signals above this line */
589 	{"", "", "", ""}
590 };
591 
592 /* signals, press, repeat, release */
593 static const char nexcom_keypad_profile[][4][9] = {
594 	{"a-p-e-", "Down\n", "Down\n", ""},
595 	{"a-p-E-", "Ret\n", "Ret\n", ""},
596 	{"a-P-E-", "Esc\n", "Esc\n", ""},
597 	{"a-P-e-", "Up\n", "Up\n", ""},
598 	/* add new signals above this line */
599 	{"", "", "", ""}
600 };
601 
602 static const char (*keypad_profile)[4][9] = old_keypad_profile;
603 
604 /* FIXME: this should be converted to a bit array containing signals states */
605 static struct {
606 	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
607 	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
608 	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
609 	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
610 	unsigned char cl; /* serial LCD clock (latch on rising edge) */
611 	unsigned char da; /* serial LCD data */
612 } bits;
613 
614 static void init_scan_timer(void);
615 
616 /* sets data port bits according to current signals values */
set_data_bits(void)617 static int set_data_bits(void)
618 {
619 	int val, bit;
620 
621 	val = r_dtr(pprt);
622 	for (bit = 0; bit < LCD_BITS; bit++)
623 		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
624 
625 	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
626 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
627 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
628 	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
629 	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
630 	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
631 
632 	w_dtr(pprt, val);
633 	return val;
634 }
635 
636 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)637 static int set_ctrl_bits(void)
638 {
639 	int val, bit;
640 
641 	val = r_ctr(pprt);
642 	for (bit = 0; bit < LCD_BITS; bit++)
643 		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
644 
645 	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
646 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
647 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
648 	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
649 	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
650 	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
651 
652 	w_ctr(pprt, val);
653 	return val;
654 }
655 
656 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)657 static void panel_set_bits(void)
658 {
659 	set_data_bits();
660 	set_ctrl_bits();
661 }
662 
663 /*
664  * Converts a parallel port pin (from -25 to 25) to data and control ports
665  * masks, and data and control port bits. The signal will be considered
666  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
667  *
668  * Result will be used this way :
669  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
670  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
671  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)672 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
673 {
674 	int d_bit, c_bit, inv;
675 
676 	d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
677 	d_val[2] = c_val[2] = 0xFF;
678 
679 	if (pin == 0)
680 		return;
681 
682 	inv = (pin < 0);
683 	if (inv)
684 		pin = -pin;
685 
686 	d_bit = c_bit = 0;
687 
688 	switch (pin) {
689 	case PIN_STROBE:	/* strobe, inverted */
690 		c_bit = PNL_PSTROBE;
691 		inv = !inv;
692 		break;
693 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
694 		d_bit = 1 << (pin - 2);
695 		break;
696 	case PIN_AUTOLF:	/* autofeed, inverted */
697 		c_bit = PNL_PAUTOLF;
698 		inv = !inv;
699 		break;
700 	case PIN_INITP:		/* init, direct */
701 		c_bit = PNL_PINITP;
702 		break;
703 	case PIN_SELECP:	/* select_in, inverted */
704 		c_bit = PNL_PSELECP;
705 		inv = !inv;
706 		break;
707 	default:		/* unknown pin, ignore */
708 		break;
709 	}
710 
711 	if (c_bit) {
712 		c_val[2] &= ~c_bit;
713 		c_val[!inv] = c_bit;
714 	} else if (d_bit) {
715 		d_val[2] &= ~d_bit;
716 		d_val[!inv] = d_bit;
717 	}
718 }
719 
720 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)721 static void long_sleep(int ms)
722 {
723 
724 	if (in_interrupt())
725 		mdelay(ms);
726 	else {
727 		current->state = TASK_INTERRUPTIBLE;
728 		schedule_timeout((ms * HZ + 999) / 1000);
729 	}
730 }
731 
732 /* send a serial byte to the LCD panel. The caller is responsible for locking
733    if needed. */
lcd_send_serial(int byte)734 static void lcd_send_serial(int byte)
735 {
736 	int bit;
737 
738 	/* the data bit is set on D0, and the clock on STROBE.
739 	 * LCD reads D0 on STROBE's rising edge. */
740 	for (bit = 0; bit < 8; bit++) {
741 		bits.cl = BIT_CLR;	/* CLK low */
742 		panel_set_bits();
743 		bits.da = byte & 1;
744 		panel_set_bits();
745 		udelay(2);  /* maintain the data during 2 us before CLK up */
746 		bits.cl = BIT_SET;	/* CLK high */
747 		panel_set_bits();
748 		udelay(1);  /* maintain the strobe during 1 us */
749 		byte >>= 1;
750 	}
751 }
752 
753 /* turn the backlight on or off */
lcd_backlight(int on)754 static void lcd_backlight(int on)
755 {
756 	if (lcd_bl_pin == PIN_NONE)
757 		return;
758 
759 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
760 	spin_lock_irq(&pprt_lock);
761 	bits.bl = on;
762 	panel_set_bits();
763 	spin_unlock_irq(&pprt_lock);
764 }
765 
766 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)767 static void lcd_write_cmd_s(int cmd)
768 {
769 	spin_lock_irq(&pprt_lock);
770 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
771 	lcd_send_serial(cmd & 0x0F);
772 	lcd_send_serial((cmd >> 4) & 0x0F);
773 	udelay(40);		/* the shortest command takes at least 40 us */
774 	spin_unlock_irq(&pprt_lock);
775 }
776 
777 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)778 static void lcd_write_data_s(int data)
779 {
780 	spin_lock_irq(&pprt_lock);
781 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
782 	lcd_send_serial(data & 0x0F);
783 	lcd_send_serial((data >> 4) & 0x0F);
784 	udelay(40);		/* the shortest data takes at least 40 us */
785 	spin_unlock_irq(&pprt_lock);
786 }
787 
788 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)789 static void lcd_write_cmd_p8(int cmd)
790 {
791 	spin_lock_irq(&pprt_lock);
792 	/* present the data to the data port */
793 	w_dtr(pprt, cmd);
794 	udelay(20);	/* maintain the data during 20 us before the strobe */
795 
796 	bits.e = BIT_SET;
797 	bits.rs = BIT_CLR;
798 	bits.rw = BIT_CLR;
799 	set_ctrl_bits();
800 
801 	udelay(40);	/* maintain the strobe during 40 us */
802 
803 	bits.e = BIT_CLR;
804 	set_ctrl_bits();
805 
806 	udelay(120);	/* the shortest command takes at least 120 us */
807 	spin_unlock_irq(&pprt_lock);
808 }
809 
810 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)811 static void lcd_write_data_p8(int data)
812 {
813 	spin_lock_irq(&pprt_lock);
814 	/* present the data to the data port */
815 	w_dtr(pprt, data);
816 	udelay(20);	/* maintain the data during 20 us before the strobe */
817 
818 	bits.e = BIT_SET;
819 	bits.rs = BIT_SET;
820 	bits.rw = BIT_CLR;
821 	set_ctrl_bits();
822 
823 	udelay(40);	/* maintain the strobe during 40 us */
824 
825 	bits.e = BIT_CLR;
826 	set_ctrl_bits();
827 
828 	udelay(45);	/* the shortest data takes at least 45 us */
829 	spin_unlock_irq(&pprt_lock);
830 }
831 
832 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)833 static void lcd_write_cmd_tilcd(int cmd)
834 {
835 	spin_lock_irq(&pprt_lock);
836 	/* present the data to the control port */
837 	w_ctr(pprt, cmd);
838 	udelay(60);
839 	spin_unlock_irq(&pprt_lock);
840 }
841 
842 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)843 static void lcd_write_data_tilcd(int data)
844 {
845 	spin_lock_irq(&pprt_lock);
846 	/* present the data to the data port */
847 	w_dtr(pprt, data);
848 	udelay(60);
849 	spin_unlock_irq(&pprt_lock);
850 }
851 
lcd_gotoxy(void)852 static void lcd_gotoxy(void)
853 {
854 	lcd_write_cmd(0x80	/* set DDRAM address */
855 		      | (lcd_addr_y ? lcd_hwidth : 0)
856 		      /* we force the cursor to stay at the end of the
857 			 line if it wants to go farther */
858 		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
859 			 (lcd_hwidth - 1) : lcd_bwidth - 1));
860 }
861 
lcd_print(char c)862 static void lcd_print(char c)
863 {
864 	if (lcd_addr_x < lcd_bwidth) {
865 		if (lcd_char_conv != NULL)
866 			c = lcd_char_conv[(unsigned char)c];
867 		lcd_write_data(c);
868 		lcd_addr_x++;
869 	}
870 	/* prevents the cursor from wrapping onto the next line */
871 	if (lcd_addr_x == lcd_bwidth)
872 		lcd_gotoxy();
873 }
874 
875 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)876 static void lcd_clear_fast_s(void)
877 {
878 	int pos;
879 	lcd_addr_x = lcd_addr_y = 0;
880 	lcd_gotoxy();
881 
882 	spin_lock_irq(&pprt_lock);
883 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
884 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
885 		lcd_send_serial(' ' & 0x0F);
886 		lcd_send_serial((' ' >> 4) & 0x0F);
887 		udelay(40);	/* the shortest data takes at least 40 us */
888 	}
889 	spin_unlock_irq(&pprt_lock);
890 
891 	lcd_addr_x = lcd_addr_y = 0;
892 	lcd_gotoxy();
893 }
894 
895 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)896 static void lcd_clear_fast_p8(void)
897 {
898 	int pos;
899 	lcd_addr_x = lcd_addr_y = 0;
900 	lcd_gotoxy();
901 
902 	spin_lock_irq(&pprt_lock);
903 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904 		/* present the data to the data port */
905 		w_dtr(pprt, ' ');
906 
907 		/* maintain the data during 20 us before the strobe */
908 		udelay(20);
909 
910 		bits.e = BIT_SET;
911 		bits.rs = BIT_SET;
912 		bits.rw = BIT_CLR;
913 		set_ctrl_bits();
914 
915 		/* maintain the strobe during 40 us */
916 		udelay(40);
917 
918 		bits.e = BIT_CLR;
919 		set_ctrl_bits();
920 
921 		/* the shortest data takes at least 45 us */
922 		udelay(45);
923 	}
924 	spin_unlock_irq(&pprt_lock);
925 
926 	lcd_addr_x = lcd_addr_y = 0;
927 	lcd_gotoxy();
928 }
929 
930 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)931 static void lcd_clear_fast_tilcd(void)
932 {
933 	int pos;
934 	lcd_addr_x = lcd_addr_y = 0;
935 	lcd_gotoxy();
936 
937 	spin_lock_irq(&pprt_lock);
938 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
939 		/* present the data to the data port */
940 		w_dtr(pprt, ' ');
941 		udelay(60);
942 	}
943 
944 	spin_unlock_irq(&pprt_lock);
945 
946 	lcd_addr_x = lcd_addr_y = 0;
947 	lcd_gotoxy();
948 }
949 
950 /* clears the display and resets X/Y */
lcd_clear_display(void)951 static void lcd_clear_display(void)
952 {
953 	lcd_write_cmd(0x01);	/* clear display */
954 	lcd_addr_x = lcd_addr_y = 0;
955 	/* we must wait a few milliseconds (15) */
956 	long_sleep(15);
957 }
958 
lcd_init_display(void)959 static void lcd_init_display(void)
960 {
961 
962 	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
963 	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
964 
965 	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
966 
967 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
968 	long_sleep(10);
969 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
970 	long_sleep(10);
971 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
972 	long_sleep(10);
973 
974 	lcd_write_cmd(0x30	/* set font height and lines number */
975 		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
976 		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
977 	    );
978 	long_sleep(10);
979 
980 	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
981 	long_sleep(10);
982 
983 	lcd_write_cmd(0x08	/* set display mode */
984 		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
985 		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
986 		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
987 	    );
988 
989 	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
990 
991 	long_sleep(10);
992 
993 	/* entry mode set : increment, cursor shifting */
994 	lcd_write_cmd(0x06);
995 
996 	lcd_clear_display();
997 }
998 
999 /*
1000  * These are the file operation function for user access to /dev/lcd
1001  * This function can also be called from inside the kernel, by
1002  * setting file and ppos to NULL.
1003  *
1004  */
1005 
handle_lcd_special_code(void)1006 static inline int handle_lcd_special_code(void)
1007 {
1008 	/* LCD special codes */
1009 
1010 	int processed = 0;
1011 
1012 	char *esc = lcd_escape + 2;
1013 	int oldflags = lcd_flags;
1014 
1015 	/* check for display mode flags */
1016 	switch (*esc) {
1017 	case 'D':	/* Display ON */
1018 		lcd_flags |= LCD_FLAG_D;
1019 		processed = 1;
1020 		break;
1021 	case 'd':	/* Display OFF */
1022 		lcd_flags &= ~LCD_FLAG_D;
1023 		processed = 1;
1024 		break;
1025 	case 'C':	/* Cursor ON */
1026 		lcd_flags |= LCD_FLAG_C;
1027 		processed = 1;
1028 		break;
1029 	case 'c':	/* Cursor OFF */
1030 		lcd_flags &= ~LCD_FLAG_C;
1031 		processed = 1;
1032 		break;
1033 	case 'B':	/* Blink ON */
1034 		lcd_flags |= LCD_FLAG_B;
1035 		processed = 1;
1036 		break;
1037 	case 'b':	/* Blink OFF */
1038 		lcd_flags &= ~LCD_FLAG_B;
1039 		processed = 1;
1040 		break;
1041 	case '+':	/* Back light ON */
1042 		lcd_flags |= LCD_FLAG_L;
1043 		processed = 1;
1044 		break;
1045 	case '-':	/* Back light OFF */
1046 		lcd_flags &= ~LCD_FLAG_L;
1047 		processed = 1;
1048 		break;
1049 	case '*':
1050 		/* flash back light using the keypad timer */
1051 		if (scan_timer.function != NULL) {
1052 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1053 				lcd_backlight(1);
1054 			light_tempo = FLASH_LIGHT_TEMPO;
1055 		}
1056 		processed = 1;
1057 		break;
1058 	case 'f':	/* Small Font */
1059 		lcd_flags &= ~LCD_FLAG_F;
1060 		processed = 1;
1061 		break;
1062 	case 'F':	/* Large Font */
1063 		lcd_flags |= LCD_FLAG_F;
1064 		processed = 1;
1065 		break;
1066 	case 'n':	/* One Line */
1067 		lcd_flags &= ~LCD_FLAG_N;
1068 		processed = 1;
1069 		break;
1070 	case 'N':	/* Two Lines */
1071 		lcd_flags |= LCD_FLAG_N;
1072 		break;
1073 	case 'l':	/* Shift Cursor Left */
1074 		if (lcd_addr_x > 0) {
1075 			/* back one char if not at end of line */
1076 			if (lcd_addr_x < lcd_bwidth)
1077 				lcd_write_cmd(0x10);
1078 			lcd_addr_x--;
1079 		}
1080 		processed = 1;
1081 		break;
1082 	case 'r':	/* shift cursor right */
1083 		if (lcd_addr_x < lcd_width) {
1084 			/* allow the cursor to pass the end of the line */
1085 			if (lcd_addr_x <
1086 			    (lcd_bwidth - 1))
1087 				lcd_write_cmd(0x14);
1088 			lcd_addr_x++;
1089 		}
1090 		processed = 1;
1091 		break;
1092 	case 'L':	/* shift display left */
1093 		lcd_left_shift++;
1094 		lcd_write_cmd(0x18);
1095 		processed = 1;
1096 		break;
1097 	case 'R':	/* shift display right */
1098 		lcd_left_shift--;
1099 		lcd_write_cmd(0x1C);
1100 		processed = 1;
1101 		break;
1102 	case 'k': {	/* kill end of line */
1103 		int x;
1104 		for (x = lcd_addr_x; x < lcd_bwidth; x++)
1105 			lcd_write_data(' ');
1106 
1107 		/* restore cursor position */
1108 		lcd_gotoxy();
1109 		processed = 1;
1110 		break;
1111 	}
1112 	case 'I':	/* reinitialize display */
1113 		lcd_init_display();
1114 		lcd_left_shift = 0;
1115 		processed = 1;
1116 		break;
1117 	case 'G': {
1118 		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1119 		 * and '7', representing the numerical ASCII code of the
1120 		 * redefined character, and <xx...xx> a sequence of 16
1121 		 * hex digits representing 8 bytes for each character.
1122 		 * Most LCDs will only use 5 lower bits of the 7 first
1123 		 * bytes.
1124 		 */
1125 
1126 		unsigned char cgbytes[8];
1127 		unsigned char cgaddr;
1128 		int cgoffset;
1129 		int shift;
1130 		char value;
1131 		int addr;
1132 
1133 		if (strchr(esc, ';') == NULL)
1134 			break;
1135 
1136 		esc++;
1137 
1138 		cgaddr = *(esc++) - '0';
1139 		if (cgaddr > 7) {
1140 			processed = 1;
1141 			break;
1142 		}
1143 
1144 		cgoffset = 0;
1145 		shift = 0;
1146 		value = 0;
1147 		while (*esc && cgoffset < 8) {
1148 			shift ^= 4;
1149 			if (*esc >= '0' && *esc <= '9')
1150 				value |= (*esc - '0') << shift;
1151 			else if (*esc >= 'A' && *esc <= 'Z')
1152 				value |= (*esc - 'A' + 10) << shift;
1153 			else if (*esc >= 'a' && *esc <= 'z')
1154 				value |= (*esc - 'a' + 10) << shift;
1155 			else {
1156 				esc++;
1157 				continue;
1158 			}
1159 
1160 			if (shift == 0) {
1161 				cgbytes[cgoffset++] = value;
1162 				value = 0;
1163 			}
1164 
1165 			esc++;
1166 		}
1167 
1168 		lcd_write_cmd(0x40 | (cgaddr * 8));
1169 		for (addr = 0; addr < cgoffset; addr++)
1170 			lcd_write_data(cgbytes[addr]);
1171 
1172 		/* ensures that we stop writing to CGRAM */
1173 		lcd_gotoxy();
1174 		processed = 1;
1175 		break;
1176 	}
1177 	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1178 	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1179 		if (strchr(esc, ';') == NULL)
1180 			break;
1181 
1182 		while (*esc) {
1183 			if (*esc == 'x') {
1184 				esc++;
1185 				if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1186 					break;
1187 			} else if (*esc == 'y') {
1188 				esc++;
1189 				if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1190 					break;
1191 			} else
1192 				break;
1193 		}
1194 
1195 		lcd_gotoxy();
1196 		processed = 1;
1197 		break;
1198 	}
1199 
1200 	/* Check whether one flag was changed */
1201 	if (oldflags != lcd_flags) {
1202 		/* check whether one of B,C,D flags were changed */
1203 		if ((oldflags ^ lcd_flags) &
1204 		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1205 			/* set display mode */
1206 			lcd_write_cmd(0x08
1207 				      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1208 				      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1209 				      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1210 		/* check whether one of F,N flags was changed */
1211 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1212 			lcd_write_cmd(0x30
1213 				      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1214 				      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1215 		/* check whether L flag was changed */
1216 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1217 			if (lcd_flags & (LCD_FLAG_L))
1218 				lcd_backlight(1);
1219 			else if (light_tempo == 0)
1220 				/* switch off the light only when the tempo
1221 				   lighting is gone */
1222 				lcd_backlight(0);
1223 		}
1224 	}
1225 
1226 	return processed;
1227 }
1228 
lcd_write(struct file * file,const char * buf,size_t count,loff_t * ppos)1229 static ssize_t lcd_write(struct file *file,
1230 			 const char *buf, size_t count, loff_t *ppos)
1231 {
1232 	const char *tmp = buf;
1233 	char c;
1234 
1235 	for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1236 		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1237 			/* let's be a little nice with other processes
1238 			   that need some CPU */
1239 			schedule();
1240 
1241 		if (ppos == NULL && file == NULL)
1242 			/* let's not use get_user() from the kernel ! */
1243 			c = *tmp;
1244 		else if (get_user(c, tmp))
1245 			return -EFAULT;
1246 
1247 		/* first, we'll test if we're in escape mode */
1248 		if ((c != '\n') && lcd_escape_len >= 0) {
1249 			/* yes, let's add this char to the buffer */
1250 			lcd_escape[lcd_escape_len++] = c;
1251 			lcd_escape[lcd_escape_len] = 0;
1252 		} else {
1253 			/* aborts any previous escape sequence */
1254 			lcd_escape_len = -1;
1255 
1256 			switch (c) {
1257 			case LCD_ESCAPE_CHAR:
1258 				/* start of an escape sequence */
1259 				lcd_escape_len = 0;
1260 				lcd_escape[lcd_escape_len] = 0;
1261 				break;
1262 			case '\b':
1263 				/* go back one char and clear it */
1264 				if (lcd_addr_x > 0) {
1265 					/* check if we're not at the
1266 					   end of the line */
1267 					if (lcd_addr_x < lcd_bwidth)
1268 						/* back one char */
1269 						lcd_write_cmd(0x10);
1270 					lcd_addr_x--;
1271 				}
1272 				/* replace with a space */
1273 				lcd_write_data(' ');
1274 				/* back one char again */
1275 				lcd_write_cmd(0x10);
1276 				break;
1277 			case '\014':
1278 				/* quickly clear the display */
1279 				lcd_clear_fast();
1280 				break;
1281 			case '\n':
1282 				/* flush the remainder of the current line and
1283 				   go to the beginning of the next line */
1284 				for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1285 					lcd_write_data(' ');
1286 				lcd_addr_x = 0;
1287 				lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1288 				lcd_gotoxy();
1289 				break;
1290 			case '\r':
1291 				/* go to the beginning of the same line */
1292 				lcd_addr_x = 0;
1293 				lcd_gotoxy();
1294 				break;
1295 			case '\t':
1296 				/* print a space instead of the tab */
1297 				lcd_print(' ');
1298 				break;
1299 			default:
1300 				/* simply print this char */
1301 				lcd_print(c);
1302 				break;
1303 			}
1304 		}
1305 
1306 		/* now we'll see if we're in an escape mode and if the current
1307 		   escape sequence can be understood. */
1308 		if (lcd_escape_len >= 2) {
1309 			int processed = 0;
1310 
1311 			if (!strcmp(lcd_escape, "[2J")) {
1312 				/* clear the display */
1313 				lcd_clear_fast();
1314 				processed = 1;
1315 			} else if (!strcmp(lcd_escape, "[H")) {
1316 				/* cursor to home */
1317 				lcd_addr_x = lcd_addr_y = 0;
1318 				lcd_gotoxy();
1319 				processed = 1;
1320 			}
1321 			/* codes starting with ^[[L */
1322 			else if ((lcd_escape_len >= 3) &&
1323 				 (lcd_escape[0] == '[') &&
1324 				 (lcd_escape[1] == 'L')) {
1325 				processed = handle_lcd_special_code();
1326 			}
1327 
1328 			/* LCD special escape codes */
1329 			/* flush the escape sequence if it's been processed
1330 			   or if it is getting too long. */
1331 			if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1332 				lcd_escape_len = -1;
1333 		} /* escape codes */
1334 	}
1335 
1336 	return tmp - buf;
1337 }
1338 
lcd_open(struct inode * inode,struct file * file)1339 static int lcd_open(struct inode *inode, struct file *file)
1340 {
1341 	if (lcd_open_cnt)
1342 		return -EBUSY;	/* open only once at a time */
1343 
1344 	if (file->f_mode & FMODE_READ)	/* device is write-only */
1345 		return -EPERM;
1346 
1347 	if (lcd_must_clear) {
1348 		lcd_clear_display();
1349 		lcd_must_clear = 0;
1350 	}
1351 	lcd_open_cnt++;
1352 	return nonseekable_open(inode, file);
1353 }
1354 
lcd_release(struct inode * inode,struct file * file)1355 static int lcd_release(struct inode *inode, struct file *file)
1356 {
1357 	lcd_open_cnt--;
1358 	return 0;
1359 }
1360 
1361 static const struct file_operations lcd_fops = {
1362 	.write   = lcd_write,
1363 	.open    = lcd_open,
1364 	.release = lcd_release,
1365 	.llseek  = no_llseek,
1366 };
1367 
1368 static struct miscdevice lcd_dev = {
1369 	LCD_MINOR,
1370 	"lcd",
1371 	&lcd_fops
1372 };
1373 
1374 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1375 static void panel_lcd_print(const char *s)
1376 {
1377 	if (lcd_enabled && lcd_initialized)
1378 		lcd_write(NULL, s, strlen(s), NULL);
1379 }
1380 
1381 /* initialize the LCD driver */
lcd_init(void)1382 static void lcd_init(void)
1383 {
1384 	switch (lcd_type) {
1385 	case LCD_TYPE_OLD:
1386 		/* parallel mode, 8 bits */
1387 		if (lcd_proto < 0)
1388 			lcd_proto = LCD_PROTO_PARALLEL;
1389 		if (lcd_charset < 0)
1390 			lcd_charset = LCD_CHARSET_NORMAL;
1391 		if (lcd_e_pin == PIN_NOT_SET)
1392 			lcd_e_pin = PIN_STROBE;
1393 		if (lcd_rs_pin == PIN_NOT_SET)
1394 			lcd_rs_pin = PIN_AUTOLF;
1395 
1396 		if (lcd_width < 0)
1397 			lcd_width = 40;
1398 		if (lcd_bwidth < 0)
1399 			lcd_bwidth = 40;
1400 		if (lcd_hwidth < 0)
1401 			lcd_hwidth = 64;
1402 		if (lcd_height < 0)
1403 			lcd_height = 2;
1404 		break;
1405 	case LCD_TYPE_KS0074:
1406 		/* serial mode, ks0074 */
1407 		if (lcd_proto < 0)
1408 			lcd_proto = LCD_PROTO_SERIAL;
1409 		if (lcd_charset < 0)
1410 			lcd_charset = LCD_CHARSET_KS0074;
1411 		if (lcd_bl_pin == PIN_NOT_SET)
1412 			lcd_bl_pin = PIN_AUTOLF;
1413 		if (lcd_cl_pin == PIN_NOT_SET)
1414 			lcd_cl_pin = PIN_STROBE;
1415 		if (lcd_da_pin == PIN_NOT_SET)
1416 			lcd_da_pin = PIN_D0;
1417 
1418 		if (lcd_width < 0)
1419 			lcd_width = 16;
1420 		if (lcd_bwidth < 0)
1421 			lcd_bwidth = 40;
1422 		if (lcd_hwidth < 0)
1423 			lcd_hwidth = 16;
1424 		if (lcd_height < 0)
1425 			lcd_height = 2;
1426 		break;
1427 	case LCD_TYPE_NEXCOM:
1428 		/* parallel mode, 8 bits, generic */
1429 		if (lcd_proto < 0)
1430 			lcd_proto = LCD_PROTO_PARALLEL;
1431 		if (lcd_charset < 0)
1432 			lcd_charset = LCD_CHARSET_NORMAL;
1433 		if (lcd_e_pin == PIN_NOT_SET)
1434 			lcd_e_pin = PIN_AUTOLF;
1435 		if (lcd_rs_pin == PIN_NOT_SET)
1436 			lcd_rs_pin = PIN_SELECP;
1437 		if (lcd_rw_pin == PIN_NOT_SET)
1438 			lcd_rw_pin = PIN_INITP;
1439 
1440 		if (lcd_width < 0)
1441 			lcd_width = 16;
1442 		if (lcd_bwidth < 0)
1443 			lcd_bwidth = 40;
1444 		if (lcd_hwidth < 0)
1445 			lcd_hwidth = 64;
1446 		if (lcd_height < 0)
1447 			lcd_height = 2;
1448 		break;
1449 	case LCD_TYPE_CUSTOM:
1450 		/* customer-defined */
1451 		if (lcd_proto < 0)
1452 			lcd_proto = DEFAULT_LCD_PROTO;
1453 		if (lcd_charset < 0)
1454 			lcd_charset = DEFAULT_LCD_CHARSET;
1455 		/* default geometry will be set later */
1456 		break;
1457 	case LCD_TYPE_HANTRONIX:
1458 		/* parallel mode, 8 bits, hantronix-like */
1459 	default:
1460 		if (lcd_proto < 0)
1461 			lcd_proto = LCD_PROTO_PARALLEL;
1462 		if (lcd_charset < 0)
1463 			lcd_charset = LCD_CHARSET_NORMAL;
1464 		if (lcd_e_pin == PIN_NOT_SET)
1465 			lcd_e_pin = PIN_STROBE;
1466 		if (lcd_rs_pin == PIN_NOT_SET)
1467 			lcd_rs_pin = PIN_SELECP;
1468 
1469 		if (lcd_width < 0)
1470 			lcd_width = 16;
1471 		if (lcd_bwidth < 0)
1472 			lcd_bwidth = 40;
1473 		if (lcd_hwidth < 0)
1474 			lcd_hwidth = 64;
1475 		if (lcd_height < 0)
1476 			lcd_height = 2;
1477 		break;
1478 	}
1479 
1480 	/* this is used to catch wrong and default values */
1481 	if (lcd_width <= 0)
1482 		lcd_width = DEFAULT_LCD_WIDTH;
1483 	if (lcd_bwidth <= 0)
1484 		lcd_bwidth = DEFAULT_LCD_BWIDTH;
1485 	if (lcd_hwidth <= 0)
1486 		lcd_hwidth = DEFAULT_LCD_HWIDTH;
1487 	if (lcd_height <= 0)
1488 		lcd_height = DEFAULT_LCD_HEIGHT;
1489 
1490 	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1491 		lcd_write_cmd = lcd_write_cmd_s;
1492 		lcd_write_data = lcd_write_data_s;
1493 		lcd_clear_fast = lcd_clear_fast_s;
1494 
1495 		if (lcd_cl_pin == PIN_NOT_SET)
1496 			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1497 		if (lcd_da_pin == PIN_NOT_SET)
1498 			lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1499 
1500 	} else if (lcd_proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1501 		lcd_write_cmd = lcd_write_cmd_p8;
1502 		lcd_write_data = lcd_write_data_p8;
1503 		lcd_clear_fast = lcd_clear_fast_p8;
1504 
1505 		if (lcd_e_pin == PIN_NOT_SET)
1506 			lcd_e_pin = DEFAULT_LCD_PIN_E;
1507 		if (lcd_rs_pin == PIN_NOT_SET)
1508 			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1509 		if (lcd_rw_pin == PIN_NOT_SET)
1510 			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1511 	} else {
1512 		lcd_write_cmd = lcd_write_cmd_tilcd;
1513 		lcd_write_data = lcd_write_data_tilcd;
1514 		lcd_clear_fast = lcd_clear_fast_tilcd;
1515 	}
1516 
1517 	if (lcd_bl_pin == PIN_NOT_SET)
1518 		lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1519 
1520 	if (lcd_e_pin == PIN_NOT_SET)
1521 		lcd_e_pin = PIN_NONE;
1522 	if (lcd_rs_pin == PIN_NOT_SET)
1523 		lcd_rs_pin = PIN_NONE;
1524 	if (lcd_rw_pin == PIN_NOT_SET)
1525 		lcd_rw_pin = PIN_NONE;
1526 	if (lcd_bl_pin == PIN_NOT_SET)
1527 		lcd_bl_pin = PIN_NONE;
1528 	if (lcd_cl_pin == PIN_NOT_SET)
1529 		lcd_cl_pin = PIN_NONE;
1530 	if (lcd_da_pin == PIN_NOT_SET)
1531 		lcd_da_pin = PIN_NONE;
1532 
1533 	if (lcd_charset < 0)
1534 		lcd_charset = DEFAULT_LCD_CHARSET;
1535 
1536 	if (lcd_charset == LCD_CHARSET_KS0074)
1537 		lcd_char_conv = lcd_char_conv_ks0074;
1538 	else
1539 		lcd_char_conv = NULL;
1540 
1541 	if (lcd_bl_pin != PIN_NONE)
1542 		init_scan_timer();
1543 
1544 	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1545 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1546 	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1547 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1548 	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1549 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1550 	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1551 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1552 	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1553 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1554 	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1555 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1556 
1557 	/* before this line, we must NOT send anything to the display.
1558 	 * Since lcd_init_display() needs to write data, we have to
1559 	 * enable mark the LCD initialized just before. */
1560 	lcd_initialized = 1;
1561 	lcd_init_display();
1562 
1563 	/* display a short message */
1564 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1565 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1566 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1567 #endif
1568 #else
1569 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1570 			PANEL_VERSION);
1571 #endif
1572 	lcd_addr_x = lcd_addr_y = 0;
1573 	/* clear the display on the next device opening */
1574 	lcd_must_clear = 1;
1575 	lcd_gotoxy();
1576 }
1577 
1578 /*
1579  * These are the file operation function for user access to /dev/keypad
1580  */
1581 
keypad_read(struct file * file,char * buf,size_t count,loff_t * ppos)1582 static ssize_t keypad_read(struct file *file,
1583 			   char *buf, size_t count, loff_t *ppos)
1584 {
1585 
1586 	unsigned i = *ppos;
1587 	char *tmp = buf;
1588 
1589 	if (keypad_buflen == 0) {
1590 		if (file->f_flags & O_NONBLOCK)
1591 			return -EAGAIN;
1592 
1593 		interruptible_sleep_on(&keypad_read_wait);
1594 		if (signal_pending(current))
1595 			return -EINTR;
1596 	}
1597 
1598 	for (; count-- > 0 && (keypad_buflen > 0);
1599 	     ++i, ++tmp, --keypad_buflen) {
1600 		put_user(keypad_buffer[keypad_start], tmp);
1601 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1602 	}
1603 	*ppos = i;
1604 
1605 	return tmp - buf;
1606 }
1607 
keypad_open(struct inode * inode,struct file * file)1608 static int keypad_open(struct inode *inode, struct file *file)
1609 {
1610 
1611 	if (keypad_open_cnt)
1612 		return -EBUSY;	/* open only once at a time */
1613 
1614 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1615 		return -EPERM;
1616 
1617 	keypad_buflen = 0;	/* flush the buffer on opening */
1618 	keypad_open_cnt++;
1619 	return 0;
1620 }
1621 
keypad_release(struct inode * inode,struct file * file)1622 static int keypad_release(struct inode *inode, struct file *file)
1623 {
1624 	keypad_open_cnt--;
1625 	return 0;
1626 }
1627 
1628 static const struct file_operations keypad_fops = {
1629 	.read    = keypad_read,		/* read */
1630 	.open    = keypad_open,		/* open */
1631 	.release = keypad_release,	/* close */
1632 	.llseek  = default_llseek,
1633 };
1634 
1635 static struct miscdevice keypad_dev = {
1636 	KEYPAD_MINOR,
1637 	"keypad",
1638 	&keypad_fops
1639 };
1640 
keypad_send_key(const char * string,int max_len)1641 static void keypad_send_key(const char *string, int max_len)
1642 {
1643 	if (init_in_progress)
1644 		return;
1645 
1646 	/* send the key to the device only if a process is attached to it. */
1647 	if (keypad_open_cnt > 0) {
1648 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1649 			keypad_buffer[(keypad_start + keypad_buflen++) %
1650 				      KEYPAD_BUFFER] = *string++;
1651 		}
1652 		wake_up_interruptible(&keypad_read_wait);
1653 	}
1654 }
1655 
1656 /* this function scans all the bits involving at least one logical signal,
1657  * and puts the results in the bitfield "phys_read" (one bit per established
1658  * contact), and sets "phys_read_prev" to "phys_read".
1659  *
1660  * Note: to debounce input signals, we will only consider as switched a signal
1661  * which is stable across 2 measures. Signals which are different between two
1662  * reads will be kept as they previously were in their logical form (phys_prev).
1663  * A signal which has just switched will have a 1 in
1664  * (phys_read ^ phys_read_prev).
1665  */
phys_scan_contacts(void)1666 static void phys_scan_contacts(void)
1667 {
1668 	int bit, bitval;
1669 	char oldval;
1670 	char bitmask;
1671 	char gndmask;
1672 
1673 	phys_prev = phys_curr;
1674 	phys_read_prev = phys_read;
1675 	phys_read = 0;		/* flush all signals */
1676 
1677 	/* keep track of old value, with all outputs disabled */
1678 	oldval = r_dtr(pprt) | scan_mask_o;
1679 	/* activate all keyboard outputs (active low) */
1680 	w_dtr(pprt, oldval & ~scan_mask_o);
1681 
1682 	/* will have a 1 for each bit set to gnd */
1683 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1684 	/* disable all matrix signals */
1685 	w_dtr(pprt, oldval);
1686 
1687 	/* now that all outputs are cleared, the only active input bits are
1688 	 * directly connected to the ground
1689 	 */
1690 
1691 	/* 1 for each grounded input */
1692 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1693 
1694 	/* grounded inputs are signals 40-44 */
1695 	phys_read |= (pmask_t) gndmask << 40;
1696 
1697 	if (bitmask != gndmask) {
1698 		/* since clearing the outputs changed some inputs, we know
1699 		 * that some input signals are currently tied to some outputs.
1700 		 * So we'll scan them.
1701 		 */
1702 		for (bit = 0; bit < 8; bit++) {
1703 			bitval = 1 << bit;
1704 
1705 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1706 				continue;
1707 
1708 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1709 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1710 			phys_read |= (pmask_t) bitmask << (5 * bit);
1711 		}
1712 		w_dtr(pprt, oldval);	/* disable all outputs */
1713 	}
1714 	/* this is easy: use old bits when they are flapping,
1715 	 * use new ones when stable */
1716 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1717 		    (phys_read & ~(phys_read ^ phys_read_prev));
1718 }
1719 
input_state_high(struct logical_input * input)1720 static inline int input_state_high(struct logical_input *input)
1721 {
1722 #if 0
1723 	/* FIXME:
1724 	 * this is an invalid test. It tries to catch
1725 	 * transitions from single-key to multiple-key, but
1726 	 * doesn't take into account the contacts polarity.
1727 	 * The only solution to the problem is to parse keys
1728 	 * from the most complex to the simplest combinations,
1729 	 * and mark them as 'caught' once a combination
1730 	 * matches, then unmatch it for all other ones.
1731 	 */
1732 
1733 	/* try to catch dangerous transitions cases :
1734 	 * someone adds a bit, so this signal was a false
1735 	 * positive resulting from a transition. We should
1736 	 * invalidate the signal immediately and not call the
1737 	 * release function.
1738 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1739 	 */
1740 	if (((phys_prev & input->mask) == input->value)
1741 	    && ((phys_curr & input->mask) > input->value)) {
1742 		input->state = INPUT_ST_LOW; /* invalidate */
1743 		return 1;
1744 	}
1745 #endif
1746 
1747 	if ((phys_curr & input->mask) == input->value) {
1748 		if ((input->type == INPUT_TYPE_STD) &&
1749 		    (input->high_timer == 0)) {
1750 			input->high_timer++;
1751 			if (input->u.std.press_fct != NULL)
1752 				input->u.std.press_fct(input->u.std.press_data);
1753 		} else if (input->type == INPUT_TYPE_KBD) {
1754 			/* will turn on the light */
1755 			keypressed = 1;
1756 
1757 			if (input->high_timer == 0) {
1758 				char *press_str = input->u.kbd.press_str;
1759 				if (press_str[0])
1760 					keypad_send_key(press_str,
1761 							sizeof(input->u.kbd.press_str));
1762 			}
1763 
1764 			if (input->u.kbd.repeat_str[0]) {
1765 				char *repeat_str = input->u.kbd.repeat_str;
1766 				if (input->high_timer >= KEYPAD_REP_START) {
1767 					input->high_timer -= KEYPAD_REP_DELAY;
1768 					keypad_send_key(repeat_str,
1769 							sizeof(input->u.kbd.repeat_str));
1770 				}
1771 				/* we will need to come back here soon */
1772 				inputs_stable = 0;
1773 			}
1774 
1775 			if (input->high_timer < 255)
1776 				input->high_timer++;
1777 		}
1778 		return 1;
1779 	} else {
1780 		/* else signal falling down. Let's fall through. */
1781 		input->state = INPUT_ST_FALLING;
1782 		input->fall_timer = 0;
1783 	}
1784 	return 0;
1785 }
1786 
input_state_falling(struct logical_input * input)1787 static inline void input_state_falling(struct logical_input *input)
1788 {
1789 #if 0
1790 	/* FIXME !!! same comment as in input_state_high */
1791 	if (((phys_prev & input->mask) == input->value)
1792 	    && ((phys_curr & input->mask) > input->value)) {
1793 		input->state = INPUT_ST_LOW;	/* invalidate */
1794 		return;
1795 	}
1796 #endif
1797 
1798 	if ((phys_curr & input->mask) == input->value) {
1799 		if (input->type == INPUT_TYPE_KBD) {
1800 			/* will turn on the light */
1801 			keypressed = 1;
1802 
1803 			if (input->u.kbd.repeat_str[0]) {
1804 				char *repeat_str = input->u.kbd.repeat_str;
1805 				if (input->high_timer >= KEYPAD_REP_START)
1806 					input->high_timer -= KEYPAD_REP_DELAY;
1807 					keypad_send_key(repeat_str,
1808 							sizeof(input->u.kbd.repeat_str));
1809 				/* we will need to come back here soon */
1810 				inputs_stable = 0;
1811 			}
1812 
1813 			if (input->high_timer < 255)
1814 				input->high_timer++;
1815 		}
1816 		input->state = INPUT_ST_HIGH;
1817 	} else if (input->fall_timer >= input->fall_time) {
1818 		/* call release event */
1819 		if (input->type == INPUT_TYPE_STD) {
1820 			void (*release_fct)(int) = input->u.std.release_fct;
1821 			if (release_fct != NULL)
1822 				release_fct(input->u.std.release_data);
1823 		} else if (input->type == INPUT_TYPE_KBD) {
1824 			char *release_str = input->u.kbd.release_str;
1825 			if (release_str[0])
1826 				keypad_send_key(release_str,
1827 						sizeof(input->u.kbd.release_str));
1828 		}
1829 
1830 		input->state = INPUT_ST_LOW;
1831 	} else {
1832 		input->fall_timer++;
1833 		inputs_stable = 0;
1834 	}
1835 }
1836 
panel_process_inputs(void)1837 static void panel_process_inputs(void)
1838 {
1839 	struct list_head *item;
1840 	struct logical_input *input;
1841 
1842 	keypressed = 0;
1843 	inputs_stable = 1;
1844 	list_for_each(item, &logical_inputs) {
1845 		input = list_entry(item, struct logical_input, list);
1846 
1847 		switch (input->state) {
1848 		case INPUT_ST_LOW:
1849 			if ((phys_curr & input->mask) != input->value)
1850 				break;
1851 			/* if all needed ones were already set previously,
1852 			 * this means that this logical signal has been
1853 			 * activated by the releasing of another combined
1854 			 * signal, so we don't want to match.
1855 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1856 			 *     don't match A.
1857 			 */
1858 			if ((phys_prev & input->mask) == input->value)
1859 				break;
1860 			input->rise_timer = 0;
1861 			input->state = INPUT_ST_RISING;
1862 			/* no break here, fall through */
1863 		case INPUT_ST_RISING:
1864 			if ((phys_curr & input->mask) != input->value) {
1865 				input->state = INPUT_ST_LOW;
1866 				break;
1867 			}
1868 			if (input->rise_timer < input->rise_time) {
1869 				inputs_stable = 0;
1870 				input->rise_timer++;
1871 				break;
1872 			}
1873 			input->high_timer = 0;
1874 			input->state = INPUT_ST_HIGH;
1875 			/* no break here, fall through */
1876 		case INPUT_ST_HIGH:
1877 			if (input_state_high(input))
1878 				break;
1879 			/* no break here, fall through */
1880 		case INPUT_ST_FALLING:
1881 			input_state_falling(input);
1882 		}
1883 	}
1884 }
1885 
panel_scan_timer(void)1886 static void panel_scan_timer(void)
1887 {
1888 	if (keypad_enabled && keypad_initialized) {
1889 		if (spin_trylock_irq(&pprt_lock)) {
1890 			phys_scan_contacts();
1891 
1892 			/* no need for the parport anymore */
1893 			spin_unlock_irq(&pprt_lock);
1894 		}
1895 
1896 		if (!inputs_stable || phys_curr != phys_prev)
1897 			panel_process_inputs();
1898 	}
1899 
1900 	if (lcd_enabled && lcd_initialized) {
1901 		if (keypressed) {
1902 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1903 				lcd_backlight(1);
1904 			light_tempo = FLASH_LIGHT_TEMPO;
1905 		} else if (light_tempo > 0) {
1906 			light_tempo--;
1907 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1908 				lcd_backlight(0);
1909 		}
1910 	}
1911 
1912 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1913 }
1914 
init_scan_timer(void)1915 static void init_scan_timer(void)
1916 {
1917 	if (scan_timer.function != NULL)
1918 		return;		/* already started */
1919 
1920 	init_timer(&scan_timer);
1921 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1922 	scan_timer.data = 0;
1923 	scan_timer.function = (void *)&panel_scan_timer;
1924 	add_timer(&scan_timer);
1925 }
1926 
1927 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1928  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1929  * corresponding to out and in bits respectively.
1930  * returns 1 if ok, 0 if error (in which case, nothing is written).
1931  */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)1932 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1933 			   char *imask, char *omask)
1934 {
1935 	static char sigtab[10] = "EeSsPpAaBb";
1936 	char im, om;
1937 	pmask_t m, v;
1938 
1939 	om = im = m = v = 0ULL;
1940 	while (*name) {
1941 		int in, out, bit, neg;
1942 		for (in = 0; (in < sizeof(sigtab)) &&
1943 			     (sigtab[in] != *name); in++)
1944 			;
1945 		if (in >= sizeof(sigtab))
1946 			return 0;	/* input name not found */
1947 		neg = (in & 1);	/* odd (lower) names are negated */
1948 		in >>= 1;
1949 		im |= (1 << in);
1950 
1951 		name++;
1952 		if (isdigit(*name)) {
1953 			out = *name - '0';
1954 			om |= (1 << out);
1955 		} else if (*name == '-')
1956 			out = 8;
1957 		else
1958 			return 0;	/* unknown bit name */
1959 
1960 		bit = (out * 5) + in;
1961 
1962 		m |= 1ULL << bit;
1963 		if (!neg)
1964 			v |= 1ULL << bit;
1965 		name++;
1966 	}
1967 	*mask = m;
1968 	*value = v;
1969 	if (imask)
1970 		*imask |= im;
1971 	if (omask)
1972 		*omask |= om;
1973 	return 1;
1974 }
1975 
1976 /* tries to bind a key to the signal name <name>. The key will send the
1977  * strings <press>, <repeat>, <release> for these respective events.
1978  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1979  */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)1980 static struct logical_input *panel_bind_key(const char *name, const char *press,
1981 					    const char *repeat,
1982 					    const char *release)
1983 {
1984 	struct logical_input *key;
1985 
1986 	key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1987 	if (!key)
1988 		return NULL;
1989 
1990 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1991 			     &scan_mask_o)) {
1992 		kfree(key);
1993 		return NULL;
1994 	}
1995 
1996 	key->type = INPUT_TYPE_KBD;
1997 	key->state = INPUT_ST_LOW;
1998 	key->rise_time = 1;
1999 	key->fall_time = 1;
2000 
2001 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2002 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2003 	strncpy(key->u.kbd.release_str, release,
2004 		sizeof(key->u.kbd.release_str));
2005 	list_add(&key->list, &logical_inputs);
2006 	return key;
2007 }
2008 
2009 #if 0
2010 /* tries to bind a callback function to the signal name <name>. The function
2011  * <press_fct> will be called with the <press_data> arg when the signal is
2012  * activated, and so on for <release_fct>/<release_data>
2013  * Returns the pointer to the new signal if ok, NULL if the signal could not
2014  * be bound.
2015  */
2016 static struct logical_input *panel_bind_callback(char *name,
2017 						 void (*press_fct) (int),
2018 						 int press_data,
2019 						 void (*release_fct) (int),
2020 						 int release_data)
2021 {
2022 	struct logical_input *callback;
2023 
2024 	callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2025 	if (!callback)
2026 		return NULL;
2027 
2028 	memset(callback, 0, sizeof(struct logical_input));
2029 	if (!input_name2mask(name, &callback->mask, &callback->value,
2030 			     &scan_mask_i, &scan_mask_o))
2031 		return NULL;
2032 
2033 	callback->type = INPUT_TYPE_STD;
2034 	callback->state = INPUT_ST_LOW;
2035 	callback->rise_time = 1;
2036 	callback->fall_time = 1;
2037 	callback->u.std.press_fct = press_fct;
2038 	callback->u.std.press_data = press_data;
2039 	callback->u.std.release_fct = release_fct;
2040 	callback->u.std.release_data = release_data;
2041 	list_add(&callback->list, &logical_inputs);
2042 	return callback;
2043 }
2044 #endif
2045 
keypad_init(void)2046 static void keypad_init(void)
2047 {
2048 	int keynum;
2049 	init_waitqueue_head(&keypad_read_wait);
2050 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2051 
2052 	/* Let's create all known keys */
2053 
2054 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2055 		panel_bind_key(keypad_profile[keynum][0],
2056 			       keypad_profile[keynum][1],
2057 			       keypad_profile[keynum][2],
2058 			       keypad_profile[keynum][3]);
2059 	}
2060 
2061 	init_scan_timer();
2062 	keypad_initialized = 1;
2063 }
2064 
2065 /**************************************************/
2066 /* device initialization                          */
2067 /**************************************************/
2068 
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2069 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2070 			    void *unused)
2071 {
2072 	if (lcd_enabled && lcd_initialized) {
2073 		switch (code) {
2074 		case SYS_DOWN:
2075 			panel_lcd_print
2076 			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2077 			break;
2078 		case SYS_HALT:
2079 			panel_lcd_print
2080 			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2081 			break;
2082 		case SYS_POWER_OFF:
2083 			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2084 			break;
2085 		default:
2086 			break;
2087 		}
2088 	}
2089 	return NOTIFY_DONE;
2090 }
2091 
2092 static struct notifier_block panel_notifier = {
2093 	panel_notify_sys,
2094 	NULL,
2095 	0
2096 };
2097 
panel_attach(struct parport * port)2098 static void panel_attach(struct parport *port)
2099 {
2100 	if (port->number != parport)
2101 		return;
2102 
2103 	if (pprt) {
2104 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2105 		       __func__, port->number, parport);
2106 		return;
2107 	}
2108 
2109 	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2110 				       NULL,
2111 				       /*PARPORT_DEV_EXCL */
2112 				       0, (void *)&pprt);
2113 	if (pprt == NULL) {
2114 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2115 		       __func__, port->number, parport);
2116 		return;
2117 	}
2118 
2119 	if (parport_claim(pprt)) {
2120 		pr_err("could not claim access to parport%d. Aborting.\n",
2121 		       parport);
2122 		goto err_unreg_device;
2123 	}
2124 
2125 	/* must init LCD first, just in case an IRQ from the keypad is
2126 	 * generated at keypad init
2127 	 */
2128 	if (lcd_enabled) {
2129 		lcd_init();
2130 		if (misc_register(&lcd_dev))
2131 			goto err_unreg_device;
2132 	}
2133 
2134 	if (keypad_enabled) {
2135 		keypad_init();
2136 		if (misc_register(&keypad_dev))
2137 			goto err_lcd_unreg;
2138 	}
2139 	return;
2140 
2141 err_lcd_unreg:
2142 	if (lcd_enabled)
2143 		misc_deregister(&lcd_dev);
2144 err_unreg_device:
2145 	parport_unregister_device(pprt);
2146 	pprt = NULL;
2147 }
2148 
panel_detach(struct parport * port)2149 static void panel_detach(struct parport *port)
2150 {
2151 	if (port->number != parport)
2152 		return;
2153 
2154 	if (!pprt) {
2155 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2156 		       __func__, port->number, parport);
2157 		return;
2158 	}
2159 
2160 	if (keypad_enabled && keypad_initialized) {
2161 		misc_deregister(&keypad_dev);
2162 		keypad_initialized = 0;
2163 	}
2164 
2165 	if (lcd_enabled && lcd_initialized) {
2166 		misc_deregister(&lcd_dev);
2167 		lcd_initialized = 0;
2168 	}
2169 
2170 	parport_release(pprt);
2171 	parport_unregister_device(pprt);
2172 	pprt = NULL;
2173 }
2174 
2175 static struct parport_driver panel_driver = {
2176 	.name = "panel",
2177 	.attach = panel_attach,
2178 	.detach = panel_detach,
2179 };
2180 
2181 /* init function */
panel_init(void)2182 static int panel_init(void)
2183 {
2184 	/* for backwards compatibility */
2185 	if (keypad_type < 0)
2186 		keypad_type = keypad_enabled;
2187 
2188 	if (lcd_type < 0)
2189 		lcd_type = lcd_enabled;
2190 
2191 	if (parport < 0)
2192 		parport = DEFAULT_PARPORT;
2193 
2194 	/* take care of an eventual profile */
2195 	switch (profile) {
2196 	case PANEL_PROFILE_CUSTOM:
2197 		/* custom profile */
2198 		if (keypad_type < 0)
2199 			keypad_type = DEFAULT_KEYPAD;
2200 		if (lcd_type < 0)
2201 			lcd_type = DEFAULT_LCD;
2202 		break;
2203 	case PANEL_PROFILE_OLD:
2204 		/* 8 bits, 2*16, old keypad */
2205 		if (keypad_type < 0)
2206 			keypad_type = KEYPAD_TYPE_OLD;
2207 		if (lcd_type < 0)
2208 			lcd_type = LCD_TYPE_OLD;
2209 		if (lcd_width < 0)
2210 			lcd_width = 16;
2211 		if (lcd_hwidth < 0)
2212 			lcd_hwidth = 16;
2213 		break;
2214 	case PANEL_PROFILE_NEW:
2215 		/* serial, 2*16, new keypad */
2216 		if (keypad_type < 0)
2217 			keypad_type = KEYPAD_TYPE_NEW;
2218 		if (lcd_type < 0)
2219 			lcd_type = LCD_TYPE_KS0074;
2220 		break;
2221 	case PANEL_PROFILE_HANTRONIX:
2222 		/* 8 bits, 2*16 hantronix-like, no keypad */
2223 		if (keypad_type < 0)
2224 			keypad_type = KEYPAD_TYPE_NONE;
2225 		if (lcd_type < 0)
2226 			lcd_type = LCD_TYPE_HANTRONIX;
2227 		break;
2228 	case PANEL_PROFILE_NEXCOM:
2229 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2230 		if (keypad_type < 0)
2231 			keypad_type = KEYPAD_TYPE_NEXCOM;
2232 		if (lcd_type < 0)
2233 			lcd_type = LCD_TYPE_NEXCOM;
2234 		break;
2235 	case PANEL_PROFILE_LARGE:
2236 		/* 8 bits, 2*40, old keypad */
2237 		if (keypad_type < 0)
2238 			keypad_type = KEYPAD_TYPE_OLD;
2239 		if (lcd_type < 0)
2240 			lcd_type = LCD_TYPE_OLD;
2241 		break;
2242 	}
2243 
2244 	lcd_enabled = (lcd_type > 0);
2245 	keypad_enabled = (keypad_type > 0);
2246 
2247 	switch (keypad_type) {
2248 	case KEYPAD_TYPE_OLD:
2249 		keypad_profile = old_keypad_profile;
2250 		break;
2251 	case KEYPAD_TYPE_NEW:
2252 		keypad_profile = new_keypad_profile;
2253 		break;
2254 	case KEYPAD_TYPE_NEXCOM:
2255 		keypad_profile = nexcom_keypad_profile;
2256 		break;
2257 	default:
2258 		keypad_profile = NULL;
2259 		break;
2260 	}
2261 
2262 	/* tells various subsystems about the fact that we are initializing */
2263 	init_in_progress = 1;
2264 
2265 	if (parport_register_driver(&panel_driver)) {
2266 		pr_err("could not register with parport. Aborting.\n");
2267 		return -EIO;
2268 	}
2269 
2270 	if (!lcd_enabled && !keypad_enabled) {
2271 		/* no device enabled, let's release the parport */
2272 		if (pprt) {
2273 			parport_release(pprt);
2274 			parport_unregister_device(pprt);
2275 			pprt = NULL;
2276 		}
2277 		parport_unregister_driver(&panel_driver);
2278 		pr_err("driver version " PANEL_VERSION " disabled.\n");
2279 		return -ENODEV;
2280 	}
2281 
2282 	register_reboot_notifier(&panel_notifier);
2283 
2284 	if (pprt)
2285 		pr_info("driver version " PANEL_VERSION
2286 			" registered on parport%d (io=0x%lx).\n", parport,
2287 			pprt->port->base);
2288 	else
2289 		pr_info("driver version " PANEL_VERSION
2290 			" not yet registered\n");
2291 	/* tells various subsystems about the fact that initialization
2292 	   is finished */
2293 	init_in_progress = 0;
2294 	return 0;
2295 }
2296 
panel_init_module(void)2297 static int __init panel_init_module(void)
2298 {
2299 	return panel_init();
2300 }
2301 
panel_cleanup_module(void)2302 static void __exit panel_cleanup_module(void)
2303 {
2304 	unregister_reboot_notifier(&panel_notifier);
2305 
2306 	if (scan_timer.function != NULL)
2307 		del_timer(&scan_timer);
2308 
2309 	if (pprt != NULL) {
2310 		if (keypad_enabled) {
2311 			misc_deregister(&keypad_dev);
2312 			keypad_initialized = 0;
2313 		}
2314 
2315 		if (lcd_enabled) {
2316 			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2317 					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2318 			misc_deregister(&lcd_dev);
2319 			lcd_initialized = 0;
2320 		}
2321 
2322 		/* TODO: free all input signals */
2323 		parport_release(pprt);
2324 		parport_unregister_device(pprt);
2325 		pprt = NULL;
2326 	}
2327 	parport_unregister_driver(&panel_driver);
2328 }
2329 
2330 module_init(panel_init_module);
2331 module_exit(panel_cleanup_module);
2332 MODULE_AUTHOR("Willy Tarreau");
2333 MODULE_LICENSE("GPL");
2334 
2335 /*
2336  * Local variables:
2337  *  c-indent-level: 4
2338  *  tab-width: 8
2339  * End:
2340  */
2341