• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #define AIO_RING_MAGIC			0xa10a10a1
43 #define AIO_RING_COMPAT_FEATURES	1
44 #define AIO_RING_INCOMPAT_FEATURES	0
45 struct aio_ring {
46 	unsigned	id;	/* kernel internal index number */
47 	unsigned	nr;	/* number of io_events */
48 	unsigned	head;
49 	unsigned	tail;
50 
51 	unsigned	magic;
52 	unsigned	compat_features;
53 	unsigned	incompat_features;
54 	unsigned	header_length;	/* size of aio_ring */
55 
56 
57 	struct io_event		io_events[0];
58 }; /* 128 bytes + ring size */
59 
60 #define AIO_RING_PAGES	8
61 
62 struct kioctx {
63 	atomic_t		users;
64 	atomic_t		dead;
65 
66 	/* This needs improving */
67 	unsigned long		user_id;
68 	struct hlist_node	list;
69 
70 	/*
71 	 * This is what userspace passed to io_setup(), it's not used for
72 	 * anything but counting against the global max_reqs quota.
73 	 *
74 	 * The real limit is nr_events - 1, which will be larger (see
75 	 * aio_setup_ring())
76 	 */
77 	unsigned		max_reqs;
78 
79 	/* Size of ringbuffer, in units of struct io_event */
80 	unsigned		nr_events;
81 
82 	unsigned long		mmap_base;
83 	unsigned long		mmap_size;
84 
85 	struct page		**ring_pages;
86 	long			nr_pages;
87 
88 	struct rcu_head		rcu_head;
89 	struct work_struct	rcu_work;
90 
91 	struct {
92 		atomic_t	reqs_active;
93 	} ____cacheline_aligned_in_smp;
94 
95 	struct {
96 		spinlock_t	ctx_lock;
97 		struct list_head active_reqs;	/* used for cancellation */
98 	} ____cacheline_aligned_in_smp;
99 
100 	struct {
101 		struct mutex	ring_lock;
102 		wait_queue_head_t wait;
103 	} ____cacheline_aligned_in_smp;
104 
105 	struct {
106 		unsigned	tail;
107 		spinlock_t	completion_lock;
108 	} ____cacheline_aligned_in_smp;
109 
110 	struct page		*internal_pages[AIO_RING_PAGES];
111 };
112 
113 /*------ sysctl variables----*/
114 static DEFINE_SPINLOCK(aio_nr_lock);
115 unsigned long aio_nr;		/* current system wide number of aio requests */
116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
117 /*----end sysctl variables---*/
118 
119 static struct kmem_cache	*kiocb_cachep;
120 static struct kmem_cache	*kioctx_cachep;
121 
122 /* aio_setup
123  *	Creates the slab caches used by the aio routines, panic on
124  *	failure as this is done early during the boot sequence.
125  */
aio_setup(void)126 static int __init aio_setup(void)
127 {
128 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
129 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
130 
131 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
132 
133 	return 0;
134 }
135 __initcall(aio_setup);
136 
aio_free_ring(struct kioctx * ctx)137 static void aio_free_ring(struct kioctx *ctx)
138 {
139 	long i;
140 
141 	for (i = 0; i < ctx->nr_pages; i++)
142 		put_page(ctx->ring_pages[i]);
143 
144 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
145 		kfree(ctx->ring_pages);
146 }
147 
aio_setup_ring(struct kioctx * ctx)148 static int aio_setup_ring(struct kioctx *ctx)
149 {
150 	struct aio_ring *ring;
151 	unsigned nr_events = ctx->max_reqs;
152 	struct mm_struct *mm = current->mm;
153 	unsigned long size, populate;
154 	int nr_pages;
155 
156 	/* Compensate for the ring buffer's head/tail overlap entry */
157 	nr_events += 2;	/* 1 is required, 2 for good luck */
158 
159 	size = sizeof(struct aio_ring);
160 	size += sizeof(struct io_event) * nr_events;
161 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
162 
163 	if (nr_pages < 0)
164 		return -EINVAL;
165 
166 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
167 
168 	ctx->nr_events = 0;
169 	ctx->ring_pages = ctx->internal_pages;
170 	if (nr_pages > AIO_RING_PAGES) {
171 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
172 					  GFP_KERNEL);
173 		if (!ctx->ring_pages)
174 			return -ENOMEM;
175 	}
176 
177 	ctx->mmap_size = nr_pages * PAGE_SIZE;
178 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
179 	down_write(&mm->mmap_sem);
180 	ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size,
181 				       PROT_READ|PROT_WRITE,
182 				       MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate);
183 	if (IS_ERR((void *)ctx->mmap_base)) {
184 		up_write(&mm->mmap_sem);
185 		ctx->mmap_size = 0;
186 		aio_free_ring(ctx);
187 		return -EAGAIN;
188 	}
189 
190 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
191 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
192 				       1, 0, ctx->ring_pages, NULL);
193 	up_write(&mm->mmap_sem);
194 
195 	if (unlikely(ctx->nr_pages != nr_pages)) {
196 		aio_free_ring(ctx);
197 		return -EAGAIN;
198 	}
199 	if (populate)
200 		mm_populate(ctx->mmap_base, populate);
201 
202 	ctx->user_id = ctx->mmap_base;
203 	ctx->nr_events = nr_events; /* trusted copy */
204 
205 	ring = kmap_atomic(ctx->ring_pages[0]);
206 	ring->nr = nr_events;	/* user copy */
207 	ring->id = ctx->user_id;
208 	ring->head = ring->tail = 0;
209 	ring->magic = AIO_RING_MAGIC;
210 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
211 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
212 	ring->header_length = sizeof(struct aio_ring);
213 	kunmap_atomic(ring);
214 	flush_dcache_page(ctx->ring_pages[0]);
215 
216 	return 0;
217 }
218 
219 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
220 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
221 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
222 
kiocb_set_cancel_fn(struct kiocb * req,kiocb_cancel_fn * cancel)223 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
224 {
225 	struct kioctx *ctx = req->ki_ctx;
226 	unsigned long flags;
227 
228 	spin_lock_irqsave(&ctx->ctx_lock, flags);
229 
230 	if (!req->ki_list.next)
231 		list_add(&req->ki_list, &ctx->active_reqs);
232 
233 	req->ki_cancel = cancel;
234 
235 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
236 }
237 EXPORT_SYMBOL(kiocb_set_cancel_fn);
238 
kiocb_cancel(struct kioctx * ctx,struct kiocb * kiocb,struct io_event * res)239 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
240 			struct io_event *res)
241 {
242 	kiocb_cancel_fn *old, *cancel;
243 	int ret = -EINVAL;
244 
245 	/*
246 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
247 	 * actually has a cancel function, hence the cmpxchg()
248 	 */
249 
250 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
251 	do {
252 		if (!cancel || cancel == KIOCB_CANCELLED)
253 			return ret;
254 
255 		old = cancel;
256 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
257 	} while (cancel != old);
258 
259 	atomic_inc(&kiocb->ki_users);
260 	spin_unlock_irq(&ctx->ctx_lock);
261 
262 	memset(res, 0, sizeof(*res));
263 	res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
264 	res->data = kiocb->ki_user_data;
265 	ret = cancel(kiocb, res);
266 
267 	spin_lock_irq(&ctx->ctx_lock);
268 
269 	return ret;
270 }
271 
free_ioctx_rcu(struct rcu_head * head)272 static void free_ioctx_rcu(struct rcu_head *head)
273 {
274 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
275 	kmem_cache_free(kioctx_cachep, ctx);
276 }
277 
278 /*
279  * When this function runs, the kioctx has been removed from the "hash table"
280  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
281  * now it's safe to cancel any that need to be.
282  */
free_ioctx(struct kioctx * ctx)283 static void free_ioctx(struct kioctx *ctx)
284 {
285 	struct aio_ring *ring;
286 	struct io_event res;
287 	struct kiocb *req;
288 	unsigned head, avail;
289 
290 	spin_lock_irq(&ctx->ctx_lock);
291 
292 	while (!list_empty(&ctx->active_reqs)) {
293 		req = list_first_entry(&ctx->active_reqs,
294 				       struct kiocb, ki_list);
295 
296 		list_del_init(&req->ki_list);
297 		kiocb_cancel(ctx, req, &res);
298 	}
299 
300 	spin_unlock_irq(&ctx->ctx_lock);
301 
302 	ring = kmap_atomic(ctx->ring_pages[0]);
303 	head = ring->head;
304 	kunmap_atomic(ring);
305 
306 	while (atomic_read(&ctx->reqs_active) > 0) {
307 		wait_event(ctx->wait,
308 				head != ctx->tail ||
309 				atomic_read(&ctx->reqs_active) <= 0);
310 
311 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
312 
313 		atomic_sub(avail, &ctx->reqs_active);
314 		head += avail;
315 		head %= ctx->nr_events;
316 	}
317 
318 	WARN_ON(atomic_read(&ctx->reqs_active) < 0);
319 
320 	aio_free_ring(ctx);
321 
322 	pr_debug("freeing %p\n", ctx);
323 
324 	/*
325 	 * Here the call_rcu() is between the wait_event() for reqs_active to
326 	 * hit 0, and freeing the ioctx.
327 	 *
328 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
329 	 * after to issue a wakeup so we use rcu.
330 	 */
331 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
332 }
333 
put_ioctx(struct kioctx * ctx)334 static void put_ioctx(struct kioctx *ctx)
335 {
336 	if (unlikely(atomic_dec_and_test(&ctx->users)))
337 		free_ioctx(ctx);
338 }
339 
340 /* ioctx_alloc
341  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
342  */
ioctx_alloc(unsigned nr_events)343 static struct kioctx *ioctx_alloc(unsigned nr_events)
344 {
345 	struct mm_struct *mm = current->mm;
346 	struct kioctx *ctx;
347 	int err = -ENOMEM;
348 
349 	/* Prevent overflows */
350 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
351 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
352 		pr_debug("ENOMEM: nr_events too high\n");
353 		return ERR_PTR(-EINVAL);
354 	}
355 
356 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
357 		return ERR_PTR(-EAGAIN);
358 
359 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
360 	if (!ctx)
361 		return ERR_PTR(-ENOMEM);
362 
363 	ctx->max_reqs = nr_events;
364 
365 	atomic_set(&ctx->users, 2);
366 	atomic_set(&ctx->dead, 0);
367 	spin_lock_init(&ctx->ctx_lock);
368 	spin_lock_init(&ctx->completion_lock);
369 	mutex_init(&ctx->ring_lock);
370 	init_waitqueue_head(&ctx->wait);
371 
372 	INIT_LIST_HEAD(&ctx->active_reqs);
373 
374 	if (aio_setup_ring(ctx) < 0)
375 		goto out_freectx;
376 
377 	/* limit the number of system wide aios */
378 	spin_lock(&aio_nr_lock);
379 	if (aio_nr + nr_events > aio_max_nr ||
380 	    aio_nr + nr_events < aio_nr) {
381 		spin_unlock(&aio_nr_lock);
382 		goto out_cleanup;
383 	}
384 	aio_nr += ctx->max_reqs;
385 	spin_unlock(&aio_nr_lock);
386 
387 	/* now link into global list. */
388 	spin_lock(&mm->ioctx_lock);
389 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
390 	spin_unlock(&mm->ioctx_lock);
391 
392 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
393 		 ctx, ctx->user_id, mm, ctx->nr_events);
394 	return ctx;
395 
396 out_cleanup:
397 	err = -EAGAIN;
398 	aio_free_ring(ctx);
399 out_freectx:
400 	kmem_cache_free(kioctx_cachep, ctx);
401 	pr_debug("error allocating ioctx %d\n", err);
402 	return ERR_PTR(err);
403 }
404 
kill_ioctx_work(struct work_struct * work)405 static void kill_ioctx_work(struct work_struct *work)
406 {
407 	struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
408 
409 	wake_up_all(&ctx->wait);
410 	put_ioctx(ctx);
411 }
412 
kill_ioctx_rcu(struct rcu_head * head)413 static void kill_ioctx_rcu(struct rcu_head *head)
414 {
415 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
416 
417 	INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
418 	schedule_work(&ctx->rcu_work);
419 }
420 
421 /* kill_ioctx
422  *	Cancels all outstanding aio requests on an aio context.  Used
423  *	when the processes owning a context have all exited to encourage
424  *	the rapid destruction of the kioctx.
425  */
kill_ioctx(struct kioctx * ctx)426 static void kill_ioctx(struct kioctx *ctx)
427 {
428 	if (!atomic_xchg(&ctx->dead, 1)) {
429 		hlist_del_rcu(&ctx->list);
430 
431 		/*
432 		 * It'd be more correct to do this in free_ioctx(), after all
433 		 * the outstanding kiocbs have finished - but by then io_destroy
434 		 * has already returned, so io_setup() could potentially return
435 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
436 		 *  could tell).
437 		 */
438 		spin_lock(&aio_nr_lock);
439 		BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
440 		aio_nr -= ctx->max_reqs;
441 		spin_unlock(&aio_nr_lock);
442 
443 		if (ctx->mmap_size)
444 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
445 
446 		/* Between hlist_del_rcu() and dropping the initial ref */
447 		call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
448 	}
449 }
450 
451 /* wait_on_sync_kiocb:
452  *	Waits on the given sync kiocb to complete.
453  */
wait_on_sync_kiocb(struct kiocb * iocb)454 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
455 {
456 	while (atomic_read(&iocb->ki_users)) {
457 		set_current_state(TASK_UNINTERRUPTIBLE);
458 		if (!atomic_read(&iocb->ki_users))
459 			break;
460 		io_schedule();
461 	}
462 	__set_current_state(TASK_RUNNING);
463 	return iocb->ki_user_data;
464 }
465 EXPORT_SYMBOL(wait_on_sync_kiocb);
466 
467 /*
468  * exit_aio: called when the last user of mm goes away.  At this point, there is
469  * no way for any new requests to be submited or any of the io_* syscalls to be
470  * called on the context.
471  *
472  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
473  * them.
474  */
exit_aio(struct mm_struct * mm)475 void exit_aio(struct mm_struct *mm)
476 {
477 	struct kioctx *ctx;
478 	struct hlist_node *n;
479 
480 	hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
481 		if (1 != atomic_read(&ctx->users))
482 			printk(KERN_DEBUG
483 				"exit_aio:ioctx still alive: %d %d %d\n",
484 				atomic_read(&ctx->users),
485 				atomic_read(&ctx->dead),
486 				atomic_read(&ctx->reqs_active));
487 		/*
488 		 * We don't need to bother with munmap() here -
489 		 * exit_mmap(mm) is coming and it'll unmap everything.
490 		 * Since aio_free_ring() uses non-zero ->mmap_size
491 		 * as indicator that it needs to unmap the area,
492 		 * just set it to 0; aio_free_ring() is the only
493 		 * place that uses ->mmap_size, so it's safe.
494 		 */
495 		ctx->mmap_size = 0;
496 
497 		kill_ioctx(ctx);
498 	}
499 }
500 
501 /* aio_get_req
502  *	Allocate a slot for an aio request.  Increments the ki_users count
503  * of the kioctx so that the kioctx stays around until all requests are
504  * complete.  Returns NULL if no requests are free.
505  *
506  * Returns with kiocb->ki_users set to 2.  The io submit code path holds
507  * an extra reference while submitting the i/o.
508  * This prevents races between the aio code path referencing the
509  * req (after submitting it) and aio_complete() freeing the req.
510  */
aio_get_req(struct kioctx * ctx)511 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
512 {
513 	struct kiocb *req;
514 
515 	if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
516 		return NULL;
517 
518 	if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
519 		goto out_put;
520 
521 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
522 	if (unlikely(!req))
523 		goto out_put;
524 
525 	atomic_set(&req->ki_users, 2);
526 	req->ki_ctx = ctx;
527 
528 	return req;
529 out_put:
530 	atomic_dec(&ctx->reqs_active);
531 	return NULL;
532 }
533 
kiocb_free(struct kiocb * req)534 static void kiocb_free(struct kiocb *req)
535 {
536 	if (req->ki_filp)
537 		fput(req->ki_filp);
538 	if (req->ki_eventfd != NULL)
539 		eventfd_ctx_put(req->ki_eventfd);
540 	if (req->ki_dtor)
541 		req->ki_dtor(req);
542 	if (req->ki_iovec != &req->ki_inline_vec)
543 		kfree(req->ki_iovec);
544 	kmem_cache_free(kiocb_cachep, req);
545 }
546 
aio_put_req(struct kiocb * req)547 void aio_put_req(struct kiocb *req)
548 {
549 	if (atomic_dec_and_test(&req->ki_users))
550 		kiocb_free(req);
551 }
552 EXPORT_SYMBOL(aio_put_req);
553 
lookup_ioctx(unsigned long ctx_id)554 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
555 {
556 	struct mm_struct *mm = current->mm;
557 	struct kioctx *ctx, *ret = NULL;
558 
559 	rcu_read_lock();
560 
561 	hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
562 		if (ctx->user_id == ctx_id) {
563 			atomic_inc(&ctx->users);
564 			ret = ctx;
565 			break;
566 		}
567 	}
568 
569 	rcu_read_unlock();
570 	return ret;
571 }
572 
573 /* aio_complete
574  *	Called when the io request on the given iocb is complete.
575  */
aio_complete(struct kiocb * iocb,long res,long res2)576 void aio_complete(struct kiocb *iocb, long res, long res2)
577 {
578 	struct kioctx	*ctx = iocb->ki_ctx;
579 	struct aio_ring	*ring;
580 	struct io_event	*ev_page, *event;
581 	unsigned long	flags;
582 	unsigned tail, pos;
583 
584 	/*
585 	 * Special case handling for sync iocbs:
586 	 *  - events go directly into the iocb for fast handling
587 	 *  - the sync task with the iocb in its stack holds the single iocb
588 	 *    ref, no other paths have a way to get another ref
589 	 *  - the sync task helpfully left a reference to itself in the iocb
590 	 */
591 	if (is_sync_kiocb(iocb)) {
592 		BUG_ON(atomic_read(&iocb->ki_users) != 1);
593 		iocb->ki_user_data = res;
594 		atomic_set(&iocb->ki_users, 0);
595 		wake_up_process(iocb->ki_obj.tsk);
596 		return;
597 	}
598 
599 	/*
600 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
601 	 * need to issue a wakeup after decrementing reqs_active.
602 	 */
603 	rcu_read_lock();
604 
605 	if (iocb->ki_list.next) {
606 		unsigned long flags;
607 
608 		spin_lock_irqsave(&ctx->ctx_lock, flags);
609 		list_del(&iocb->ki_list);
610 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
611 	}
612 
613 	/*
614 	 * cancelled requests don't get events, userland was given one
615 	 * when the event got cancelled.
616 	 */
617 	if (unlikely(xchg(&iocb->ki_cancel,
618 			  KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
619 		atomic_dec(&ctx->reqs_active);
620 		/* Still need the wake_up in case free_ioctx is waiting */
621 		goto put_rq;
622 	}
623 
624 	/*
625 	 * Add a completion event to the ring buffer. Must be done holding
626 	 * ctx->ctx_lock to prevent other code from messing with the tail
627 	 * pointer since we might be called from irq context.
628 	 */
629 	spin_lock_irqsave(&ctx->completion_lock, flags);
630 
631 	tail = ctx->tail;
632 	pos = tail + AIO_EVENTS_OFFSET;
633 
634 	if (++tail >= ctx->nr_events)
635 		tail = 0;
636 
637 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
638 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
639 
640 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
641 	event->data = iocb->ki_user_data;
642 	event->res = res;
643 	event->res2 = res2;
644 
645 	kunmap_atomic(ev_page);
646 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
647 
648 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
649 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
650 		 res, res2);
651 
652 	/* after flagging the request as done, we
653 	 * must never even look at it again
654 	 */
655 	smp_wmb();	/* make event visible before updating tail */
656 
657 	ctx->tail = tail;
658 
659 	ring = kmap_atomic(ctx->ring_pages[0]);
660 	ring->tail = tail;
661 	kunmap_atomic(ring);
662 	flush_dcache_page(ctx->ring_pages[0]);
663 
664 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
665 
666 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
667 
668 	/*
669 	 * Check if the user asked us to deliver the result through an
670 	 * eventfd. The eventfd_signal() function is safe to be called
671 	 * from IRQ context.
672 	 */
673 	if (iocb->ki_eventfd != NULL)
674 		eventfd_signal(iocb->ki_eventfd, 1);
675 
676 put_rq:
677 	/* everything turned out well, dispose of the aiocb. */
678 	aio_put_req(iocb);
679 
680 	/*
681 	 * We have to order our ring_info tail store above and test
682 	 * of the wait list below outside the wait lock.  This is
683 	 * like in wake_up_bit() where clearing a bit has to be
684 	 * ordered with the unlocked test.
685 	 */
686 	smp_mb();
687 
688 	if (waitqueue_active(&ctx->wait))
689 		wake_up(&ctx->wait);
690 
691 	rcu_read_unlock();
692 }
693 EXPORT_SYMBOL(aio_complete);
694 
695 /* aio_read_events
696  *	Pull an event off of the ioctx's event ring.  Returns the number of
697  *	events fetched
698  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)699 static long aio_read_events_ring(struct kioctx *ctx,
700 				 struct io_event __user *event, long nr)
701 {
702 	struct aio_ring *ring;
703 	unsigned head, pos;
704 	long ret = 0;
705 	int copy_ret;
706 
707 	mutex_lock(&ctx->ring_lock);
708 
709 	ring = kmap_atomic(ctx->ring_pages[0]);
710 	head = ring->head;
711 	kunmap_atomic(ring);
712 
713 	pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
714 
715 	if (head == ctx->tail)
716 		goto out;
717 
718 	head %= ctx->nr_events;
719 
720 	while (ret < nr) {
721 		long avail;
722 		struct io_event *ev;
723 		struct page *page;
724 
725 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
726 		if (head == ctx->tail)
727 			break;
728 
729 		avail = min(avail, nr - ret);
730 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
731 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
732 
733 		pos = head + AIO_EVENTS_OFFSET;
734 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
735 		pos %= AIO_EVENTS_PER_PAGE;
736 
737 		ev = kmap(page);
738 		copy_ret = copy_to_user(event + ret, ev + pos,
739 					sizeof(*ev) * avail);
740 		kunmap(page);
741 
742 		if (unlikely(copy_ret)) {
743 			ret = -EFAULT;
744 			goto out;
745 		}
746 
747 		ret += avail;
748 		head += avail;
749 		head %= ctx->nr_events;
750 	}
751 
752 	ring = kmap_atomic(ctx->ring_pages[0]);
753 	ring->head = head;
754 	kunmap_atomic(ring);
755 	flush_dcache_page(ctx->ring_pages[0]);
756 
757 	pr_debug("%li  h%u t%u\n", ret, head, ctx->tail);
758 
759 	atomic_sub(ret, &ctx->reqs_active);
760 out:
761 	mutex_unlock(&ctx->ring_lock);
762 
763 	return ret;
764 }
765 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)766 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
767 			    struct io_event __user *event, long *i)
768 {
769 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
770 
771 	if (ret > 0)
772 		*i += ret;
773 
774 	if (unlikely(atomic_read(&ctx->dead)))
775 		ret = -EINVAL;
776 
777 	if (!*i)
778 		*i = ret;
779 
780 	return ret < 0 || *i >= min_nr;
781 }
782 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)783 static long read_events(struct kioctx *ctx, long min_nr, long nr,
784 			struct io_event __user *event,
785 			struct timespec __user *timeout)
786 {
787 	ktime_t until = { .tv64 = KTIME_MAX };
788 	long ret = 0;
789 
790 	if (timeout) {
791 		struct timespec	ts;
792 
793 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
794 			return -EFAULT;
795 
796 		until = timespec_to_ktime(ts);
797 	}
798 
799 	/*
800 	 * Note that aio_read_events() is being called as the conditional - i.e.
801 	 * we're calling it after prepare_to_wait() has set task state to
802 	 * TASK_INTERRUPTIBLE.
803 	 *
804 	 * But aio_read_events() can block, and if it blocks it's going to flip
805 	 * the task state back to TASK_RUNNING.
806 	 *
807 	 * This should be ok, provided it doesn't flip the state back to
808 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
809 	 * will only happen if the mutex_lock() call blocks, and we then find
810 	 * the ringbuffer empty. So in practice we should be ok, but it's
811 	 * something to be aware of when touching this code.
812 	 */
813 	wait_event_interruptible_hrtimeout(ctx->wait,
814 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
815 
816 	if (!ret && signal_pending(current))
817 		ret = -EINTR;
818 
819 	return ret;
820 }
821 
822 /* sys_io_setup:
823  *	Create an aio_context capable of receiving at least nr_events.
824  *	ctxp must not point to an aio_context that already exists, and
825  *	must be initialized to 0 prior to the call.  On successful
826  *	creation of the aio_context, *ctxp is filled in with the resulting
827  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
828  *	if the specified nr_events exceeds internal limits.  May fail
829  *	with -EAGAIN if the specified nr_events exceeds the user's limit
830  *	of available events.  May fail with -ENOMEM if insufficient kernel
831  *	resources are available.  May fail with -EFAULT if an invalid
832  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
833  *	implemented.
834  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)835 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
836 {
837 	struct kioctx *ioctx = NULL;
838 	unsigned long ctx;
839 	long ret;
840 
841 	ret = get_user(ctx, ctxp);
842 	if (unlikely(ret))
843 		goto out;
844 
845 	ret = -EINVAL;
846 	if (unlikely(ctx || nr_events == 0)) {
847 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
848 		         ctx, nr_events);
849 		goto out;
850 	}
851 
852 	ioctx = ioctx_alloc(nr_events);
853 	ret = PTR_ERR(ioctx);
854 	if (!IS_ERR(ioctx)) {
855 		ret = put_user(ioctx->user_id, ctxp);
856 		if (ret)
857 			kill_ioctx(ioctx);
858 		put_ioctx(ioctx);
859 	}
860 
861 out:
862 	return ret;
863 }
864 
865 /* sys_io_destroy:
866  *	Destroy the aio_context specified.  May cancel any outstanding
867  *	AIOs and block on completion.  Will fail with -ENOSYS if not
868  *	implemented.  May fail with -EINVAL if the context pointed to
869  *	is invalid.
870  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)871 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
872 {
873 	struct kioctx *ioctx = lookup_ioctx(ctx);
874 	if (likely(NULL != ioctx)) {
875 		kill_ioctx(ioctx);
876 		put_ioctx(ioctx);
877 		return 0;
878 	}
879 	pr_debug("EINVAL: io_destroy: invalid context id\n");
880 	return -EINVAL;
881 }
882 
aio_advance_iovec(struct kiocb * iocb,ssize_t ret)883 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
884 {
885 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
886 
887 	BUG_ON(ret <= 0);
888 
889 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
890 		ssize_t this = min((ssize_t)iov->iov_len, ret);
891 		iov->iov_base += this;
892 		iov->iov_len -= this;
893 		iocb->ki_left -= this;
894 		ret -= this;
895 		if (iov->iov_len == 0) {
896 			iocb->ki_cur_seg++;
897 			iov++;
898 		}
899 	}
900 
901 	/* the caller should not have done more io than what fit in
902 	 * the remaining iovecs */
903 	BUG_ON(ret > 0 && iocb->ki_left == 0);
904 }
905 
906 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
907 			    unsigned long, loff_t);
908 
aio_rw_vect_retry(struct kiocb * iocb,int rw,aio_rw_op * rw_op)909 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
910 {
911 	struct file *file = iocb->ki_filp;
912 	struct address_space *mapping = file->f_mapping;
913 	struct inode *inode = mapping->host;
914 	ssize_t ret = 0;
915 
916 	/* This matches the pread()/pwrite() logic */
917 	if (iocb->ki_pos < 0)
918 		return -EINVAL;
919 
920 	if (rw == WRITE)
921 		file_start_write(file);
922 	do {
923 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
924 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
925 			    iocb->ki_pos);
926 		if (ret > 0)
927 			aio_advance_iovec(iocb, ret);
928 
929 	/* retry all partial writes.  retry partial reads as long as its a
930 	 * regular file. */
931 	} while (ret > 0 && iocb->ki_left > 0 &&
932 		 (rw == WRITE ||
933 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
934 	if (rw == WRITE)
935 		file_end_write(file);
936 
937 	/* This means we must have transferred all that we could */
938 	/* No need to retry anymore */
939 	if ((ret == 0) || (iocb->ki_left == 0))
940 		ret = iocb->ki_nbytes - iocb->ki_left;
941 
942 	/* If we managed to write some out we return that, rather than
943 	 * the eventual error. */
944 	if (rw == WRITE
945 	    && ret < 0 && ret != -EIOCBQUEUED
946 	    && iocb->ki_nbytes - iocb->ki_left)
947 		ret = iocb->ki_nbytes - iocb->ki_left;
948 
949 	return ret;
950 }
951 
aio_setup_vectored_rw(int rw,struct kiocb * kiocb,bool compat)952 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
953 {
954 	ssize_t ret;
955 
956 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
957 
958 #ifdef CONFIG_COMPAT
959 	if (compat)
960 		ret = compat_rw_copy_check_uvector(rw,
961 				(struct compat_iovec __user *)kiocb->ki_buf,
962 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
963 				&kiocb->ki_iovec);
964 	else
965 #endif
966 		ret = rw_copy_check_uvector(rw,
967 				(struct iovec __user *)kiocb->ki_buf,
968 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
969 				&kiocb->ki_iovec);
970 	if (ret < 0)
971 		return ret;
972 
973 	/* ki_nbytes now reflect bytes instead of segs */
974 	kiocb->ki_nbytes = ret;
975 	return 0;
976 }
977 
aio_setup_single_vector(int rw,struct kiocb * kiocb)978 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
979 {
980 	size_t len = kiocb->ki_nbytes;
981 
982 	if (len > MAX_RW_COUNT)
983 		len = MAX_RW_COUNT;
984 
985 	if (unlikely(!access_ok(!rw, kiocb->ki_buf, len)))
986 		return -EFAULT;
987 
988 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
989 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
990 	kiocb->ki_iovec->iov_len = len;
991 	kiocb->ki_nr_segs = 1;
992 	return 0;
993 }
994 
995 /*
996  * aio_setup_iocb:
997  *	Performs the initial checks and aio retry method
998  *	setup for the kiocb at the time of io submission.
999  */
aio_run_iocb(struct kiocb * req,bool compat)1000 static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
1001 {
1002 	struct file *file = req->ki_filp;
1003 	ssize_t ret;
1004 	int rw;
1005 	fmode_t mode;
1006 	aio_rw_op *rw_op;
1007 
1008 	switch (req->ki_opcode) {
1009 	case IOCB_CMD_PREAD:
1010 	case IOCB_CMD_PREADV:
1011 		mode	= FMODE_READ;
1012 		rw	= READ;
1013 		rw_op	= file->f_op->aio_read;
1014 		goto rw_common;
1015 
1016 	case IOCB_CMD_PWRITE:
1017 	case IOCB_CMD_PWRITEV:
1018 		mode	= FMODE_WRITE;
1019 		rw	= WRITE;
1020 		rw_op	= file->f_op->aio_write;
1021 		goto rw_common;
1022 rw_common:
1023 		if (unlikely(!(file->f_mode & mode)))
1024 			return -EBADF;
1025 
1026 		if (!rw_op)
1027 			return -EINVAL;
1028 
1029 		ret = (req->ki_opcode == IOCB_CMD_PREADV ||
1030 		       req->ki_opcode == IOCB_CMD_PWRITEV)
1031 			? aio_setup_vectored_rw(rw, req, compat)
1032 			: aio_setup_single_vector(rw, req);
1033 		if (ret)
1034 			return ret;
1035 
1036 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1037 		if (ret < 0)
1038 			return ret;
1039 
1040 		req->ki_nbytes = ret;
1041 		req->ki_left = ret;
1042 
1043 		ret = aio_rw_vect_retry(req, rw, rw_op);
1044 		break;
1045 
1046 	case IOCB_CMD_FDSYNC:
1047 		if (!file->f_op->aio_fsync)
1048 			return -EINVAL;
1049 
1050 		ret = file->f_op->aio_fsync(req, 1);
1051 		break;
1052 
1053 	case IOCB_CMD_FSYNC:
1054 		if (!file->f_op->aio_fsync)
1055 			return -EINVAL;
1056 
1057 		ret = file->f_op->aio_fsync(req, 0);
1058 		break;
1059 
1060 	default:
1061 		pr_debug("EINVAL: no operation provided\n");
1062 		return -EINVAL;
1063 	}
1064 
1065 	if (ret != -EIOCBQUEUED) {
1066 		/*
1067 		 * There's no easy way to restart the syscall since other AIO's
1068 		 * may be already running. Just fail this IO with EINTR.
1069 		 */
1070 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1071 			     ret == -ERESTARTNOHAND ||
1072 			     ret == -ERESTART_RESTARTBLOCK))
1073 			ret = -EINTR;
1074 		aio_complete(req, ret, 0);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb,bool compat)1080 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1081 			 struct iocb *iocb, bool compat)
1082 {
1083 	struct kiocb *req;
1084 	ssize_t ret;
1085 
1086 	/* enforce forwards compatibility on users */
1087 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1088 		pr_debug("EINVAL: reserve field set\n");
1089 		return -EINVAL;
1090 	}
1091 
1092 	/* prevent overflows */
1093 	if (unlikely(
1094 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1095 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1096 	    ((ssize_t)iocb->aio_nbytes < 0)
1097 	   )) {
1098 		pr_debug("EINVAL: io_submit: overflow check\n");
1099 		return -EINVAL;
1100 	}
1101 
1102 	req = aio_get_req(ctx);
1103 	if (unlikely(!req))
1104 		return -EAGAIN;
1105 
1106 	req->ki_filp = fget(iocb->aio_fildes);
1107 	if (unlikely(!req->ki_filp)) {
1108 		ret = -EBADF;
1109 		goto out_put_req;
1110 	}
1111 
1112 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1113 		/*
1114 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1115 		 * instance of the file* now. The file descriptor must be
1116 		 * an eventfd() fd, and will be signaled for each completed
1117 		 * event using the eventfd_signal() function.
1118 		 */
1119 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1120 		if (IS_ERR(req->ki_eventfd)) {
1121 			ret = PTR_ERR(req->ki_eventfd);
1122 			req->ki_eventfd = NULL;
1123 			goto out_put_req;
1124 		}
1125 	}
1126 
1127 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1128 	if (unlikely(ret)) {
1129 		pr_debug("EFAULT: aio_key\n");
1130 		goto out_put_req;
1131 	}
1132 
1133 	req->ki_obj.user = user_iocb;
1134 	req->ki_user_data = iocb->aio_data;
1135 	req->ki_pos = iocb->aio_offset;
1136 
1137 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1138 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1139 	req->ki_opcode = iocb->aio_lio_opcode;
1140 
1141 	ret = aio_run_iocb(req, compat);
1142 	if (ret)
1143 		goto out_put_req;
1144 
1145 	aio_put_req(req);	/* drop extra ref to req */
1146 	return 0;
1147 out_put_req:
1148 	atomic_dec(&ctx->reqs_active);
1149 	aio_put_req(req);	/* drop extra ref to req */
1150 	aio_put_req(req);	/* drop i/o ref to req */
1151 	return ret;
1152 }
1153 
do_io_submit(aio_context_t ctx_id,long nr,struct iocb __user * __user * iocbpp,bool compat)1154 long do_io_submit(aio_context_t ctx_id, long nr,
1155 		  struct iocb __user *__user *iocbpp, bool compat)
1156 {
1157 	struct kioctx *ctx;
1158 	long ret = 0;
1159 	int i = 0;
1160 	struct blk_plug plug;
1161 
1162 	if (unlikely(nr < 0))
1163 		return -EINVAL;
1164 
1165 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1166 		nr = LONG_MAX/sizeof(*iocbpp);
1167 
1168 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1169 		return -EFAULT;
1170 
1171 	ctx = lookup_ioctx(ctx_id);
1172 	if (unlikely(!ctx)) {
1173 		pr_debug("EINVAL: invalid context id\n");
1174 		return -EINVAL;
1175 	}
1176 
1177 	blk_start_plug(&plug);
1178 
1179 	/*
1180 	 * AKPM: should this return a partial result if some of the IOs were
1181 	 * successfully submitted?
1182 	 */
1183 	for (i=0; i<nr; i++) {
1184 		struct iocb __user *user_iocb;
1185 		struct iocb tmp;
1186 
1187 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1188 			ret = -EFAULT;
1189 			break;
1190 		}
1191 
1192 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1193 			ret = -EFAULT;
1194 			break;
1195 		}
1196 
1197 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1198 		if (ret)
1199 			break;
1200 	}
1201 	blk_finish_plug(&plug);
1202 
1203 	put_ioctx(ctx);
1204 	return i ? i : ret;
1205 }
1206 
1207 /* sys_io_submit:
1208  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1209  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1210  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1211  *	*iocbpp[0] is not properly initialized, if the operation specified
1212  *	is invalid for the file descriptor in the iocb.  May fail with
1213  *	-EFAULT if any of the data structures point to invalid data.  May
1214  *	fail with -EBADF if the file descriptor specified in the first
1215  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1216  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1217  *	fail with -ENOSYS if not implemented.
1218  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1219 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1220 		struct iocb __user * __user *, iocbpp)
1221 {
1222 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1223 }
1224 
1225 /* lookup_kiocb
1226  *	Finds a given iocb for cancellation.
1227  */
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1228 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1229 				  u32 key)
1230 {
1231 	struct list_head *pos;
1232 
1233 	assert_spin_locked(&ctx->ctx_lock);
1234 
1235 	if (key != KIOCB_KEY)
1236 		return NULL;
1237 
1238 	/* TODO: use a hash or array, this sucks. */
1239 	list_for_each(pos, &ctx->active_reqs) {
1240 		struct kiocb *kiocb = list_kiocb(pos);
1241 		if (kiocb->ki_obj.user == iocb)
1242 			return kiocb;
1243 	}
1244 	return NULL;
1245 }
1246 
1247 /* sys_io_cancel:
1248  *	Attempts to cancel an iocb previously passed to io_submit.  If
1249  *	the operation is successfully cancelled, the resulting event is
1250  *	copied into the memory pointed to by result without being placed
1251  *	into the completion queue and 0 is returned.  May fail with
1252  *	-EFAULT if any of the data structures pointed to are invalid.
1253  *	May fail with -EINVAL if aio_context specified by ctx_id is
1254  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1255  *	cancelled.  Will fail with -ENOSYS if not implemented.
1256  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1257 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1258 		struct io_event __user *, result)
1259 {
1260 	struct io_event res;
1261 	struct kioctx *ctx;
1262 	struct kiocb *kiocb;
1263 	u32 key;
1264 	int ret;
1265 
1266 	ret = get_user(key, &iocb->aio_key);
1267 	if (unlikely(ret))
1268 		return -EFAULT;
1269 
1270 	ctx = lookup_ioctx(ctx_id);
1271 	if (unlikely(!ctx))
1272 		return -EINVAL;
1273 
1274 	spin_lock_irq(&ctx->ctx_lock);
1275 
1276 	kiocb = lookup_kiocb(ctx, iocb, key);
1277 	if (kiocb)
1278 		ret = kiocb_cancel(ctx, kiocb, &res);
1279 	else
1280 		ret = -EINVAL;
1281 
1282 	spin_unlock_irq(&ctx->ctx_lock);
1283 
1284 	if (!ret) {
1285 		/* Cancellation succeeded -- copy the result
1286 		 * into the user's buffer.
1287 		 */
1288 		if (copy_to_user(result, &res, sizeof(res)))
1289 			ret = -EFAULT;
1290 	}
1291 
1292 	put_ioctx(ctx);
1293 
1294 	return ret;
1295 }
1296 
1297 /* io_getevents:
1298  *	Attempts to read at least min_nr events and up to nr events from
1299  *	the completion queue for the aio_context specified by ctx_id. If
1300  *	it succeeds, the number of read events is returned. May fail with
1301  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1302  *	out of range, if timeout is out of range.  May fail with -EFAULT
1303  *	if any of the memory specified is invalid.  May return 0 or
1304  *	< min_nr if the timeout specified by timeout has elapsed
1305  *	before sufficient events are available, where timeout == NULL
1306  *	specifies an infinite timeout. Note that the timeout pointed to by
1307  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1308  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1309 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1310 		long, min_nr,
1311 		long, nr,
1312 		struct io_event __user *, events,
1313 		struct timespec __user *, timeout)
1314 {
1315 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1316 	long ret = -EINVAL;
1317 
1318 	if (likely(ioctx)) {
1319 		if (likely(min_nr <= nr && min_nr >= 0))
1320 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1321 		put_ioctx(ioctx);
1322 	}
1323 	return ret;
1324 }
1325