1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
135
136 /* macros to simplify use of the parallel port */
137 #define r_ctr(x) (parport_read_control((x)->port))
138 #define r_dtr(x) (parport_read_data((x)->port))
139 #define r_str(x) (parport_read_status((x)->port))
140 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
141 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
142
143 /* this defines which bits are to be used and which ones to be ignored */
144 /* logical or of the output bits involved in the scan matrix */
145 static __u8 scan_mask_o;
146 /* logical or of the input bits involved in the scan matrix */
147 static __u8 scan_mask_i;
148
149 typedef __u64 pmask_t;
150
151 enum input_type {
152 INPUT_TYPE_STD,
153 INPUT_TYPE_KBD,
154 };
155
156 enum input_state {
157 INPUT_ST_LOW,
158 INPUT_ST_RISING,
159 INPUT_ST_HIGH,
160 INPUT_ST_FALLING,
161 };
162
163 struct logical_input {
164 struct list_head list;
165 pmask_t mask;
166 pmask_t value;
167 enum input_type type;
168 enum input_state state;
169 __u8 rise_time, fall_time;
170 __u8 rise_timer, fall_timer, high_timer;
171
172 union {
173 struct { /* valid when type == INPUT_TYPE_STD */
174 void (*press_fct) (int);
175 void (*release_fct) (int);
176 int press_data;
177 int release_data;
178 } std;
179 struct { /* valid when type == INPUT_TYPE_KBD */
180 /* strings can be non null-terminated */
181 char press_str[sizeof(void *) + sizeof(int)];
182 char repeat_str[sizeof(void *) + sizeof(int)];
183 char release_str[sizeof(void *) + sizeof(int)];
184 } kbd;
185 } u;
186 };
187
188 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
189
190 /* physical contacts history
191 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
192 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
193 * corresponds to the ground.
194 * Within each group, bits are stored in the same order as read on the port :
195 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
196 * So, each __u64 (or pmask_t) is represented like this :
197 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
198 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199 */
200
201 /* what has just been read from the I/O ports */
202 static pmask_t phys_read;
203 /* previous phys_read */
204 static pmask_t phys_read_prev;
205 /* stabilized phys_read (phys_read|phys_read_prev) */
206 static pmask_t phys_curr;
207 /* previous phys_curr */
208 static pmask_t phys_prev;
209 /* 0 means that at least one logical signal needs be computed */
210 static char inputs_stable;
211
212 /* these variables are specific to the keypad */
213 static char keypad_buffer[KEYPAD_BUFFER];
214 static int keypad_buflen;
215 static int keypad_start;
216 static char keypressed;
217 static wait_queue_head_t keypad_read_wait;
218
219 /* lcd-specific variables */
220
221 /* contains the LCD config state */
222 static unsigned long int lcd_flags;
223 /* contains the LCD X offset */
224 static unsigned long int lcd_addr_x;
225 /* contains the LCD Y offset */
226 static unsigned long int lcd_addr_y;
227 /* current escape sequence, 0 terminated */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1];
229 /* not in escape state. >=0 = escape cmd len */
230 static int lcd_escape_len = -1;
231
232 /*
233 * Bit masks to convert LCD signals to parallel port outputs.
234 * _d_ are values for data port, _c_ are for control port.
235 * [0] = signal OFF, [1] = signal ON, [2] = mask
236 */
237 #define BIT_CLR 0
238 #define BIT_SET 1
239 #define BIT_MSK 2
240 #define BIT_STATES 3
241 /*
242 * one entry for each bit on the LCD
243 */
244 #define LCD_BIT_E 0
245 #define LCD_BIT_RS 1
246 #define LCD_BIT_RW 2
247 #define LCD_BIT_BL 3
248 #define LCD_BIT_CL 4
249 #define LCD_BIT_DA 5
250 #define LCD_BITS 6
251
252 /*
253 * each bit can be either connected to a DATA or CTRL port
254 */
255 #define LCD_PORT_C 0
256 #define LCD_PORT_D 1
257 #define LCD_PORTS 2
258
259 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260
261 /*
262 * LCD protocols
263 */
264 #define LCD_PROTO_PARALLEL 0
265 #define LCD_PROTO_SERIAL 1
266 #define LCD_PROTO_TI_DA8XX_LCD 2
267
268 /*
269 * LCD character sets
270 */
271 #define LCD_CHARSET_NORMAL 0
272 #define LCD_CHARSET_KS0074 1
273
274 /*
275 * LCD types
276 */
277 #define LCD_TYPE_NONE 0
278 #define LCD_TYPE_OLD 1
279 #define LCD_TYPE_KS0074 2
280 #define LCD_TYPE_HANTRONIX 3
281 #define LCD_TYPE_NEXCOM 4
282 #define LCD_TYPE_CUSTOM 5
283
284 /*
285 * keypad types
286 */
287 #define KEYPAD_TYPE_NONE 0
288 #define KEYPAD_TYPE_OLD 1
289 #define KEYPAD_TYPE_NEW 2
290 #define KEYPAD_TYPE_NEXCOM 3
291
292 /*
293 * panel profiles
294 */
295 #define PANEL_PROFILE_CUSTOM 0
296 #define PANEL_PROFILE_OLD 1
297 #define PANEL_PROFILE_NEW 2
298 #define PANEL_PROFILE_HANTRONIX 3
299 #define PANEL_PROFILE_NEXCOM 4
300 #define PANEL_PROFILE_LARGE 5
301
302 /*
303 * Construct custom config from the kernel's configuration
304 */
305 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
306 #define DEFAULT_PARPORT 0
307 #define DEFAULT_LCD LCD_TYPE_OLD
308 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
309 #define DEFAULT_LCD_WIDTH 40
310 #define DEFAULT_LCD_BWIDTH 40
311 #define DEFAULT_LCD_HWIDTH 64
312 #define DEFAULT_LCD_HEIGHT 2
313 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
314
315 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
316 #define DEFAULT_LCD_PIN_RS PIN_SELECP
317 #define DEFAULT_LCD_PIN_RW PIN_INITP
318 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
319 #define DEFAULT_LCD_PIN_SDA PIN_D0
320 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
321 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
322
323 #ifdef CONFIG_PANEL_PROFILE
324 #undef DEFAULT_PROFILE
325 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
326 #endif
327
328 #ifdef CONFIG_PANEL_PARPORT
329 #undef DEFAULT_PARPORT
330 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
331 #endif
332
333 #if DEFAULT_PROFILE == 0 /* custom */
334 #ifdef CONFIG_PANEL_KEYPAD
335 #undef DEFAULT_KEYPAD
336 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
337 #endif
338
339 #ifdef CONFIG_PANEL_LCD
340 #undef DEFAULT_LCD
341 #define DEFAULT_LCD CONFIG_PANEL_LCD
342 #endif
343
344 #ifdef CONFIG_PANEL_LCD_WIDTH
345 #undef DEFAULT_LCD_WIDTH
346 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
347 #endif
348
349 #ifdef CONFIG_PANEL_LCD_BWIDTH
350 #undef DEFAULT_LCD_BWIDTH
351 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
352 #endif
353
354 #ifdef CONFIG_PANEL_LCD_HWIDTH
355 #undef DEFAULT_LCD_HWIDTH
356 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
357 #endif
358
359 #ifdef CONFIG_PANEL_LCD_HEIGHT
360 #undef DEFAULT_LCD_HEIGHT
361 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
362 #endif
363
364 #ifdef CONFIG_PANEL_LCD_PROTO
365 #undef DEFAULT_LCD_PROTO
366 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
367 #endif
368
369 #ifdef CONFIG_PANEL_LCD_PIN_E
370 #undef DEFAULT_LCD_PIN_E
371 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
372 #endif
373
374 #ifdef CONFIG_PANEL_LCD_PIN_RS
375 #undef DEFAULT_LCD_PIN_RS
376 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
377 #endif
378
379 #ifdef CONFIG_PANEL_LCD_PIN_RW
380 #undef DEFAULT_LCD_PIN_RW
381 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
382 #endif
383
384 #ifdef CONFIG_PANEL_LCD_PIN_SCL
385 #undef DEFAULT_LCD_PIN_SCL
386 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
387 #endif
388
389 #ifdef CONFIG_PANEL_LCD_PIN_SDA
390 #undef DEFAULT_LCD_PIN_SDA
391 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
392 #endif
393
394 #ifdef CONFIG_PANEL_LCD_PIN_BL
395 #undef DEFAULT_LCD_PIN_BL
396 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
397 #endif
398
399 #ifdef CONFIG_PANEL_LCD_CHARSET
400 #undef DEFAULT_LCD_CHARSET
401 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
402 #endif
403
404 #endif /* DEFAULT_PROFILE == 0 */
405
406 /* global variables */
407 static int keypad_open_cnt; /* #times opened */
408 static int lcd_open_cnt; /* #times opened */
409 static struct pardevice *pprt;
410
411 static int lcd_initialized;
412 static int keypad_initialized;
413
414 static int light_tempo;
415
416 static char lcd_must_clear;
417 static char lcd_left_shift;
418 static char init_in_progress;
419
420 static void (*lcd_write_cmd) (int);
421 static void (*lcd_write_data) (int);
422 static void (*lcd_clear_fast) (void);
423
424 static DEFINE_SPINLOCK(pprt_lock);
425 static struct timer_list scan_timer;
426
427 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428
429 static int parport = -1;
430 module_param(parport, int, 0000);
431 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432
433 static int lcd_height = -1;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436
437 static int lcd_width = -1;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440
441 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444
445 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448
449 static int lcd_enabled = -1;
450 module_param(lcd_enabled, int, 0000);
451 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452
453 static int keypad_enabled = -1;
454 module_param(keypad_enabled, int, 0000);
455 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456
457 static int lcd_type = -1;
458 module_param(lcd_type, int, 0000);
459 MODULE_PARM_DESC(lcd_type,
460 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
461 "3=hantronix //, 4=nexcom //, 5=compiled-in");
462
463 static int lcd_proto = -1;
464 module_param(lcd_proto, int, 0000);
465 MODULE_PARM_DESC(lcd_proto,
466 "LCD communication: 0=parallel (//), 1=serial,"
467 "2=TI LCD Interface");
468
469 static int lcd_charset = -1;
470 module_param(lcd_charset, int, 0000);
471 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
472
473 static int keypad_type = -1;
474 module_param(keypad_type, int, 0000);
475 MODULE_PARM_DESC(keypad_type,
476 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
477 "3=nexcom 4 keys");
478
479 static int profile = DEFAULT_PROFILE;
480 module_param(profile, int, 0000);
481 MODULE_PARM_DESC(profile,
482 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
483 "4=16x2 nexcom; default=40x2, old kp");
484
485 /*
486 * These are the parallel port pins the LCD control signals are connected to.
487 * Set this to 0 if the signal is not used. Set it to its opposite value
488 * (negative) if the signal is negated. -MAXINT is used to indicate that the
489 * pin has not been explicitly specified.
490 *
491 * WARNING! no check will be performed about collisions with keypad !
492 */
493
494 static int lcd_e_pin = PIN_NOT_SET;
495 module_param(lcd_e_pin, int, 0000);
496 MODULE_PARM_DESC(lcd_e_pin,
497 "# of the // port pin connected to LCD 'E' signal, "
498 "with polarity (-17..17)");
499
500 static int lcd_rs_pin = PIN_NOT_SET;
501 module_param(lcd_rs_pin, int, 0000);
502 MODULE_PARM_DESC(lcd_rs_pin,
503 "# of the // port pin connected to LCD 'RS' signal, "
504 "with polarity (-17..17)");
505
506 static int lcd_rw_pin = PIN_NOT_SET;
507 module_param(lcd_rw_pin, int, 0000);
508 MODULE_PARM_DESC(lcd_rw_pin,
509 "# of the // port pin connected to LCD 'RW' signal, "
510 "with polarity (-17..17)");
511
512 static int lcd_bl_pin = PIN_NOT_SET;
513 module_param(lcd_bl_pin, int, 0000);
514 MODULE_PARM_DESC(lcd_bl_pin,
515 "# of the // port pin connected to LCD backlight, "
516 "with polarity (-17..17)");
517
518 static int lcd_da_pin = PIN_NOT_SET;
519 module_param(lcd_da_pin, int, 0000);
520 MODULE_PARM_DESC(lcd_da_pin,
521 "# of the // port pin connected to serial LCD 'SDA' "
522 "signal, with polarity (-17..17)");
523
524 static int lcd_cl_pin = PIN_NOT_SET;
525 module_param(lcd_cl_pin, int, 0000);
526 MODULE_PARM_DESC(lcd_cl_pin,
527 "# of the // port pin connected to serial LCD 'SCL' "
528 "signal, with polarity (-17..17)");
529
530 static const unsigned char *lcd_char_conv;
531
532 /* for some LCD drivers (ks0074) we need a charset conversion table. */
533 static const unsigned char lcd_char_conv_ks0074[256] = {
534 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
535 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
536 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
537 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
538 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
539 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
540 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
541 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
542 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
543 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
544 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
545 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
546 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
547 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
548 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
549 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
550 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
551 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
552 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
553 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
554 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
555 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
556 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
557 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
558 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
559 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
560 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
561 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
562 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
563 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
564 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
565 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
566 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
567 };
568
569 static const char old_keypad_profile[][4][9] = {
570 {"S0", "Left\n", "Left\n", ""},
571 {"S1", "Down\n", "Down\n", ""},
572 {"S2", "Up\n", "Up\n", ""},
573 {"S3", "Right\n", "Right\n", ""},
574 {"S4", "Esc\n", "Esc\n", ""},
575 {"S5", "Ret\n", "Ret\n", ""},
576 {"", "", "", ""}
577 };
578
579 /* signals, press, repeat, release */
580 static const char new_keypad_profile[][4][9] = {
581 {"S0", "Left\n", "Left\n", ""},
582 {"S1", "Down\n", "Down\n", ""},
583 {"S2", "Up\n", "Up\n", ""},
584 {"S3", "Right\n", "Right\n", ""},
585 {"S4s5", "", "Esc\n", "Esc\n"},
586 {"s4S5", "", "Ret\n", "Ret\n"},
587 {"S4S5", "Help\n", "", ""},
588 /* add new signals above this line */
589 {"", "", "", ""}
590 };
591
592 /* signals, press, repeat, release */
593 static const char nexcom_keypad_profile[][4][9] = {
594 {"a-p-e-", "Down\n", "Down\n", ""},
595 {"a-p-E-", "Ret\n", "Ret\n", ""},
596 {"a-P-E-", "Esc\n", "Esc\n", ""},
597 {"a-P-e-", "Up\n", "Up\n", ""},
598 /* add new signals above this line */
599 {"", "", "", ""}
600 };
601
602 static const char (*keypad_profile)[4][9] = old_keypad_profile;
603
604 /* FIXME: this should be converted to a bit array containing signals states */
605 static struct {
606 unsigned char e; /* parallel LCD E (data latch on falling edge) */
607 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
608 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
609 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
610 unsigned char cl; /* serial LCD clock (latch on rising edge) */
611 unsigned char da; /* serial LCD data */
612 } bits;
613
614 static void init_scan_timer(void);
615
616 /* sets data port bits according to current signals values */
set_data_bits(void)617 static int set_data_bits(void)
618 {
619 int val, bit;
620
621 val = r_dtr(pprt);
622 for (bit = 0; bit < LCD_BITS; bit++)
623 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
624
625 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
626 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
627 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
628 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
629 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
630 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
631
632 w_dtr(pprt, val);
633 return val;
634 }
635
636 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)637 static int set_ctrl_bits(void)
638 {
639 int val, bit;
640
641 val = r_ctr(pprt);
642 for (bit = 0; bit < LCD_BITS; bit++)
643 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
644
645 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
646 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
647 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
648 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
649 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
650 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
651
652 w_ctr(pprt, val);
653 return val;
654 }
655
656 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)657 static void panel_set_bits(void)
658 {
659 set_data_bits();
660 set_ctrl_bits();
661 }
662
663 /*
664 * Converts a parallel port pin (from -25 to 25) to data and control ports
665 * masks, and data and control port bits. The signal will be considered
666 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
667 *
668 * Result will be used this way :
669 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
670 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
671 */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)672 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
673 {
674 int d_bit, c_bit, inv;
675
676 d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
677 d_val[2] = c_val[2] = 0xFF;
678
679 if (pin == 0)
680 return;
681
682 inv = (pin < 0);
683 if (inv)
684 pin = -pin;
685
686 d_bit = c_bit = 0;
687
688 switch (pin) {
689 case PIN_STROBE: /* strobe, inverted */
690 c_bit = PNL_PSTROBE;
691 inv = !inv;
692 break;
693 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
694 d_bit = 1 << (pin - 2);
695 break;
696 case PIN_AUTOLF: /* autofeed, inverted */
697 c_bit = PNL_PAUTOLF;
698 inv = !inv;
699 break;
700 case PIN_INITP: /* init, direct */
701 c_bit = PNL_PINITP;
702 break;
703 case PIN_SELECP: /* select_in, inverted */
704 c_bit = PNL_PSELECP;
705 inv = !inv;
706 break;
707 default: /* unknown pin, ignore */
708 break;
709 }
710
711 if (c_bit) {
712 c_val[2] &= ~c_bit;
713 c_val[!inv] = c_bit;
714 } else if (d_bit) {
715 d_val[2] &= ~d_bit;
716 d_val[!inv] = d_bit;
717 }
718 }
719
720 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)721 static void long_sleep(int ms)
722 {
723
724 if (in_interrupt())
725 mdelay(ms);
726 else {
727 current->state = TASK_INTERRUPTIBLE;
728 schedule_timeout((ms * HZ + 999) / 1000);
729 }
730 }
731
732 /* send a serial byte to the LCD panel. The caller is responsible for locking
733 if needed. */
lcd_send_serial(int byte)734 static void lcd_send_serial(int byte)
735 {
736 int bit;
737
738 /* the data bit is set on D0, and the clock on STROBE.
739 * LCD reads D0 on STROBE's rising edge. */
740 for (bit = 0; bit < 8; bit++) {
741 bits.cl = BIT_CLR; /* CLK low */
742 panel_set_bits();
743 bits.da = byte & 1;
744 panel_set_bits();
745 udelay(2); /* maintain the data during 2 us before CLK up */
746 bits.cl = BIT_SET; /* CLK high */
747 panel_set_bits();
748 udelay(1); /* maintain the strobe during 1 us */
749 byte >>= 1;
750 }
751 }
752
753 /* turn the backlight on or off */
lcd_backlight(int on)754 static void lcd_backlight(int on)
755 {
756 if (lcd_bl_pin == PIN_NONE)
757 return;
758
759 /* The backlight is activated by setting the AUTOFEED line to +5V */
760 spin_lock_irq(&pprt_lock);
761 bits.bl = on;
762 panel_set_bits();
763 spin_unlock_irq(&pprt_lock);
764 }
765
766 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)767 static void lcd_write_cmd_s(int cmd)
768 {
769 spin_lock_irq(&pprt_lock);
770 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
771 lcd_send_serial(cmd & 0x0F);
772 lcd_send_serial((cmd >> 4) & 0x0F);
773 udelay(40); /* the shortest command takes at least 40 us */
774 spin_unlock_irq(&pprt_lock);
775 }
776
777 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)778 static void lcd_write_data_s(int data)
779 {
780 spin_lock_irq(&pprt_lock);
781 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
782 lcd_send_serial(data & 0x0F);
783 lcd_send_serial((data >> 4) & 0x0F);
784 udelay(40); /* the shortest data takes at least 40 us */
785 spin_unlock_irq(&pprt_lock);
786 }
787
788 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)789 static void lcd_write_cmd_p8(int cmd)
790 {
791 spin_lock_irq(&pprt_lock);
792 /* present the data to the data port */
793 w_dtr(pprt, cmd);
794 udelay(20); /* maintain the data during 20 us before the strobe */
795
796 bits.e = BIT_SET;
797 bits.rs = BIT_CLR;
798 bits.rw = BIT_CLR;
799 set_ctrl_bits();
800
801 udelay(40); /* maintain the strobe during 40 us */
802
803 bits.e = BIT_CLR;
804 set_ctrl_bits();
805
806 udelay(120); /* the shortest command takes at least 120 us */
807 spin_unlock_irq(&pprt_lock);
808 }
809
810 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)811 static void lcd_write_data_p8(int data)
812 {
813 spin_lock_irq(&pprt_lock);
814 /* present the data to the data port */
815 w_dtr(pprt, data);
816 udelay(20); /* maintain the data during 20 us before the strobe */
817
818 bits.e = BIT_SET;
819 bits.rs = BIT_SET;
820 bits.rw = BIT_CLR;
821 set_ctrl_bits();
822
823 udelay(40); /* maintain the strobe during 40 us */
824
825 bits.e = BIT_CLR;
826 set_ctrl_bits();
827
828 udelay(45); /* the shortest data takes at least 45 us */
829 spin_unlock_irq(&pprt_lock);
830 }
831
832 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)833 static void lcd_write_cmd_tilcd(int cmd)
834 {
835 spin_lock_irq(&pprt_lock);
836 /* present the data to the control port */
837 w_ctr(pprt, cmd);
838 udelay(60);
839 spin_unlock_irq(&pprt_lock);
840 }
841
842 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)843 static void lcd_write_data_tilcd(int data)
844 {
845 spin_lock_irq(&pprt_lock);
846 /* present the data to the data port */
847 w_dtr(pprt, data);
848 udelay(60);
849 spin_unlock_irq(&pprt_lock);
850 }
851
lcd_gotoxy(void)852 static void lcd_gotoxy(void)
853 {
854 lcd_write_cmd(0x80 /* set DDRAM address */
855 | (lcd_addr_y ? lcd_hwidth : 0)
856 /* we force the cursor to stay at the end of the
857 line if it wants to go farther */
858 | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
859 (lcd_hwidth - 1) : lcd_bwidth - 1));
860 }
861
lcd_print(char c)862 static void lcd_print(char c)
863 {
864 if (lcd_addr_x < lcd_bwidth) {
865 if (lcd_char_conv != NULL)
866 c = lcd_char_conv[(unsigned char)c];
867 lcd_write_data(c);
868 lcd_addr_x++;
869 }
870 /* prevents the cursor from wrapping onto the next line */
871 if (lcd_addr_x == lcd_bwidth)
872 lcd_gotoxy();
873 }
874
875 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)876 static void lcd_clear_fast_s(void)
877 {
878 int pos;
879 lcd_addr_x = lcd_addr_y = 0;
880 lcd_gotoxy();
881
882 spin_lock_irq(&pprt_lock);
883 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
884 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
885 lcd_send_serial(' ' & 0x0F);
886 lcd_send_serial((' ' >> 4) & 0x0F);
887 udelay(40); /* the shortest data takes at least 40 us */
888 }
889 spin_unlock_irq(&pprt_lock);
890
891 lcd_addr_x = lcd_addr_y = 0;
892 lcd_gotoxy();
893 }
894
895 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)896 static void lcd_clear_fast_p8(void)
897 {
898 int pos;
899 lcd_addr_x = lcd_addr_y = 0;
900 lcd_gotoxy();
901
902 spin_lock_irq(&pprt_lock);
903 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904 /* present the data to the data port */
905 w_dtr(pprt, ' ');
906
907 /* maintain the data during 20 us before the strobe */
908 udelay(20);
909
910 bits.e = BIT_SET;
911 bits.rs = BIT_SET;
912 bits.rw = BIT_CLR;
913 set_ctrl_bits();
914
915 /* maintain the strobe during 40 us */
916 udelay(40);
917
918 bits.e = BIT_CLR;
919 set_ctrl_bits();
920
921 /* the shortest data takes at least 45 us */
922 udelay(45);
923 }
924 spin_unlock_irq(&pprt_lock);
925
926 lcd_addr_x = lcd_addr_y = 0;
927 lcd_gotoxy();
928 }
929
930 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)931 static void lcd_clear_fast_tilcd(void)
932 {
933 int pos;
934 lcd_addr_x = lcd_addr_y = 0;
935 lcd_gotoxy();
936
937 spin_lock_irq(&pprt_lock);
938 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
939 /* present the data to the data port */
940 w_dtr(pprt, ' ');
941 udelay(60);
942 }
943
944 spin_unlock_irq(&pprt_lock);
945
946 lcd_addr_x = lcd_addr_y = 0;
947 lcd_gotoxy();
948 }
949
950 /* clears the display and resets X/Y */
lcd_clear_display(void)951 static void lcd_clear_display(void)
952 {
953 lcd_write_cmd(0x01); /* clear display */
954 lcd_addr_x = lcd_addr_y = 0;
955 /* we must wait a few milliseconds (15) */
956 long_sleep(15);
957 }
958
lcd_init_display(void)959 static void lcd_init_display(void)
960 {
961
962 lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
963 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
964
965 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
966
967 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
968 long_sleep(10);
969 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
970 long_sleep(10);
971 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
972 long_sleep(10);
973
974 lcd_write_cmd(0x30 /* set font height and lines number */
975 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
976 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
977 );
978 long_sleep(10);
979
980 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
981 long_sleep(10);
982
983 lcd_write_cmd(0x08 /* set display mode */
984 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
985 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
986 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
987 );
988
989 lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
990
991 long_sleep(10);
992
993 /* entry mode set : increment, cursor shifting */
994 lcd_write_cmd(0x06);
995
996 lcd_clear_display();
997 }
998
999 /*
1000 * These are the file operation function for user access to /dev/lcd
1001 * This function can also be called from inside the kernel, by
1002 * setting file and ppos to NULL.
1003 *
1004 */
1005
handle_lcd_special_code(void)1006 static inline int handle_lcd_special_code(void)
1007 {
1008 /* LCD special codes */
1009
1010 int processed = 0;
1011
1012 char *esc = lcd_escape + 2;
1013 int oldflags = lcd_flags;
1014
1015 /* check for display mode flags */
1016 switch (*esc) {
1017 case 'D': /* Display ON */
1018 lcd_flags |= LCD_FLAG_D;
1019 processed = 1;
1020 break;
1021 case 'd': /* Display OFF */
1022 lcd_flags &= ~LCD_FLAG_D;
1023 processed = 1;
1024 break;
1025 case 'C': /* Cursor ON */
1026 lcd_flags |= LCD_FLAG_C;
1027 processed = 1;
1028 break;
1029 case 'c': /* Cursor OFF */
1030 lcd_flags &= ~LCD_FLAG_C;
1031 processed = 1;
1032 break;
1033 case 'B': /* Blink ON */
1034 lcd_flags |= LCD_FLAG_B;
1035 processed = 1;
1036 break;
1037 case 'b': /* Blink OFF */
1038 lcd_flags &= ~LCD_FLAG_B;
1039 processed = 1;
1040 break;
1041 case '+': /* Back light ON */
1042 lcd_flags |= LCD_FLAG_L;
1043 processed = 1;
1044 break;
1045 case '-': /* Back light OFF */
1046 lcd_flags &= ~LCD_FLAG_L;
1047 processed = 1;
1048 break;
1049 case '*':
1050 /* flash back light using the keypad timer */
1051 if (scan_timer.function != NULL) {
1052 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1053 lcd_backlight(1);
1054 light_tempo = FLASH_LIGHT_TEMPO;
1055 }
1056 processed = 1;
1057 break;
1058 case 'f': /* Small Font */
1059 lcd_flags &= ~LCD_FLAG_F;
1060 processed = 1;
1061 break;
1062 case 'F': /* Large Font */
1063 lcd_flags |= LCD_FLAG_F;
1064 processed = 1;
1065 break;
1066 case 'n': /* One Line */
1067 lcd_flags &= ~LCD_FLAG_N;
1068 processed = 1;
1069 break;
1070 case 'N': /* Two Lines */
1071 lcd_flags |= LCD_FLAG_N;
1072 break;
1073 case 'l': /* Shift Cursor Left */
1074 if (lcd_addr_x > 0) {
1075 /* back one char if not at end of line */
1076 if (lcd_addr_x < lcd_bwidth)
1077 lcd_write_cmd(0x10);
1078 lcd_addr_x--;
1079 }
1080 processed = 1;
1081 break;
1082 case 'r': /* shift cursor right */
1083 if (lcd_addr_x < lcd_width) {
1084 /* allow the cursor to pass the end of the line */
1085 if (lcd_addr_x <
1086 (lcd_bwidth - 1))
1087 lcd_write_cmd(0x14);
1088 lcd_addr_x++;
1089 }
1090 processed = 1;
1091 break;
1092 case 'L': /* shift display left */
1093 lcd_left_shift++;
1094 lcd_write_cmd(0x18);
1095 processed = 1;
1096 break;
1097 case 'R': /* shift display right */
1098 lcd_left_shift--;
1099 lcd_write_cmd(0x1C);
1100 processed = 1;
1101 break;
1102 case 'k': { /* kill end of line */
1103 int x;
1104 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1105 lcd_write_data(' ');
1106
1107 /* restore cursor position */
1108 lcd_gotoxy();
1109 processed = 1;
1110 break;
1111 }
1112 case 'I': /* reinitialize display */
1113 lcd_init_display();
1114 lcd_left_shift = 0;
1115 processed = 1;
1116 break;
1117 case 'G': {
1118 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1119 * and '7', representing the numerical ASCII code of the
1120 * redefined character, and <xx...xx> a sequence of 16
1121 * hex digits representing 8 bytes for each character.
1122 * Most LCDs will only use 5 lower bits of the 7 first
1123 * bytes.
1124 */
1125
1126 unsigned char cgbytes[8];
1127 unsigned char cgaddr;
1128 int cgoffset;
1129 int shift;
1130 char value;
1131 int addr;
1132
1133 if (strchr(esc, ';') == NULL)
1134 break;
1135
1136 esc++;
1137
1138 cgaddr = *(esc++) - '0';
1139 if (cgaddr > 7) {
1140 processed = 1;
1141 break;
1142 }
1143
1144 cgoffset = 0;
1145 shift = 0;
1146 value = 0;
1147 while (*esc && cgoffset < 8) {
1148 shift ^= 4;
1149 if (*esc >= '0' && *esc <= '9')
1150 value |= (*esc - '0') << shift;
1151 else if (*esc >= 'A' && *esc <= 'Z')
1152 value |= (*esc - 'A' + 10) << shift;
1153 else if (*esc >= 'a' && *esc <= 'z')
1154 value |= (*esc - 'a' + 10) << shift;
1155 else {
1156 esc++;
1157 continue;
1158 }
1159
1160 if (shift == 0) {
1161 cgbytes[cgoffset++] = value;
1162 value = 0;
1163 }
1164
1165 esc++;
1166 }
1167
1168 lcd_write_cmd(0x40 | (cgaddr * 8));
1169 for (addr = 0; addr < cgoffset; addr++)
1170 lcd_write_data(cgbytes[addr]);
1171
1172 /* ensures that we stop writing to CGRAM */
1173 lcd_gotoxy();
1174 processed = 1;
1175 break;
1176 }
1177 case 'x': /* gotoxy : LxXXX[yYYY]; */
1178 case 'y': /* gotoxy : LyYYY[xXXX]; */
1179 if (strchr(esc, ';') == NULL)
1180 break;
1181
1182 while (*esc) {
1183 if (*esc == 'x') {
1184 esc++;
1185 if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1186 break;
1187 } else if (*esc == 'y') {
1188 esc++;
1189 if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1190 break;
1191 } else
1192 break;
1193 }
1194
1195 lcd_gotoxy();
1196 processed = 1;
1197 break;
1198 }
1199
1200 /* Check whether one flag was changed */
1201 if (oldflags != lcd_flags) {
1202 /* check whether one of B,C,D flags were changed */
1203 if ((oldflags ^ lcd_flags) &
1204 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1205 /* set display mode */
1206 lcd_write_cmd(0x08
1207 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1208 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1209 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1210 /* check whether one of F,N flags was changed */
1211 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1212 lcd_write_cmd(0x30
1213 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1214 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1215 /* check whether L flag was changed */
1216 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1217 if (lcd_flags & (LCD_FLAG_L))
1218 lcd_backlight(1);
1219 else if (light_tempo == 0)
1220 /* switch off the light only when the tempo
1221 lighting is gone */
1222 lcd_backlight(0);
1223 }
1224 }
1225
1226 return processed;
1227 }
1228
lcd_write(struct file * file,const char * buf,size_t count,loff_t * ppos)1229 static ssize_t lcd_write(struct file *file,
1230 const char *buf, size_t count, loff_t *ppos)
1231 {
1232 const char *tmp = buf;
1233 char c;
1234
1235 for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1236 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1237 /* let's be a little nice with other processes
1238 that need some CPU */
1239 schedule();
1240
1241 if (ppos == NULL && file == NULL)
1242 /* let's not use get_user() from the kernel ! */
1243 c = *tmp;
1244 else if (get_user(c, tmp))
1245 return -EFAULT;
1246
1247 /* first, we'll test if we're in escape mode */
1248 if ((c != '\n') && lcd_escape_len >= 0) {
1249 /* yes, let's add this char to the buffer */
1250 lcd_escape[lcd_escape_len++] = c;
1251 lcd_escape[lcd_escape_len] = 0;
1252 } else {
1253 /* aborts any previous escape sequence */
1254 lcd_escape_len = -1;
1255
1256 switch (c) {
1257 case LCD_ESCAPE_CHAR:
1258 /* start of an escape sequence */
1259 lcd_escape_len = 0;
1260 lcd_escape[lcd_escape_len] = 0;
1261 break;
1262 case '\b':
1263 /* go back one char and clear it */
1264 if (lcd_addr_x > 0) {
1265 /* check if we're not at the
1266 end of the line */
1267 if (lcd_addr_x < lcd_bwidth)
1268 /* back one char */
1269 lcd_write_cmd(0x10);
1270 lcd_addr_x--;
1271 }
1272 /* replace with a space */
1273 lcd_write_data(' ');
1274 /* back one char again */
1275 lcd_write_cmd(0x10);
1276 break;
1277 case '\014':
1278 /* quickly clear the display */
1279 lcd_clear_fast();
1280 break;
1281 case '\n':
1282 /* flush the remainder of the current line and
1283 go to the beginning of the next line */
1284 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1285 lcd_write_data(' ');
1286 lcd_addr_x = 0;
1287 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1288 lcd_gotoxy();
1289 break;
1290 case '\r':
1291 /* go to the beginning of the same line */
1292 lcd_addr_x = 0;
1293 lcd_gotoxy();
1294 break;
1295 case '\t':
1296 /* print a space instead of the tab */
1297 lcd_print(' ');
1298 break;
1299 default:
1300 /* simply print this char */
1301 lcd_print(c);
1302 break;
1303 }
1304 }
1305
1306 /* now we'll see if we're in an escape mode and if the current
1307 escape sequence can be understood. */
1308 if (lcd_escape_len >= 2) {
1309 int processed = 0;
1310
1311 if (!strcmp(lcd_escape, "[2J")) {
1312 /* clear the display */
1313 lcd_clear_fast();
1314 processed = 1;
1315 } else if (!strcmp(lcd_escape, "[H")) {
1316 /* cursor to home */
1317 lcd_addr_x = lcd_addr_y = 0;
1318 lcd_gotoxy();
1319 processed = 1;
1320 }
1321 /* codes starting with ^[[L */
1322 else if ((lcd_escape_len >= 3) &&
1323 (lcd_escape[0] == '[') &&
1324 (lcd_escape[1] == 'L')) {
1325 processed = handle_lcd_special_code();
1326 }
1327
1328 /* LCD special escape codes */
1329 /* flush the escape sequence if it's been processed
1330 or if it is getting too long. */
1331 if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1332 lcd_escape_len = -1;
1333 } /* escape codes */
1334 }
1335
1336 return tmp - buf;
1337 }
1338
lcd_open(struct inode * inode,struct file * file)1339 static int lcd_open(struct inode *inode, struct file *file)
1340 {
1341 if (lcd_open_cnt)
1342 return -EBUSY; /* open only once at a time */
1343
1344 if (file->f_mode & FMODE_READ) /* device is write-only */
1345 return -EPERM;
1346
1347 if (lcd_must_clear) {
1348 lcd_clear_display();
1349 lcd_must_clear = 0;
1350 }
1351 lcd_open_cnt++;
1352 return nonseekable_open(inode, file);
1353 }
1354
lcd_release(struct inode * inode,struct file * file)1355 static int lcd_release(struct inode *inode, struct file *file)
1356 {
1357 lcd_open_cnt--;
1358 return 0;
1359 }
1360
1361 static const struct file_operations lcd_fops = {
1362 .write = lcd_write,
1363 .open = lcd_open,
1364 .release = lcd_release,
1365 .llseek = no_llseek,
1366 };
1367
1368 static struct miscdevice lcd_dev = {
1369 LCD_MINOR,
1370 "lcd",
1371 &lcd_fops
1372 };
1373
1374 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1375 static void panel_lcd_print(const char *s)
1376 {
1377 if (lcd_enabled && lcd_initialized)
1378 lcd_write(NULL, s, strlen(s), NULL);
1379 }
1380
1381 /* initialize the LCD driver */
lcd_init(void)1382 static void lcd_init(void)
1383 {
1384 switch (lcd_type) {
1385 case LCD_TYPE_OLD:
1386 /* parallel mode, 8 bits */
1387 if (lcd_proto < 0)
1388 lcd_proto = LCD_PROTO_PARALLEL;
1389 if (lcd_charset < 0)
1390 lcd_charset = LCD_CHARSET_NORMAL;
1391 if (lcd_e_pin == PIN_NOT_SET)
1392 lcd_e_pin = PIN_STROBE;
1393 if (lcd_rs_pin == PIN_NOT_SET)
1394 lcd_rs_pin = PIN_AUTOLF;
1395
1396 if (lcd_width < 0)
1397 lcd_width = 40;
1398 if (lcd_bwidth < 0)
1399 lcd_bwidth = 40;
1400 if (lcd_hwidth < 0)
1401 lcd_hwidth = 64;
1402 if (lcd_height < 0)
1403 lcd_height = 2;
1404 break;
1405 case LCD_TYPE_KS0074:
1406 /* serial mode, ks0074 */
1407 if (lcd_proto < 0)
1408 lcd_proto = LCD_PROTO_SERIAL;
1409 if (lcd_charset < 0)
1410 lcd_charset = LCD_CHARSET_KS0074;
1411 if (lcd_bl_pin == PIN_NOT_SET)
1412 lcd_bl_pin = PIN_AUTOLF;
1413 if (lcd_cl_pin == PIN_NOT_SET)
1414 lcd_cl_pin = PIN_STROBE;
1415 if (lcd_da_pin == PIN_NOT_SET)
1416 lcd_da_pin = PIN_D0;
1417
1418 if (lcd_width < 0)
1419 lcd_width = 16;
1420 if (lcd_bwidth < 0)
1421 lcd_bwidth = 40;
1422 if (lcd_hwidth < 0)
1423 lcd_hwidth = 16;
1424 if (lcd_height < 0)
1425 lcd_height = 2;
1426 break;
1427 case LCD_TYPE_NEXCOM:
1428 /* parallel mode, 8 bits, generic */
1429 if (lcd_proto < 0)
1430 lcd_proto = LCD_PROTO_PARALLEL;
1431 if (lcd_charset < 0)
1432 lcd_charset = LCD_CHARSET_NORMAL;
1433 if (lcd_e_pin == PIN_NOT_SET)
1434 lcd_e_pin = PIN_AUTOLF;
1435 if (lcd_rs_pin == PIN_NOT_SET)
1436 lcd_rs_pin = PIN_SELECP;
1437 if (lcd_rw_pin == PIN_NOT_SET)
1438 lcd_rw_pin = PIN_INITP;
1439
1440 if (lcd_width < 0)
1441 lcd_width = 16;
1442 if (lcd_bwidth < 0)
1443 lcd_bwidth = 40;
1444 if (lcd_hwidth < 0)
1445 lcd_hwidth = 64;
1446 if (lcd_height < 0)
1447 lcd_height = 2;
1448 break;
1449 case LCD_TYPE_CUSTOM:
1450 /* customer-defined */
1451 if (lcd_proto < 0)
1452 lcd_proto = DEFAULT_LCD_PROTO;
1453 if (lcd_charset < 0)
1454 lcd_charset = DEFAULT_LCD_CHARSET;
1455 /* default geometry will be set later */
1456 break;
1457 case LCD_TYPE_HANTRONIX:
1458 /* parallel mode, 8 bits, hantronix-like */
1459 default:
1460 if (lcd_proto < 0)
1461 lcd_proto = LCD_PROTO_PARALLEL;
1462 if (lcd_charset < 0)
1463 lcd_charset = LCD_CHARSET_NORMAL;
1464 if (lcd_e_pin == PIN_NOT_SET)
1465 lcd_e_pin = PIN_STROBE;
1466 if (lcd_rs_pin == PIN_NOT_SET)
1467 lcd_rs_pin = PIN_SELECP;
1468
1469 if (lcd_width < 0)
1470 lcd_width = 16;
1471 if (lcd_bwidth < 0)
1472 lcd_bwidth = 40;
1473 if (lcd_hwidth < 0)
1474 lcd_hwidth = 64;
1475 if (lcd_height < 0)
1476 lcd_height = 2;
1477 break;
1478 }
1479
1480 /* this is used to catch wrong and default values */
1481 if (lcd_width <= 0)
1482 lcd_width = DEFAULT_LCD_WIDTH;
1483 if (lcd_bwidth <= 0)
1484 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1485 if (lcd_hwidth <= 0)
1486 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1487 if (lcd_height <= 0)
1488 lcd_height = DEFAULT_LCD_HEIGHT;
1489
1490 if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1491 lcd_write_cmd = lcd_write_cmd_s;
1492 lcd_write_data = lcd_write_data_s;
1493 lcd_clear_fast = lcd_clear_fast_s;
1494
1495 if (lcd_cl_pin == PIN_NOT_SET)
1496 lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1497 if (lcd_da_pin == PIN_NOT_SET)
1498 lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1499
1500 } else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1501 lcd_write_cmd = lcd_write_cmd_p8;
1502 lcd_write_data = lcd_write_data_p8;
1503 lcd_clear_fast = lcd_clear_fast_p8;
1504
1505 if (lcd_e_pin == PIN_NOT_SET)
1506 lcd_e_pin = DEFAULT_LCD_PIN_E;
1507 if (lcd_rs_pin == PIN_NOT_SET)
1508 lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1509 if (lcd_rw_pin == PIN_NOT_SET)
1510 lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1511 } else {
1512 lcd_write_cmd = lcd_write_cmd_tilcd;
1513 lcd_write_data = lcd_write_data_tilcd;
1514 lcd_clear_fast = lcd_clear_fast_tilcd;
1515 }
1516
1517 if (lcd_bl_pin == PIN_NOT_SET)
1518 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1519
1520 if (lcd_e_pin == PIN_NOT_SET)
1521 lcd_e_pin = PIN_NONE;
1522 if (lcd_rs_pin == PIN_NOT_SET)
1523 lcd_rs_pin = PIN_NONE;
1524 if (lcd_rw_pin == PIN_NOT_SET)
1525 lcd_rw_pin = PIN_NONE;
1526 if (lcd_bl_pin == PIN_NOT_SET)
1527 lcd_bl_pin = PIN_NONE;
1528 if (lcd_cl_pin == PIN_NOT_SET)
1529 lcd_cl_pin = PIN_NONE;
1530 if (lcd_da_pin == PIN_NOT_SET)
1531 lcd_da_pin = PIN_NONE;
1532
1533 if (lcd_charset < 0)
1534 lcd_charset = DEFAULT_LCD_CHARSET;
1535
1536 if (lcd_charset == LCD_CHARSET_KS0074)
1537 lcd_char_conv = lcd_char_conv_ks0074;
1538 else
1539 lcd_char_conv = NULL;
1540
1541 if (lcd_bl_pin != PIN_NONE)
1542 init_scan_timer();
1543
1544 pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1545 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1546 pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1547 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1548 pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1549 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1550 pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1551 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1552 pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1553 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1554 pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1555 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1556
1557 /* before this line, we must NOT send anything to the display.
1558 * Since lcd_init_display() needs to write data, we have to
1559 * enable mark the LCD initialized just before. */
1560 lcd_initialized = 1;
1561 lcd_init_display();
1562
1563 /* display a short message */
1564 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1565 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1566 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1567 #endif
1568 #else
1569 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1570 PANEL_VERSION);
1571 #endif
1572 lcd_addr_x = lcd_addr_y = 0;
1573 /* clear the display on the next device opening */
1574 lcd_must_clear = 1;
1575 lcd_gotoxy();
1576 }
1577
1578 /*
1579 * These are the file operation function for user access to /dev/keypad
1580 */
1581
keypad_read(struct file * file,char * buf,size_t count,loff_t * ppos)1582 static ssize_t keypad_read(struct file *file,
1583 char *buf, size_t count, loff_t *ppos)
1584 {
1585
1586 unsigned i = *ppos;
1587 char *tmp = buf;
1588
1589 if (keypad_buflen == 0) {
1590 if (file->f_flags & O_NONBLOCK)
1591 return -EAGAIN;
1592
1593 interruptible_sleep_on(&keypad_read_wait);
1594 if (signal_pending(current))
1595 return -EINTR;
1596 }
1597
1598 for (; count-- > 0 && (keypad_buflen > 0);
1599 ++i, ++tmp, --keypad_buflen) {
1600 put_user(keypad_buffer[keypad_start], tmp);
1601 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1602 }
1603 *ppos = i;
1604
1605 return tmp - buf;
1606 }
1607
keypad_open(struct inode * inode,struct file * file)1608 static int keypad_open(struct inode *inode, struct file *file)
1609 {
1610
1611 if (keypad_open_cnt)
1612 return -EBUSY; /* open only once at a time */
1613
1614 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1615 return -EPERM;
1616
1617 keypad_buflen = 0; /* flush the buffer on opening */
1618 keypad_open_cnt++;
1619 return 0;
1620 }
1621
keypad_release(struct inode * inode,struct file * file)1622 static int keypad_release(struct inode *inode, struct file *file)
1623 {
1624 keypad_open_cnt--;
1625 return 0;
1626 }
1627
1628 static const struct file_operations keypad_fops = {
1629 .read = keypad_read, /* read */
1630 .open = keypad_open, /* open */
1631 .release = keypad_release, /* close */
1632 .llseek = default_llseek,
1633 };
1634
1635 static struct miscdevice keypad_dev = {
1636 KEYPAD_MINOR,
1637 "keypad",
1638 &keypad_fops
1639 };
1640
keypad_send_key(const char * string,int max_len)1641 static void keypad_send_key(const char *string, int max_len)
1642 {
1643 if (init_in_progress)
1644 return;
1645
1646 /* send the key to the device only if a process is attached to it. */
1647 if (keypad_open_cnt > 0) {
1648 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1649 keypad_buffer[(keypad_start + keypad_buflen++) %
1650 KEYPAD_BUFFER] = *string++;
1651 }
1652 wake_up_interruptible(&keypad_read_wait);
1653 }
1654 }
1655
1656 /* this function scans all the bits involving at least one logical signal,
1657 * and puts the results in the bitfield "phys_read" (one bit per established
1658 * contact), and sets "phys_read_prev" to "phys_read".
1659 *
1660 * Note: to debounce input signals, we will only consider as switched a signal
1661 * which is stable across 2 measures. Signals which are different between two
1662 * reads will be kept as they previously were in their logical form (phys_prev).
1663 * A signal which has just switched will have a 1 in
1664 * (phys_read ^ phys_read_prev).
1665 */
phys_scan_contacts(void)1666 static void phys_scan_contacts(void)
1667 {
1668 int bit, bitval;
1669 char oldval;
1670 char bitmask;
1671 char gndmask;
1672
1673 phys_prev = phys_curr;
1674 phys_read_prev = phys_read;
1675 phys_read = 0; /* flush all signals */
1676
1677 /* keep track of old value, with all outputs disabled */
1678 oldval = r_dtr(pprt) | scan_mask_o;
1679 /* activate all keyboard outputs (active low) */
1680 w_dtr(pprt, oldval & ~scan_mask_o);
1681
1682 /* will have a 1 for each bit set to gnd */
1683 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1684 /* disable all matrix signals */
1685 w_dtr(pprt, oldval);
1686
1687 /* now that all outputs are cleared, the only active input bits are
1688 * directly connected to the ground
1689 */
1690
1691 /* 1 for each grounded input */
1692 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1693
1694 /* grounded inputs are signals 40-44 */
1695 phys_read |= (pmask_t) gndmask << 40;
1696
1697 if (bitmask != gndmask) {
1698 /* since clearing the outputs changed some inputs, we know
1699 * that some input signals are currently tied to some outputs.
1700 * So we'll scan them.
1701 */
1702 for (bit = 0; bit < 8; bit++) {
1703 bitval = 1 << bit;
1704
1705 if (!(scan_mask_o & bitval)) /* skip unused bits */
1706 continue;
1707
1708 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1709 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1710 phys_read |= (pmask_t) bitmask << (5 * bit);
1711 }
1712 w_dtr(pprt, oldval); /* disable all outputs */
1713 }
1714 /* this is easy: use old bits when they are flapping,
1715 * use new ones when stable */
1716 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1717 (phys_read & ~(phys_read ^ phys_read_prev));
1718 }
1719
input_state_high(struct logical_input * input)1720 static inline int input_state_high(struct logical_input *input)
1721 {
1722 #if 0
1723 /* FIXME:
1724 * this is an invalid test. It tries to catch
1725 * transitions from single-key to multiple-key, but
1726 * doesn't take into account the contacts polarity.
1727 * The only solution to the problem is to parse keys
1728 * from the most complex to the simplest combinations,
1729 * and mark them as 'caught' once a combination
1730 * matches, then unmatch it for all other ones.
1731 */
1732
1733 /* try to catch dangerous transitions cases :
1734 * someone adds a bit, so this signal was a false
1735 * positive resulting from a transition. We should
1736 * invalidate the signal immediately and not call the
1737 * release function.
1738 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1739 */
1740 if (((phys_prev & input->mask) == input->value)
1741 && ((phys_curr & input->mask) > input->value)) {
1742 input->state = INPUT_ST_LOW; /* invalidate */
1743 return 1;
1744 }
1745 #endif
1746
1747 if ((phys_curr & input->mask) == input->value) {
1748 if ((input->type == INPUT_TYPE_STD) &&
1749 (input->high_timer == 0)) {
1750 input->high_timer++;
1751 if (input->u.std.press_fct != NULL)
1752 input->u.std.press_fct(input->u.std.press_data);
1753 } else if (input->type == INPUT_TYPE_KBD) {
1754 /* will turn on the light */
1755 keypressed = 1;
1756
1757 if (input->high_timer == 0) {
1758 char *press_str = input->u.kbd.press_str;
1759 if (press_str[0])
1760 keypad_send_key(press_str,
1761 sizeof(input->u.kbd.press_str));
1762 }
1763
1764 if (input->u.kbd.repeat_str[0]) {
1765 char *repeat_str = input->u.kbd.repeat_str;
1766 if (input->high_timer >= KEYPAD_REP_START) {
1767 input->high_timer -= KEYPAD_REP_DELAY;
1768 keypad_send_key(repeat_str,
1769 sizeof(input->u.kbd.repeat_str));
1770 }
1771 /* we will need to come back here soon */
1772 inputs_stable = 0;
1773 }
1774
1775 if (input->high_timer < 255)
1776 input->high_timer++;
1777 }
1778 return 1;
1779 } else {
1780 /* else signal falling down. Let's fall through. */
1781 input->state = INPUT_ST_FALLING;
1782 input->fall_timer = 0;
1783 }
1784 return 0;
1785 }
1786
input_state_falling(struct logical_input * input)1787 static inline void input_state_falling(struct logical_input *input)
1788 {
1789 #if 0
1790 /* FIXME !!! same comment as in input_state_high */
1791 if (((phys_prev & input->mask) == input->value)
1792 && ((phys_curr & input->mask) > input->value)) {
1793 input->state = INPUT_ST_LOW; /* invalidate */
1794 return;
1795 }
1796 #endif
1797
1798 if ((phys_curr & input->mask) == input->value) {
1799 if (input->type == INPUT_TYPE_KBD) {
1800 /* will turn on the light */
1801 keypressed = 1;
1802
1803 if (input->u.kbd.repeat_str[0]) {
1804 char *repeat_str = input->u.kbd.repeat_str;
1805 if (input->high_timer >= KEYPAD_REP_START)
1806 input->high_timer -= KEYPAD_REP_DELAY;
1807 keypad_send_key(repeat_str,
1808 sizeof(input->u.kbd.repeat_str));
1809 /* we will need to come back here soon */
1810 inputs_stable = 0;
1811 }
1812
1813 if (input->high_timer < 255)
1814 input->high_timer++;
1815 }
1816 input->state = INPUT_ST_HIGH;
1817 } else if (input->fall_timer >= input->fall_time) {
1818 /* call release event */
1819 if (input->type == INPUT_TYPE_STD) {
1820 void (*release_fct)(int) = input->u.std.release_fct;
1821 if (release_fct != NULL)
1822 release_fct(input->u.std.release_data);
1823 } else if (input->type == INPUT_TYPE_KBD) {
1824 char *release_str = input->u.kbd.release_str;
1825 if (release_str[0])
1826 keypad_send_key(release_str,
1827 sizeof(input->u.kbd.release_str));
1828 }
1829
1830 input->state = INPUT_ST_LOW;
1831 } else {
1832 input->fall_timer++;
1833 inputs_stable = 0;
1834 }
1835 }
1836
panel_process_inputs(void)1837 static void panel_process_inputs(void)
1838 {
1839 struct list_head *item;
1840 struct logical_input *input;
1841
1842 keypressed = 0;
1843 inputs_stable = 1;
1844 list_for_each(item, &logical_inputs) {
1845 input = list_entry(item, struct logical_input, list);
1846
1847 switch (input->state) {
1848 case INPUT_ST_LOW:
1849 if ((phys_curr & input->mask) != input->value)
1850 break;
1851 /* if all needed ones were already set previously,
1852 * this means that this logical signal has been
1853 * activated by the releasing of another combined
1854 * signal, so we don't want to match.
1855 * eg: AB -(release B)-> A -(release A)-> 0 :
1856 * don't match A.
1857 */
1858 if ((phys_prev & input->mask) == input->value)
1859 break;
1860 input->rise_timer = 0;
1861 input->state = INPUT_ST_RISING;
1862 /* no break here, fall through */
1863 case INPUT_ST_RISING:
1864 if ((phys_curr & input->mask) != input->value) {
1865 input->state = INPUT_ST_LOW;
1866 break;
1867 }
1868 if (input->rise_timer < input->rise_time) {
1869 inputs_stable = 0;
1870 input->rise_timer++;
1871 break;
1872 }
1873 input->high_timer = 0;
1874 input->state = INPUT_ST_HIGH;
1875 /* no break here, fall through */
1876 case INPUT_ST_HIGH:
1877 if (input_state_high(input))
1878 break;
1879 /* no break here, fall through */
1880 case INPUT_ST_FALLING:
1881 input_state_falling(input);
1882 }
1883 }
1884 }
1885
panel_scan_timer(void)1886 static void panel_scan_timer(void)
1887 {
1888 if (keypad_enabled && keypad_initialized) {
1889 if (spin_trylock_irq(&pprt_lock)) {
1890 phys_scan_contacts();
1891
1892 /* no need for the parport anymore */
1893 spin_unlock_irq(&pprt_lock);
1894 }
1895
1896 if (!inputs_stable || phys_curr != phys_prev)
1897 panel_process_inputs();
1898 }
1899
1900 if (lcd_enabled && lcd_initialized) {
1901 if (keypressed) {
1902 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1903 lcd_backlight(1);
1904 light_tempo = FLASH_LIGHT_TEMPO;
1905 } else if (light_tempo > 0) {
1906 light_tempo--;
1907 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1908 lcd_backlight(0);
1909 }
1910 }
1911
1912 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1913 }
1914
init_scan_timer(void)1915 static void init_scan_timer(void)
1916 {
1917 if (scan_timer.function != NULL)
1918 return; /* already started */
1919
1920 init_timer(&scan_timer);
1921 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1922 scan_timer.data = 0;
1923 scan_timer.function = (void *)&panel_scan_timer;
1924 add_timer(&scan_timer);
1925 }
1926
1927 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1928 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1929 * corresponding to out and in bits respectively.
1930 * returns 1 if ok, 0 if error (in which case, nothing is written).
1931 */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)1932 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1933 char *imask, char *omask)
1934 {
1935 static char sigtab[10] = "EeSsPpAaBb";
1936 char im, om;
1937 pmask_t m, v;
1938
1939 om = im = m = v = 0ULL;
1940 while (*name) {
1941 int in, out, bit, neg;
1942 for (in = 0; (in < sizeof(sigtab)) &&
1943 (sigtab[in] != *name); in++)
1944 ;
1945 if (in >= sizeof(sigtab))
1946 return 0; /* input name not found */
1947 neg = (in & 1); /* odd (lower) names are negated */
1948 in >>= 1;
1949 im |= (1 << in);
1950
1951 name++;
1952 if (isdigit(*name)) {
1953 out = *name - '0';
1954 om |= (1 << out);
1955 } else if (*name == '-')
1956 out = 8;
1957 else
1958 return 0; /* unknown bit name */
1959
1960 bit = (out * 5) + in;
1961
1962 m |= 1ULL << bit;
1963 if (!neg)
1964 v |= 1ULL << bit;
1965 name++;
1966 }
1967 *mask = m;
1968 *value = v;
1969 if (imask)
1970 *imask |= im;
1971 if (omask)
1972 *omask |= om;
1973 return 1;
1974 }
1975
1976 /* tries to bind a key to the signal name <name>. The key will send the
1977 * strings <press>, <repeat>, <release> for these respective events.
1978 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1979 */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)1980 static struct logical_input *panel_bind_key(const char *name, const char *press,
1981 const char *repeat,
1982 const char *release)
1983 {
1984 struct logical_input *key;
1985
1986 key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1987 if (!key)
1988 return NULL;
1989
1990 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1991 &scan_mask_o)) {
1992 kfree(key);
1993 return NULL;
1994 }
1995
1996 key->type = INPUT_TYPE_KBD;
1997 key->state = INPUT_ST_LOW;
1998 key->rise_time = 1;
1999 key->fall_time = 1;
2000
2001 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2002 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2003 strncpy(key->u.kbd.release_str, release,
2004 sizeof(key->u.kbd.release_str));
2005 list_add(&key->list, &logical_inputs);
2006 return key;
2007 }
2008
2009 #if 0
2010 /* tries to bind a callback function to the signal name <name>. The function
2011 * <press_fct> will be called with the <press_data> arg when the signal is
2012 * activated, and so on for <release_fct>/<release_data>
2013 * Returns the pointer to the new signal if ok, NULL if the signal could not
2014 * be bound.
2015 */
2016 static struct logical_input *panel_bind_callback(char *name,
2017 void (*press_fct) (int),
2018 int press_data,
2019 void (*release_fct) (int),
2020 int release_data)
2021 {
2022 struct logical_input *callback;
2023
2024 callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2025 if (!callback)
2026 return NULL;
2027
2028 memset(callback, 0, sizeof(struct logical_input));
2029 if (!input_name2mask(name, &callback->mask, &callback->value,
2030 &scan_mask_i, &scan_mask_o))
2031 return NULL;
2032
2033 callback->type = INPUT_TYPE_STD;
2034 callback->state = INPUT_ST_LOW;
2035 callback->rise_time = 1;
2036 callback->fall_time = 1;
2037 callback->u.std.press_fct = press_fct;
2038 callback->u.std.press_data = press_data;
2039 callback->u.std.release_fct = release_fct;
2040 callback->u.std.release_data = release_data;
2041 list_add(&callback->list, &logical_inputs);
2042 return callback;
2043 }
2044 #endif
2045
keypad_init(void)2046 static void keypad_init(void)
2047 {
2048 int keynum;
2049 init_waitqueue_head(&keypad_read_wait);
2050 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2051
2052 /* Let's create all known keys */
2053
2054 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2055 panel_bind_key(keypad_profile[keynum][0],
2056 keypad_profile[keynum][1],
2057 keypad_profile[keynum][2],
2058 keypad_profile[keynum][3]);
2059 }
2060
2061 init_scan_timer();
2062 keypad_initialized = 1;
2063 }
2064
2065 /**************************************************/
2066 /* device initialization */
2067 /**************************************************/
2068
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2069 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2070 void *unused)
2071 {
2072 if (lcd_enabled && lcd_initialized) {
2073 switch (code) {
2074 case SYS_DOWN:
2075 panel_lcd_print
2076 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2077 break;
2078 case SYS_HALT:
2079 panel_lcd_print
2080 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2081 break;
2082 case SYS_POWER_OFF:
2083 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2084 break;
2085 default:
2086 break;
2087 }
2088 }
2089 return NOTIFY_DONE;
2090 }
2091
2092 static struct notifier_block panel_notifier = {
2093 panel_notify_sys,
2094 NULL,
2095 0
2096 };
2097
panel_attach(struct parport * port)2098 static void panel_attach(struct parport *port)
2099 {
2100 if (port->number != parport)
2101 return;
2102
2103 if (pprt) {
2104 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2105 __func__, port->number, parport);
2106 return;
2107 }
2108
2109 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2110 NULL,
2111 /*PARPORT_DEV_EXCL */
2112 0, (void *)&pprt);
2113 if (pprt == NULL) {
2114 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2115 __func__, port->number, parport);
2116 return;
2117 }
2118
2119 if (parport_claim(pprt)) {
2120 pr_err("could not claim access to parport%d. Aborting.\n",
2121 parport);
2122 goto err_unreg_device;
2123 }
2124
2125 /* must init LCD first, just in case an IRQ from the keypad is
2126 * generated at keypad init
2127 */
2128 if (lcd_enabled) {
2129 lcd_init();
2130 if (misc_register(&lcd_dev))
2131 goto err_unreg_device;
2132 }
2133
2134 if (keypad_enabled) {
2135 keypad_init();
2136 if (misc_register(&keypad_dev))
2137 goto err_lcd_unreg;
2138 }
2139 return;
2140
2141 err_lcd_unreg:
2142 if (lcd_enabled)
2143 misc_deregister(&lcd_dev);
2144 err_unreg_device:
2145 parport_unregister_device(pprt);
2146 pprt = NULL;
2147 }
2148
panel_detach(struct parport * port)2149 static void panel_detach(struct parport *port)
2150 {
2151 if (port->number != parport)
2152 return;
2153
2154 if (!pprt) {
2155 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2156 __func__, port->number, parport);
2157 return;
2158 }
2159
2160 if (keypad_enabled && keypad_initialized) {
2161 misc_deregister(&keypad_dev);
2162 keypad_initialized = 0;
2163 }
2164
2165 if (lcd_enabled && lcd_initialized) {
2166 misc_deregister(&lcd_dev);
2167 lcd_initialized = 0;
2168 }
2169
2170 parport_release(pprt);
2171 parport_unregister_device(pprt);
2172 pprt = NULL;
2173 }
2174
2175 static struct parport_driver panel_driver = {
2176 .name = "panel",
2177 .attach = panel_attach,
2178 .detach = panel_detach,
2179 };
2180
2181 /* init function */
panel_init(void)2182 static int panel_init(void)
2183 {
2184 /* for backwards compatibility */
2185 if (keypad_type < 0)
2186 keypad_type = keypad_enabled;
2187
2188 if (lcd_type < 0)
2189 lcd_type = lcd_enabled;
2190
2191 if (parport < 0)
2192 parport = DEFAULT_PARPORT;
2193
2194 /* take care of an eventual profile */
2195 switch (profile) {
2196 case PANEL_PROFILE_CUSTOM:
2197 /* custom profile */
2198 if (keypad_type < 0)
2199 keypad_type = DEFAULT_KEYPAD;
2200 if (lcd_type < 0)
2201 lcd_type = DEFAULT_LCD;
2202 break;
2203 case PANEL_PROFILE_OLD:
2204 /* 8 bits, 2*16, old keypad */
2205 if (keypad_type < 0)
2206 keypad_type = KEYPAD_TYPE_OLD;
2207 if (lcd_type < 0)
2208 lcd_type = LCD_TYPE_OLD;
2209 if (lcd_width < 0)
2210 lcd_width = 16;
2211 if (lcd_hwidth < 0)
2212 lcd_hwidth = 16;
2213 break;
2214 case PANEL_PROFILE_NEW:
2215 /* serial, 2*16, new keypad */
2216 if (keypad_type < 0)
2217 keypad_type = KEYPAD_TYPE_NEW;
2218 if (lcd_type < 0)
2219 lcd_type = LCD_TYPE_KS0074;
2220 break;
2221 case PANEL_PROFILE_HANTRONIX:
2222 /* 8 bits, 2*16 hantronix-like, no keypad */
2223 if (keypad_type < 0)
2224 keypad_type = KEYPAD_TYPE_NONE;
2225 if (lcd_type < 0)
2226 lcd_type = LCD_TYPE_HANTRONIX;
2227 break;
2228 case PANEL_PROFILE_NEXCOM:
2229 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2230 if (keypad_type < 0)
2231 keypad_type = KEYPAD_TYPE_NEXCOM;
2232 if (lcd_type < 0)
2233 lcd_type = LCD_TYPE_NEXCOM;
2234 break;
2235 case PANEL_PROFILE_LARGE:
2236 /* 8 bits, 2*40, old keypad */
2237 if (keypad_type < 0)
2238 keypad_type = KEYPAD_TYPE_OLD;
2239 if (lcd_type < 0)
2240 lcd_type = LCD_TYPE_OLD;
2241 break;
2242 }
2243
2244 lcd_enabled = (lcd_type > 0);
2245 keypad_enabled = (keypad_type > 0);
2246
2247 switch (keypad_type) {
2248 case KEYPAD_TYPE_OLD:
2249 keypad_profile = old_keypad_profile;
2250 break;
2251 case KEYPAD_TYPE_NEW:
2252 keypad_profile = new_keypad_profile;
2253 break;
2254 case KEYPAD_TYPE_NEXCOM:
2255 keypad_profile = nexcom_keypad_profile;
2256 break;
2257 default:
2258 keypad_profile = NULL;
2259 break;
2260 }
2261
2262 /* tells various subsystems about the fact that we are initializing */
2263 init_in_progress = 1;
2264
2265 if (parport_register_driver(&panel_driver)) {
2266 pr_err("could not register with parport. Aborting.\n");
2267 return -EIO;
2268 }
2269
2270 if (!lcd_enabled && !keypad_enabled) {
2271 /* no device enabled, let's release the parport */
2272 if (pprt) {
2273 parport_release(pprt);
2274 parport_unregister_device(pprt);
2275 pprt = NULL;
2276 }
2277 parport_unregister_driver(&panel_driver);
2278 pr_err("driver version " PANEL_VERSION " disabled.\n");
2279 return -ENODEV;
2280 }
2281
2282 register_reboot_notifier(&panel_notifier);
2283
2284 if (pprt)
2285 pr_info("driver version " PANEL_VERSION
2286 " registered on parport%d (io=0x%lx).\n", parport,
2287 pprt->port->base);
2288 else
2289 pr_info("driver version " PANEL_VERSION
2290 " not yet registered\n");
2291 /* tells various subsystems about the fact that initialization
2292 is finished */
2293 init_in_progress = 0;
2294 return 0;
2295 }
2296
panel_init_module(void)2297 static int __init panel_init_module(void)
2298 {
2299 return panel_init();
2300 }
2301
panel_cleanup_module(void)2302 static void __exit panel_cleanup_module(void)
2303 {
2304 unregister_reboot_notifier(&panel_notifier);
2305
2306 if (scan_timer.function != NULL)
2307 del_timer(&scan_timer);
2308
2309 if (pprt != NULL) {
2310 if (keypad_enabled) {
2311 misc_deregister(&keypad_dev);
2312 keypad_initialized = 0;
2313 }
2314
2315 if (lcd_enabled) {
2316 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2317 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2318 misc_deregister(&lcd_dev);
2319 lcd_initialized = 0;
2320 }
2321
2322 /* TODO: free all input signals */
2323 parport_release(pprt);
2324 parport_unregister_device(pprt);
2325 pprt = NULL;
2326 }
2327 parport_unregister_driver(&panel_driver);
2328 }
2329
2330 module_init(panel_init_module);
2331 module_exit(panel_cleanup_module);
2332 MODULE_AUTHOR("Willy Tarreau");
2333 MODULE_LICENSE("GPL");
2334
2335 /*
2336 * Local variables:
2337 * c-indent-level: 4
2338 * tab-width: 8
2339 * End:
2340 */
2341