1 /*
2 * TI Bandgap temperature sensor driver
3 *
4 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
5 * Author: J Keerthy <j-keerthy@ti.com>
6 * Author: Moiz Sonasath <m-sonasath@ti.com>
7 * Couple of fixes, DT and MFD adaptation:
8 * Eduardo Valentin <eduardo.valentin@ti.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * version 2 as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
22 * 02110-1301 USA
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/export.h>
28 #include <linux/init.h>
29 #include <linux/kernel.h>
30 #include <linux/interrupt.h>
31 #include <linux/clk.h>
32 #include <linux/gpio.h>
33 #include <linux/platform_device.h>
34 #include <linux/err.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/reboot.h>
38 #include <linux/of_device.h>
39 #include <linux/of_platform.h>
40 #include <linux/of_irq.h>
41 #include <linux/io.h>
42
43 #include "ti-bandgap.h"
44
45 /*** Helper functions to access registers and their bitfields ***/
46
47 /**
48 * ti_bandgap_readl() - simple read helper function
49 * @bgp: pointer to ti_bandgap structure
50 * @reg: desired register (offset) to be read
51 *
52 * Helper function to read bandgap registers. It uses the io remapped area.
53 * Return: the register value.
54 */
ti_bandgap_readl(struct ti_bandgap * bgp,u32 reg)55 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
56 {
57 return readl(bgp->base + reg);
58 }
59
60 /**
61 * ti_bandgap_writel() - simple write helper function
62 * @bgp: pointer to ti_bandgap structure
63 * @val: desired register value to be written
64 * @reg: desired register (offset) to be written
65 *
66 * Helper function to write bandgap registers. It uses the io remapped area.
67 */
ti_bandgap_writel(struct ti_bandgap * bgp,u32 val,u32 reg)68 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
69 {
70 writel(val, bgp->base + reg);
71 }
72
73 /**
74 * DOC: macro to update bits.
75 *
76 * RMW_BITS() - used to read, modify and update bandgap bitfields.
77 * The value passed will be shifted.
78 */
79 #define RMW_BITS(bgp, id, reg, mask, val) \
80 do { \
81 struct temp_sensor_registers *t; \
82 u32 r; \
83 \
84 t = bgp->conf->sensors[(id)].registers; \
85 r = ti_bandgap_readl(bgp, t->reg); \
86 r &= ~t->mask; \
87 r |= (val) << __ffs(t->mask); \
88 ti_bandgap_writel(bgp, r, t->reg); \
89 } while (0)
90
91 /*** Basic helper functions ***/
92
93 /**
94 * ti_bandgap_power() - controls the power state of a bandgap device
95 * @bgp: pointer to ti_bandgap structure
96 * @on: desired power state (1 - on, 0 - off)
97 *
98 * Used to power on/off a bandgap device instance. Only used on those
99 * that features tempsoff bit.
100 *
101 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
102 */
ti_bandgap_power(struct ti_bandgap * bgp,bool on)103 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
104 {
105 int i, ret = 0;
106
107 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) {
108 ret = -ENOTSUPP;
109 goto exit;
110 }
111
112 for (i = 0; i < bgp->conf->sensor_count; i++)
113 /* active on 0 */
114 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
115
116 exit:
117 return ret;
118 }
119
120 /**
121 * ti_bandgap_read_temp() - helper function to read sensor temperature
122 * @bgp: pointer to ti_bandgap structure
123 * @id: bandgap sensor id
124 *
125 * Function to concentrate the steps to read sensor temperature register.
126 * This function is desired because, depending on bandgap device version,
127 * it might be needed to freeze the bandgap state machine, before fetching
128 * the register value.
129 *
130 * Return: temperature in ADC values.
131 */
ti_bandgap_read_temp(struct ti_bandgap * bgp,int id)132 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
133 {
134 struct temp_sensor_registers *tsr;
135 u32 temp, reg;
136
137 tsr = bgp->conf->sensors[id].registers;
138 reg = tsr->temp_sensor_ctrl;
139
140 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
141 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
142 /*
143 * In case we cannot read from cur_dtemp / dtemp_0,
144 * then we read from the last valid temp read
145 */
146 reg = tsr->ctrl_dtemp_1;
147 }
148
149 /* read temperature */
150 temp = ti_bandgap_readl(bgp, reg);
151 temp &= tsr->bgap_dtemp_mask;
152
153 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
154 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
155
156 return temp;
157 }
158
159 /*** IRQ handlers ***/
160
161 /**
162 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
163 * @irq: IRQ number
164 * @data: private data (struct ti_bandgap *)
165 *
166 * This is the Talert handler. Use it only if bandgap device features
167 * HAS(TALERT). This handler goes over all sensors and checks their
168 * conditions and acts accordingly. In case there are events pending,
169 * it will reset the event mask to wait for the opposite event (next event).
170 * Every time there is a new event, it will be reported to thermal layer.
171 *
172 * Return: IRQ_HANDLED
173 */
ti_bandgap_talert_irq_handler(int irq,void * data)174 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
175 {
176 struct ti_bandgap *bgp = data;
177 struct temp_sensor_registers *tsr;
178 u32 t_hot = 0, t_cold = 0, ctrl;
179 int i;
180
181 spin_lock(&bgp->lock);
182 for (i = 0; i < bgp->conf->sensor_count; i++) {
183 tsr = bgp->conf->sensors[i].registers;
184 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
185
186 /* Read the status of t_hot */
187 t_hot = ctrl & tsr->status_hot_mask;
188
189 /* Read the status of t_cold */
190 t_cold = ctrl & tsr->status_cold_mask;
191
192 if (!t_cold && !t_hot)
193 continue;
194
195 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
196 /*
197 * One TALERT interrupt: Two sources
198 * If the interrupt is due to t_hot then mask t_hot and
199 * and unmask t_cold else mask t_cold and unmask t_hot
200 */
201 if (t_hot) {
202 ctrl &= ~tsr->mask_hot_mask;
203 ctrl |= tsr->mask_cold_mask;
204 } else if (t_cold) {
205 ctrl &= ~tsr->mask_cold_mask;
206 ctrl |= tsr->mask_hot_mask;
207 }
208
209 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
210
211 dev_dbg(bgp->dev,
212 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
213 __func__, bgp->conf->sensors[i].domain,
214 t_hot, t_cold);
215
216 /* report temperature to whom may concern */
217 if (bgp->conf->report_temperature)
218 bgp->conf->report_temperature(bgp, i);
219 }
220 spin_unlock(&bgp->lock);
221
222 return IRQ_HANDLED;
223 }
224
225 /**
226 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
227 * @irq: IRQ number
228 * @data: private data (unused)
229 *
230 * This is the Tshut handler. Use it only if bandgap device features
231 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
232 * the system.
233 *
234 * Return: IRQ_HANDLED
235 */
ti_bandgap_tshut_irq_handler(int irq,void * data)236 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
237 {
238 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
239 __func__);
240
241 orderly_poweroff(true);
242
243 return IRQ_HANDLED;
244 }
245
246 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/
247
248 /**
249 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
250 * @bgp: struct ti_bandgap pointer
251 * @adc_val: value in ADC representation
252 * @t: address where to write the resulting temperature in mCelsius
253 *
254 * Simple conversion from ADC representation to mCelsius. In case the ADC value
255 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
256 * The conversion table is indexed by the ADC values.
257 *
258 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
259 * argument is out of the ADC conv table range.
260 */
261 static
ti_bandgap_adc_to_mcelsius(struct ti_bandgap * bgp,int adc_val,int * t)262 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
263 {
264 const struct ti_bandgap_data *conf = bgp->conf;
265 int ret = 0;
266
267 /* look up for temperature in the table and return the temperature */
268 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) {
269 ret = -ERANGE;
270 goto exit;
271 }
272
273 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
274
275 exit:
276 return ret;
277 }
278
279 /**
280 * ti_bandgap_mcelsius_to_adc() - converts a mCelsius value to ADC scale
281 * @bgp: struct ti_bandgap pointer
282 * @temp: value in mCelsius
283 * @adc: address where to write the resulting temperature in ADC representation
284 *
285 * Simple conversion from mCelsius to ADC values. In case the temp value
286 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
287 * The conversion table is indexed by the ADC values.
288 *
289 * Return: 0 if conversion was successful, else -ERANGE in case the @temp
290 * argument is out of the ADC conv table range.
291 */
292 static
ti_bandgap_mcelsius_to_adc(struct ti_bandgap * bgp,long temp,int * adc)293 int ti_bandgap_mcelsius_to_adc(struct ti_bandgap *bgp, long temp, int *adc)
294 {
295 const struct ti_bandgap_data *conf = bgp->conf;
296 const int *conv_table = bgp->conf->conv_table;
297 int high, low, mid, ret = 0;
298
299 low = 0;
300 high = conf->adc_end_val - conf->adc_start_val;
301 mid = (high + low) / 2;
302
303 if (temp < conv_table[low] || temp > conv_table[high]) {
304 ret = -ERANGE;
305 goto exit;
306 }
307
308 while (low < high) {
309 if (temp < conv_table[mid])
310 high = mid - 1;
311 else
312 low = mid + 1;
313 mid = (low + high) / 2;
314 }
315
316 *adc = conf->adc_start_val + low;
317
318 exit:
319 return ret;
320 }
321
322 /**
323 * ti_bandgap_add_hyst() - add hysteresis (in mCelsius) to an ADC value
324 * @bgp: struct ti_bandgap pointer
325 * @adc_val: temperature value in ADC representation
326 * @hyst_val: hysteresis value in mCelsius
327 * @sum: address where to write the resulting temperature (in ADC scale)
328 *
329 * Adds an hysteresis value (in mCelsius) to a ADC temperature value.
330 *
331 * Return: 0 on success, -ERANGE otherwise.
332 */
333 static
ti_bandgap_add_hyst(struct ti_bandgap * bgp,int adc_val,int hyst_val,u32 * sum)334 int ti_bandgap_add_hyst(struct ti_bandgap *bgp, int adc_val, int hyst_val,
335 u32 *sum)
336 {
337 int temp, ret;
338
339 /*
340 * Need to add in the mcelsius domain, so we have a temperature
341 * the conv_table range
342 */
343 ret = ti_bandgap_adc_to_mcelsius(bgp, adc_val, &temp);
344 if (ret < 0)
345 goto exit;
346
347 temp += hyst_val;
348
349 ret = ti_bandgap_mcelsius_to_adc(bgp, temp, sum);
350
351 exit:
352 return ret;
353 }
354
355 /*** Helper functions handling device Alert/Shutdown signals ***/
356
357 /**
358 * ti_bandgap_unmask_interrupts() - unmasks the events of thot & tcold
359 * @bgp: struct ti_bandgap pointer
360 * @id: bandgap sensor id
361 * @t_hot: hot temperature value to trigger alert signal
362 * @t_cold: cold temperature value to trigger alert signal
363 *
364 * Checks the requested t_hot and t_cold values and configures the IRQ event
365 * masks accordingly. Call this function only if bandgap features HAS(TALERT).
366 */
ti_bandgap_unmask_interrupts(struct ti_bandgap * bgp,int id,u32 t_hot,u32 t_cold)367 static void ti_bandgap_unmask_interrupts(struct ti_bandgap *bgp, int id,
368 u32 t_hot, u32 t_cold)
369 {
370 struct temp_sensor_registers *tsr;
371 u32 temp, reg_val;
372
373 /* Read the current on die temperature */
374 temp = ti_bandgap_read_temp(bgp, id);
375
376 tsr = bgp->conf->sensors[id].registers;
377 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
378
379 if (temp < t_hot)
380 reg_val |= tsr->mask_hot_mask;
381 else
382 reg_val &= ~tsr->mask_hot_mask;
383
384 if (t_cold < temp)
385 reg_val |= tsr->mask_cold_mask;
386 else
387 reg_val &= ~tsr->mask_cold_mask;
388 ti_bandgap_writel(bgp, reg_val, tsr->bgap_mask_ctrl);
389 }
390
391 /**
392 * ti_bandgap_update_alert_threshold() - sequence to update thresholds
393 * @bgp: struct ti_bandgap pointer
394 * @id: bandgap sensor id
395 * @val: value (ADC) of a new threshold
396 * @hot: desired threshold to be updated. true if threshold hot, false if
397 * threshold cold
398 *
399 * It will program the required thresholds (hot and cold) for TALERT signal.
400 * This function can be used to update t_hot or t_cold, depending on @hot value.
401 * It checks the resulting t_hot and t_cold values, based on the new passed @val
402 * and configures the thresholds so that t_hot is always greater than t_cold.
403 * Call this function only if bandgap features HAS(TALERT).
404 *
405 * Return: 0 if no error, else corresponding error
406 */
ti_bandgap_update_alert_threshold(struct ti_bandgap * bgp,int id,int val,bool hot)407 static int ti_bandgap_update_alert_threshold(struct ti_bandgap *bgp, int id,
408 int val, bool hot)
409 {
410 struct temp_sensor_data *ts_data = bgp->conf->sensors[id].ts_data;
411 struct temp_sensor_registers *tsr;
412 u32 thresh_val, reg_val, t_hot, t_cold;
413 int err = 0;
414
415 tsr = bgp->conf->sensors[id].registers;
416
417 /* obtain the current value */
418 thresh_val = ti_bandgap_readl(bgp, tsr->bgap_threshold);
419 t_cold = (thresh_val & tsr->threshold_tcold_mask) >>
420 __ffs(tsr->threshold_tcold_mask);
421 t_hot = (thresh_val & tsr->threshold_thot_mask) >>
422 __ffs(tsr->threshold_thot_mask);
423 if (hot)
424 t_hot = val;
425 else
426 t_cold = val;
427
428 if (t_cold > t_hot) {
429 if (hot)
430 err = ti_bandgap_add_hyst(bgp, t_hot,
431 -ts_data->hyst_val,
432 &t_cold);
433 else
434 err = ti_bandgap_add_hyst(bgp, t_cold,
435 ts_data->hyst_val,
436 &t_hot);
437 }
438
439 /* write the new threshold values */
440 reg_val = thresh_val &
441 ~(tsr->threshold_thot_mask | tsr->threshold_tcold_mask);
442 reg_val |= (t_hot << __ffs(tsr->threshold_thot_mask)) |
443 (t_cold << __ffs(tsr->threshold_tcold_mask));
444 ti_bandgap_writel(bgp, reg_val, tsr->bgap_threshold);
445
446 if (err) {
447 dev_err(bgp->dev, "failed to reprogram thot threshold\n");
448 err = -EIO;
449 goto exit;
450 }
451
452 ti_bandgap_unmask_interrupts(bgp, id, t_hot, t_cold);
453 exit:
454 return err;
455 }
456
457 /**
458 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
459 * @bgp: struct ti_bandgap pointer
460 * @id: bandgap sensor id
461 *
462 * Checks if the bandgap pointer is valid and if the sensor id is also
463 * applicable.
464 *
465 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
466 * @id cannot index @bgp sensors.
467 */
ti_bandgap_validate(struct ti_bandgap * bgp,int id)468 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
469 {
470 int ret = 0;
471
472 if (IS_ERR_OR_NULL(bgp)) {
473 pr_err("%s: invalid bandgap pointer\n", __func__);
474 ret = -EINVAL;
475 goto exit;
476 }
477
478 if ((id < 0) || (id >= bgp->conf->sensor_count)) {
479 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
480 __func__, id);
481 ret = -ERANGE;
482 }
483
484 exit:
485 return ret;
486 }
487
488 /**
489 * _ti_bandgap_write_threshold() - helper to update TALERT t_cold or t_hot
490 * @bgp: struct ti_bandgap pointer
491 * @id: bandgap sensor id
492 * @val: value (mCelsius) of a new threshold
493 * @hot: desired threshold to be updated. true if threshold hot, false if
494 * threshold cold
495 *
496 * It will update the required thresholds (hot and cold) for TALERT signal.
497 * This function can be used to update t_hot or t_cold, depending on @hot value.
498 * Validates the mCelsius range and update the requested threshold.
499 * Call this function only if bandgap features HAS(TALERT).
500 *
501 * Return: 0 if no error, else corresponding error value.
502 */
_ti_bandgap_write_threshold(struct ti_bandgap * bgp,int id,int val,bool hot)503 static int _ti_bandgap_write_threshold(struct ti_bandgap *bgp, int id, int val,
504 bool hot)
505 {
506 struct temp_sensor_data *ts_data;
507 struct temp_sensor_registers *tsr;
508 u32 adc_val;
509 int ret;
510
511 ret = ti_bandgap_validate(bgp, id);
512 if (ret)
513 goto exit;
514
515 if (!TI_BANDGAP_HAS(bgp, TALERT)) {
516 ret = -ENOTSUPP;
517 goto exit;
518 }
519
520 ts_data = bgp->conf->sensors[id].ts_data;
521 tsr = bgp->conf->sensors[id].registers;
522 if (hot) {
523 if (val < ts_data->min_temp + ts_data->hyst_val)
524 ret = -EINVAL;
525 } else {
526 if (val > ts_data->max_temp + ts_data->hyst_val)
527 ret = -EINVAL;
528 }
529
530 if (ret)
531 goto exit;
532
533 ret = ti_bandgap_mcelsius_to_adc(bgp, val, &adc_val);
534 if (ret < 0)
535 goto exit;
536
537 spin_lock(&bgp->lock);
538 ret = ti_bandgap_update_alert_threshold(bgp, id, adc_val, hot);
539 spin_unlock(&bgp->lock);
540
541 exit:
542 return ret;
543 }
544
545 /**
546 * _ti_bandgap_read_threshold() - helper to read TALERT t_cold or t_hot
547 * @bgp: struct ti_bandgap pointer
548 * @id: bandgap sensor id
549 * @val: value (mCelsius) of a threshold
550 * @hot: desired threshold to be read. true if threshold hot, false if
551 * threshold cold
552 *
553 * It will fetch the required thresholds (hot and cold) for TALERT signal.
554 * This function can be used to read t_hot or t_cold, depending on @hot value.
555 * Call this function only if bandgap features HAS(TALERT).
556 *
557 * Return: 0 if no error, -ENOTSUPP if it has no TALERT support, or the
558 * corresponding error value if some operation fails.
559 */
_ti_bandgap_read_threshold(struct ti_bandgap * bgp,int id,int * val,bool hot)560 static int _ti_bandgap_read_threshold(struct ti_bandgap *bgp, int id,
561 int *val, bool hot)
562 {
563 struct temp_sensor_registers *tsr;
564 u32 temp, mask;
565 int ret = 0;
566
567 ret = ti_bandgap_validate(bgp, id);
568 if (ret)
569 goto exit;
570
571 if (!TI_BANDGAP_HAS(bgp, TALERT)) {
572 ret = -ENOTSUPP;
573 goto exit;
574 }
575
576 tsr = bgp->conf->sensors[id].registers;
577 if (hot)
578 mask = tsr->threshold_thot_mask;
579 else
580 mask = tsr->threshold_tcold_mask;
581
582 temp = ti_bandgap_readl(bgp, tsr->bgap_threshold);
583 temp = (temp & mask) >> __ffs(mask);
584 ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
585 if (ret) {
586 dev_err(bgp->dev, "failed to read thot\n");
587 ret = -EIO;
588 goto exit;
589 }
590
591 *val = temp;
592
593 exit:
594 return ret;
595 }
596
597 /*** Exposed APIs ***/
598
599 /**
600 * ti_bandgap_read_thot() - reads sensor current thot
601 * @bgp: pointer to bandgap instance
602 * @id: sensor id
603 * @thot: resulting current thot value
604 *
605 * Return: 0 on success or the proper error code
606 */
ti_bandgap_read_thot(struct ti_bandgap * bgp,int id,int * thot)607 int ti_bandgap_read_thot(struct ti_bandgap *bgp, int id, int *thot)
608 {
609 return _ti_bandgap_read_threshold(bgp, id, thot, true);
610 }
611
612 /**
613 * ti_bandgap_write_thot() - sets sensor current thot
614 * @bgp: pointer to bandgap instance
615 * @id: sensor id
616 * @val: desired thot value
617 *
618 * Return: 0 on success or the proper error code
619 */
ti_bandgap_write_thot(struct ti_bandgap * bgp,int id,int val)620 int ti_bandgap_write_thot(struct ti_bandgap *bgp, int id, int val)
621 {
622 return _ti_bandgap_write_threshold(bgp, id, val, true);
623 }
624
625 /**
626 * ti_bandgap_read_tcold() - reads sensor current tcold
627 * @bgp: pointer to bandgap instance
628 * @id: sensor id
629 * @tcold: resulting current tcold value
630 *
631 * Return: 0 on success or the proper error code
632 */
ti_bandgap_read_tcold(struct ti_bandgap * bgp,int id,int * tcold)633 int ti_bandgap_read_tcold(struct ti_bandgap *bgp, int id, int *tcold)
634 {
635 return _ti_bandgap_read_threshold(bgp, id, tcold, false);
636 }
637
638 /**
639 * ti_bandgap_write_tcold() - sets the sensor tcold
640 * @bgp: pointer to bandgap instance
641 * @id: sensor id
642 * @val: desired tcold value
643 *
644 * Return: 0 on success or the proper error code
645 */
ti_bandgap_write_tcold(struct ti_bandgap * bgp,int id,int val)646 int ti_bandgap_write_tcold(struct ti_bandgap *bgp, int id, int val)
647 {
648 return _ti_bandgap_write_threshold(bgp, id, val, false);
649 }
650
651 /**
652 * ti_bandgap_read_counter() - read the sensor counter
653 * @bgp: pointer to bandgap instance
654 * @id: sensor id
655 * @interval: resulting update interval in miliseconds
656 */
ti_bandgap_read_counter(struct ti_bandgap * bgp,int id,int * interval)657 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
658 int *interval)
659 {
660 struct temp_sensor_registers *tsr;
661 int time;
662
663 tsr = bgp->conf->sensors[id].registers;
664 time = ti_bandgap_readl(bgp, tsr->bgap_counter);
665 time = (time & tsr->counter_mask) >>
666 __ffs(tsr->counter_mask);
667 time = time * 1000 / bgp->clk_rate;
668 *interval = time;
669 }
670
671 /**
672 * ti_bandgap_read_counter_delay() - read the sensor counter delay
673 * @bgp: pointer to bandgap instance
674 * @id: sensor id
675 * @interval: resulting update interval in miliseconds
676 */
ti_bandgap_read_counter_delay(struct ti_bandgap * bgp,int id,int * interval)677 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
678 int *interval)
679 {
680 struct temp_sensor_registers *tsr;
681 int reg_val;
682
683 tsr = bgp->conf->sensors[id].registers;
684
685 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
686 reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
687 __ffs(tsr->mask_counter_delay_mask);
688 switch (reg_val) {
689 case 0:
690 *interval = 0;
691 break;
692 case 1:
693 *interval = 1;
694 break;
695 case 2:
696 *interval = 10;
697 break;
698 case 3:
699 *interval = 100;
700 break;
701 case 4:
702 *interval = 250;
703 break;
704 case 5:
705 *interval = 500;
706 break;
707 default:
708 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
709 reg_val);
710 }
711 }
712
713 /**
714 * ti_bandgap_read_update_interval() - read the sensor update interval
715 * @bgp: pointer to bandgap instance
716 * @id: sensor id
717 * @interval: resulting update interval in miliseconds
718 *
719 * Return: 0 on success or the proper error code
720 */
ti_bandgap_read_update_interval(struct ti_bandgap * bgp,int id,int * interval)721 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
722 int *interval)
723 {
724 int ret = 0;
725
726 ret = ti_bandgap_validate(bgp, id);
727 if (ret)
728 goto exit;
729
730 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
731 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
732 ret = -ENOTSUPP;
733 goto exit;
734 }
735
736 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
737 ti_bandgap_read_counter(bgp, id, interval);
738 goto exit;
739 }
740
741 ti_bandgap_read_counter_delay(bgp, id, interval);
742 exit:
743 return ret;
744 }
745
746 /**
747 * ti_bandgap_write_counter_delay() - set the counter_delay
748 * @bgp: pointer to bandgap instance
749 * @id: sensor id
750 * @interval: desired update interval in miliseconds
751 *
752 * Return: 0 on success or the proper error code
753 */
ti_bandgap_write_counter_delay(struct ti_bandgap * bgp,int id,u32 interval)754 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
755 u32 interval)
756 {
757 int rval;
758
759 switch (interval) {
760 case 0: /* Immediate conversion */
761 rval = 0x0;
762 break;
763 case 1: /* Conversion after ever 1ms */
764 rval = 0x1;
765 break;
766 case 10: /* Conversion after ever 10ms */
767 rval = 0x2;
768 break;
769 case 100: /* Conversion after ever 100ms */
770 rval = 0x3;
771 break;
772 case 250: /* Conversion after ever 250ms */
773 rval = 0x4;
774 break;
775 case 500: /* Conversion after ever 500ms */
776 rval = 0x5;
777 break;
778 default:
779 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
780 return -EINVAL;
781 }
782
783 spin_lock(&bgp->lock);
784 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
785 spin_unlock(&bgp->lock);
786
787 return 0;
788 }
789
790 /**
791 * ti_bandgap_write_counter() - set the bandgap sensor counter
792 * @bgp: pointer to bandgap instance
793 * @id: sensor id
794 * @interval: desired update interval in miliseconds
795 */
ti_bandgap_write_counter(struct ti_bandgap * bgp,int id,u32 interval)796 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
797 u32 interval)
798 {
799 interval = interval * bgp->clk_rate / 1000;
800 spin_lock(&bgp->lock);
801 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
802 spin_unlock(&bgp->lock);
803 }
804
805 /**
806 * ti_bandgap_write_update_interval() - set the update interval
807 * @bgp: pointer to bandgap instance
808 * @id: sensor id
809 * @interval: desired update interval in miliseconds
810 *
811 * Return: 0 on success or the proper error code
812 */
ti_bandgap_write_update_interval(struct ti_bandgap * bgp,int id,u32 interval)813 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
814 int id, u32 interval)
815 {
816 int ret = ti_bandgap_validate(bgp, id);
817 if (ret)
818 goto exit;
819
820 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
821 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
822 ret = -ENOTSUPP;
823 goto exit;
824 }
825
826 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
827 ti_bandgap_write_counter(bgp, id, interval);
828 goto exit;
829 }
830
831 ret = ti_bandgap_write_counter_delay(bgp, id, interval);
832 exit:
833 return ret;
834 }
835
836 /**
837 * ti_bandgap_read_temperature() - report current temperature
838 * @bgp: pointer to bandgap instance
839 * @id: sensor id
840 * @temperature: resulting temperature
841 *
842 * Return: 0 on success or the proper error code
843 */
ti_bandgap_read_temperature(struct ti_bandgap * bgp,int id,int * temperature)844 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
845 int *temperature)
846 {
847 u32 temp;
848 int ret;
849
850 ret = ti_bandgap_validate(bgp, id);
851 if (ret)
852 return ret;
853
854 spin_lock(&bgp->lock);
855 temp = ti_bandgap_read_temp(bgp, id);
856 spin_unlock(&bgp->lock);
857
858 ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
859 if (ret)
860 return -EIO;
861
862 *temperature = temp;
863
864 return 0;
865 }
866
867 /**
868 * ti_bandgap_set_sensor_data() - helper function to store thermal
869 * framework related data.
870 * @bgp: pointer to bandgap instance
871 * @id: sensor id
872 * @data: thermal framework related data to be stored
873 *
874 * Return: 0 on success or the proper error code
875 */
ti_bandgap_set_sensor_data(struct ti_bandgap * bgp,int id,void * data)876 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
877 {
878 int ret = ti_bandgap_validate(bgp, id);
879 if (ret)
880 return ret;
881
882 bgp->regval[id].data = data;
883
884 return 0;
885 }
886
887 /**
888 * ti_bandgap_get_sensor_data() - helper function to get thermal
889 * framework related data.
890 * @bgp: pointer to bandgap instance
891 * @id: sensor id
892 *
893 * Return: data stored by set function with sensor id on success or NULL
894 */
ti_bandgap_get_sensor_data(struct ti_bandgap * bgp,int id)895 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
896 {
897 int ret = ti_bandgap_validate(bgp, id);
898 if (ret)
899 return ERR_PTR(ret);
900
901 return bgp->regval[id].data;
902 }
903
904 /*** Helper functions used during device initialization ***/
905
906 /**
907 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
908 * @bgp: pointer to struct ti_bandgap
909 * @id: sensor id which it is desired to read 1 temperature
910 *
911 * Used to initialize the conversion state machine and set it to a valid
912 * state. Called during device initialization and context restore events.
913 *
914 * Return: 0
915 */
916 static int
ti_bandgap_force_single_read(struct ti_bandgap * bgp,int id)917 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
918 {
919 u32 temp = 0, counter = 1000;
920
921 /* Select single conversion mode */
922 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
923 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
924
925 /* Start of Conversion = 1 */
926 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
927 /* Wait until DTEMP is updated */
928 temp = ti_bandgap_read_temp(bgp, id);
929
930 while ((temp == 0) && --counter)
931 temp = ti_bandgap_read_temp(bgp, id);
932 /* REVISIT: Check correct condition for end of conversion */
933
934 /* Start of Conversion = 0 */
935 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
936
937 return 0;
938 }
939
940 /**
941 * ti_bandgap_set_continous_mode() - One time enabling of continuous mode
942 * @bgp: pointer to struct ti_bandgap
943 *
944 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
945 * be used for junction temperature monitoring, it is desirable that the
946 * sensors are operational all the time, so that alerts are generated
947 * properly.
948 *
949 * Return: 0
950 */
ti_bandgap_set_continuous_mode(struct ti_bandgap * bgp)951 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
952 {
953 int i;
954
955 for (i = 0; i < bgp->conf->sensor_count; i++) {
956 /* Perform a single read just before enabling continuous */
957 ti_bandgap_force_single_read(bgp, i);
958 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
959 }
960
961 return 0;
962 }
963
964 /**
965 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
966 * @bgp: pointer to struct ti_bandgap
967 * @id: id of the individual sensor
968 * @trend: Pointer to trend.
969 *
970 * This function needs to be called to fetch the temperature trend of a
971 * Particular sensor. The function computes the difference in temperature
972 * w.r.t time. For the bandgaps with built in history buffer the temperatures
973 * are read from the buffer and for those without the Buffer -ENOTSUPP is
974 * returned.
975 *
976 * Return: 0 if no error, else return corresponding error. If no
977 * error then the trend value is passed on to trend parameter
978 */
ti_bandgap_get_trend(struct ti_bandgap * bgp,int id,int * trend)979 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
980 {
981 struct temp_sensor_registers *tsr;
982 u32 temp1, temp2, reg1, reg2;
983 int t1, t2, interval, ret = 0;
984
985 ret = ti_bandgap_validate(bgp, id);
986 if (ret)
987 goto exit;
988
989 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
990 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
991 ret = -ENOTSUPP;
992 goto exit;
993 }
994
995 tsr = bgp->conf->sensors[id].registers;
996
997 /* Freeze and read the last 2 valid readings */
998 reg1 = tsr->ctrl_dtemp_1;
999 reg2 = tsr->ctrl_dtemp_2;
1000
1001 /* read temperature from history buffer */
1002 temp1 = ti_bandgap_readl(bgp, reg1);
1003 temp1 &= tsr->bgap_dtemp_mask;
1004
1005 temp2 = ti_bandgap_readl(bgp, reg2);
1006 temp2 &= tsr->bgap_dtemp_mask;
1007
1008 /* Convert from adc values to mCelsius temperature */
1009 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
1010 if (ret)
1011 goto exit;
1012
1013 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
1014 if (ret)
1015 goto exit;
1016
1017 /* Fetch the update interval */
1018 ret = ti_bandgap_read_update_interval(bgp, id, &interval);
1019 if (ret || !interval)
1020 goto exit;
1021
1022 *trend = (t1 - t2) / interval;
1023
1024 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
1025 t1, t2, *trend);
1026
1027 exit:
1028 return ret;
1029 }
1030
1031 /**
1032 * ti_bandgap_tshut_init() - setup and initialize tshut handling
1033 * @bgp: pointer to struct ti_bandgap
1034 * @pdev: pointer to device struct platform_device
1035 *
1036 * Call this function only in case the bandgap features HAS(TSHUT).
1037 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
1038 * The IRQ is wired as a GPIO, and for this purpose, it is required
1039 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
1040 * one of the bandgap sensors violates the TSHUT high/hot threshold.
1041 * And in that case, the system must go off.
1042 *
1043 * Return: 0 if no error, else error status
1044 */
ti_bandgap_tshut_init(struct ti_bandgap * bgp,struct platform_device * pdev)1045 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
1046 struct platform_device *pdev)
1047 {
1048 int gpio_nr = bgp->tshut_gpio;
1049 int status;
1050
1051 /* Request for gpio_86 line */
1052 status = gpio_request(gpio_nr, "tshut");
1053 if (status < 0) {
1054 dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
1055 return status;
1056 }
1057 status = gpio_direction_input(gpio_nr);
1058 if (status) {
1059 dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
1060 return status;
1061 }
1062
1063 status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
1064 IRQF_TRIGGER_RISING, "tshut", NULL);
1065 if (status) {
1066 gpio_free(gpio_nr);
1067 dev_err(bgp->dev, "request irq failed for TSHUT");
1068 }
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * ti_bandgap_alert_init() - setup and initialize talert handling
1075 * @bgp: pointer to struct ti_bandgap
1076 * @pdev: pointer to device struct platform_device
1077 *
1078 * Call this function only in case the bandgap features HAS(TALERT).
1079 * In this case, the driver needs to handle the TALERT signals as an IRQs.
1080 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
1081 * are violated. In these situation, the driver must reprogram the thresholds,
1082 * accordingly to specified policy.
1083 *
1084 * Return: 0 if no error, else return corresponding error.
1085 */
ti_bandgap_talert_init(struct ti_bandgap * bgp,struct platform_device * pdev)1086 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
1087 struct platform_device *pdev)
1088 {
1089 int ret;
1090
1091 bgp->irq = platform_get_irq(pdev, 0);
1092 if (bgp->irq < 0) {
1093 dev_err(&pdev->dev, "get_irq failed\n");
1094 return bgp->irq;
1095 }
1096 ret = request_threaded_irq(bgp->irq, NULL,
1097 ti_bandgap_talert_irq_handler,
1098 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1099 "talert", bgp);
1100 if (ret) {
1101 dev_err(&pdev->dev, "Request threaded irq failed.\n");
1102 return ret;
1103 }
1104
1105 return 0;
1106 }
1107
1108 static const struct of_device_id of_ti_bandgap_match[];
1109 /**
1110 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
1111 * @pdev: pointer to device struct platform_device
1112 *
1113 * Used to read the device tree properties accordingly to the bandgap
1114 * matching version. Based on bandgap version and its capabilities it
1115 * will build a struct ti_bandgap out of the required DT entries.
1116 *
1117 * Return: valid bandgap structure if successful, else returns ERR_PTR
1118 * return value must be verified with IS_ERR.
1119 */
ti_bandgap_build(struct platform_device * pdev)1120 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
1121 {
1122 struct device_node *node = pdev->dev.of_node;
1123 const struct of_device_id *of_id;
1124 struct ti_bandgap *bgp;
1125 struct resource *res;
1126 u32 prop;
1127 int i;
1128
1129 /* just for the sake */
1130 if (!node) {
1131 dev_err(&pdev->dev, "no platform information available\n");
1132 return ERR_PTR(-EINVAL);
1133 }
1134
1135 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
1136 if (!bgp) {
1137 dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1138 return ERR_PTR(-ENOMEM);
1139 }
1140
1141 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
1142 if (of_id)
1143 bgp->conf = of_id->data;
1144
1145 /* register shadow for context save and restore */
1146 bgp->regval = devm_kzalloc(&pdev->dev, sizeof(*bgp->regval) *
1147 bgp->conf->sensor_count, GFP_KERNEL);
1148 if (!bgp) {
1149 dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1150 return ERR_PTR(-ENOMEM);
1151 }
1152
1153 i = 0;
1154 do {
1155 void __iomem *chunk;
1156
1157 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1158 if (!res)
1159 break;
1160 chunk = devm_ioremap_resource(&pdev->dev, res);
1161 if (i == 0)
1162 bgp->base = chunk;
1163 if (IS_ERR(chunk))
1164 return ERR_CAST(chunk);
1165
1166 i++;
1167 } while (res);
1168
1169 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1170 if (of_property_read_u32(node, "ti,tshut-gpio", &prop) < 0) {
1171 dev_err(&pdev->dev, "missing tshut gpio in device tree\n");
1172 return ERR_PTR(-EINVAL);
1173 }
1174 bgp->tshut_gpio = prop;
1175 if (!gpio_is_valid(bgp->tshut_gpio)) {
1176 dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
1177 bgp->tshut_gpio);
1178 return ERR_PTR(-EINVAL);
1179 }
1180 }
1181
1182 return bgp;
1183 }
1184
1185 /*** Device driver call backs ***/
1186
1187 static
ti_bandgap_probe(struct platform_device * pdev)1188 int ti_bandgap_probe(struct platform_device *pdev)
1189 {
1190 struct ti_bandgap *bgp;
1191 int clk_rate, ret = 0, i;
1192
1193 bgp = ti_bandgap_build(pdev);
1194 if (IS_ERR_OR_NULL(bgp)) {
1195 dev_err(&pdev->dev, "failed to fetch platform data\n");
1196 return PTR_ERR(bgp);
1197 }
1198 bgp->dev = &pdev->dev;
1199
1200 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1201 ret = ti_bandgap_tshut_init(bgp, pdev);
1202 if (ret) {
1203 dev_err(&pdev->dev,
1204 "failed to initialize system tshut IRQ\n");
1205 return ret;
1206 }
1207 }
1208
1209 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
1210 ret = IS_ERR_OR_NULL(bgp->fclock);
1211 if (ret) {
1212 dev_err(&pdev->dev, "failed to request fclock reference\n");
1213 goto free_irqs;
1214 }
1215
1216 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
1217 ret = IS_ERR_OR_NULL(bgp->div_clk);
1218 if (ret) {
1219 dev_err(&pdev->dev,
1220 "failed to request div_ts_ck clock ref\n");
1221 goto free_irqs;
1222 }
1223
1224 for (i = 0; i < bgp->conf->sensor_count; i++) {
1225 struct temp_sensor_registers *tsr;
1226 u32 val;
1227
1228 tsr = bgp->conf->sensors[i].registers;
1229 /*
1230 * check if the efuse has a non-zero value if not
1231 * it is an untrimmed sample and the temperatures
1232 * may not be accurate
1233 */
1234 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
1235 if (ret || !val)
1236 dev_info(&pdev->dev,
1237 "Non-trimmed BGAP, Temp not accurate\n");
1238 }
1239
1240 clk_rate = clk_round_rate(bgp->div_clk,
1241 bgp->conf->sensors[0].ts_data->max_freq);
1242 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
1243 clk_rate == 0xffffffff) {
1244 ret = -ENODEV;
1245 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
1246 goto put_clks;
1247 }
1248
1249 ret = clk_set_rate(bgp->div_clk, clk_rate);
1250 if (ret)
1251 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
1252
1253 bgp->clk_rate = clk_rate;
1254 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1255 clk_prepare_enable(bgp->fclock);
1256
1257
1258 spin_lock_init(&bgp->lock);
1259 bgp->dev = &pdev->dev;
1260 platform_set_drvdata(pdev, bgp);
1261
1262 ti_bandgap_power(bgp, true);
1263
1264 /* Set default counter to 1 for now */
1265 if (TI_BANDGAP_HAS(bgp, COUNTER))
1266 for (i = 0; i < bgp->conf->sensor_count; i++)
1267 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
1268
1269 /* Set default thresholds for alert and shutdown */
1270 for (i = 0; i < bgp->conf->sensor_count; i++) {
1271 struct temp_sensor_data *ts_data;
1272
1273 ts_data = bgp->conf->sensors[i].ts_data;
1274
1275 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1276 /* Set initial Talert thresholds */
1277 RMW_BITS(bgp, i, bgap_threshold,
1278 threshold_tcold_mask, ts_data->t_cold);
1279 RMW_BITS(bgp, i, bgap_threshold,
1280 threshold_thot_mask, ts_data->t_hot);
1281 /* Enable the alert events */
1282 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
1283 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
1284 }
1285
1286 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
1287 /* Set initial Tshut thresholds */
1288 RMW_BITS(bgp, i, tshut_threshold,
1289 tshut_hot_mask, ts_data->tshut_hot);
1290 RMW_BITS(bgp, i, tshut_threshold,
1291 tshut_cold_mask, ts_data->tshut_cold);
1292 }
1293 }
1294
1295 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1296 ti_bandgap_set_continuous_mode(bgp);
1297
1298 /* Set .250 seconds time as default counter */
1299 if (TI_BANDGAP_HAS(bgp, COUNTER))
1300 for (i = 0; i < bgp->conf->sensor_count; i++)
1301 RMW_BITS(bgp, i, bgap_counter, counter_mask,
1302 bgp->clk_rate / 4);
1303
1304 /* Every thing is good? Then expose the sensors */
1305 for (i = 0; i < bgp->conf->sensor_count; i++) {
1306 char *domain;
1307
1308 if (bgp->conf->sensors[i].register_cooling) {
1309 ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1310 if (ret)
1311 goto remove_sensors;
1312 }
1313
1314 if (bgp->conf->expose_sensor) {
1315 domain = bgp->conf->sensors[i].domain;
1316 ret = bgp->conf->expose_sensor(bgp, i, domain);
1317 if (ret)
1318 goto remove_last_cooling;
1319 }
1320 }
1321
1322 /*
1323 * Enable the Interrupts once everything is set. Otherwise irq handler
1324 * might be called as soon as it is enabled where as rest of framework
1325 * is still getting initialised.
1326 */
1327 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1328 ret = ti_bandgap_talert_init(bgp, pdev);
1329 if (ret) {
1330 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1331 i = bgp->conf->sensor_count;
1332 goto disable_clk;
1333 }
1334 }
1335
1336 return 0;
1337
1338 remove_last_cooling:
1339 if (bgp->conf->sensors[i].unregister_cooling)
1340 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1341 remove_sensors:
1342 for (i--; i >= 0; i--) {
1343 if (bgp->conf->sensors[i].unregister_cooling)
1344 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1345 if (bgp->conf->remove_sensor)
1346 bgp->conf->remove_sensor(bgp, i);
1347 }
1348 ti_bandgap_power(bgp, false);
1349 disable_clk:
1350 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1351 clk_disable_unprepare(bgp->fclock);
1352 put_clks:
1353 clk_put(bgp->fclock);
1354 clk_put(bgp->div_clk);
1355 free_irqs:
1356 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1357 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1358 gpio_free(bgp->tshut_gpio);
1359 }
1360
1361 return ret;
1362 }
1363
1364 static
ti_bandgap_remove(struct platform_device * pdev)1365 int ti_bandgap_remove(struct platform_device *pdev)
1366 {
1367 struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1368 int i;
1369
1370 /* First thing is to remove sensor interfaces */
1371 for (i = 0; i < bgp->conf->sensor_count; i++) {
1372 if (bgp->conf->sensors[i].unregister_cooling)
1373 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1374
1375 if (bgp->conf->remove_sensor)
1376 bgp->conf->remove_sensor(bgp, i);
1377 }
1378
1379 ti_bandgap_power(bgp, false);
1380
1381 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1382 clk_disable_unprepare(bgp->fclock);
1383 clk_put(bgp->fclock);
1384 clk_put(bgp->div_clk);
1385
1386 if (TI_BANDGAP_HAS(bgp, TALERT))
1387 free_irq(bgp->irq, bgp);
1388
1389 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1390 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1391 gpio_free(bgp->tshut_gpio);
1392 }
1393
1394 return 0;
1395 }
1396
1397 #ifdef CONFIG_PM
ti_bandgap_save_ctxt(struct ti_bandgap * bgp)1398 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1399 {
1400 int i;
1401
1402 for (i = 0; i < bgp->conf->sensor_count; i++) {
1403 struct temp_sensor_registers *tsr;
1404 struct temp_sensor_regval *rval;
1405
1406 rval = &bgp->regval[i];
1407 tsr = bgp->conf->sensors[i].registers;
1408
1409 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1410 rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1411 tsr->bgap_mode_ctrl);
1412 if (TI_BANDGAP_HAS(bgp, COUNTER))
1413 rval->bg_counter = ti_bandgap_readl(bgp,
1414 tsr->bgap_counter);
1415 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1416 rval->bg_threshold = ti_bandgap_readl(bgp,
1417 tsr->bgap_threshold);
1418 rval->bg_ctrl = ti_bandgap_readl(bgp,
1419 tsr->bgap_mask_ctrl);
1420 }
1421
1422 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1423 rval->tshut_threshold = ti_bandgap_readl(bgp,
1424 tsr->tshut_threshold);
1425 }
1426
1427 return 0;
1428 }
1429
ti_bandgap_restore_ctxt(struct ti_bandgap * bgp)1430 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1431 {
1432 int i;
1433
1434 for (i = 0; i < bgp->conf->sensor_count; i++) {
1435 struct temp_sensor_registers *tsr;
1436 struct temp_sensor_regval *rval;
1437 u32 val = 0;
1438
1439 rval = &bgp->regval[i];
1440 tsr = bgp->conf->sensors[i].registers;
1441
1442 if (TI_BANDGAP_HAS(bgp, COUNTER))
1443 val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1444
1445 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1446 ti_bandgap_writel(bgp, rval->tshut_threshold,
1447 tsr->tshut_threshold);
1448 /* Force immediate temperature measurement and update
1449 * of the DTEMP field
1450 */
1451 ti_bandgap_force_single_read(bgp, i);
1452
1453 if (TI_BANDGAP_HAS(bgp, COUNTER))
1454 ti_bandgap_writel(bgp, rval->bg_counter,
1455 tsr->bgap_counter);
1456 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1457 ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1458 tsr->bgap_mode_ctrl);
1459 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1460 ti_bandgap_writel(bgp, rval->bg_threshold,
1461 tsr->bgap_threshold);
1462 ti_bandgap_writel(bgp, rval->bg_ctrl,
1463 tsr->bgap_mask_ctrl);
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
ti_bandgap_suspend(struct device * dev)1470 static int ti_bandgap_suspend(struct device *dev)
1471 {
1472 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1473 int err;
1474
1475 err = ti_bandgap_save_ctxt(bgp);
1476 ti_bandgap_power(bgp, false);
1477
1478 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1479 clk_disable_unprepare(bgp->fclock);
1480
1481 return err;
1482 }
1483
ti_bandgap_resume(struct device * dev)1484 static int ti_bandgap_resume(struct device *dev)
1485 {
1486 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1487
1488 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1489 clk_prepare_enable(bgp->fclock);
1490
1491 ti_bandgap_power(bgp, true);
1492
1493 return ti_bandgap_restore_ctxt(bgp);
1494 }
1495 static const struct dev_pm_ops ti_bandgap_dev_pm_ops = {
1496 SET_SYSTEM_SLEEP_PM_OPS(ti_bandgap_suspend,
1497 ti_bandgap_resume)
1498 };
1499
1500 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops)
1501 #else
1502 #define DEV_PM_OPS NULL
1503 #endif
1504
1505 static const struct of_device_id of_ti_bandgap_match[] = {
1506 #ifdef CONFIG_OMAP4_THERMAL
1507 {
1508 .compatible = "ti,omap4430-bandgap",
1509 .data = (void *)&omap4430_data,
1510 },
1511 {
1512 .compatible = "ti,omap4460-bandgap",
1513 .data = (void *)&omap4460_data,
1514 },
1515 {
1516 .compatible = "ti,omap4470-bandgap",
1517 .data = (void *)&omap4470_data,
1518 },
1519 #endif
1520 #ifdef CONFIG_OMAP5_THERMAL
1521 {
1522 .compatible = "ti,omap5430-bandgap",
1523 .data = (void *)&omap5430_data,
1524 },
1525 #endif
1526 /* Sentinel */
1527 { },
1528 };
1529 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1530
1531 static struct platform_driver ti_bandgap_sensor_driver = {
1532 .probe = ti_bandgap_probe,
1533 .remove = ti_bandgap_remove,
1534 .driver = {
1535 .name = "ti-soc-thermal",
1536 .pm = DEV_PM_OPS,
1537 .of_match_table = of_ti_bandgap_match,
1538 },
1539 };
1540
1541 module_platform_driver(ti_bandgap_sensor_driver);
1542
1543 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1544 MODULE_LICENSE("GPL v2");
1545 MODULE_ALIAS("platform:ti-soc-thermal");
1546 MODULE_AUTHOR("Texas Instrument Inc.");
1547