• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ultra Wide Band
3  * AES-128 CCM Encryption
4  *
5  * Copyright (C) 2007 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * We don't do any encryption here; we use the Linux Kernel's AES-128
24  * crypto modules to construct keys and payload blocks in a way
25  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26  * there.
27  *
28  * Thanks a zillion to John Keys for his help and clarifications over
29  * the designed-by-a-committee text.
30  *
31  * So the idea is that there is this basic Pseudo-Random-Function
32  * defined in WUSB1.0[6.5] which is the core of everything. It works
33  * by tweaking some blocks, AES crypting them and then xoring
34  * something else with them (this seems to be called CBC(AES) -- can
35  * you tell I know jack about crypto?). So we just funnel it into the
36  * Linux Crypto API.
37  *
38  * We leave a crypto test module so we can verify that vectors match,
39  * every now and then.
40  *
41  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42  *             am learning a lot...
43  *
44  *             Conveniently, some data structures that need to be
45  *             funneled through AES are...16 bytes in size!
46  */
47 
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/slab.h>
53 #include <linux/usb/wusb.h>
54 #include <linux/scatterlist.h>
55 
56 static int debug_crypto_verify = 0;
57 
58 module_param(debug_crypto_verify, int, 0);
59 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60 
wusb_key_dump(const void * buf,size_t len)61 static void wusb_key_dump(const void *buf, size_t len)
62 {
63 	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
64 		       buf, len, 0);
65 }
66 
67 /*
68  * Block of data, as understood by AES-CCM
69  *
70  * The code assumes this structure is nothing but a 16 byte array
71  * (packed in a struct to avoid common mess ups that I usually do with
72  * arrays and enforcing type checking).
73  */
74 struct aes_ccm_block {
75 	u8 data[16];
76 } __attribute__((packed));
77 
78 /*
79  * Counter-mode Blocks (WUSB1.0[6.4])
80  *
81  * According to CCM (or so it seems), for the purpose of calculating
82  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
83  * ... BN.
84  *
85  * B0 contains flags, the CCM nonce and l(m).
86  *
87  * B1 contains l(a), the MAC header, the encryption offset and padding.
88  *
89  * If EO is nonzero, additional blocks are built from payload bytes
90  * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
91  * padding is not xmitted.
92  */
93 
94 /* WUSB1.0[T6.4] */
95 struct aes_ccm_b0 {
96 	u8 flags;	/* 0x59, per CCM spec */
97 	struct aes_ccm_nonce ccm_nonce;
98 	__be16 lm;
99 } __attribute__((packed));
100 
101 /* WUSB1.0[T6.5] */
102 struct aes_ccm_b1 {
103 	__be16 la;
104 	u8 mac_header[10];
105 	__le16 eo;
106 	u8 security_reserved;	/* This is always zero */
107 	u8 padding;		/* 0 */
108 } __attribute__((packed));
109 
110 /*
111  * Encryption Blocks (WUSB1.0[6.4.4])
112  *
113  * CCM uses Ax blocks to generate a keystream with which the MIC and
114  * the message's payload are encoded. A0 always encrypts/decrypts the
115  * MIC. Ax (x>0) are used for the successive payload blocks.
116  *
117  * The x is the counter, and is increased for each block.
118  */
119 struct aes_ccm_a {
120 	u8 flags;	/* 0x01, per CCM spec */
121 	struct aes_ccm_nonce ccm_nonce;
122 	__be16 counter;	/* Value of x */
123 } __attribute__((packed));
124 
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)125 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
126 			 size_t size)
127 {
128 	u8 *bo = _bo;
129 	const u8 *bi1 = _bi1, *bi2 = _bi2;
130 	size_t itr;
131 	for (itr = 0; itr < size; itr++)
132 		bo[itr] = bi1[itr] ^ bi2[itr];
133 }
134 
135 /*
136  * CC-MAC function WUSB1.0[6.5]
137  *
138  * Take a data string and produce the encrypted CBC Counter-mode MIC
139  *
140  * Note the names for most function arguments are made to (more or
141  * less) match those used in the pseudo-function definition given in
142  * WUSB1.0[6.5].
143  *
144  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
145  *
146  * @tfm_aes: AES cipher handle (initialized)
147  *
148  * @mic: buffer for placing the computed MIC (Message Integrity
149  *       Code). This is exactly 8 bytes, and we expect the buffer to
150  *       be at least eight bytes in length.
151  *
152  * @key: 128 bit symmetric key
153  *
154  * @n: CCM nonce
155  *
156  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
157  *     we use exactly 14 bytes).
158  *
159  * @b: data stream to be processed; cannot be a global or const local
160  *     (will confuse the scatterlists)
161  *
162  * @blen: size of b...
163  *
164  * Still not very clear how this is done, but looks like this: we
165  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
166  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
167  * take the payload and divide it in blocks (16 bytes), xor them with
168  * the previous crypto result (16 bytes) and crypt it, repeat the next
169  * block with the output of the previous one, rinse wash (I guess this
170  * is what AES CBC mode means...but I truly have no idea). So we use
171  * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
172  * Vector) is 16 bytes and is set to zero, so
173  *
174  * See rfc3610. Linux crypto has a CBC implementation, but the
175  * documentation is scarce, to say the least, and the example code is
176  * so intricated that is difficult to understand how things work. Most
177  * of this is guess work -- bite me.
178  *
179  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
180  *     using the 14 bytes of @a to fill up
181  *     b1.{mac_header,e0,security_reserved,padding}.
182  *
183  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
184  *       l(m) is orthogonal, they bear no relationship, so it is not
185  *       in conflict with the parameter's relation that
186  *       WUSB1.0[6.4.2]) defines.
187  *
188  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
189  *       first errata released on 2005/07.
190  *
191  * NOTE: we need to clean IV to zero at each invocation to make sure
192  *       we start with a fresh empty Initial Vector, so that the CBC
193  *       works ok.
194  *
195  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
196  *       what sg[4] is for. Maybe there is a smarter way to do this.
197  */
wusb_ccm_mac(struct crypto_blkcipher * tfm_cbc,struct crypto_cipher * tfm_aes,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)198 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
199 			struct crypto_cipher *tfm_aes, void *mic,
200 			const struct aes_ccm_nonce *n,
201 			const struct aes_ccm_label *a, const void *b,
202 			size_t blen)
203 {
204 	int result = 0;
205 	struct blkcipher_desc desc;
206 	struct aes_ccm_b0 b0;
207 	struct aes_ccm_b1 b1;
208 	struct aes_ccm_a ax;
209 	struct scatterlist sg[4], sg_dst;
210 	void *iv, *dst_buf;
211 	size_t ivsize, dst_size;
212 	const u8 bzero[16] = { 0 };
213 	size_t zero_padding;
214 
215 	/*
216 	 * These checks should be compile time optimized out
217 	 * ensure @a fills b1's mac_header and following fields
218 	 */
219 	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
220 	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
221 	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
222 	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
223 
224 	result = -ENOMEM;
225 	zero_padding = sizeof(struct aes_ccm_block)
226 		- blen % sizeof(struct aes_ccm_block);
227 	zero_padding = blen % sizeof(struct aes_ccm_block);
228 	if (zero_padding)
229 		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
230 	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
231 	dst_buf = kzalloc(dst_size, GFP_KERNEL);
232 	if (dst_buf == NULL) {
233 		printk(KERN_ERR "E: can't alloc destination buffer\n");
234 		goto error_dst_buf;
235 	}
236 
237 	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
238 	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
239 	memset(iv, 0, ivsize);
240 
241 	/* Setup B0 */
242 	b0.flags = 0x59;	/* Format B0 */
243 	b0.ccm_nonce = *n;
244 	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
245 
246 	/* Setup B1
247 	 *
248 	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
249 	 * says that to initialize B1 from A with 'l(a) = blen +
250 	 * 14'--after clarification, it means to use A's contents
251 	 * for MAC Header, EO, sec reserved and padding.
252 	 */
253 	b1.la = cpu_to_be16(blen + 14);
254 	memcpy(&b1.mac_header, a, sizeof(*a));
255 
256 	sg_init_table(sg, ARRAY_SIZE(sg));
257 	sg_set_buf(&sg[0], &b0, sizeof(b0));
258 	sg_set_buf(&sg[1], &b1, sizeof(b1));
259 	sg_set_buf(&sg[2], b, blen);
260 	/* 0 if well behaved :) */
261 	sg_set_buf(&sg[3], bzero, zero_padding);
262 	sg_init_one(&sg_dst, dst_buf, dst_size);
263 
264 	desc.tfm = tfm_cbc;
265 	desc.flags = 0;
266 	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
267 	if (result < 0) {
268 		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
269 		       result);
270 		goto error_cbc_crypt;
271 	}
272 
273 	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
274 	 * The procedure is to AES crypt the A0 block and XOR the MIC
275 	 * Tag against it; we only do the first 8 bytes and place it
276 	 * directly in the destination buffer.
277 	 *
278 	 * POS Crypto API: size is assumed to be AES's block size.
279 	 * Thanks for documenting it -- tip taken from airo.c
280 	 */
281 	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
282 	ax.ccm_nonce = *n;
283 	ax.counter = 0;
284 	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
285 	bytewise_xor(mic, &ax, iv, 8);
286 	result = 8;
287 error_cbc_crypt:
288 	kfree(dst_buf);
289 error_dst_buf:
290 	return result;
291 }
292 
293 /*
294  * WUSB Pseudo Random Function (WUSB1.0[6.5])
295  *
296  * @b: buffer to the source data; cannot be a global or const local
297  *     (will confuse the scatterlists)
298  */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)299 ssize_t wusb_prf(void *out, size_t out_size,
300 		 const u8 key[16], const struct aes_ccm_nonce *_n,
301 		 const struct aes_ccm_label *a,
302 		 const void *b, size_t blen, size_t len)
303 {
304 	ssize_t result, bytes = 0, bitr;
305 	struct aes_ccm_nonce n = *_n;
306 	struct crypto_blkcipher *tfm_cbc;
307 	struct crypto_cipher *tfm_aes;
308 	u64 sfn = 0;
309 	__le64 sfn_le;
310 
311 	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
312 	if (IS_ERR(tfm_cbc)) {
313 		result = PTR_ERR(tfm_cbc);
314 		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
315 		goto error_alloc_cbc;
316 	}
317 	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
318 	if (result < 0) {
319 		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
320 		goto error_setkey_cbc;
321 	}
322 
323 	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
324 	if (IS_ERR(tfm_aes)) {
325 		result = PTR_ERR(tfm_aes);
326 		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
327 		goto error_alloc_aes;
328 	}
329 	result = crypto_cipher_setkey(tfm_aes, key, 16);
330 	if (result < 0) {
331 		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
332 		goto error_setkey_aes;
333 	}
334 
335 	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
336 		sfn_le = cpu_to_le64(sfn++);
337 		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
338 		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
339 				      &n, a, b, blen);
340 		if (result < 0)
341 			goto error_ccm_mac;
342 		bytes += result;
343 	}
344 	result = bytes;
345 error_ccm_mac:
346 error_setkey_aes:
347 	crypto_free_cipher(tfm_aes);
348 error_alloc_aes:
349 error_setkey_cbc:
350 	crypto_free_blkcipher(tfm_cbc);
351 error_alloc_cbc:
352 	return result;
353 }
354 
355 /* WUSB1.0[A.2] test vectors */
356 static const u8 stv_hsmic_key[16] = {
357 	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
358 	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
359 };
360 
361 static const struct aes_ccm_nonce stv_hsmic_n = {
362 	.sfn = { 0 },
363 	.tkid = { 0x76, 0x98, 0x01,  },
364 	.dest_addr = { .data = { 0xbe, 0x00 } },
365 		.src_addr = { .data = { 0x76, 0x98 } },
366 };
367 
368 /*
369  * Out-of-band MIC Generation verification code
370  *
371  */
wusb_oob_mic_verify(void)372 static int wusb_oob_mic_verify(void)
373 {
374 	int result;
375 	u8 mic[8];
376 	/* WUSB1.0[A.2] test vectors
377 	 *
378 	 * Need to keep it in the local stack as GCC 4.1.3something
379 	 * messes up and generates noise.
380 	 */
381 	struct usb_handshake stv_hsmic_hs = {
382 		.bMessageNumber = 2,
383 		.bStatus 	= 00,
384 		.tTKID 		= { 0x76, 0x98, 0x01 },
385 		.bReserved 	= 00,
386 		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
387 				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
388 				    0x3c, 0x3d, 0x3e, 0x3f },
389 		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
390 				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
391 				    0x2c, 0x2d, 0x2e, 0x2f },
392 		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
393 				    0x14, 0x7b } ,
394 	};
395 	size_t hs_size;
396 
397 	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
398 	if (result < 0)
399 		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
400 	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
401 		printk(KERN_ERR "E: OOB MIC test: "
402 		       "mismatch between MIC result and WUSB1.0[A2]\n");
403 		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
404 		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
405 		wusb_key_dump(&stv_hsmic_hs, hs_size);
406 		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
407 		       sizeof(stv_hsmic_n));
408 		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
409 		printk(KERN_ERR "E: MIC out:\n");
410 		wusb_key_dump(mic, sizeof(mic));
411 		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
412 		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
413 		result = -EINVAL;
414 	} else
415 		result = 0;
416 	return result;
417 }
418 
419 /*
420  * Test vectors for Key derivation
421  *
422  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
423  * (errata corrected in 2005/07).
424  */
425 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
426 	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
427 	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
428 };
429 
430 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
431 	.sfn = { 0 },
432 	.tkid = { 0x76, 0x98, 0x01,  },
433 	.dest_addr = { .data = { 0xbe, 0x00 } },
434 	.src_addr = { .data = { 0x76, 0x98 } },
435 };
436 
437 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
438 	.kck = {
439 		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
440 		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
441 	},
442 	.ptk = {
443 		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
444 		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
445 	}
446 };
447 
448 /*
449  * Performa a test to make sure we match the vectors defined in
450  * WUSB1.0[A.1](Errata2006/12)
451  */
wusb_key_derive_verify(void)452 static int wusb_key_derive_verify(void)
453 {
454 	int result = 0;
455 	struct wusb_keydvt_out keydvt_out;
456 	/* These come from WUSB1.0[A.1] + 2006/12 errata
457 	 * NOTE: can't make this const or global -- somehow it seems
458 	 *       the scatterlists for crypto get confused and we get
459 	 *       bad data. There is no doc on this... */
460 	struct wusb_keydvt_in stv_keydvt_in_a1 = {
461 		.hnonce = {
462 			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
463 			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
464 		},
465 		.dnonce = {
466 			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
467 			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
468 		}
469 	};
470 
471 	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
472 				 &stv_keydvt_in_a1);
473 	if (result < 0)
474 		printk(KERN_ERR "E: WUSB key derivation test: "
475 		       "derivation failed: %d\n", result);
476 	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
477 		printk(KERN_ERR "E: WUSB key derivation test: "
478 		       "mismatch between key derivation result "
479 		       "and WUSB1.0[A1] Errata 2006/12\n");
480 		printk(KERN_ERR "E: keydvt in: key\n");
481 		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
482 		printk(KERN_ERR "E: keydvt in: nonce\n");
483 		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
484 		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
485 		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
486 		printk(KERN_ERR "E: keydvt out: KCK\n");
487 		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
488 		printk(KERN_ERR "E: keydvt out: PTK\n");
489 		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
490 		result = -EINVAL;
491 	} else
492 		result = 0;
493 	return result;
494 }
495 
496 /*
497  * Initialize crypto system
498  *
499  * FIXME: we do nothing now, other than verifying. Later on we'll
500  * cache the encryption stuff, so that's why we have a separate init.
501  */
wusb_crypto_init(void)502 int wusb_crypto_init(void)
503 {
504 	int result;
505 
506 	if (debug_crypto_verify) {
507 		result = wusb_key_derive_verify();
508 		if (result < 0)
509 			return result;
510 		return wusb_oob_mic_verify();
511 	}
512 	return 0;
513 }
514 
wusb_crypto_exit(void)515 void wusb_crypto_exit(void)
516 {
517 	/* FIXME: free cached crypto transforms */
518 }
519