• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * linux/drivers/usb/gadget/s3c-hsotg.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com
6  *
7  * Copyright 2008 Openmoko, Inc.
8  * Copyright 2008 Simtec Electronics
9  *      Ben Dooks <ben@simtec.co.uk>
10  *      http://armlinux.simtec.co.uk/
11  *
12  * S3C USB2.0 High-speed / OtG driver
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37 
38 #include <mach/map.h>
39 
40 #include "s3c-hsotg.h"
41 
42 static const char * const s3c_hsotg_supply_names[] = {
43 	"vusb_d",		/* digital USB supply, 1.2V */
44 	"vusb_a",		/* analog USB supply, 1.1V */
45 };
46 
47 /*
48  * EP0_MPS_LIMIT
49  *
50  * Unfortunately there seems to be a limit of the amount of data that can
51  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
52  * packets (which practically means 1 packet and 63 bytes of data) when the
53  * MPS is set to 64.
54  *
55  * This means if we are wanting to move >127 bytes of data, we need to
56  * split the transactions up, but just doing one packet at a time does
57  * not work (this may be an implicit DATA0 PID on first packet of the
58  * transaction) and doing 2 packets is outside the controller's limits.
59  *
60  * If we try to lower the MPS size for EP0, then no transfers work properly
61  * for EP0, and the system will fail basic enumeration. As no cause for this
62  * has currently been found, we cannot support any large IN transfers for
63  * EP0.
64  */
65 #define EP0_MPS_LIMIT	64
66 
67 struct s3c_hsotg;
68 struct s3c_hsotg_req;
69 
70 /**
71  * struct s3c_hsotg_ep - driver endpoint definition.
72  * @ep: The gadget layer representation of the endpoint.
73  * @name: The driver generated name for the endpoint.
74  * @queue: Queue of requests for this endpoint.
75  * @parent: Reference back to the parent device structure.
76  * @req: The current request that the endpoint is processing. This is
77  *       used to indicate an request has been loaded onto the endpoint
78  *       and has yet to be completed (maybe due to data move, or simply
79  *	 awaiting an ack from the core all the data has been completed).
80  * @debugfs: File entry for debugfs file for this endpoint.
81  * @lock: State lock to protect contents of endpoint.
82  * @dir_in: Set to true if this endpoint is of the IN direction, which
83  *	    means that it is sending data to the Host.
84  * @index: The index for the endpoint registers.
85  * @name: The name array passed to the USB core.
86  * @halted: Set if the endpoint has been halted.
87  * @periodic: Set if this is a periodic ep, such as Interrupt
88  * @sent_zlp: Set if we've sent a zero-length packet.
89  * @total_data: The total number of data bytes done.
90  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
91  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
92  * @last_load: The offset of data for the last start of request.
93  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
94  *
95  * This is the driver's state for each registered enpoint, allowing it
96  * to keep track of transactions that need doing. Each endpoint has a
97  * lock to protect the state, to try and avoid using an overall lock
98  * for the host controller as much as possible.
99  *
100  * For periodic IN endpoints, we have fifo_size and fifo_load to try
101  * and keep track of the amount of data in the periodic FIFO for each
102  * of these as we don't have a status register that tells us how much
103  * is in each of them. (note, this may actually be useless information
104  * as in shared-fifo mode periodic in acts like a single-frame packet
105  * buffer than a fifo)
106  */
107 struct s3c_hsotg_ep {
108 	struct usb_ep		ep;
109 	struct list_head	queue;
110 	struct s3c_hsotg	*parent;
111 	struct s3c_hsotg_req	*req;
112 	struct dentry		*debugfs;
113 
114 
115 	unsigned long		total_data;
116 	unsigned int		size_loaded;
117 	unsigned int		last_load;
118 	unsigned int		fifo_load;
119 	unsigned short		fifo_size;
120 
121 	unsigned char		dir_in;
122 	unsigned char		index;
123 
124 	unsigned int		halted:1;
125 	unsigned int		periodic:1;
126 	unsigned int		sent_zlp:1;
127 
128 	char			name[10];
129 };
130 
131 /**
132  * struct s3c_hsotg - driver state.
133  * @dev: The parent device supplied to the probe function
134  * @driver: USB gadget driver
135  * @phy: The otg phy transceiver structure for phy control.
136  * @plat: The platform specific configuration data. This can be removed once
137  * all SoCs support usb transceiver.
138  * @regs: The memory area mapped for accessing registers.
139  * @irq: The IRQ number we are using
140  * @supplies: Definition of USB power supplies
141  * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
142  * @num_of_eps: Number of available EPs (excluding EP0)
143  * @debug_root: root directrory for debugfs.
144  * @debug_file: main status file for debugfs.
145  * @debug_fifo: FIFO status file for debugfs.
146  * @ep0_reply: Request used for ep0 reply.
147  * @ep0_buff: Buffer for EP0 reply data, if needed.
148  * @ctrl_buff: Buffer for EP0 control requests.
149  * @ctrl_req: Request for EP0 control packets.
150  * @setup: NAK management for EP0 SETUP
151  * @last_rst: Time of last reset
152  * @eps: The endpoints being supplied to the gadget framework
153  */
154 struct s3c_hsotg {
155 	struct device		 *dev;
156 	struct usb_gadget_driver *driver;
157 	struct usb_phy		*phy;
158 	struct s3c_hsotg_plat	 *plat;
159 
160 	spinlock_t              lock;
161 
162 	void __iomem		*regs;
163 	int			irq;
164 	struct clk		*clk;
165 
166 	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
167 
168 	unsigned int		dedicated_fifos:1;
169 	unsigned char           num_of_eps;
170 
171 	struct dentry		*debug_root;
172 	struct dentry		*debug_file;
173 	struct dentry		*debug_fifo;
174 
175 	struct usb_request	*ep0_reply;
176 	struct usb_request	*ctrl_req;
177 	u8			ep0_buff[8];
178 	u8			ctrl_buff[8];
179 
180 	struct usb_gadget	gadget;
181 	unsigned int		setup;
182 	unsigned long           last_rst;
183 	struct s3c_hsotg_ep	*eps;
184 };
185 
186 /**
187  * struct s3c_hsotg_req - data transfer request
188  * @req: The USB gadget request
189  * @queue: The list of requests for the endpoint this is queued for.
190  * @in_progress: Has already had size/packets written to core
191  * @mapped: DMA buffer for this request has been mapped via dma_map_single().
192  */
193 struct s3c_hsotg_req {
194 	struct usb_request	req;
195 	struct list_head	queue;
196 	unsigned char		in_progress;
197 	unsigned char		mapped;
198 };
199 
200 /* conversion functions */
our_req(struct usb_request * req)201 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
202 {
203 	return container_of(req, struct s3c_hsotg_req, req);
204 }
205 
our_ep(struct usb_ep * ep)206 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
207 {
208 	return container_of(ep, struct s3c_hsotg_ep, ep);
209 }
210 
to_hsotg(struct usb_gadget * gadget)211 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
212 {
213 	return container_of(gadget, struct s3c_hsotg, gadget);
214 }
215 
__orr32(void __iomem * ptr,u32 val)216 static inline void __orr32(void __iomem *ptr, u32 val)
217 {
218 	writel(readl(ptr) | val, ptr);
219 }
220 
__bic32(void __iomem * ptr,u32 val)221 static inline void __bic32(void __iomem *ptr, u32 val)
222 {
223 	writel(readl(ptr) & ~val, ptr);
224 }
225 
226 /* forward decleration of functions */
227 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
228 
229 /**
230  * using_dma - return the DMA status of the driver.
231  * @hsotg: The driver state.
232  *
233  * Return true if we're using DMA.
234  *
235  * Currently, we have the DMA support code worked into everywhere
236  * that needs it, but the AMBA DMA implementation in the hardware can
237  * only DMA from 32bit aligned addresses. This means that gadgets such
238  * as the CDC Ethernet cannot work as they often pass packets which are
239  * not 32bit aligned.
240  *
241  * Unfortunately the choice to use DMA or not is global to the controller
242  * and seems to be only settable when the controller is being put through
243  * a core reset. This means we either need to fix the gadgets to take
244  * account of DMA alignment, or add bounce buffers (yuerk).
245  *
246  * Until this issue is sorted out, we always return 'false'.
247  */
using_dma(struct s3c_hsotg * hsotg)248 static inline bool using_dma(struct s3c_hsotg *hsotg)
249 {
250 	return false;	/* support is not complete */
251 }
252 
253 /**
254  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
255  * @hsotg: The device state
256  * @ints: A bitmask of the interrupts to enable
257  */
s3c_hsotg_en_gsint(struct s3c_hsotg * hsotg,u32 ints)258 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
259 {
260 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
261 	u32 new_gsintmsk;
262 
263 	new_gsintmsk = gsintmsk | ints;
264 
265 	if (new_gsintmsk != gsintmsk) {
266 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
267 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
268 	}
269 }
270 
271 /**
272  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
273  * @hsotg: The device state
274  * @ints: A bitmask of the interrupts to enable
275  */
s3c_hsotg_disable_gsint(struct s3c_hsotg * hsotg,u32 ints)276 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
277 {
278 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
279 	u32 new_gsintmsk;
280 
281 	new_gsintmsk = gsintmsk & ~ints;
282 
283 	if (new_gsintmsk != gsintmsk)
284 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
285 }
286 
287 /**
288  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
289  * @hsotg: The device state
290  * @ep: The endpoint index
291  * @dir_in: True if direction is in.
292  * @en: The enable value, true to enable
293  *
294  * Set or clear the mask for an individual endpoint's interrupt
295  * request.
296  */
s3c_hsotg_ctrl_epint(struct s3c_hsotg * hsotg,unsigned int ep,unsigned int dir_in,unsigned int en)297 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
298 				 unsigned int ep, unsigned int dir_in,
299 				 unsigned int en)
300 {
301 	unsigned long flags;
302 	u32 bit = 1 << ep;
303 	u32 daint;
304 
305 	if (!dir_in)
306 		bit <<= 16;
307 
308 	local_irq_save(flags);
309 	daint = readl(hsotg->regs + DAINTMSK);
310 	if (en)
311 		daint |= bit;
312 	else
313 		daint &= ~bit;
314 	writel(daint, hsotg->regs + DAINTMSK);
315 	local_irq_restore(flags);
316 }
317 
318 /**
319  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
320  * @hsotg: The device instance.
321  */
s3c_hsotg_init_fifo(struct s3c_hsotg * hsotg)322 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
323 {
324 	unsigned int ep;
325 	unsigned int addr;
326 	unsigned int size;
327 	int timeout;
328 	u32 val;
329 
330 	/* set FIFO sizes to 2048/1024 */
331 
332 	writel(2048, hsotg->regs + GRXFSIZ);
333 	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
334 	       GNPTXFSIZ_NPTxFDep(1024),
335 	       hsotg->regs + GNPTXFSIZ);
336 
337 	/*
338 	 * arange all the rest of the TX FIFOs, as some versions of this
339 	 * block have overlapping default addresses. This also ensures
340 	 * that if the settings have been changed, then they are set to
341 	 * known values.
342 	 */
343 
344 	/* start at the end of the GNPTXFSIZ, rounded up */
345 	addr = 2048 + 1024;
346 	size = 768;
347 
348 	/*
349 	 * currently we allocate TX FIFOs for all possible endpoints,
350 	 * and assume that they are all the same size.
351 	 */
352 
353 	for (ep = 1; ep <= 15; ep++) {
354 		val = addr;
355 		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
356 		addr += size;
357 
358 		writel(val, hsotg->regs + DPTXFSIZn(ep));
359 	}
360 
361 	/*
362 	 * according to p428 of the design guide, we need to ensure that
363 	 * all fifos are flushed before continuing
364 	 */
365 
366 	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
367 	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
368 
369 	/* wait until the fifos are both flushed */
370 	timeout = 100;
371 	while (1) {
372 		val = readl(hsotg->regs + GRSTCTL);
373 
374 		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
375 			break;
376 
377 		if (--timeout == 0) {
378 			dev_err(hsotg->dev,
379 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
380 				__func__, val);
381 		}
382 
383 		udelay(1);
384 	}
385 
386 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387 }
388 
389 /**
390  * @ep: USB endpoint to allocate request for.
391  * @flags: Allocation flags
392  *
393  * Allocate a new USB request structure appropriate for the specified endpoint
394  */
s3c_hsotg_ep_alloc_request(struct usb_ep * ep,gfp_t flags)395 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
396 						      gfp_t flags)
397 {
398 	struct s3c_hsotg_req *req;
399 
400 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
401 	if (!req)
402 		return NULL;
403 
404 	INIT_LIST_HEAD(&req->queue);
405 
406 	return &req->req;
407 }
408 
409 /**
410  * is_ep_periodic - return true if the endpoint is in periodic mode.
411  * @hs_ep: The endpoint to query.
412  *
413  * Returns true if the endpoint is in periodic mode, meaning it is being
414  * used for an Interrupt or ISO transfer.
415  */
is_ep_periodic(struct s3c_hsotg_ep * hs_ep)416 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
417 {
418 	return hs_ep->periodic;
419 }
420 
421 /**
422  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
423  * @hsotg: The device state.
424  * @hs_ep: The endpoint for the request
425  * @hs_req: The request being processed.
426  *
427  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
428  * of a request to ensure the buffer is ready for access by the caller.
429  */
s3c_hsotg_unmap_dma(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req)430 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
431 				struct s3c_hsotg_ep *hs_ep,
432 				struct s3c_hsotg_req *hs_req)
433 {
434 	struct usb_request *req = &hs_req->req;
435 
436 	/* ignore this if we're not moving any data */
437 	if (hs_req->req.length == 0)
438 		return;
439 
440 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
441 }
442 
443 /**
444  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
445  * @hsotg: The controller state.
446  * @hs_ep: The endpoint we're going to write for.
447  * @hs_req: The request to write data for.
448  *
449  * This is called when the TxFIFO has some space in it to hold a new
450  * transmission and we have something to give it. The actual setup of
451  * the data size is done elsewhere, so all we have to do is to actually
452  * write the data.
453  *
454  * The return value is zero if there is more space (or nothing was done)
455  * otherwise -ENOSPC is returned if the FIFO space was used up.
456  *
457  * This routine is only needed for PIO
458  */
s3c_hsotg_write_fifo(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req)459 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
460 				struct s3c_hsotg_ep *hs_ep,
461 				struct s3c_hsotg_req *hs_req)
462 {
463 	bool periodic = is_ep_periodic(hs_ep);
464 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
465 	int buf_pos = hs_req->req.actual;
466 	int to_write = hs_ep->size_loaded;
467 	void *data;
468 	int can_write;
469 	int pkt_round;
470 
471 	to_write -= (buf_pos - hs_ep->last_load);
472 
473 	/* if there's nothing to write, get out early */
474 	if (to_write == 0)
475 		return 0;
476 
477 	if (periodic && !hsotg->dedicated_fifos) {
478 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
479 		int size_left;
480 		int size_done;
481 
482 		/*
483 		 * work out how much data was loaded so we can calculate
484 		 * how much data is left in the fifo.
485 		 */
486 
487 		size_left = DxEPTSIZ_XferSize_GET(epsize);
488 
489 		/*
490 		 * if shared fifo, we cannot write anything until the
491 		 * previous data has been completely sent.
492 		 */
493 		if (hs_ep->fifo_load != 0) {
494 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
495 			return -ENOSPC;
496 		}
497 
498 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
499 			__func__, size_left,
500 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
501 
502 		/* how much of the data has moved */
503 		size_done = hs_ep->size_loaded - size_left;
504 
505 		/* how much data is left in the fifo */
506 		can_write = hs_ep->fifo_load - size_done;
507 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
508 			__func__, can_write);
509 
510 		can_write = hs_ep->fifo_size - can_write;
511 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
512 			__func__, can_write);
513 
514 		if (can_write <= 0) {
515 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
516 			return -ENOSPC;
517 		}
518 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
519 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
520 
521 		can_write &= 0xffff;
522 		can_write *= 4;
523 	} else {
524 		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
525 			dev_dbg(hsotg->dev,
526 				"%s: no queue slots available (0x%08x)\n",
527 				__func__, gnptxsts);
528 
529 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
530 			return -ENOSPC;
531 		}
532 
533 		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
534 		can_write *= 4;	/* fifo size is in 32bit quantities. */
535 	}
536 
537 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
538 		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
539 
540 	/*
541 	 * limit to 512 bytes of data, it seems at least on the non-periodic
542 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
543 	 * fragment of the end of the transfer in it.
544 	 */
545 	if (can_write > 512)
546 		can_write = 512;
547 
548 	/*
549 	 * limit the write to one max-packet size worth of data, but allow
550 	 * the transfer to return that it did not run out of fifo space
551 	 * doing it.
552 	 */
553 	if (to_write > hs_ep->ep.maxpacket) {
554 		to_write = hs_ep->ep.maxpacket;
555 
556 		s3c_hsotg_en_gsint(hsotg,
557 				   periodic ? GINTSTS_PTxFEmp :
558 				   GINTSTS_NPTxFEmp);
559 	}
560 
561 	/* see if we can write data */
562 
563 	if (to_write > can_write) {
564 		to_write = can_write;
565 		pkt_round = to_write % hs_ep->ep.maxpacket;
566 
567 		/*
568 		 * Round the write down to an
569 		 * exact number of packets.
570 		 *
571 		 * Note, we do not currently check to see if we can ever
572 		 * write a full packet or not to the FIFO.
573 		 */
574 
575 		if (pkt_round)
576 			to_write -= pkt_round;
577 
578 		/*
579 		 * enable correct FIFO interrupt to alert us when there
580 		 * is more room left.
581 		 */
582 
583 		s3c_hsotg_en_gsint(hsotg,
584 				   periodic ? GINTSTS_PTxFEmp :
585 				   GINTSTS_NPTxFEmp);
586 	}
587 
588 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
589 		 to_write, hs_req->req.length, can_write, buf_pos);
590 
591 	if (to_write <= 0)
592 		return -ENOSPC;
593 
594 	hs_req->req.actual = buf_pos + to_write;
595 	hs_ep->total_data += to_write;
596 
597 	if (periodic)
598 		hs_ep->fifo_load += to_write;
599 
600 	to_write = DIV_ROUND_UP(to_write, 4);
601 	data = hs_req->req.buf + buf_pos;
602 
603 	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
604 
605 	return (to_write >= can_write) ? -ENOSPC : 0;
606 }
607 
608 /**
609  * get_ep_limit - get the maximum data legnth for this endpoint
610  * @hs_ep: The endpoint
611  *
612  * Return the maximum data that can be queued in one go on a given endpoint
613  * so that transfers that are too long can be split.
614  */
get_ep_limit(struct s3c_hsotg_ep * hs_ep)615 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
616 {
617 	int index = hs_ep->index;
618 	unsigned maxsize;
619 	unsigned maxpkt;
620 
621 	if (index != 0) {
622 		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
623 		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
624 	} else {
625 		maxsize = 64+64;
626 		if (hs_ep->dir_in)
627 			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
628 		else
629 			maxpkt = 2;
630 	}
631 
632 	/* we made the constant loading easier above by using +1 */
633 	maxpkt--;
634 	maxsize--;
635 
636 	/*
637 	 * constrain by packet count if maxpkts*pktsize is greater
638 	 * than the length register size.
639 	 */
640 
641 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
642 		maxsize = maxpkt * hs_ep->ep.maxpacket;
643 
644 	return maxsize;
645 }
646 
647 /**
648  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
649  * @hsotg: The controller state.
650  * @hs_ep: The endpoint to process a request for
651  * @hs_req: The request to start.
652  * @continuing: True if we are doing more for the current request.
653  *
654  * Start the given request running by setting the endpoint registers
655  * appropriately, and writing any data to the FIFOs.
656  */
s3c_hsotg_start_req(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req,bool continuing)657 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
658 				struct s3c_hsotg_ep *hs_ep,
659 				struct s3c_hsotg_req *hs_req,
660 				bool continuing)
661 {
662 	struct usb_request *ureq = &hs_req->req;
663 	int index = hs_ep->index;
664 	int dir_in = hs_ep->dir_in;
665 	u32 epctrl_reg;
666 	u32 epsize_reg;
667 	u32 epsize;
668 	u32 ctrl;
669 	unsigned length;
670 	unsigned packets;
671 	unsigned maxreq;
672 
673 	if (index != 0) {
674 		if (hs_ep->req && !continuing) {
675 			dev_err(hsotg->dev, "%s: active request\n", __func__);
676 			WARN_ON(1);
677 			return;
678 		} else if (hs_ep->req != hs_req && continuing) {
679 			dev_err(hsotg->dev,
680 				"%s: continue different req\n", __func__);
681 			WARN_ON(1);
682 			return;
683 		}
684 	}
685 
686 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
687 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
688 
689 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
690 		__func__, readl(hsotg->regs + epctrl_reg), index,
691 		hs_ep->dir_in ? "in" : "out");
692 
693 	/* If endpoint is stalled, we will restart request later */
694 	ctrl = readl(hsotg->regs + epctrl_reg);
695 
696 	if (ctrl & DxEPCTL_Stall) {
697 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
698 		return;
699 	}
700 
701 	length = ureq->length - ureq->actual;
702 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
703 		ureq->length, ureq->actual);
704 	if (0)
705 		dev_dbg(hsotg->dev,
706 			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
707 			ureq->buf, length, ureq->dma,
708 			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
709 
710 	maxreq = get_ep_limit(hs_ep);
711 	if (length > maxreq) {
712 		int round = maxreq % hs_ep->ep.maxpacket;
713 
714 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
715 			__func__, length, maxreq, round);
716 
717 		/* round down to multiple of packets */
718 		if (round)
719 			maxreq -= round;
720 
721 		length = maxreq;
722 	}
723 
724 	if (length)
725 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
726 	else
727 		packets = 1;	/* send one packet if length is zero. */
728 
729 	if (dir_in && index != 0)
730 		epsize = DxEPTSIZ_MC(1);
731 	else
732 		epsize = 0;
733 
734 	if (index != 0 && ureq->zero) {
735 		/*
736 		 * test for the packets being exactly right for the
737 		 * transfer
738 		 */
739 
740 		if (length == (packets * hs_ep->ep.maxpacket))
741 			packets++;
742 	}
743 
744 	epsize |= DxEPTSIZ_PktCnt(packets);
745 	epsize |= DxEPTSIZ_XferSize(length);
746 
747 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
748 		__func__, packets, length, ureq->length, epsize, epsize_reg);
749 
750 	/* store the request as the current one we're doing */
751 	hs_ep->req = hs_req;
752 
753 	/* write size / packets */
754 	writel(epsize, hsotg->regs + epsize_reg);
755 
756 	if (using_dma(hsotg) && !continuing) {
757 		unsigned int dma_reg;
758 
759 		/*
760 		 * write DMA address to control register, buffer already
761 		 * synced by s3c_hsotg_ep_queue().
762 		 */
763 
764 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
765 		writel(ureq->dma, hsotg->regs + dma_reg);
766 
767 		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
768 			__func__, ureq->dma, dma_reg);
769 	}
770 
771 	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
772 	ctrl |= DxEPCTL_USBActEp;
773 
774 	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
775 
776 	/* For Setup request do not clear NAK */
777 	if (hsotg->setup && index == 0)
778 		hsotg->setup = 0;
779 	else
780 		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
781 
782 
783 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
784 	writel(ctrl, hsotg->regs + epctrl_reg);
785 
786 	/*
787 	 * set these, it seems that DMA support increments past the end
788 	 * of the packet buffer so we need to calculate the length from
789 	 * this information.
790 	 */
791 	hs_ep->size_loaded = length;
792 	hs_ep->last_load = ureq->actual;
793 
794 	if (dir_in && !using_dma(hsotg)) {
795 		/* set these anyway, we may need them for non-periodic in */
796 		hs_ep->fifo_load = 0;
797 
798 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
799 	}
800 
801 	/*
802 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
803 	 * to debugging to see what is going on.
804 	 */
805 	if (dir_in)
806 		writel(DIEPMSK_INTknTXFEmpMsk,
807 		       hsotg->regs + DIEPINT(index));
808 
809 	/*
810 	 * Note, trying to clear the NAK here causes problems with transmit
811 	 * on the S3C6400 ending up with the TXFIFO becoming full.
812 	 */
813 
814 	/* check ep is enabled */
815 	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
816 		dev_warn(hsotg->dev,
817 			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
818 			 index, readl(hsotg->regs + epctrl_reg));
819 
820 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
821 		__func__, readl(hsotg->regs + epctrl_reg));
822 }
823 
824 /**
825  * s3c_hsotg_map_dma - map the DMA memory being used for the request
826  * @hsotg: The device state.
827  * @hs_ep: The endpoint the request is on.
828  * @req: The request being processed.
829  *
830  * We've been asked to queue a request, so ensure that the memory buffer
831  * is correctly setup for DMA. If we've been passed an extant DMA address
832  * then ensure the buffer has been synced to memory. If our buffer has no
833  * DMA memory, then we map the memory and mark our request to allow us to
834  * cleanup on completion.
835  */
s3c_hsotg_map_dma(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct usb_request * req)836 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
837 			     struct s3c_hsotg_ep *hs_ep,
838 			     struct usb_request *req)
839 {
840 	struct s3c_hsotg_req *hs_req = our_req(req);
841 	int ret;
842 
843 	/* if the length is zero, ignore the DMA data */
844 	if (hs_req->req.length == 0)
845 		return 0;
846 
847 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
848 	if (ret)
849 		goto dma_error;
850 
851 	return 0;
852 
853 dma_error:
854 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
855 		__func__, req->buf, req->length);
856 
857 	return -EIO;
858 }
859 
s3c_hsotg_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)860 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
861 			      gfp_t gfp_flags)
862 {
863 	struct s3c_hsotg_req *hs_req = our_req(req);
864 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
865 	struct s3c_hsotg *hs = hs_ep->parent;
866 	bool first;
867 
868 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
869 		ep->name, req, req->length, req->buf, req->no_interrupt,
870 		req->zero, req->short_not_ok);
871 
872 	/* initialise status of the request */
873 	INIT_LIST_HEAD(&hs_req->queue);
874 	req->actual = 0;
875 	req->status = -EINPROGRESS;
876 
877 	/* if we're using DMA, sync the buffers as necessary */
878 	if (using_dma(hs)) {
879 		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
880 		if (ret)
881 			return ret;
882 	}
883 
884 	first = list_empty(&hs_ep->queue);
885 	list_add_tail(&hs_req->queue, &hs_ep->queue);
886 
887 	if (first)
888 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
889 
890 	return 0;
891 }
892 
s3c_hsotg_ep_queue_lock(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)893 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
894 			      gfp_t gfp_flags)
895 {
896 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
897 	struct s3c_hsotg *hs = hs_ep->parent;
898 	unsigned long flags = 0;
899 	int ret = 0;
900 
901 	spin_lock_irqsave(&hs->lock, flags);
902 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
903 	spin_unlock_irqrestore(&hs->lock, flags);
904 
905 	return ret;
906 }
907 
s3c_hsotg_ep_free_request(struct usb_ep * ep,struct usb_request * req)908 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
909 				      struct usb_request *req)
910 {
911 	struct s3c_hsotg_req *hs_req = our_req(req);
912 
913 	kfree(hs_req);
914 }
915 
916 /**
917  * s3c_hsotg_complete_oursetup - setup completion callback
918  * @ep: The endpoint the request was on.
919  * @req: The request completed.
920  *
921  * Called on completion of any requests the driver itself
922  * submitted that need cleaning up.
923  */
s3c_hsotg_complete_oursetup(struct usb_ep * ep,struct usb_request * req)924 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
925 					struct usb_request *req)
926 {
927 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
928 	struct s3c_hsotg *hsotg = hs_ep->parent;
929 
930 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
931 
932 	s3c_hsotg_ep_free_request(ep, req);
933 }
934 
935 /**
936  * ep_from_windex - convert control wIndex value to endpoint
937  * @hsotg: The driver state.
938  * @windex: The control request wIndex field (in host order).
939  *
940  * Convert the given wIndex into a pointer to an driver endpoint
941  * structure, or return NULL if it is not a valid endpoint.
942  */
ep_from_windex(struct s3c_hsotg * hsotg,u32 windex)943 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
944 					   u32 windex)
945 {
946 	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
947 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
948 	int idx = windex & 0x7F;
949 
950 	if (windex >= 0x100)
951 		return NULL;
952 
953 	if (idx > hsotg->num_of_eps)
954 		return NULL;
955 
956 	if (idx && ep->dir_in != dir)
957 		return NULL;
958 
959 	return ep;
960 }
961 
962 /**
963  * s3c_hsotg_send_reply - send reply to control request
964  * @hsotg: The device state
965  * @ep: Endpoint 0
966  * @buff: Buffer for request
967  * @length: Length of reply.
968  *
969  * Create a request and queue it on the given endpoint. This is useful as
970  * an internal method of sending replies to certain control requests, etc.
971  */
s3c_hsotg_send_reply(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * ep,void * buff,int length)972 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
973 				struct s3c_hsotg_ep *ep,
974 				void *buff,
975 				int length)
976 {
977 	struct usb_request *req;
978 	int ret;
979 
980 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
981 
982 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
983 	hsotg->ep0_reply = req;
984 	if (!req) {
985 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
986 		return -ENOMEM;
987 	}
988 
989 	req->buf = hsotg->ep0_buff;
990 	req->length = length;
991 	req->zero = 1; /* always do zero-length final transfer */
992 	req->complete = s3c_hsotg_complete_oursetup;
993 
994 	if (length)
995 		memcpy(req->buf, buff, length);
996 	else
997 		ep->sent_zlp = 1;
998 
999 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1000 	if (ret) {
1001 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1002 		return ret;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 /**
1009  * s3c_hsotg_process_req_status - process request GET_STATUS
1010  * @hsotg: The device state
1011  * @ctrl: USB control request
1012  */
s3c_hsotg_process_req_status(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1013 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1014 					struct usb_ctrlrequest *ctrl)
1015 {
1016 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1017 	struct s3c_hsotg_ep *ep;
1018 	__le16 reply;
1019 	int ret;
1020 
1021 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1022 
1023 	if (!ep0->dir_in) {
1024 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1025 		return -EINVAL;
1026 	}
1027 
1028 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1029 	case USB_RECIP_DEVICE:
1030 		reply = cpu_to_le16(0); /* bit 0 => self powered,
1031 					 * bit 1 => remote wakeup */
1032 		break;
1033 
1034 	case USB_RECIP_INTERFACE:
1035 		/* currently, the data result should be zero */
1036 		reply = cpu_to_le16(0);
1037 		break;
1038 
1039 	case USB_RECIP_ENDPOINT:
1040 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1041 		if (!ep)
1042 			return -ENOENT;
1043 
1044 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1045 		break;
1046 
1047 	default:
1048 		return 0;
1049 	}
1050 
1051 	if (le16_to_cpu(ctrl->wLength) != 2)
1052 		return -EINVAL;
1053 
1054 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1055 	if (ret) {
1056 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1057 		return ret;
1058 	}
1059 
1060 	return 1;
1061 }
1062 
1063 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1064 
1065 /**
1066  * get_ep_head - return the first request on the endpoint
1067  * @hs_ep: The controller endpoint to get
1068  *
1069  * Get the first request on the endpoint.
1070  */
get_ep_head(struct s3c_hsotg_ep * hs_ep)1071 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1072 {
1073 	if (list_empty(&hs_ep->queue))
1074 		return NULL;
1075 
1076 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1077 }
1078 
1079 /**
1080  * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1081  * @hsotg: The device state
1082  * @ctrl: USB control request
1083  */
s3c_hsotg_process_req_feature(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1084 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1085 					 struct usb_ctrlrequest *ctrl)
1086 {
1087 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1088 	struct s3c_hsotg_req *hs_req;
1089 	bool restart;
1090 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1091 	struct s3c_hsotg_ep *ep;
1092 	int ret;
1093 
1094 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1095 		__func__, set ? "SET" : "CLEAR");
1096 
1097 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1098 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1099 		if (!ep) {
1100 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1101 				__func__, le16_to_cpu(ctrl->wIndex));
1102 			return -ENOENT;
1103 		}
1104 
1105 		switch (le16_to_cpu(ctrl->wValue)) {
1106 		case USB_ENDPOINT_HALT:
1107 			s3c_hsotg_ep_sethalt(&ep->ep, set);
1108 
1109 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1110 			if (ret) {
1111 				dev_err(hsotg->dev,
1112 					"%s: failed to send reply\n", __func__);
1113 				return ret;
1114 			}
1115 
1116 			if (!set) {
1117 				/*
1118 				 * If we have request in progress,
1119 				 * then complete it
1120 				 */
1121 				if (ep->req) {
1122 					hs_req = ep->req;
1123 					ep->req = NULL;
1124 					list_del_init(&hs_req->queue);
1125 					hs_req->req.complete(&ep->ep,
1126 							     &hs_req->req);
1127 				}
1128 
1129 				/* If we have pending request, then start it */
1130 				restart = !list_empty(&ep->queue);
1131 				if (restart) {
1132 					hs_req = get_ep_head(ep);
1133 					s3c_hsotg_start_req(hsotg, ep,
1134 							    hs_req, false);
1135 				}
1136 			}
1137 
1138 			break;
1139 
1140 		default:
1141 			return -ENOENT;
1142 		}
1143 	} else
1144 		return -ENOENT;  /* currently only deal with endpoint */
1145 
1146 	return 1;
1147 }
1148 
1149 /**
1150  * s3c_hsotg_process_control - process a control request
1151  * @hsotg: The device state
1152  * @ctrl: The control request received
1153  *
1154  * The controller has received the SETUP phase of a control request, and
1155  * needs to work out what to do next (and whether to pass it on to the
1156  * gadget driver).
1157  */
s3c_hsotg_process_control(struct s3c_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1158 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1159 				      struct usb_ctrlrequest *ctrl)
1160 {
1161 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1162 	int ret = 0;
1163 	u32 dcfg;
1164 
1165 	ep0->sent_zlp = 0;
1166 
1167 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1168 		 ctrl->bRequest, ctrl->bRequestType,
1169 		 ctrl->wValue, ctrl->wLength);
1170 
1171 	/*
1172 	 * record the direction of the request, for later use when enquing
1173 	 * packets onto EP0.
1174 	 */
1175 
1176 	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1177 	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1178 
1179 	/*
1180 	 * if we've no data with this request, then the last part of the
1181 	 * transaction is going to implicitly be IN.
1182 	 */
1183 	if (ctrl->wLength == 0)
1184 		ep0->dir_in = 1;
1185 
1186 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1187 		switch (ctrl->bRequest) {
1188 		case USB_REQ_SET_ADDRESS:
1189 			dcfg = readl(hsotg->regs + DCFG);
1190 			dcfg &= ~DCFG_DevAddr_MASK;
1191 			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1192 			writel(dcfg, hsotg->regs + DCFG);
1193 
1194 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1195 
1196 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1197 			return;
1198 
1199 		case USB_REQ_GET_STATUS:
1200 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1201 			break;
1202 
1203 		case USB_REQ_CLEAR_FEATURE:
1204 		case USB_REQ_SET_FEATURE:
1205 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1206 			break;
1207 		}
1208 	}
1209 
1210 	/* as a fallback, try delivering it to the driver to deal with */
1211 
1212 	if (ret == 0 && hsotg->driver) {
1213 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1214 		if (ret < 0)
1215 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1216 	}
1217 
1218 	/*
1219 	 * the request is either unhandlable, or is not formatted correctly
1220 	 * so respond with a STALL for the status stage to indicate failure.
1221 	 */
1222 
1223 	if (ret < 0) {
1224 		u32 reg;
1225 		u32 ctrl;
1226 
1227 		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1228 		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1229 
1230 		/*
1231 		 * DxEPCTL_Stall will be cleared by EP once it has
1232 		 * taken effect, so no need to clear later.
1233 		 */
1234 
1235 		ctrl = readl(hsotg->regs + reg);
1236 		ctrl |= DxEPCTL_Stall;
1237 		ctrl |= DxEPCTL_CNAK;
1238 		writel(ctrl, hsotg->regs + reg);
1239 
1240 		dev_dbg(hsotg->dev,
1241 			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1242 			ctrl, reg, readl(hsotg->regs + reg));
1243 
1244 		/*
1245 		 * don't believe we need to anything more to get the EP
1246 		 * to reply with a STALL packet
1247 		 */
1248 	}
1249 }
1250 
1251 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1252 
1253 /**
1254  * s3c_hsotg_complete_setup - completion of a setup transfer
1255  * @ep: The endpoint the request was on.
1256  * @req: The request completed.
1257  *
1258  * Called on completion of any requests the driver itself submitted for
1259  * EP0 setup packets
1260  */
s3c_hsotg_complete_setup(struct usb_ep * ep,struct usb_request * req)1261 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1262 				     struct usb_request *req)
1263 {
1264 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1265 	struct s3c_hsotg *hsotg = hs_ep->parent;
1266 
1267 	if (req->status < 0) {
1268 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1269 		return;
1270 	}
1271 
1272 	if (req->actual == 0)
1273 		s3c_hsotg_enqueue_setup(hsotg);
1274 	else
1275 		s3c_hsotg_process_control(hsotg, req->buf);
1276 }
1277 
1278 /**
1279  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1280  * @hsotg: The device state.
1281  *
1282  * Enqueue a request on EP0 if necessary to received any SETUP packets
1283  * received from the host.
1284  */
s3c_hsotg_enqueue_setup(struct s3c_hsotg * hsotg)1285 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1286 {
1287 	struct usb_request *req = hsotg->ctrl_req;
1288 	struct s3c_hsotg_req *hs_req = our_req(req);
1289 	int ret;
1290 
1291 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1292 
1293 	req->zero = 0;
1294 	req->length = 8;
1295 	req->buf = hsotg->ctrl_buff;
1296 	req->complete = s3c_hsotg_complete_setup;
1297 
1298 	if (!list_empty(&hs_req->queue)) {
1299 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1300 		return;
1301 	}
1302 
1303 	hsotg->eps[0].dir_in = 0;
1304 
1305 	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1306 	if (ret < 0) {
1307 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1308 		/*
1309 		 * Don't think there's much we can do other than watch the
1310 		 * driver fail.
1311 		 */
1312 	}
1313 }
1314 
1315 /**
1316  * s3c_hsotg_complete_request - complete a request given to us
1317  * @hsotg: The device state.
1318  * @hs_ep: The endpoint the request was on.
1319  * @hs_req: The request to complete.
1320  * @result: The result code (0 => Ok, otherwise errno)
1321  *
1322  * The given request has finished, so call the necessary completion
1323  * if it has one and then look to see if we can start a new request
1324  * on the endpoint.
1325  *
1326  * Note, expects the ep to already be locked as appropriate.
1327  */
s3c_hsotg_complete_request(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,struct s3c_hsotg_req * hs_req,int result)1328 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1329 				       struct s3c_hsotg_ep *hs_ep,
1330 				       struct s3c_hsotg_req *hs_req,
1331 				       int result)
1332 {
1333 	bool restart;
1334 
1335 	if (!hs_req) {
1336 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1337 		return;
1338 	}
1339 
1340 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1341 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1342 
1343 	/*
1344 	 * only replace the status if we've not already set an error
1345 	 * from a previous transaction
1346 	 */
1347 
1348 	if (hs_req->req.status == -EINPROGRESS)
1349 		hs_req->req.status = result;
1350 
1351 	hs_ep->req = NULL;
1352 	list_del_init(&hs_req->queue);
1353 
1354 	if (using_dma(hsotg))
1355 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1356 
1357 	/*
1358 	 * call the complete request with the locks off, just in case the
1359 	 * request tries to queue more work for this endpoint.
1360 	 */
1361 
1362 	if (hs_req->req.complete) {
1363 		spin_unlock(&hsotg->lock);
1364 		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1365 		spin_lock(&hsotg->lock);
1366 	}
1367 
1368 	/*
1369 	 * Look to see if there is anything else to do. Note, the completion
1370 	 * of the previous request may have caused a new request to be started
1371 	 * so be careful when doing this.
1372 	 */
1373 
1374 	if (!hs_ep->req && result >= 0) {
1375 		restart = !list_empty(&hs_ep->queue);
1376 		if (restart) {
1377 			hs_req = get_ep_head(hs_ep);
1378 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1379 		}
1380 	}
1381 }
1382 
1383 /**
1384  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1385  * @hsotg: The device state.
1386  * @ep_idx: The endpoint index for the data
1387  * @size: The size of data in the fifo, in bytes
1388  *
1389  * The FIFO status shows there is data to read from the FIFO for a given
1390  * endpoint, so sort out whether we need to read the data into a request
1391  * that has been made for that endpoint.
1392  */
s3c_hsotg_rx_data(struct s3c_hsotg * hsotg,int ep_idx,int size)1393 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1394 {
1395 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1396 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1397 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1398 	int to_read;
1399 	int max_req;
1400 	int read_ptr;
1401 
1402 
1403 	if (!hs_req) {
1404 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1405 		int ptr;
1406 
1407 		dev_warn(hsotg->dev,
1408 			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1409 			 __func__, size, ep_idx, epctl);
1410 
1411 		/* dump the data from the FIFO, we've nothing we can do */
1412 		for (ptr = 0; ptr < size; ptr += 4)
1413 			(void)readl(fifo);
1414 
1415 		return;
1416 	}
1417 
1418 	to_read = size;
1419 	read_ptr = hs_req->req.actual;
1420 	max_req = hs_req->req.length - read_ptr;
1421 
1422 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1423 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1424 
1425 	if (to_read > max_req) {
1426 		/*
1427 		 * more data appeared than we where willing
1428 		 * to deal with in this request.
1429 		 */
1430 
1431 		/* currently we don't deal this */
1432 		WARN_ON_ONCE(1);
1433 	}
1434 
1435 	hs_ep->total_data += to_read;
1436 	hs_req->req.actual += to_read;
1437 	to_read = DIV_ROUND_UP(to_read, 4);
1438 
1439 	/*
1440 	 * note, we might over-write the buffer end by 3 bytes depending on
1441 	 * alignment of the data.
1442 	 */
1443 	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1444 }
1445 
1446 /**
1447  * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1448  * @hsotg: The device instance
1449  * @req: The request currently on this endpoint
1450  *
1451  * Generate a zero-length IN packet request for terminating a SETUP
1452  * transaction.
1453  *
1454  * Note, since we don't write any data to the TxFIFO, then it is
1455  * currently believed that we do not need to wait for any space in
1456  * the TxFIFO.
1457  */
s3c_hsotg_send_zlp(struct s3c_hsotg * hsotg,struct s3c_hsotg_req * req)1458 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1459 			       struct s3c_hsotg_req *req)
1460 {
1461 	u32 ctrl;
1462 
1463 	if (!req) {
1464 		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1465 		return;
1466 	}
1467 
1468 	if (req->req.length == 0) {
1469 		hsotg->eps[0].sent_zlp = 1;
1470 		s3c_hsotg_enqueue_setup(hsotg);
1471 		return;
1472 	}
1473 
1474 	hsotg->eps[0].dir_in = 1;
1475 	hsotg->eps[0].sent_zlp = 1;
1476 
1477 	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1478 
1479 	/* issue a zero-sized packet to terminate this */
1480 	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1481 	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1482 
1483 	ctrl = readl(hsotg->regs + DIEPCTL0);
1484 	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
1485 	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1486 	ctrl |= DxEPCTL_USBActEp;
1487 	writel(ctrl, hsotg->regs + DIEPCTL0);
1488 }
1489 
1490 /**
1491  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1492  * @hsotg: The device instance
1493  * @epnum: The endpoint received from
1494  * @was_setup: Set if processing a SetupDone event.
1495  *
1496  * The RXFIFO has delivered an OutDone event, which means that the data
1497  * transfer for an OUT endpoint has been completed, either by a short
1498  * packet or by the finish of a transfer.
1499  */
s3c_hsotg_handle_outdone(struct s3c_hsotg * hsotg,int epnum,bool was_setup)1500 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1501 				     int epnum, bool was_setup)
1502 {
1503 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1504 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1505 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1506 	struct usb_request *req = &hs_req->req;
1507 	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1508 	int result = 0;
1509 
1510 	if (!hs_req) {
1511 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1512 		return;
1513 	}
1514 
1515 	if (using_dma(hsotg)) {
1516 		unsigned size_done;
1517 
1518 		/*
1519 		 * Calculate the size of the transfer by checking how much
1520 		 * is left in the endpoint size register and then working it
1521 		 * out from the amount we loaded for the transfer.
1522 		 *
1523 		 * We need to do this as DMA pointers are always 32bit aligned
1524 		 * so may overshoot/undershoot the transfer.
1525 		 */
1526 
1527 		size_done = hs_ep->size_loaded - size_left;
1528 		size_done += hs_ep->last_load;
1529 
1530 		req->actual = size_done;
1531 	}
1532 
1533 	/* if there is more request to do, schedule new transfer */
1534 	if (req->actual < req->length && size_left == 0) {
1535 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1536 		return;
1537 	} else if (epnum == 0) {
1538 		/*
1539 		 * After was_setup = 1 =>
1540 		 * set CNAK for non Setup requests
1541 		 */
1542 		hsotg->setup = was_setup ? 0 : 1;
1543 	}
1544 
1545 	if (req->actual < req->length && req->short_not_ok) {
1546 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1547 			__func__, req->actual, req->length);
1548 
1549 		/*
1550 		 * todo - what should we return here? there's no one else
1551 		 * even bothering to check the status.
1552 		 */
1553 	}
1554 
1555 	if (epnum == 0) {
1556 		/*
1557 		 * Condition req->complete != s3c_hsotg_complete_setup says:
1558 		 * send ZLP when we have an asynchronous request from gadget
1559 		 */
1560 		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1561 			s3c_hsotg_send_zlp(hsotg, hs_req);
1562 	}
1563 
1564 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1565 }
1566 
1567 /**
1568  * s3c_hsotg_read_frameno - read current frame number
1569  * @hsotg: The device instance
1570  *
1571  * Return the current frame number
1572  */
s3c_hsotg_read_frameno(struct s3c_hsotg * hsotg)1573 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1574 {
1575 	u32 dsts;
1576 
1577 	dsts = readl(hsotg->regs + DSTS);
1578 	dsts &= DSTS_SOFFN_MASK;
1579 	dsts >>= DSTS_SOFFN_SHIFT;
1580 
1581 	return dsts;
1582 }
1583 
1584 /**
1585  * s3c_hsotg_handle_rx - RX FIFO has data
1586  * @hsotg: The device instance
1587  *
1588  * The IRQ handler has detected that the RX FIFO has some data in it
1589  * that requires processing, so find out what is in there and do the
1590  * appropriate read.
1591  *
1592  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1593  * chunks, so if you have x packets received on an endpoint you'll get x
1594  * FIFO events delivered, each with a packet's worth of data in it.
1595  *
1596  * When using DMA, we should not be processing events from the RXFIFO
1597  * as the actual data should be sent to the memory directly and we turn
1598  * on the completion interrupts to get notifications of transfer completion.
1599  */
s3c_hsotg_handle_rx(struct s3c_hsotg * hsotg)1600 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1601 {
1602 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1603 	u32 epnum, status, size;
1604 
1605 	WARN_ON(using_dma(hsotg));
1606 
1607 	epnum = grxstsr & GRXSTS_EPNum_MASK;
1608 	status = grxstsr & GRXSTS_PktSts_MASK;
1609 
1610 	size = grxstsr & GRXSTS_ByteCnt_MASK;
1611 	size >>= GRXSTS_ByteCnt_SHIFT;
1612 
1613 	if (1)
1614 		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1615 			__func__, grxstsr, size, epnum);
1616 
1617 #define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1618 
1619 	switch (status >> GRXSTS_PktSts_SHIFT) {
1620 	case __status(GRXSTS_PktSts_GlobalOutNAK):
1621 		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1622 		break;
1623 
1624 	case __status(GRXSTS_PktSts_OutDone):
1625 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1626 			s3c_hsotg_read_frameno(hsotg));
1627 
1628 		if (!using_dma(hsotg))
1629 			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1630 		break;
1631 
1632 	case __status(GRXSTS_PktSts_SetupDone):
1633 		dev_dbg(hsotg->dev,
1634 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1635 			s3c_hsotg_read_frameno(hsotg),
1636 			readl(hsotg->regs + DOEPCTL(0)));
1637 
1638 		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1639 		break;
1640 
1641 	case __status(GRXSTS_PktSts_OutRX):
1642 		s3c_hsotg_rx_data(hsotg, epnum, size);
1643 		break;
1644 
1645 	case __status(GRXSTS_PktSts_SetupRX):
1646 		dev_dbg(hsotg->dev,
1647 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1648 			s3c_hsotg_read_frameno(hsotg),
1649 			readl(hsotg->regs + DOEPCTL(0)));
1650 
1651 		s3c_hsotg_rx_data(hsotg, epnum, size);
1652 		break;
1653 
1654 	default:
1655 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1656 			 __func__, grxstsr);
1657 
1658 		s3c_hsotg_dump(hsotg);
1659 		break;
1660 	}
1661 }
1662 
1663 /**
1664  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1665  * @mps: The maximum packet size in bytes.
1666  */
s3c_hsotg_ep0_mps(unsigned int mps)1667 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1668 {
1669 	switch (mps) {
1670 	case 64:
1671 		return D0EPCTL_MPS_64;
1672 	case 32:
1673 		return D0EPCTL_MPS_32;
1674 	case 16:
1675 		return D0EPCTL_MPS_16;
1676 	case 8:
1677 		return D0EPCTL_MPS_8;
1678 	}
1679 
1680 	/* bad max packet size, warn and return invalid result */
1681 	WARN_ON(1);
1682 	return (u32)-1;
1683 }
1684 
1685 /**
1686  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1687  * @hsotg: The driver state.
1688  * @ep: The index number of the endpoint
1689  * @mps: The maximum packet size in bytes
1690  *
1691  * Configure the maximum packet size for the given endpoint, updating
1692  * the hardware control registers to reflect this.
1693  */
s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg * hsotg,unsigned int ep,unsigned int mps)1694 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1695 				       unsigned int ep, unsigned int mps)
1696 {
1697 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1698 	void __iomem *regs = hsotg->regs;
1699 	u32 mpsval;
1700 	u32 reg;
1701 
1702 	if (ep == 0) {
1703 		/* EP0 is a special case */
1704 		mpsval = s3c_hsotg_ep0_mps(mps);
1705 		if (mpsval > 3)
1706 			goto bad_mps;
1707 	} else {
1708 		if (mps >= DxEPCTL_MPS_LIMIT+1)
1709 			goto bad_mps;
1710 
1711 		mpsval = mps;
1712 	}
1713 
1714 	hs_ep->ep.maxpacket = mps;
1715 
1716 	/*
1717 	 * update both the in and out endpoint controldir_ registers, even
1718 	 * if one of the directions may not be in use.
1719 	 */
1720 
1721 	reg = readl(regs + DIEPCTL(ep));
1722 	reg &= ~DxEPCTL_MPS_MASK;
1723 	reg |= mpsval;
1724 	writel(reg, regs + DIEPCTL(ep));
1725 
1726 	if (ep) {
1727 		reg = readl(regs + DOEPCTL(ep));
1728 		reg &= ~DxEPCTL_MPS_MASK;
1729 		reg |= mpsval;
1730 		writel(reg, regs + DOEPCTL(ep));
1731 	}
1732 
1733 	return;
1734 
1735 bad_mps:
1736 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1737 }
1738 
1739 /**
1740  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1741  * @hsotg: The driver state
1742  * @idx: The index for the endpoint (0..15)
1743  */
s3c_hsotg_txfifo_flush(struct s3c_hsotg * hsotg,unsigned int idx)1744 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1745 {
1746 	int timeout;
1747 	int val;
1748 
1749 	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1750 		hsotg->regs + GRSTCTL);
1751 
1752 	/* wait until the fifo is flushed */
1753 	timeout = 100;
1754 
1755 	while (1) {
1756 		val = readl(hsotg->regs + GRSTCTL);
1757 
1758 		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1759 			break;
1760 
1761 		if (--timeout == 0) {
1762 			dev_err(hsotg->dev,
1763 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1764 				__func__, val);
1765 		}
1766 
1767 		udelay(1);
1768 	}
1769 }
1770 
1771 /**
1772  * s3c_hsotg_trytx - check to see if anything needs transmitting
1773  * @hsotg: The driver state
1774  * @hs_ep: The driver endpoint to check.
1775  *
1776  * Check to see if there is a request that has data to send, and if so
1777  * make an attempt to write data into the FIFO.
1778  */
s3c_hsotg_trytx(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep)1779 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1780 			   struct s3c_hsotg_ep *hs_ep)
1781 {
1782 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1783 
1784 	if (!hs_ep->dir_in || !hs_req)
1785 		return 0;
1786 
1787 	if (hs_req->req.actual < hs_req->req.length) {
1788 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1789 			hs_ep->index);
1790 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * s3c_hsotg_complete_in - complete IN transfer
1798  * @hsotg: The device state.
1799  * @hs_ep: The endpoint that has just completed.
1800  *
1801  * An IN transfer has been completed, update the transfer's state and then
1802  * call the relevant completion routines.
1803  */
s3c_hsotg_complete_in(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep)1804 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1805 				  struct s3c_hsotg_ep *hs_ep)
1806 {
1807 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1808 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1809 	int size_left, size_done;
1810 
1811 	if (!hs_req) {
1812 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1813 		return;
1814 	}
1815 
1816 	/* Finish ZLP handling for IN EP0 transactions */
1817 	if (hsotg->eps[0].sent_zlp) {
1818 		dev_dbg(hsotg->dev, "zlp packet received\n");
1819 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1820 		return;
1821 	}
1822 
1823 	/*
1824 	 * Calculate the size of the transfer by checking how much is left
1825 	 * in the endpoint size register and then working it out from
1826 	 * the amount we loaded for the transfer.
1827 	 *
1828 	 * We do this even for DMA, as the transfer may have incremented
1829 	 * past the end of the buffer (DMA transfers are always 32bit
1830 	 * aligned).
1831 	 */
1832 
1833 	size_left = DxEPTSIZ_XferSize_GET(epsize);
1834 
1835 	size_done = hs_ep->size_loaded - size_left;
1836 	size_done += hs_ep->last_load;
1837 
1838 	if (hs_req->req.actual != size_done)
1839 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1840 			__func__, hs_req->req.actual, size_done);
1841 
1842 	hs_req->req.actual = size_done;
1843 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1844 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1845 
1846 	/*
1847 	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1848 	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1849 	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1850 	 * inform the host that no more data is available.
1851 	 * The state of req.zero member is checked to be sure that the value to
1852 	 * send is smaller than wValue expected from host.
1853 	 * Check req.length to NOT send another ZLP when the current one is
1854 	 * under completion (the one for which this completion has been called).
1855 	 */
1856 	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1857 	    hs_req->req.length == hs_req->req.actual &&
1858 	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1859 
1860 		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1861 		s3c_hsotg_send_zlp(hsotg, hs_req);
1862 
1863 		return;
1864 	}
1865 
1866 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1867 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1868 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1869 	} else
1870 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1871 }
1872 
1873 /**
1874  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1875  * @hsotg: The driver state
1876  * @idx: The index for the endpoint (0..15)
1877  * @dir_in: Set if this is an IN endpoint
1878  *
1879  * Process and clear any interrupt pending for an individual endpoint
1880  */
s3c_hsotg_epint(struct s3c_hsotg * hsotg,unsigned int idx,int dir_in)1881 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1882 			    int dir_in)
1883 {
1884 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1885 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1886 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1887 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1888 	u32 ints;
1889 
1890 	ints = readl(hsotg->regs + epint_reg);
1891 
1892 	/* Clear endpoint interrupts */
1893 	writel(ints, hsotg->regs + epint_reg);
1894 
1895 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1896 		__func__, idx, dir_in ? "in" : "out", ints);
1897 
1898 	if (ints & DxEPINT_XferCompl) {
1899 		dev_dbg(hsotg->dev,
1900 			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1901 			__func__, readl(hsotg->regs + epctl_reg),
1902 			readl(hsotg->regs + epsiz_reg));
1903 
1904 		/*
1905 		 * we get OutDone from the FIFO, so we only need to look
1906 		 * at completing IN requests here
1907 		 */
1908 		if (dir_in) {
1909 			s3c_hsotg_complete_in(hsotg, hs_ep);
1910 
1911 			if (idx == 0 && !hs_ep->req)
1912 				s3c_hsotg_enqueue_setup(hsotg);
1913 		} else if (using_dma(hsotg)) {
1914 			/*
1915 			 * We're using DMA, we need to fire an OutDone here
1916 			 * as we ignore the RXFIFO.
1917 			 */
1918 
1919 			s3c_hsotg_handle_outdone(hsotg, idx, false);
1920 		}
1921 	}
1922 
1923 	if (ints & DxEPINT_EPDisbld) {
1924 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1925 
1926 		if (dir_in) {
1927 			int epctl = readl(hsotg->regs + epctl_reg);
1928 
1929 			s3c_hsotg_txfifo_flush(hsotg, idx);
1930 
1931 			if ((epctl & DxEPCTL_Stall) &&
1932 				(epctl & DxEPCTL_EPType_Bulk)) {
1933 				int dctl = readl(hsotg->regs + DCTL);
1934 
1935 				dctl |= DCTL_CGNPInNAK;
1936 				writel(dctl, hsotg->regs + DCTL);
1937 			}
1938 		}
1939 	}
1940 
1941 	if (ints & DxEPINT_AHBErr)
1942 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1943 
1944 	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1945 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1946 
1947 		if (using_dma(hsotg) && idx == 0) {
1948 			/*
1949 			 * this is the notification we've received a
1950 			 * setup packet. In non-DMA mode we'd get this
1951 			 * from the RXFIFO, instead we need to process
1952 			 * the setup here.
1953 			 */
1954 
1955 			if (dir_in)
1956 				WARN_ON_ONCE(1);
1957 			else
1958 				s3c_hsotg_handle_outdone(hsotg, 0, true);
1959 		}
1960 	}
1961 
1962 	if (ints & DxEPINT_Back2BackSetup)
1963 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1964 
1965 	if (dir_in) {
1966 		/* not sure if this is important, but we'll clear it anyway */
1967 		if (ints & DIEPMSK_INTknTXFEmpMsk) {
1968 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1969 				__func__, idx);
1970 		}
1971 
1972 		/* this probably means something bad is happening */
1973 		if (ints & DIEPMSK_INTknEPMisMsk) {
1974 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1975 				 __func__, idx);
1976 		}
1977 
1978 		/* FIFO has space or is empty (see GAHBCFG) */
1979 		if (hsotg->dedicated_fifos &&
1980 		    ints & DIEPMSK_TxFIFOEmpty) {
1981 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1982 				__func__, idx);
1983 			if (!using_dma(hsotg))
1984 				s3c_hsotg_trytx(hsotg, hs_ep);
1985 		}
1986 	}
1987 }
1988 
1989 /**
1990  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1991  * @hsotg: The device state.
1992  *
1993  * Handle updating the device settings after the enumeration phase has
1994  * been completed.
1995  */
s3c_hsotg_irq_enumdone(struct s3c_hsotg * hsotg)1996 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1997 {
1998 	u32 dsts = readl(hsotg->regs + DSTS);
1999 	int ep0_mps = 0, ep_mps;
2000 
2001 	/*
2002 	 * This should signal the finish of the enumeration phase
2003 	 * of the USB handshaking, so we should now know what rate
2004 	 * we connected at.
2005 	 */
2006 
2007 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2008 
2009 	/*
2010 	 * note, since we're limited by the size of transfer on EP0, and
2011 	 * it seems IN transfers must be a even number of packets we do
2012 	 * not advertise a 64byte MPS on EP0.
2013 	 */
2014 
2015 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2016 	switch (dsts & DSTS_EnumSpd_MASK) {
2017 	case DSTS_EnumSpd_FS:
2018 	case DSTS_EnumSpd_FS48:
2019 		hsotg->gadget.speed = USB_SPEED_FULL;
2020 		ep0_mps = EP0_MPS_LIMIT;
2021 		ep_mps = 64;
2022 		break;
2023 
2024 	case DSTS_EnumSpd_HS:
2025 		hsotg->gadget.speed = USB_SPEED_HIGH;
2026 		ep0_mps = EP0_MPS_LIMIT;
2027 		ep_mps = 512;
2028 		break;
2029 
2030 	case DSTS_EnumSpd_LS:
2031 		hsotg->gadget.speed = USB_SPEED_LOW;
2032 		/*
2033 		 * note, we don't actually support LS in this driver at the
2034 		 * moment, and the documentation seems to imply that it isn't
2035 		 * supported by the PHYs on some of the devices.
2036 		 */
2037 		break;
2038 	}
2039 	dev_info(hsotg->dev, "new device is %s\n",
2040 		 usb_speed_string(hsotg->gadget.speed));
2041 
2042 	/*
2043 	 * we should now know the maximum packet size for an
2044 	 * endpoint, so set the endpoints to a default value.
2045 	 */
2046 
2047 	if (ep0_mps) {
2048 		int i;
2049 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2050 		for (i = 1; i < hsotg->num_of_eps; i++)
2051 			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2052 	}
2053 
2054 	/* ensure after enumeration our EP0 is active */
2055 
2056 	s3c_hsotg_enqueue_setup(hsotg);
2057 
2058 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2059 		readl(hsotg->regs + DIEPCTL0),
2060 		readl(hsotg->regs + DOEPCTL0));
2061 }
2062 
2063 /**
2064  * kill_all_requests - remove all requests from the endpoint's queue
2065  * @hsotg: The device state.
2066  * @ep: The endpoint the requests may be on.
2067  * @result: The result code to use.
2068  * @force: Force removal of any current requests
2069  *
2070  * Go through the requests on the given endpoint and mark them
2071  * completed with the given result code.
2072  */
kill_all_requests(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * ep,int result,bool force)2073 static void kill_all_requests(struct s3c_hsotg *hsotg,
2074 			      struct s3c_hsotg_ep *ep,
2075 			      int result, bool force)
2076 {
2077 	struct s3c_hsotg_req *req, *treq;
2078 
2079 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2080 		/*
2081 		 * currently, we can't do much about an already
2082 		 * running request on an in endpoint
2083 		 */
2084 
2085 		if (ep->req == req && ep->dir_in && !force)
2086 			continue;
2087 
2088 		s3c_hsotg_complete_request(hsotg, ep, req,
2089 					   result);
2090 	}
2091 }
2092 
2093 #define call_gadget(_hs, _entry) \
2094 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2095 	    (_hs)->driver && (_hs)->driver->_entry) { \
2096 		spin_unlock(&_hs->lock); \
2097 		(_hs)->driver->_entry(&(_hs)->gadget); \
2098 		spin_lock(&_hs->lock); \
2099 		}
2100 
2101 /**
2102  * s3c_hsotg_disconnect - disconnect service
2103  * @hsotg: The device state.
2104  *
2105  * The device has been disconnected. Remove all current
2106  * transactions and signal the gadget driver that this
2107  * has happened.
2108  */
s3c_hsotg_disconnect(struct s3c_hsotg * hsotg)2109 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2110 {
2111 	unsigned ep;
2112 
2113 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2114 		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2115 
2116 	call_gadget(hsotg, disconnect);
2117 }
2118 
2119 /**
2120  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2121  * @hsotg: The device state:
2122  * @periodic: True if this is a periodic FIFO interrupt
2123  */
s3c_hsotg_irq_fifoempty(struct s3c_hsotg * hsotg,bool periodic)2124 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2125 {
2126 	struct s3c_hsotg_ep *ep;
2127 	int epno, ret;
2128 
2129 	/* look through for any more data to transmit */
2130 
2131 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2132 		ep = &hsotg->eps[epno];
2133 
2134 		if (!ep->dir_in)
2135 			continue;
2136 
2137 		if ((periodic && !ep->periodic) ||
2138 		    (!periodic && ep->periodic))
2139 			continue;
2140 
2141 		ret = s3c_hsotg_trytx(hsotg, ep);
2142 		if (ret < 0)
2143 			break;
2144 	}
2145 }
2146 
2147 /* IRQ flags which will trigger a retry around the IRQ loop */
2148 #define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2149 			GINTSTS_PTxFEmp |  \
2150 			GINTSTS_RxFLvl)
2151 
2152 /**
2153  * s3c_hsotg_corereset - issue softreset to the core
2154  * @hsotg: The device state
2155  *
2156  * Issue a soft reset to the core, and await the core finishing it.
2157  */
s3c_hsotg_corereset(struct s3c_hsotg * hsotg)2158 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2159 {
2160 	int timeout;
2161 	u32 grstctl;
2162 
2163 	dev_dbg(hsotg->dev, "resetting core\n");
2164 
2165 	/* issue soft reset */
2166 	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2167 
2168 	timeout = 10000;
2169 	do {
2170 		grstctl = readl(hsotg->regs + GRSTCTL);
2171 	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2172 
2173 	if (grstctl & GRSTCTL_CSftRst) {
2174 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2175 		return -EINVAL;
2176 	}
2177 
2178 	timeout = 10000;
2179 
2180 	while (1) {
2181 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2182 
2183 		if (timeout-- < 0) {
2184 			dev_info(hsotg->dev,
2185 				 "%s: reset failed, GRSTCTL=%08x\n",
2186 				 __func__, grstctl);
2187 			return -ETIMEDOUT;
2188 		}
2189 
2190 		if (!(grstctl & GRSTCTL_AHBIdle))
2191 			continue;
2192 
2193 		break;		/* reset done */
2194 	}
2195 
2196 	dev_dbg(hsotg->dev, "reset successful\n");
2197 	return 0;
2198 }
2199 
2200 /**
2201  * s3c_hsotg_core_init - issue softreset to the core
2202  * @hsotg: The device state
2203  *
2204  * Issue a soft reset to the core, and await the core finishing it.
2205  */
s3c_hsotg_core_init(struct s3c_hsotg * hsotg)2206 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2207 {
2208 	s3c_hsotg_corereset(hsotg);
2209 
2210 	/*
2211 	 * we must now enable ep0 ready for host detection and then
2212 	 * set configuration.
2213 	 */
2214 
2215 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2216 	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2217 	       (0x5 << 10), hsotg->regs + GUSBCFG);
2218 
2219 	s3c_hsotg_init_fifo(hsotg);
2220 
2221 	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2222 
2223 	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2224 
2225 	/* Clear any pending OTG interrupts */
2226 	writel(0xffffffff, hsotg->regs + GOTGINT);
2227 
2228 	/* Clear any pending interrupts */
2229 	writel(0xffffffff, hsotg->regs + GINTSTS);
2230 
2231 	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2232 	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2233 	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2234 	       GINTSTS_EnumDone | GINTSTS_OTGInt |
2235 	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
2236 	       hsotg->regs + GINTMSK);
2237 
2238 	if (using_dma(hsotg))
2239 		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2240 		       GAHBCFG_HBstLen_Incr4,
2241 		       hsotg->regs + GAHBCFG);
2242 	else
2243 		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2244 
2245 	/*
2246 	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2247 	 * up being flooded with interrupts if the host is polling the
2248 	 * endpoint to try and read data.
2249 	 */
2250 
2251 	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
2252 	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2253 	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2254 	       DIEPMSK_INTknEPMisMsk,
2255 	       hsotg->regs + DIEPMSK);
2256 
2257 	/*
2258 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2259 	 * DMA mode we may need this.
2260 	 */
2261 	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2262 				    DIEPMSK_TimeOUTMsk) : 0) |
2263 	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2264 	       DOEPMSK_SetupMsk,
2265 	       hsotg->regs + DOEPMSK);
2266 
2267 	writel(0, hsotg->regs + DAINTMSK);
2268 
2269 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2270 		readl(hsotg->regs + DIEPCTL0),
2271 		readl(hsotg->regs + DOEPCTL0));
2272 
2273 	/* enable in and out endpoint interrupts */
2274 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2275 
2276 	/*
2277 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2278 	 * the data. In DMA mode, we get events from the FIFO but also
2279 	 * things we cannot process, so do not use it.
2280 	 */
2281 	if (!using_dma(hsotg))
2282 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2283 
2284 	/* Enable interrupts for EP0 in and out */
2285 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2286 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2287 
2288 	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2289 	udelay(10);  /* see openiboot */
2290 	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2291 
2292 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2293 
2294 	/*
2295 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2296 	 * writing to the EPCTL register..
2297 	 */
2298 
2299 	/* set to read 1 8byte packet */
2300 	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2301 	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2302 
2303 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2304 	       DxEPCTL_CNAK | DxEPCTL_EPEna |
2305 	       DxEPCTL_USBActEp,
2306 	       hsotg->regs + DOEPCTL0);
2307 
2308 	/* enable, but don't activate EP0in */
2309 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2310 	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2311 
2312 	s3c_hsotg_enqueue_setup(hsotg);
2313 
2314 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2315 		readl(hsotg->regs + DIEPCTL0),
2316 		readl(hsotg->regs + DOEPCTL0));
2317 
2318 	/* clear global NAKs */
2319 	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2320 	       hsotg->regs + DCTL);
2321 
2322 	/* must be at-least 3ms to allow bus to see disconnect */
2323 	mdelay(3);
2324 
2325 	/* remove the soft-disconnect and let's go */
2326 	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2327 }
2328 
2329 /**
2330  * s3c_hsotg_irq - handle device interrupt
2331  * @irq: The IRQ number triggered
2332  * @pw: The pw value when registered the handler.
2333  */
s3c_hsotg_irq(int irq,void * pw)2334 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2335 {
2336 	struct s3c_hsotg *hsotg = pw;
2337 	int retry_count = 8;
2338 	u32 gintsts;
2339 	u32 gintmsk;
2340 
2341 	spin_lock(&hsotg->lock);
2342 irq_retry:
2343 	gintsts = readl(hsotg->regs + GINTSTS);
2344 	gintmsk = readl(hsotg->regs + GINTMSK);
2345 
2346 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2347 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2348 
2349 	gintsts &= gintmsk;
2350 
2351 	if (gintsts & GINTSTS_OTGInt) {
2352 		u32 otgint = readl(hsotg->regs + GOTGINT);
2353 
2354 		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2355 
2356 		writel(otgint, hsotg->regs + GOTGINT);
2357 	}
2358 
2359 	if (gintsts & GINTSTS_SessReqInt) {
2360 		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2361 		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2362 	}
2363 
2364 	if (gintsts & GINTSTS_EnumDone) {
2365 		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2366 
2367 		s3c_hsotg_irq_enumdone(hsotg);
2368 	}
2369 
2370 	if (gintsts & GINTSTS_ConIDStsChng) {
2371 		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2372 			readl(hsotg->regs + DSTS),
2373 			readl(hsotg->regs + GOTGCTL));
2374 
2375 		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2376 	}
2377 
2378 	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2379 		u32 daint = readl(hsotg->regs + DAINT);
2380 		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
2381 		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2382 		int ep;
2383 
2384 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2385 
2386 		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2387 			if (daint_out & 1)
2388 				s3c_hsotg_epint(hsotg, ep, 0);
2389 		}
2390 
2391 		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2392 			if (daint_in & 1)
2393 				s3c_hsotg_epint(hsotg, ep, 1);
2394 		}
2395 	}
2396 
2397 	if (gintsts & GINTSTS_USBRst) {
2398 
2399 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2400 
2401 		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2402 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2403 			readl(hsotg->regs + GNPTXSTS));
2404 
2405 		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2406 
2407 		if (usb_status & GOTGCTL_BSESVLD) {
2408 			if (time_after(jiffies, hsotg->last_rst +
2409 				       msecs_to_jiffies(200))) {
2410 
2411 				kill_all_requests(hsotg, &hsotg->eps[0],
2412 							  -ECONNRESET, true);
2413 
2414 				s3c_hsotg_core_init(hsotg);
2415 				hsotg->last_rst = jiffies;
2416 			}
2417 		}
2418 	}
2419 
2420 	/* check both FIFOs */
2421 
2422 	if (gintsts & GINTSTS_NPTxFEmp) {
2423 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2424 
2425 		/*
2426 		 * Disable the interrupt to stop it happening again
2427 		 * unless one of these endpoint routines decides that
2428 		 * it needs re-enabling
2429 		 */
2430 
2431 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2432 		s3c_hsotg_irq_fifoempty(hsotg, false);
2433 	}
2434 
2435 	if (gintsts & GINTSTS_PTxFEmp) {
2436 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2437 
2438 		/* See note in GINTSTS_NPTxFEmp */
2439 
2440 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2441 		s3c_hsotg_irq_fifoempty(hsotg, true);
2442 	}
2443 
2444 	if (gintsts & GINTSTS_RxFLvl) {
2445 		/*
2446 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2447 		 * we need to retry s3c_hsotg_handle_rx if this is still
2448 		 * set.
2449 		 */
2450 
2451 		s3c_hsotg_handle_rx(hsotg);
2452 	}
2453 
2454 	if (gintsts & GINTSTS_ModeMis) {
2455 		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2456 		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2457 	}
2458 
2459 	if (gintsts & GINTSTS_USBSusp) {
2460 		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2461 		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2462 
2463 		call_gadget(hsotg, suspend);
2464 		s3c_hsotg_disconnect(hsotg);
2465 	}
2466 
2467 	if (gintsts & GINTSTS_WkUpInt) {
2468 		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2469 		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2470 
2471 		call_gadget(hsotg, resume);
2472 	}
2473 
2474 	if (gintsts & GINTSTS_ErlySusp) {
2475 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2476 		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2477 
2478 		s3c_hsotg_disconnect(hsotg);
2479 	}
2480 
2481 	/*
2482 	 * these next two seem to crop-up occasionally causing the core
2483 	 * to shutdown the USB transfer, so try clearing them and logging
2484 	 * the occurrence.
2485 	 */
2486 
2487 	if (gintsts & GINTSTS_GOUTNakEff) {
2488 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2489 
2490 		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2491 
2492 		s3c_hsotg_dump(hsotg);
2493 	}
2494 
2495 	if (gintsts & GINTSTS_GINNakEff) {
2496 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2497 
2498 		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2499 
2500 		s3c_hsotg_dump(hsotg);
2501 	}
2502 
2503 	/*
2504 	 * if we've had fifo events, we should try and go around the
2505 	 * loop again to see if there's any point in returning yet.
2506 	 */
2507 
2508 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2509 			goto irq_retry;
2510 
2511 	spin_unlock(&hsotg->lock);
2512 
2513 	return IRQ_HANDLED;
2514 }
2515 
2516 /**
2517  * s3c_hsotg_ep_enable - enable the given endpoint
2518  * @ep: The USB endpint to configure
2519  * @desc: The USB endpoint descriptor to configure with.
2520  *
2521  * This is called from the USB gadget code's usb_ep_enable().
2522  */
s3c_hsotg_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)2523 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2524 			       const struct usb_endpoint_descriptor *desc)
2525 {
2526 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2527 	struct s3c_hsotg *hsotg = hs_ep->parent;
2528 	unsigned long flags;
2529 	int index = hs_ep->index;
2530 	u32 epctrl_reg;
2531 	u32 epctrl;
2532 	u32 mps;
2533 	int dir_in;
2534 	int ret = 0;
2535 
2536 	dev_dbg(hsotg->dev,
2537 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2538 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2539 		desc->wMaxPacketSize, desc->bInterval);
2540 
2541 	/* not to be called for EP0 */
2542 	WARN_ON(index == 0);
2543 
2544 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2545 	if (dir_in != hs_ep->dir_in) {
2546 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2547 		return -EINVAL;
2548 	}
2549 
2550 	mps = usb_endpoint_maxp(desc);
2551 
2552 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2553 
2554 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2555 	epctrl = readl(hsotg->regs + epctrl_reg);
2556 
2557 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2558 		__func__, epctrl, epctrl_reg);
2559 
2560 	spin_lock_irqsave(&hsotg->lock, flags);
2561 
2562 	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2563 	epctrl |= DxEPCTL_MPS(mps);
2564 
2565 	/*
2566 	 * mark the endpoint as active, otherwise the core may ignore
2567 	 * transactions entirely for this endpoint
2568 	 */
2569 	epctrl |= DxEPCTL_USBActEp;
2570 
2571 	/*
2572 	 * set the NAK status on the endpoint, otherwise we might try and
2573 	 * do something with data that we've yet got a request to process
2574 	 * since the RXFIFO will take data for an endpoint even if the
2575 	 * size register hasn't been set.
2576 	 */
2577 
2578 	epctrl |= DxEPCTL_SNAK;
2579 
2580 	/* update the endpoint state */
2581 	hs_ep->ep.maxpacket = mps;
2582 
2583 	/* default, set to non-periodic */
2584 	hs_ep->periodic = 0;
2585 
2586 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2587 	case USB_ENDPOINT_XFER_ISOC:
2588 		dev_err(hsotg->dev, "no current ISOC support\n");
2589 		ret = -EINVAL;
2590 		goto out;
2591 
2592 	case USB_ENDPOINT_XFER_BULK:
2593 		epctrl |= DxEPCTL_EPType_Bulk;
2594 		break;
2595 
2596 	case USB_ENDPOINT_XFER_INT:
2597 		if (dir_in) {
2598 			/*
2599 			 * Allocate our TxFNum by simply using the index
2600 			 * of the endpoint for the moment. We could do
2601 			 * something better if the host indicates how
2602 			 * many FIFOs we are expecting to use.
2603 			 */
2604 
2605 			hs_ep->periodic = 1;
2606 			epctrl |= DxEPCTL_TxFNum(index);
2607 		}
2608 
2609 		epctrl |= DxEPCTL_EPType_Intterupt;
2610 		break;
2611 
2612 	case USB_ENDPOINT_XFER_CONTROL:
2613 		epctrl |= DxEPCTL_EPType_Control;
2614 		break;
2615 	}
2616 
2617 	/*
2618 	 * if the hardware has dedicated fifos, we must give each IN EP
2619 	 * a unique tx-fifo even if it is non-periodic.
2620 	 */
2621 	if (dir_in && hsotg->dedicated_fifos)
2622 		epctrl |= DxEPCTL_TxFNum(index);
2623 
2624 	/* for non control endpoints, set PID to D0 */
2625 	if (index)
2626 		epctrl |= DxEPCTL_SetD0PID;
2627 
2628 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2629 		__func__, epctrl);
2630 
2631 	writel(epctrl, hsotg->regs + epctrl_reg);
2632 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2633 		__func__, readl(hsotg->regs + epctrl_reg));
2634 
2635 	/* enable the endpoint interrupt */
2636 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2637 
2638 out:
2639 	spin_unlock_irqrestore(&hsotg->lock, flags);
2640 	return ret;
2641 }
2642 
2643 /**
2644  * s3c_hsotg_ep_disable - disable given endpoint
2645  * @ep: The endpoint to disable.
2646  */
s3c_hsotg_ep_disable(struct usb_ep * ep)2647 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2648 {
2649 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2650 	struct s3c_hsotg *hsotg = hs_ep->parent;
2651 	int dir_in = hs_ep->dir_in;
2652 	int index = hs_ep->index;
2653 	unsigned long flags;
2654 	u32 epctrl_reg;
2655 	u32 ctrl;
2656 
2657 	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2658 
2659 	if (ep == &hsotg->eps[0].ep) {
2660 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2661 		return -EINVAL;
2662 	}
2663 
2664 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2665 
2666 	spin_lock_irqsave(&hsotg->lock, flags);
2667 	/* terminate all requests with shutdown */
2668 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2669 
2670 
2671 	ctrl = readl(hsotg->regs + epctrl_reg);
2672 	ctrl &= ~DxEPCTL_EPEna;
2673 	ctrl &= ~DxEPCTL_USBActEp;
2674 	ctrl |= DxEPCTL_SNAK;
2675 
2676 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2677 	writel(ctrl, hsotg->regs + epctrl_reg);
2678 
2679 	/* disable endpoint interrupts */
2680 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2681 
2682 	spin_unlock_irqrestore(&hsotg->lock, flags);
2683 	return 0;
2684 }
2685 
2686 /**
2687  * on_list - check request is on the given endpoint
2688  * @ep: The endpoint to check.
2689  * @test: The request to test if it is on the endpoint.
2690  */
on_list(struct s3c_hsotg_ep * ep,struct s3c_hsotg_req * test)2691 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2692 {
2693 	struct s3c_hsotg_req *req, *treq;
2694 
2695 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2696 		if (req == test)
2697 			return true;
2698 	}
2699 
2700 	return false;
2701 }
2702 
2703 /**
2704  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2705  * @ep: The endpoint to dequeue.
2706  * @req: The request to be removed from a queue.
2707  */
s3c_hsotg_ep_dequeue(struct usb_ep * ep,struct usb_request * req)2708 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2709 {
2710 	struct s3c_hsotg_req *hs_req = our_req(req);
2711 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2712 	struct s3c_hsotg *hs = hs_ep->parent;
2713 	unsigned long flags;
2714 
2715 	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2716 
2717 	spin_lock_irqsave(&hs->lock, flags);
2718 
2719 	if (!on_list(hs_ep, hs_req)) {
2720 		spin_unlock_irqrestore(&hs->lock, flags);
2721 		return -EINVAL;
2722 	}
2723 
2724 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2725 	spin_unlock_irqrestore(&hs->lock, flags);
2726 
2727 	return 0;
2728 }
2729 
2730 /**
2731  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2732  * @ep: The endpoint to set halt.
2733  * @value: Set or unset the halt.
2734  */
s3c_hsotg_ep_sethalt(struct usb_ep * ep,int value)2735 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2736 {
2737 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2738 	struct s3c_hsotg *hs = hs_ep->parent;
2739 	int index = hs_ep->index;
2740 	u32 epreg;
2741 	u32 epctl;
2742 	u32 xfertype;
2743 
2744 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2745 
2746 	/* write both IN and OUT control registers */
2747 
2748 	epreg = DIEPCTL(index);
2749 	epctl = readl(hs->regs + epreg);
2750 
2751 	if (value) {
2752 		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2753 		if (epctl & DxEPCTL_EPEna)
2754 			epctl |= DxEPCTL_EPDis;
2755 	} else {
2756 		epctl &= ~DxEPCTL_Stall;
2757 		xfertype = epctl & DxEPCTL_EPType_MASK;
2758 		if (xfertype == DxEPCTL_EPType_Bulk ||
2759 			xfertype == DxEPCTL_EPType_Intterupt)
2760 				epctl |= DxEPCTL_SetD0PID;
2761 	}
2762 
2763 	writel(epctl, hs->regs + epreg);
2764 
2765 	epreg = DOEPCTL(index);
2766 	epctl = readl(hs->regs + epreg);
2767 
2768 	if (value)
2769 		epctl |= DxEPCTL_Stall;
2770 	else {
2771 		epctl &= ~DxEPCTL_Stall;
2772 		xfertype = epctl & DxEPCTL_EPType_MASK;
2773 		if (xfertype == DxEPCTL_EPType_Bulk ||
2774 			xfertype == DxEPCTL_EPType_Intterupt)
2775 				epctl |= DxEPCTL_SetD0PID;
2776 	}
2777 
2778 	writel(epctl, hs->regs + epreg);
2779 
2780 	return 0;
2781 }
2782 
2783 /**
2784  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2785  * @ep: The endpoint to set halt.
2786  * @value: Set or unset the halt.
2787  */
s3c_hsotg_ep_sethalt_lock(struct usb_ep * ep,int value)2788 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2789 {
2790 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2791 	struct s3c_hsotg *hs = hs_ep->parent;
2792 	unsigned long flags = 0;
2793 	int ret = 0;
2794 
2795 	spin_lock_irqsave(&hs->lock, flags);
2796 	ret = s3c_hsotg_ep_sethalt(ep, value);
2797 	spin_unlock_irqrestore(&hs->lock, flags);
2798 
2799 	return ret;
2800 }
2801 
2802 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2803 	.enable		= s3c_hsotg_ep_enable,
2804 	.disable	= s3c_hsotg_ep_disable,
2805 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2806 	.free_request	= s3c_hsotg_ep_free_request,
2807 	.queue		= s3c_hsotg_ep_queue_lock,
2808 	.dequeue	= s3c_hsotg_ep_dequeue,
2809 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2810 	/* note, don't believe we have any call for the fifo routines */
2811 };
2812 
2813 /**
2814  * s3c_hsotg_phy_enable - enable platform phy dev
2815  * @hsotg: The driver state
2816  *
2817  * A wrapper for platform code responsible for controlling
2818  * low-level USB code
2819  */
s3c_hsotg_phy_enable(struct s3c_hsotg * hsotg)2820 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2821 {
2822 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2823 
2824 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2825 
2826 	if (hsotg->phy)
2827 		usb_phy_init(hsotg->phy);
2828 	else if (hsotg->plat->phy_init)
2829 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2830 }
2831 
2832 /**
2833  * s3c_hsotg_phy_disable - disable platform phy dev
2834  * @hsotg: The driver state
2835  *
2836  * A wrapper for platform code responsible for controlling
2837  * low-level USB code
2838  */
s3c_hsotg_phy_disable(struct s3c_hsotg * hsotg)2839 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2840 {
2841 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2842 
2843 	if (hsotg->phy)
2844 		usb_phy_shutdown(hsotg->phy);
2845 	else if (hsotg->plat->phy_exit)
2846 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2847 }
2848 
2849 /**
2850  * s3c_hsotg_init - initalize the usb core
2851  * @hsotg: The driver state
2852  */
s3c_hsotg_init(struct s3c_hsotg * hsotg)2853 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2854 {
2855 	/* unmask subset of endpoint interrupts */
2856 
2857 	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2858 	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2859 	       hsotg->regs + DIEPMSK);
2860 
2861 	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2862 	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2863 	       hsotg->regs + DOEPMSK);
2864 
2865 	writel(0, hsotg->regs + DAINTMSK);
2866 
2867 	/* Be in disconnected state until gadget is registered */
2868 	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2869 
2870 	if (0) {
2871 		/* post global nak until we're ready */
2872 		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2873 		       hsotg->regs + DCTL);
2874 	}
2875 
2876 	/* setup fifos */
2877 
2878 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2879 		readl(hsotg->regs + GRXFSIZ),
2880 		readl(hsotg->regs + GNPTXFSIZ));
2881 
2882 	s3c_hsotg_init_fifo(hsotg);
2883 
2884 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2885 	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2886 	       hsotg->regs + GUSBCFG);
2887 
2888 	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2889 	       hsotg->regs + GAHBCFG);
2890 }
2891 
2892 /**
2893  * s3c_hsotg_udc_start - prepare the udc for work
2894  * @gadget: The usb gadget state
2895  * @driver: The usb gadget driver
2896  *
2897  * Perform initialization to prepare udc device and driver
2898  * to work.
2899  */
s3c_hsotg_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2900 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2901 			   struct usb_gadget_driver *driver)
2902 {
2903 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2904 	int ret;
2905 
2906 	if (!hsotg) {
2907 		printk(KERN_ERR "%s: called with no device\n", __func__);
2908 		return -ENODEV;
2909 	}
2910 
2911 	if (!driver) {
2912 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2913 		return -EINVAL;
2914 	}
2915 
2916 	if (driver->max_speed < USB_SPEED_FULL)
2917 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2918 
2919 	if (!driver->setup) {
2920 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2921 		return -EINVAL;
2922 	}
2923 
2924 	WARN_ON(hsotg->driver);
2925 
2926 	driver->driver.bus = NULL;
2927 	hsotg->driver = driver;
2928 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2929 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2930 
2931 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2932 				    hsotg->supplies);
2933 	if (ret) {
2934 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2935 		goto err;
2936 	}
2937 
2938 	hsotg->last_rst = jiffies;
2939 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2940 	return 0;
2941 
2942 err:
2943 	hsotg->driver = NULL;
2944 	return ret;
2945 }
2946 
2947 /**
2948  * s3c_hsotg_udc_stop - stop the udc
2949  * @gadget: The usb gadget state
2950  * @driver: The usb gadget driver
2951  *
2952  * Stop udc hw block and stay tunned for future transmissions
2953  */
s3c_hsotg_udc_stop(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2954 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2955 			  struct usb_gadget_driver *driver)
2956 {
2957 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2958 	unsigned long flags = 0;
2959 	int ep;
2960 
2961 	if (!hsotg)
2962 		return -ENODEV;
2963 
2964 	if (!driver || driver != hsotg->driver || !driver->unbind)
2965 		return -EINVAL;
2966 
2967 	/* all endpoints should be shutdown */
2968 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2969 		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2970 
2971 	spin_lock_irqsave(&hsotg->lock, flags);
2972 
2973 	s3c_hsotg_phy_disable(hsotg);
2974 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2975 
2976 	hsotg->driver = NULL;
2977 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2978 
2979 	spin_unlock_irqrestore(&hsotg->lock, flags);
2980 
2981 	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2982 		 driver->driver.name);
2983 
2984 	return 0;
2985 }
2986 
2987 /**
2988  * s3c_hsotg_gadget_getframe - read the frame number
2989  * @gadget: The usb gadget state
2990  *
2991  * Read the {micro} frame number
2992  */
s3c_hsotg_gadget_getframe(struct usb_gadget * gadget)2993 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2994 {
2995 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2996 }
2997 
2998 /**
2999  * s3c_hsotg_pullup - connect/disconnect the USB PHY
3000  * @gadget: The usb gadget state
3001  * @is_on: Current state of the USB PHY
3002  *
3003  * Connect/Disconnect the USB PHY pullup
3004  */
s3c_hsotg_pullup(struct usb_gadget * gadget,int is_on)3005 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3006 {
3007 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3008 	unsigned long flags = 0;
3009 
3010 	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3011 
3012 	spin_lock_irqsave(&hsotg->lock, flags);
3013 	if (is_on) {
3014 		s3c_hsotg_phy_enable(hsotg);
3015 		s3c_hsotg_core_init(hsotg);
3016 	} else {
3017 		s3c_hsotg_disconnect(hsotg);
3018 		s3c_hsotg_phy_disable(hsotg);
3019 	}
3020 
3021 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3022 	spin_unlock_irqrestore(&hsotg->lock, flags);
3023 
3024 	return 0;
3025 }
3026 
3027 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3028 	.get_frame	= s3c_hsotg_gadget_getframe,
3029 	.udc_start		= s3c_hsotg_udc_start,
3030 	.udc_stop		= s3c_hsotg_udc_stop,
3031 	.pullup                 = s3c_hsotg_pullup,
3032 };
3033 
3034 /**
3035  * s3c_hsotg_initep - initialise a single endpoint
3036  * @hsotg: The device state.
3037  * @hs_ep: The endpoint to be initialised.
3038  * @epnum: The endpoint number
3039  *
3040  * Initialise the given endpoint (as part of the probe and device state
3041  * creation) to give to the gadget driver. Setup the endpoint name, any
3042  * direction information and other state that may be required.
3043  */
s3c_hsotg_initep(struct s3c_hsotg * hsotg,struct s3c_hsotg_ep * hs_ep,int epnum)3044 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3045 				       struct s3c_hsotg_ep *hs_ep,
3046 				       int epnum)
3047 {
3048 	u32 ptxfifo;
3049 	char *dir;
3050 
3051 	if (epnum == 0)
3052 		dir = "";
3053 	else if ((epnum % 2) == 0) {
3054 		dir = "out";
3055 	} else {
3056 		dir = "in";
3057 		hs_ep->dir_in = 1;
3058 	}
3059 
3060 	hs_ep->index = epnum;
3061 
3062 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3063 
3064 	INIT_LIST_HEAD(&hs_ep->queue);
3065 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3066 
3067 	/* add to the list of endpoints known by the gadget driver */
3068 	if (epnum)
3069 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3070 
3071 	hs_ep->parent = hsotg;
3072 	hs_ep->ep.name = hs_ep->name;
3073 	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
3074 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3075 
3076 	/*
3077 	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3078 	 * an OUT endpoint, we may as well do this if in future the
3079 	 * code is changed to make each endpoint's direction changeable.
3080 	 */
3081 
3082 	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3083 	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3084 
3085 	/*
3086 	 * if we're using dma, we need to set the next-endpoint pointer
3087 	 * to be something valid.
3088 	 */
3089 
3090 	if (using_dma(hsotg)) {
3091 		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3092 		writel(next, hsotg->regs + DIEPCTL(epnum));
3093 		writel(next, hsotg->regs + DOEPCTL(epnum));
3094 	}
3095 }
3096 
3097 /**
3098  * s3c_hsotg_hw_cfg - read HW configuration registers
3099  * @param: The device state
3100  *
3101  * Read the USB core HW configuration registers
3102  */
s3c_hsotg_hw_cfg(struct s3c_hsotg * hsotg)3103 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3104 {
3105 	u32 cfg2, cfg4;
3106 	/* check hardware configuration */
3107 
3108 	cfg2 = readl(hsotg->regs + 0x48);
3109 	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3110 
3111 	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3112 
3113 	cfg4 = readl(hsotg->regs + 0x50);
3114 	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3115 
3116 	dev_info(hsotg->dev, "%s fifos\n",
3117 		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3118 }
3119 
3120 /**
3121  * s3c_hsotg_dump - dump state of the udc
3122  * @param: The device state
3123  */
s3c_hsotg_dump(struct s3c_hsotg * hsotg)3124 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3125 {
3126 #ifdef DEBUG
3127 	struct device *dev = hsotg->dev;
3128 	void __iomem *regs = hsotg->regs;
3129 	u32 val;
3130 	int idx;
3131 
3132 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3133 		 readl(regs + DCFG), readl(regs + DCTL),
3134 		 readl(regs + DIEPMSK));
3135 
3136 	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3137 		 readl(regs + GAHBCFG), readl(regs + 0x44));
3138 
3139 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3140 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3141 
3142 	/* show periodic fifo settings */
3143 
3144 	for (idx = 1; idx <= 15; idx++) {
3145 		val = readl(regs + DPTXFSIZn(idx));
3146 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3147 			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3148 			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3149 	}
3150 
3151 	for (idx = 0; idx < 15; idx++) {
3152 		dev_info(dev,
3153 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3154 			 readl(regs + DIEPCTL(idx)),
3155 			 readl(regs + DIEPTSIZ(idx)),
3156 			 readl(regs + DIEPDMA(idx)));
3157 
3158 		val = readl(regs + DOEPCTL(idx));
3159 		dev_info(dev,
3160 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3161 			 idx, readl(regs + DOEPCTL(idx)),
3162 			 readl(regs + DOEPTSIZ(idx)),
3163 			 readl(regs + DOEPDMA(idx)));
3164 
3165 	}
3166 
3167 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3168 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3169 #endif
3170 }
3171 
3172 /**
3173  * state_show - debugfs: show overall driver and device state.
3174  * @seq: The seq file to write to.
3175  * @v: Unused parameter.
3176  *
3177  * This debugfs entry shows the overall state of the hardware and
3178  * some general information about each of the endpoints available
3179  * to the system.
3180  */
state_show(struct seq_file * seq,void * v)3181 static int state_show(struct seq_file *seq, void *v)
3182 {
3183 	struct s3c_hsotg *hsotg = seq->private;
3184 	void __iomem *regs = hsotg->regs;
3185 	int idx;
3186 
3187 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3188 		 readl(regs + DCFG),
3189 		 readl(regs + DCTL),
3190 		 readl(regs + DSTS));
3191 
3192 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3193 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3194 
3195 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3196 		   readl(regs + GINTMSK),
3197 		   readl(regs + GINTSTS));
3198 
3199 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3200 		   readl(regs + DAINTMSK),
3201 		   readl(regs + DAINT));
3202 
3203 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3204 		   readl(regs + GNPTXSTS),
3205 		   readl(regs + GRXSTSR));
3206 
3207 	seq_printf(seq, "\nEndpoint status:\n");
3208 
3209 	for (idx = 0; idx < 15; idx++) {
3210 		u32 in, out;
3211 
3212 		in = readl(regs + DIEPCTL(idx));
3213 		out = readl(regs + DOEPCTL(idx));
3214 
3215 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3216 			   idx, in, out);
3217 
3218 		in = readl(regs + DIEPTSIZ(idx));
3219 		out = readl(regs + DOEPTSIZ(idx));
3220 
3221 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3222 			   in, out);
3223 
3224 		seq_printf(seq, "\n");
3225 	}
3226 
3227 	return 0;
3228 }
3229 
state_open(struct inode * inode,struct file * file)3230 static int state_open(struct inode *inode, struct file *file)
3231 {
3232 	return single_open(file, state_show, inode->i_private);
3233 }
3234 
3235 static const struct file_operations state_fops = {
3236 	.owner		= THIS_MODULE,
3237 	.open		= state_open,
3238 	.read		= seq_read,
3239 	.llseek		= seq_lseek,
3240 	.release	= single_release,
3241 };
3242 
3243 /**
3244  * fifo_show - debugfs: show the fifo information
3245  * @seq: The seq_file to write data to.
3246  * @v: Unused parameter.
3247  *
3248  * Show the FIFO information for the overall fifo and all the
3249  * periodic transmission FIFOs.
3250  */
fifo_show(struct seq_file * seq,void * v)3251 static int fifo_show(struct seq_file *seq, void *v)
3252 {
3253 	struct s3c_hsotg *hsotg = seq->private;
3254 	void __iomem *regs = hsotg->regs;
3255 	u32 val;
3256 	int idx;
3257 
3258 	seq_printf(seq, "Non-periodic FIFOs:\n");
3259 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3260 
3261 	val = readl(regs + GNPTXFSIZ);
3262 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3263 		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3264 		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3265 
3266 	seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3267 
3268 	for (idx = 1; idx <= 15; idx++) {
3269 		val = readl(regs + DPTXFSIZn(idx));
3270 
3271 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3272 			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
3273 			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3274 	}
3275 
3276 	return 0;
3277 }
3278 
fifo_open(struct inode * inode,struct file * file)3279 static int fifo_open(struct inode *inode, struct file *file)
3280 {
3281 	return single_open(file, fifo_show, inode->i_private);
3282 }
3283 
3284 static const struct file_operations fifo_fops = {
3285 	.owner		= THIS_MODULE,
3286 	.open		= fifo_open,
3287 	.read		= seq_read,
3288 	.llseek		= seq_lseek,
3289 	.release	= single_release,
3290 };
3291 
3292 
decode_direction(int is_in)3293 static const char *decode_direction(int is_in)
3294 {
3295 	return is_in ? "in" : "out";
3296 }
3297 
3298 /**
3299  * ep_show - debugfs: show the state of an endpoint.
3300  * @seq: The seq_file to write data to.
3301  * @v: Unused parameter.
3302  *
3303  * This debugfs entry shows the state of the given endpoint (one is
3304  * registered for each available).
3305  */
ep_show(struct seq_file * seq,void * v)3306 static int ep_show(struct seq_file *seq, void *v)
3307 {
3308 	struct s3c_hsotg_ep *ep = seq->private;
3309 	struct s3c_hsotg *hsotg = ep->parent;
3310 	struct s3c_hsotg_req *req;
3311 	void __iomem *regs = hsotg->regs;
3312 	int index = ep->index;
3313 	int show_limit = 15;
3314 	unsigned long flags;
3315 
3316 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3317 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3318 
3319 	/* first show the register state */
3320 
3321 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3322 		   readl(regs + DIEPCTL(index)),
3323 		   readl(regs + DOEPCTL(index)));
3324 
3325 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3326 		   readl(regs + DIEPDMA(index)),
3327 		   readl(regs + DOEPDMA(index)));
3328 
3329 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3330 		   readl(regs + DIEPINT(index)),
3331 		   readl(regs + DOEPINT(index)));
3332 
3333 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3334 		   readl(regs + DIEPTSIZ(index)),
3335 		   readl(regs + DOEPTSIZ(index)));
3336 
3337 	seq_printf(seq, "\n");
3338 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3339 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3340 
3341 	seq_printf(seq, "request list (%p,%p):\n",
3342 		   ep->queue.next, ep->queue.prev);
3343 
3344 	spin_lock_irqsave(&hsotg->lock, flags);
3345 
3346 	list_for_each_entry(req, &ep->queue, queue) {
3347 		if (--show_limit < 0) {
3348 			seq_printf(seq, "not showing more requests...\n");
3349 			break;
3350 		}
3351 
3352 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3353 			   req == ep->req ? '*' : ' ',
3354 			   req, req->req.length, req->req.buf);
3355 		seq_printf(seq, "%d done, res %d\n",
3356 			   req->req.actual, req->req.status);
3357 	}
3358 
3359 	spin_unlock_irqrestore(&hsotg->lock, flags);
3360 
3361 	return 0;
3362 }
3363 
ep_open(struct inode * inode,struct file * file)3364 static int ep_open(struct inode *inode, struct file *file)
3365 {
3366 	return single_open(file, ep_show, inode->i_private);
3367 }
3368 
3369 static const struct file_operations ep_fops = {
3370 	.owner		= THIS_MODULE,
3371 	.open		= ep_open,
3372 	.read		= seq_read,
3373 	.llseek		= seq_lseek,
3374 	.release	= single_release,
3375 };
3376 
3377 /**
3378  * s3c_hsotg_create_debug - create debugfs directory and files
3379  * @hsotg: The driver state
3380  *
3381  * Create the debugfs files to allow the user to get information
3382  * about the state of the system. The directory name is created
3383  * with the same name as the device itself, in case we end up
3384  * with multiple blocks in future systems.
3385  */
s3c_hsotg_create_debug(struct s3c_hsotg * hsotg)3386 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3387 {
3388 	struct dentry *root;
3389 	unsigned epidx;
3390 
3391 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3392 	hsotg->debug_root = root;
3393 	if (IS_ERR(root)) {
3394 		dev_err(hsotg->dev, "cannot create debug root\n");
3395 		return;
3396 	}
3397 
3398 	/* create general state file */
3399 
3400 	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3401 						hsotg, &state_fops);
3402 
3403 	if (IS_ERR(hsotg->debug_file))
3404 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3405 
3406 	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3407 						hsotg, &fifo_fops);
3408 
3409 	if (IS_ERR(hsotg->debug_fifo))
3410 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3411 
3412 	/* create one file for each endpoint */
3413 
3414 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3415 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3416 
3417 		ep->debugfs = debugfs_create_file(ep->name, 0444,
3418 						  root, ep, &ep_fops);
3419 
3420 		if (IS_ERR(ep->debugfs))
3421 			dev_err(hsotg->dev, "failed to create %s debug file\n",
3422 				ep->name);
3423 	}
3424 }
3425 
3426 /**
3427  * s3c_hsotg_delete_debug - cleanup debugfs entries
3428  * @hsotg: The driver state
3429  *
3430  * Cleanup (remove) the debugfs files for use on module exit.
3431  */
s3c_hsotg_delete_debug(struct s3c_hsotg * hsotg)3432 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3433 {
3434 	unsigned epidx;
3435 
3436 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3437 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3438 		debugfs_remove(ep->debugfs);
3439 	}
3440 
3441 	debugfs_remove(hsotg->debug_file);
3442 	debugfs_remove(hsotg->debug_fifo);
3443 	debugfs_remove(hsotg->debug_root);
3444 }
3445 
3446 /**
3447  * s3c_hsotg_probe - probe function for hsotg driver
3448  * @pdev: The platform information for the driver
3449  */
3450 
s3c_hsotg_probe(struct platform_device * pdev)3451 static int s3c_hsotg_probe(struct platform_device *pdev)
3452 {
3453 	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3454 	struct usb_phy *phy;
3455 	struct device *dev = &pdev->dev;
3456 	struct s3c_hsotg_ep *eps;
3457 	struct s3c_hsotg *hsotg;
3458 	struct resource *res;
3459 	int epnum;
3460 	int ret;
3461 	int i;
3462 
3463 	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3464 	if (!hsotg) {
3465 		dev_err(dev, "cannot get memory\n");
3466 		return -ENOMEM;
3467 	}
3468 
3469 	phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3470 	if (IS_ERR(phy)) {
3471 		/* Fallback for pdata */
3472 		plat = pdev->dev.platform_data;
3473 		if (!plat) {
3474 			dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3475 			return -EPROBE_DEFER;
3476 		} else {
3477 			hsotg->plat = plat;
3478 		}
3479 	} else {
3480 		hsotg->phy = phy;
3481 	}
3482 
3483 	hsotg->dev = dev;
3484 
3485 	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3486 	if (IS_ERR(hsotg->clk)) {
3487 		dev_err(dev, "cannot get otg clock\n");
3488 		return PTR_ERR(hsotg->clk);
3489 	}
3490 
3491 	platform_set_drvdata(pdev, hsotg);
3492 
3493 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3494 
3495 	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3496 	if (IS_ERR(hsotg->regs)) {
3497 		ret = PTR_ERR(hsotg->regs);
3498 		goto err_clk;
3499 	}
3500 
3501 	ret = platform_get_irq(pdev, 0);
3502 	if (ret < 0) {
3503 		dev_err(dev, "cannot find IRQ\n");
3504 		goto err_clk;
3505 	}
3506 
3507 	spin_lock_init(&hsotg->lock);
3508 
3509 	hsotg->irq = ret;
3510 
3511 	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3512 				dev_name(dev), hsotg);
3513 	if (ret < 0) {
3514 		dev_err(dev, "cannot claim IRQ\n");
3515 		goto err_clk;
3516 	}
3517 
3518 	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3519 
3520 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3521 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3522 	hsotg->gadget.name = dev_name(dev);
3523 
3524 	/* reset the system */
3525 
3526 	clk_prepare_enable(hsotg->clk);
3527 
3528 	/* regulators */
3529 
3530 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3531 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3532 
3533 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3534 				 hsotg->supplies);
3535 	if (ret) {
3536 		dev_err(dev, "failed to request supplies: %d\n", ret);
3537 		goto err_clk;
3538 	}
3539 
3540 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3541 				    hsotg->supplies);
3542 
3543 	if (ret) {
3544 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3545 		goto err_supplies;
3546 	}
3547 
3548 	/* usb phy enable */
3549 	s3c_hsotg_phy_enable(hsotg);
3550 
3551 	s3c_hsotg_corereset(hsotg);
3552 	s3c_hsotg_init(hsotg);
3553 	s3c_hsotg_hw_cfg(hsotg);
3554 
3555 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3556 
3557 	if (hsotg->num_of_eps == 0) {
3558 		dev_err(dev, "wrong number of EPs (zero)\n");
3559 		ret = -EINVAL;
3560 		goto err_supplies;
3561 	}
3562 
3563 	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3564 		      GFP_KERNEL);
3565 	if (!eps) {
3566 		dev_err(dev, "cannot get memory\n");
3567 		ret = -ENOMEM;
3568 		goto err_supplies;
3569 	}
3570 
3571 	hsotg->eps = eps;
3572 
3573 	/* setup endpoint information */
3574 
3575 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3576 	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3577 
3578 	/* allocate EP0 request */
3579 
3580 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3581 						     GFP_KERNEL);
3582 	if (!hsotg->ctrl_req) {
3583 		dev_err(dev, "failed to allocate ctrl req\n");
3584 		ret = -ENOMEM;
3585 		goto err_ep_mem;
3586 	}
3587 
3588 	/* initialise the endpoints now the core has been initialised */
3589 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3590 		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3591 
3592 	/* disable power and clock */
3593 
3594 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3595 				    hsotg->supplies);
3596 	if (ret) {
3597 		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3598 		goto err_ep_mem;
3599 	}
3600 
3601 	s3c_hsotg_phy_disable(hsotg);
3602 
3603 	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3604 	if (ret)
3605 		goto err_ep_mem;
3606 
3607 	s3c_hsotg_create_debug(hsotg);
3608 
3609 	s3c_hsotg_dump(hsotg);
3610 
3611 	return 0;
3612 
3613 err_ep_mem:
3614 	kfree(eps);
3615 err_supplies:
3616 	s3c_hsotg_phy_disable(hsotg);
3617 err_clk:
3618 	clk_disable_unprepare(hsotg->clk);
3619 
3620 	return ret;
3621 }
3622 
3623 /**
3624  * s3c_hsotg_remove - remove function for hsotg driver
3625  * @pdev: The platform information for the driver
3626  */
s3c_hsotg_remove(struct platform_device * pdev)3627 static int s3c_hsotg_remove(struct platform_device *pdev)
3628 {
3629 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3630 
3631 	usb_del_gadget_udc(&hsotg->gadget);
3632 
3633 	s3c_hsotg_delete_debug(hsotg);
3634 
3635 	if (hsotg->driver) {
3636 		/* should have been done already by driver model core */
3637 		usb_gadget_unregister_driver(hsotg->driver);
3638 	}
3639 
3640 	s3c_hsotg_phy_disable(hsotg);
3641 	clk_disable_unprepare(hsotg->clk);
3642 
3643 	return 0;
3644 }
3645 
3646 #if 1
3647 #define s3c_hsotg_suspend NULL
3648 #define s3c_hsotg_resume NULL
3649 #endif
3650 
3651 static struct platform_driver s3c_hsotg_driver = {
3652 	.driver		= {
3653 		.name	= "s3c-hsotg",
3654 		.owner	= THIS_MODULE,
3655 	},
3656 	.probe		= s3c_hsotg_probe,
3657 	.remove		= s3c_hsotg_remove,
3658 	.suspend	= s3c_hsotg_suspend,
3659 	.resume		= s3c_hsotg_resume,
3660 };
3661 
3662 module_platform_driver(s3c_hsotg_driver);
3663 
3664 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3665 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3666 MODULE_LICENSE("GPL");
3667 MODULE_ALIAS("platform:s3c-hsotg");
3668