• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>		/* for struct sg_iovec */
32 
33 #include <trace/events/block.h>
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 static mempool_t *bio_split_pool __read_mostly;
42 
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53 
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60 
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65 	struct kmem_cache *slab;
66 	unsigned int slab_ref;
67 	unsigned int slab_size;
68 	char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73 
bio_find_or_create_slab(unsigned int extra_size)74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 	unsigned int sz = sizeof(struct bio) + extra_size;
77 	struct kmem_cache *slab = NULL;
78 	struct bio_slab *bslab, *new_bio_slabs;
79 	unsigned int new_bio_slab_max;
80 	unsigned int i, entry = -1;
81 
82 	mutex_lock(&bio_slab_lock);
83 
84 	i = 0;
85 	while (i < bio_slab_nr) {
86 		bslab = &bio_slabs[i];
87 
88 		if (!bslab->slab && entry == -1)
89 			entry = i;
90 		else if (bslab->slab_size == sz) {
91 			slab = bslab->slab;
92 			bslab->slab_ref++;
93 			break;
94 		}
95 		i++;
96 	}
97 
98 	if (slab)
99 		goto out_unlock;
100 
101 	if (bio_slab_nr == bio_slab_max && entry == -1) {
102 		new_bio_slab_max = bio_slab_max << 1;
103 		new_bio_slabs = krealloc(bio_slabs,
104 					 new_bio_slab_max * sizeof(struct bio_slab),
105 					 GFP_KERNEL);
106 		if (!new_bio_slabs)
107 			goto out_unlock;
108 		bio_slab_max = new_bio_slab_max;
109 		bio_slabs = new_bio_slabs;
110 	}
111 	if (entry == -1)
112 		entry = bio_slab_nr++;
113 
114 	bslab = &bio_slabs[entry];
115 
116 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 	if (!slab)
119 		goto out_unlock;
120 
121 	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 	bslab->slab = slab;
123 	bslab->slab_ref = 1;
124 	bslab->slab_size = sz;
125 out_unlock:
126 	mutex_unlock(&bio_slab_lock);
127 	return slab;
128 }
129 
bio_put_slab(struct bio_set * bs)130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int i;
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	for (i = 0; i < bio_slab_nr; i++) {
138 		if (bs->bio_slab == bio_slabs[i].slab) {
139 			bslab = &bio_slabs[i];
140 			break;
141 		}
142 	}
143 
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON(!bslab->slab_ref);
148 
149 	if (--bslab->slab_ref)
150 		goto out;
151 
152 	kmem_cache_destroy(bslab->slab);
153 	bslab->slab = NULL;
154 
155 out:
156 	mutex_unlock(&bio_slab_lock);
157 }
158 
bvec_nr_vecs(unsigned short idx)159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 	return bvec_slabs[idx].nr_vecs;
162 }
163 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167 
168 	if (idx == BIOVEC_MAX_IDX)
169 		mempool_free(bv, pool);
170 	else {
171 		struct biovec_slab *bvs = bvec_slabs + idx;
172 
173 		kmem_cache_free(bvs->slab, bv);
174 	}
175 }
176 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 			   mempool_t *pool)
179 {
180 	struct bio_vec *bvl;
181 
182 	/*
183 	 * see comment near bvec_array define!
184 	 */
185 	switch (nr) {
186 	case 1:
187 		*idx = 0;
188 		break;
189 	case 2 ... 4:
190 		*idx = 1;
191 		break;
192 	case 5 ... 16:
193 		*idx = 2;
194 		break;
195 	case 17 ... 64:
196 		*idx = 3;
197 		break;
198 	case 65 ... 128:
199 		*idx = 4;
200 		break;
201 	case 129 ... BIO_MAX_PAGES:
202 		*idx = 5;
203 		break;
204 	default:
205 		return NULL;
206 	}
207 
208 	/*
209 	 * idx now points to the pool we want to allocate from. only the
210 	 * 1-vec entry pool is mempool backed.
211 	 */
212 	if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 		bvl = mempool_alloc(pool, gfp_mask);
215 	} else {
216 		struct biovec_slab *bvs = bvec_slabs + *idx;
217 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218 
219 		/*
220 		 * Make this allocation restricted and don't dump info on
221 		 * allocation failures, since we'll fallback to the mempool
222 		 * in case of failure.
223 		 */
224 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225 
226 		/*
227 		 * Try a slab allocation. If this fails and __GFP_WAIT
228 		 * is set, retry with the 1-entry mempool
229 		 */
230 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 			*idx = BIOVEC_MAX_IDX;
233 			goto fallback;
234 		}
235 	}
236 
237 	return bvl;
238 }
239 
__bio_free(struct bio * bio)240 static void __bio_free(struct bio *bio)
241 {
242 	bio_disassociate_task(bio);
243 
244 	if (bio_integrity(bio))
245 		bio_integrity_free(bio);
246 }
247 
bio_free(struct bio * bio)248 static void bio_free(struct bio *bio)
249 {
250 	struct bio_set *bs = bio->bi_pool;
251 	void *p;
252 
253 	__bio_free(bio);
254 
255 	if (bs) {
256 		if (bio_flagged(bio, BIO_OWNS_VEC))
257 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
bio_init(struct bio * bio)272 void bio_init(struct bio *bio)
273 {
274 	memset(bio, 0, sizeof(*bio));
275 	bio->bi_flags = 1 << BIO_UPTODATE;
276 	atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279 
280 /**
281  * bio_reset - reinitialize a bio
282  * @bio:	bio to reset
283  *
284  * Description:
285  *   After calling bio_reset(), @bio will be in the same state as a freshly
286  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
287  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
288  *   comment in struct bio.
289  */
bio_reset(struct bio * bio)290 void bio_reset(struct bio *bio)
291 {
292 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293 
294 	__bio_free(bio);
295 
296 	memset(bio, 0, BIO_RESET_BYTES);
297 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
bio_alloc_rescue(struct work_struct * work)301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 	struct bio *bio;
305 
306 	while (1) {
307 		spin_lock(&bs->rescue_lock);
308 		bio = bio_list_pop(&bs->rescue_list);
309 		spin_unlock(&bs->rescue_lock);
310 
311 		if (!bio)
312 			break;
313 
314 		generic_make_request(bio);
315 	}
316 }
317 
punt_bios_to_rescuer(struct bio_set * bs)318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320 	struct bio_list punt, nopunt;
321 	struct bio *bio;
322 
323 	/*
324 	 * In order to guarantee forward progress we must punt only bios that
325 	 * were allocated from this bio_set; otherwise, if there was a bio on
326 	 * there for a stacking driver higher up in the stack, processing it
327 	 * could require allocating bios from this bio_set, and doing that from
328 	 * our own rescuer would be bad.
329 	 *
330 	 * Since bio lists are singly linked, pop them all instead of trying to
331 	 * remove from the middle of the list:
332 	 */
333 
334 	bio_list_init(&punt);
335 	bio_list_init(&nopunt);
336 
337 	while ((bio = bio_list_pop(current->bio_list)))
338 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339 
340 	*current->bio_list = nopunt;
341 
342 	spin_lock(&bs->rescue_lock);
343 	bio_list_merge(&bs->rescue_list, &punt);
344 	spin_unlock(&bs->rescue_lock);
345 
346 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348 
349 /**
350  * bio_alloc_bioset - allocate a bio for I/O
351  * @gfp_mask:   the GFP_ mask given to the slab allocator
352  * @nr_iovecs:	number of iovecs to pre-allocate
353  * @bs:		the bio_set to allocate from.
354  *
355  * Description:
356  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357  *   backed by the @bs's mempool.
358  *
359  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360  *   able to allocate a bio. This is due to the mempool guarantees. To make this
361  *   work, callers must never allocate more than 1 bio at a time from this pool.
362  *   Callers that need to allocate more than 1 bio must always submit the
363  *   previously allocated bio for IO before attempting to allocate a new one.
364  *   Failure to do so can cause deadlocks under memory pressure.
365  *
366  *   Note that when running under generic_make_request() (i.e. any block
367  *   driver), bios are not submitted until after you return - see the code in
368  *   generic_make_request() that converts recursion into iteration, to prevent
369  *   stack overflows.
370  *
371  *   This would normally mean allocating multiple bios under
372  *   generic_make_request() would be susceptible to deadlocks, but we have
373  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
374  *   thread.
375  *
376  *   However, we do not guarantee forward progress for allocations from other
377  *   mempools. Doing multiple allocations from the same mempool under
378  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
379  *   for per bio allocations.
380  *
381  *   RETURNS:
382  *   Pointer to new bio on success, NULL on failure.
383  */
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386 	gfp_t saved_gfp = gfp_mask;
387 	unsigned front_pad;
388 	unsigned inline_vecs;
389 	unsigned long idx = BIO_POOL_NONE;
390 	struct bio_vec *bvl = NULL;
391 	struct bio *bio;
392 	void *p;
393 
394 	if (!bs) {
395 		if (nr_iovecs > UIO_MAXIOV)
396 			return NULL;
397 
398 		p = kmalloc(sizeof(struct bio) +
399 			    nr_iovecs * sizeof(struct bio_vec),
400 			    gfp_mask);
401 		front_pad = 0;
402 		inline_vecs = nr_iovecs;
403 	} else {
404 		/*
405 		 * generic_make_request() converts recursion to iteration; this
406 		 * means if we're running beneath it, any bios we allocate and
407 		 * submit will not be submitted (and thus freed) until after we
408 		 * return.
409 		 *
410 		 * This exposes us to a potential deadlock if we allocate
411 		 * multiple bios from the same bio_set() while running
412 		 * underneath generic_make_request(). If we were to allocate
413 		 * multiple bios (say a stacking block driver that was splitting
414 		 * bios), we would deadlock if we exhausted the mempool's
415 		 * reserve.
416 		 *
417 		 * We solve this, and guarantee forward progress, with a rescuer
418 		 * workqueue per bio_set. If we go to allocate and there are
419 		 * bios on current->bio_list, we first try the allocation
420 		 * without __GFP_WAIT; if that fails, we punt those bios we
421 		 * would be blocking to the rescuer workqueue before we retry
422 		 * with the original gfp_flags.
423 		 */
424 
425 		if (current->bio_list && !bio_list_empty(current->bio_list))
426 			gfp_mask &= ~__GFP_WAIT;
427 
428 		p = mempool_alloc(bs->bio_pool, gfp_mask);
429 		if (!p && gfp_mask != saved_gfp) {
430 			punt_bios_to_rescuer(bs);
431 			gfp_mask = saved_gfp;
432 			p = mempool_alloc(bs->bio_pool, gfp_mask);
433 		}
434 
435 		front_pad = bs->front_pad;
436 		inline_vecs = BIO_INLINE_VECS;
437 	}
438 
439 	if (unlikely(!p))
440 		return NULL;
441 
442 	bio = p + front_pad;
443 	bio_init(bio);
444 
445 	if (nr_iovecs > inline_vecs) {
446 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447 		if (!bvl && gfp_mask != saved_gfp) {
448 			punt_bios_to_rescuer(bs);
449 			gfp_mask = saved_gfp;
450 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451 		}
452 
453 		if (unlikely(!bvl))
454 			goto err_free;
455 
456 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
457 	} else if (nr_iovecs) {
458 		bvl = bio->bi_inline_vecs;
459 	}
460 
461 	bio->bi_pool = bs;
462 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 	bio->bi_max_vecs = nr_iovecs;
464 	bio->bi_io_vec = bvl;
465 	return bio;
466 
467 err_free:
468 	mempool_free(p, bs->bio_pool);
469 	return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472 
zero_fill_bio(struct bio * bio)473 void zero_fill_bio(struct bio *bio)
474 {
475 	unsigned long flags;
476 	struct bio_vec *bv;
477 	int i;
478 
479 	bio_for_each_segment(bv, bio, i) {
480 		char *data = bvec_kmap_irq(bv, &flags);
481 		memset(data, 0, bv->bv_len);
482 		flush_dcache_page(bv->bv_page);
483 		bvec_kunmap_irq(data, &flags);
484 	}
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487 
488 /**
489  * bio_put - release a reference to a bio
490  * @bio:   bio to release reference to
491  *
492  * Description:
493  *   Put a reference to a &struct bio, either one you have gotten with
494  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495  **/
bio_put(struct bio * bio)496 void bio_put(struct bio *bio)
497 {
498 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499 
500 	/*
501 	 * last put frees it
502 	 */
503 	if (atomic_dec_and_test(&bio->bi_cnt))
504 		bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507 
bio_phys_segments(struct request_queue * q,struct bio * bio)508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 		blk_recount_segments(q, bio);
512 
513 	return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516 
517 /**
518  * 	__bio_clone	-	clone a bio
519  * 	@bio: destination bio
520  * 	@bio_src: bio to clone
521  *
522  *	Clone a &bio. Caller will own the returned bio, but not
523  *	the actual data it points to. Reference count of returned
524  * 	bio will be one.
525  */
__bio_clone(struct bio * bio,struct bio * bio_src)526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528 	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529 		bio_src->bi_max_vecs * sizeof(struct bio_vec));
530 
531 	/*
532 	 * most users will be overriding ->bi_bdev with a new target,
533 	 * so we don't set nor calculate new physical/hw segment counts here
534 	 */
535 	bio->bi_sector = bio_src->bi_sector;
536 	bio->bi_bdev = bio_src->bi_bdev;
537 	bio->bi_flags |= 1 << BIO_CLONED;
538 	bio->bi_rw = bio_src->bi_rw;
539 	bio->bi_vcnt = bio_src->bi_vcnt;
540 	bio->bi_size = bio_src->bi_size;
541 	bio->bi_idx = bio_src->bi_idx;
542 }
543 EXPORT_SYMBOL(__bio_clone);
544 
545 /**
546  *	bio_clone_bioset -	clone a bio
547  *	@bio: bio to clone
548  *	@gfp_mask: allocation priority
549  *	@bs: bio_set to allocate from
550  *
551  * 	Like __bio_clone, only also allocates the returned bio
552  */
bio_clone_bioset(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)553 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
554 			     struct bio_set *bs)
555 {
556 	struct bio *b;
557 
558 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
559 	if (!b)
560 		return NULL;
561 
562 	__bio_clone(b, bio);
563 
564 	if (bio_integrity(bio)) {
565 		int ret;
566 
567 		ret = bio_integrity_clone(b, bio, gfp_mask);
568 
569 		if (ret < 0) {
570 			bio_put(b);
571 			return NULL;
572 		}
573 	}
574 
575 	return b;
576 }
577 EXPORT_SYMBOL(bio_clone_bioset);
578 
579 /**
580  *	bio_get_nr_vecs		- return approx number of vecs
581  *	@bdev:  I/O target
582  *
583  *	Return the approximate number of pages we can send to this target.
584  *	There's no guarantee that you will be able to fit this number of pages
585  *	into a bio, it does not account for dynamic restrictions that vary
586  *	on offset.
587  */
bio_get_nr_vecs(struct block_device * bdev)588 int bio_get_nr_vecs(struct block_device *bdev)
589 {
590 	struct request_queue *q = bdev_get_queue(bdev);
591 	int nr_pages;
592 
593 	nr_pages = min_t(unsigned,
594 		     queue_max_segments(q),
595 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
596 
597 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
598 
599 }
600 EXPORT_SYMBOL(bio_get_nr_vecs);
601 
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned short max_sectors)602 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
603 			  *page, unsigned int len, unsigned int offset,
604 			  unsigned short max_sectors)
605 {
606 	int retried_segments = 0;
607 	struct bio_vec *bvec;
608 
609 	/*
610 	 * cloned bio must not modify vec list
611 	 */
612 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
613 		return 0;
614 
615 	if (((bio->bi_size + len) >> 9) > max_sectors)
616 		return 0;
617 
618 	/*
619 	 * For filesystems with a blocksize smaller than the pagesize
620 	 * we will often be called with the same page as last time and
621 	 * a consecutive offset.  Optimize this special case.
622 	 */
623 	if (bio->bi_vcnt > 0) {
624 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
625 
626 		if (page == prev->bv_page &&
627 		    offset == prev->bv_offset + prev->bv_len) {
628 			unsigned int prev_bv_len = prev->bv_len;
629 			prev->bv_len += len;
630 
631 			if (q->merge_bvec_fn) {
632 				struct bvec_merge_data bvm = {
633 					/* prev_bvec is already charged in
634 					   bi_size, discharge it in order to
635 					   simulate merging updated prev_bvec
636 					   as new bvec. */
637 					.bi_bdev = bio->bi_bdev,
638 					.bi_sector = bio->bi_sector,
639 					.bi_size = bio->bi_size - prev_bv_len,
640 					.bi_rw = bio->bi_rw,
641 				};
642 
643 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
644 					prev->bv_len -= len;
645 					return 0;
646 				}
647 			}
648 
649 			goto done;
650 		}
651 	}
652 
653 	if (bio->bi_vcnt >= bio->bi_max_vecs)
654 		return 0;
655 
656 	/*
657 	 * we might lose a segment or two here, but rather that than
658 	 * make this too complex.
659 	 */
660 
661 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
662 
663 		if (retried_segments)
664 			return 0;
665 
666 		retried_segments = 1;
667 		blk_recount_segments(q, bio);
668 	}
669 
670 	/*
671 	 * setup the new entry, we might clear it again later if we
672 	 * cannot add the page
673 	 */
674 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
675 	bvec->bv_page = page;
676 	bvec->bv_len = len;
677 	bvec->bv_offset = offset;
678 
679 	/*
680 	 * if queue has other restrictions (eg varying max sector size
681 	 * depending on offset), it can specify a merge_bvec_fn in the
682 	 * queue to get further control
683 	 */
684 	if (q->merge_bvec_fn) {
685 		struct bvec_merge_data bvm = {
686 			.bi_bdev = bio->bi_bdev,
687 			.bi_sector = bio->bi_sector,
688 			.bi_size = bio->bi_size,
689 			.bi_rw = bio->bi_rw,
690 		};
691 
692 		/*
693 		 * merge_bvec_fn() returns number of bytes it can accept
694 		 * at this offset
695 		 */
696 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
697 			bvec->bv_page = NULL;
698 			bvec->bv_len = 0;
699 			bvec->bv_offset = 0;
700 			return 0;
701 		}
702 	}
703 
704 	/* If we may be able to merge these biovecs, force a recount */
705 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
706 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
707 
708 	bio->bi_vcnt++;
709 	bio->bi_phys_segments++;
710  done:
711 	bio->bi_size += len;
712 	return len;
713 }
714 
715 /**
716  *	bio_add_pc_page	-	attempt to add page to bio
717  *	@q: the target queue
718  *	@bio: destination bio
719  *	@page: page to add
720  *	@len: vec entry length
721  *	@offset: vec entry offset
722  *
723  *	Attempt to add a page to the bio_vec maplist. This can fail for a
724  *	number of reasons, such as the bio being full or target block device
725  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
726  *	so it is always possible to add a single page to an empty bio.
727  *
728  *	This should only be used by REQ_PC bios.
729  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)730 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
731 		    unsigned int len, unsigned int offset)
732 {
733 	return __bio_add_page(q, bio, page, len, offset,
734 			      queue_max_hw_sectors(q));
735 }
736 EXPORT_SYMBOL(bio_add_pc_page);
737 
738 /**
739  *	bio_add_page	-	attempt to add page to bio
740  *	@bio: destination bio
741  *	@page: page to add
742  *	@len: vec entry length
743  *	@offset: vec entry offset
744  *
745  *	Attempt to add a page to the bio_vec maplist. This can fail for a
746  *	number of reasons, such as the bio being full or target block device
747  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
748  *	so it is always possible to add a single page to an empty bio.
749  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)750 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
751 		 unsigned int offset)
752 {
753 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
754 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
755 }
756 EXPORT_SYMBOL(bio_add_page);
757 
758 struct submit_bio_ret {
759 	struct completion event;
760 	int error;
761 };
762 
submit_bio_wait_endio(struct bio * bio,int error)763 static void submit_bio_wait_endio(struct bio *bio, int error)
764 {
765 	struct submit_bio_ret *ret = bio->bi_private;
766 
767 	ret->error = error;
768 	complete(&ret->event);
769 }
770 
771 /**
772  * submit_bio_wait - submit a bio, and wait until it completes
773  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
774  * @bio: The &struct bio which describes the I/O
775  *
776  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
777  * bio_endio() on failure.
778  */
submit_bio_wait(int rw,struct bio * bio)779 int submit_bio_wait(int rw, struct bio *bio)
780 {
781 	struct submit_bio_ret ret;
782 
783 	rw |= REQ_SYNC;
784 	init_completion(&ret.event);
785 	bio->bi_private = &ret;
786 	bio->bi_end_io = submit_bio_wait_endio;
787 	submit_bio(rw, bio);
788 	wait_for_completion(&ret.event);
789 
790 	return ret.error;
791 }
792 EXPORT_SYMBOL(submit_bio_wait);
793 
794 /**
795  * bio_advance - increment/complete a bio by some number of bytes
796  * @bio:	bio to advance
797  * @bytes:	number of bytes to complete
798  *
799  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
800  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
801  * be updated on the last bvec as well.
802  *
803  * @bio will then represent the remaining, uncompleted portion of the io.
804  */
bio_advance(struct bio * bio,unsigned bytes)805 void bio_advance(struct bio *bio, unsigned bytes)
806 {
807 	if (bio_integrity(bio))
808 		bio_integrity_advance(bio, bytes);
809 
810 	bio->bi_sector += bytes >> 9;
811 	bio->bi_size -= bytes;
812 
813 	if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
814 		return;
815 
816 	while (bytes) {
817 		if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
818 			WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
819 				  bio->bi_idx, bio->bi_vcnt);
820 			break;
821 		}
822 
823 		if (bytes >= bio_iovec(bio)->bv_len) {
824 			bytes -= bio_iovec(bio)->bv_len;
825 			bio->bi_idx++;
826 		} else {
827 			bio_iovec(bio)->bv_len -= bytes;
828 			bio_iovec(bio)->bv_offset += bytes;
829 			bytes = 0;
830 		}
831 	}
832 }
833 EXPORT_SYMBOL(bio_advance);
834 
835 /**
836  * bio_alloc_pages - allocates a single page for each bvec in a bio
837  * @bio: bio to allocate pages for
838  * @gfp_mask: flags for allocation
839  *
840  * Allocates pages up to @bio->bi_vcnt.
841  *
842  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
843  * freed.
844  */
bio_alloc_pages(struct bio * bio,gfp_t gfp_mask)845 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
846 {
847 	int i;
848 	struct bio_vec *bv;
849 
850 	bio_for_each_segment_all(bv, bio, i) {
851 		bv->bv_page = alloc_page(gfp_mask);
852 		if (!bv->bv_page) {
853 			while (--bv >= bio->bi_io_vec)
854 				__free_page(bv->bv_page);
855 			return -ENOMEM;
856 		}
857 	}
858 
859 	return 0;
860 }
861 EXPORT_SYMBOL(bio_alloc_pages);
862 
863 /**
864  * bio_copy_data - copy contents of data buffers from one chain of bios to
865  * another
866  * @src: source bio list
867  * @dst: destination bio list
868  *
869  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
870  * @src and @dst as linked lists of bios.
871  *
872  * Stops when it reaches the end of either @src or @dst - that is, copies
873  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
874  */
bio_copy_data(struct bio * dst,struct bio * src)875 void bio_copy_data(struct bio *dst, struct bio *src)
876 {
877 	struct bio_vec *src_bv, *dst_bv;
878 	unsigned src_offset, dst_offset, bytes;
879 	void *src_p, *dst_p;
880 
881 	src_bv = bio_iovec(src);
882 	dst_bv = bio_iovec(dst);
883 
884 	src_offset = src_bv->bv_offset;
885 	dst_offset = dst_bv->bv_offset;
886 
887 	while (1) {
888 		if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
889 			src_bv++;
890 			if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
891 				src = src->bi_next;
892 				if (!src)
893 					break;
894 
895 				src_bv = bio_iovec(src);
896 			}
897 
898 			src_offset = src_bv->bv_offset;
899 		}
900 
901 		if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
902 			dst_bv++;
903 			if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
904 				dst = dst->bi_next;
905 				if (!dst)
906 					break;
907 
908 				dst_bv = bio_iovec(dst);
909 			}
910 
911 			dst_offset = dst_bv->bv_offset;
912 		}
913 
914 		bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
915 			    src_bv->bv_offset + src_bv->bv_len - src_offset);
916 
917 		src_p = kmap_atomic(src_bv->bv_page);
918 		dst_p = kmap_atomic(dst_bv->bv_page);
919 
920 		memcpy(dst_p + dst_bv->bv_offset,
921 		       src_p + src_bv->bv_offset,
922 		       bytes);
923 
924 		kunmap_atomic(dst_p);
925 		kunmap_atomic(src_p);
926 
927 		src_offset += bytes;
928 		dst_offset += bytes;
929 	}
930 }
931 EXPORT_SYMBOL(bio_copy_data);
932 
933 struct bio_map_data {
934 	struct bio_vec *iovecs;
935 	struct sg_iovec *sgvecs;
936 	int nr_sgvecs;
937 	int is_our_pages;
938 };
939 
bio_set_map_data(struct bio_map_data * bmd,struct bio * bio,struct sg_iovec * iov,int iov_count,int is_our_pages)940 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
941 			     struct sg_iovec *iov, int iov_count,
942 			     int is_our_pages)
943 {
944 	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
945 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
946 	bmd->nr_sgvecs = iov_count;
947 	bmd->is_our_pages = is_our_pages;
948 	bio->bi_private = bmd;
949 }
950 
bio_free_map_data(struct bio_map_data * bmd)951 static void bio_free_map_data(struct bio_map_data *bmd)
952 {
953 	kfree(bmd->iovecs);
954 	kfree(bmd->sgvecs);
955 	kfree(bmd);
956 }
957 
bio_alloc_map_data(int nr_segs,unsigned int iov_count,gfp_t gfp_mask)958 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
959 					       unsigned int iov_count,
960 					       gfp_t gfp_mask)
961 {
962 	struct bio_map_data *bmd;
963 
964 	if (iov_count > UIO_MAXIOV)
965 		return NULL;
966 
967 	bmd = kmalloc(sizeof(*bmd), gfp_mask);
968 	if (!bmd)
969 		return NULL;
970 
971 	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
972 	if (!bmd->iovecs) {
973 		kfree(bmd);
974 		return NULL;
975 	}
976 
977 	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
978 	if (bmd->sgvecs)
979 		return bmd;
980 
981 	kfree(bmd->iovecs);
982 	kfree(bmd);
983 	return NULL;
984 }
985 
__bio_copy_iov(struct bio * bio,struct bio_vec * iovecs,struct sg_iovec * iov,int iov_count,int to_user,int from_user,int do_free_page)986 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
987 			  struct sg_iovec *iov, int iov_count,
988 			  int to_user, int from_user, int do_free_page)
989 {
990 	int ret = 0, i;
991 	struct bio_vec *bvec;
992 	int iov_idx = 0;
993 	unsigned int iov_off = 0;
994 
995 	bio_for_each_segment_all(bvec, bio, i) {
996 		char *bv_addr = page_address(bvec->bv_page);
997 		unsigned int bv_len = iovecs[i].bv_len;
998 
999 		while (bv_len && iov_idx < iov_count) {
1000 			unsigned int bytes;
1001 			char __user *iov_addr;
1002 
1003 			bytes = min_t(unsigned int,
1004 				      iov[iov_idx].iov_len - iov_off, bv_len);
1005 			iov_addr = iov[iov_idx].iov_base + iov_off;
1006 
1007 			if (!ret) {
1008 				if (to_user)
1009 					ret = copy_to_user(iov_addr, bv_addr,
1010 							   bytes);
1011 
1012 				if (from_user)
1013 					ret = copy_from_user(bv_addr, iov_addr,
1014 							     bytes);
1015 
1016 				if (ret)
1017 					ret = -EFAULT;
1018 			}
1019 
1020 			bv_len -= bytes;
1021 			bv_addr += bytes;
1022 			iov_addr += bytes;
1023 			iov_off += bytes;
1024 
1025 			if (iov[iov_idx].iov_len == iov_off) {
1026 				iov_idx++;
1027 				iov_off = 0;
1028 			}
1029 		}
1030 
1031 		if (do_free_page)
1032 			__free_page(bvec->bv_page);
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 /**
1039  *	bio_uncopy_user	-	finish previously mapped bio
1040  *	@bio: bio being terminated
1041  *
1042  *	Free pages allocated from bio_copy_user() and write back data
1043  *	to user space in case of a read.
1044  */
bio_uncopy_user(struct bio * bio)1045 int bio_uncopy_user(struct bio *bio)
1046 {
1047 	struct bio_map_data *bmd = bio->bi_private;
1048 	int ret = 0;
1049 
1050 	if (!bio_flagged(bio, BIO_NULL_MAPPED))
1051 		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1052 				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1053 				     0, bmd->is_our_pages);
1054 	bio_free_map_data(bmd);
1055 	bio_put(bio);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL(bio_uncopy_user);
1059 
1060 /**
1061  *	bio_copy_user_iov	-	copy user data to bio
1062  *	@q: destination block queue
1063  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1064  *	@iov:	the iovec.
1065  *	@iov_count: number of elements in the iovec
1066  *	@write_to_vm: bool indicating writing to pages or not
1067  *	@gfp_mask: memory allocation flags
1068  *
1069  *	Prepares and returns a bio for indirect user io, bouncing data
1070  *	to/from kernel pages as necessary. Must be paired with
1071  *	call bio_uncopy_user() on io completion.
1072  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1073 struct bio *bio_copy_user_iov(struct request_queue *q,
1074 			      struct rq_map_data *map_data,
1075 			      struct sg_iovec *iov, int iov_count,
1076 			      int write_to_vm, gfp_t gfp_mask)
1077 {
1078 	struct bio_map_data *bmd;
1079 	struct bio_vec *bvec;
1080 	struct page *page;
1081 	struct bio *bio;
1082 	int i, ret;
1083 	int nr_pages = 0;
1084 	unsigned int len = 0;
1085 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1086 
1087 	for (i = 0; i < iov_count; i++) {
1088 		unsigned long uaddr;
1089 		unsigned long end;
1090 		unsigned long start;
1091 
1092 		uaddr = (unsigned long)iov[i].iov_base;
1093 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094 		start = uaddr >> PAGE_SHIFT;
1095 
1096 		/*
1097 		 * Overflow, abort
1098 		 */
1099 		if (end < start)
1100 			return ERR_PTR(-EINVAL);
1101 
1102 		nr_pages += end - start;
1103 		len += iov[i].iov_len;
1104 	}
1105 
1106 	if (offset)
1107 		nr_pages++;
1108 
1109 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1110 	if (!bmd)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	ret = -ENOMEM;
1114 	bio = bio_kmalloc(gfp_mask, nr_pages);
1115 	if (!bio)
1116 		goto out_bmd;
1117 
1118 	if (!write_to_vm)
1119 		bio->bi_rw |= REQ_WRITE;
1120 
1121 	ret = 0;
1122 
1123 	if (map_data) {
1124 		nr_pages = 1 << map_data->page_order;
1125 		i = map_data->offset / PAGE_SIZE;
1126 	}
1127 	while (len) {
1128 		unsigned int bytes = PAGE_SIZE;
1129 
1130 		bytes -= offset;
1131 
1132 		if (bytes > len)
1133 			bytes = len;
1134 
1135 		if (map_data) {
1136 			if (i == map_data->nr_entries * nr_pages) {
1137 				ret = -ENOMEM;
1138 				break;
1139 			}
1140 
1141 			page = map_data->pages[i / nr_pages];
1142 			page += (i % nr_pages);
1143 
1144 			i++;
1145 		} else {
1146 			page = alloc_page(q->bounce_gfp | gfp_mask);
1147 			if (!page) {
1148 				ret = -ENOMEM;
1149 				break;
1150 			}
1151 		}
1152 
1153 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1154 			break;
1155 
1156 		len -= bytes;
1157 		offset = 0;
1158 	}
1159 
1160 	if (ret)
1161 		goto cleanup;
1162 
1163 	/*
1164 	 * success
1165 	 */
1166 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1167 	    (map_data && map_data->from_user)) {
1168 		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1169 		if (ret)
1170 			goto cleanup;
1171 	}
1172 
1173 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1174 	return bio;
1175 cleanup:
1176 	if (!map_data)
1177 		bio_for_each_segment_all(bvec, bio, i)
1178 			__free_page(bvec->bv_page);
1179 
1180 	bio_put(bio);
1181 out_bmd:
1182 	bio_free_map_data(bmd);
1183 	return ERR_PTR(ret);
1184 }
1185 
1186 /**
1187  *	bio_copy_user	-	copy user data to bio
1188  *	@q: destination block queue
1189  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1190  *	@uaddr: start of user address
1191  *	@len: length in bytes
1192  *	@write_to_vm: bool indicating writing to pages or not
1193  *	@gfp_mask: memory allocation flags
1194  *
1195  *	Prepares and returns a bio for indirect user io, bouncing data
1196  *	to/from kernel pages as necessary. Must be paired with
1197  *	call bio_uncopy_user() on io completion.
1198  */
bio_copy_user(struct request_queue * q,struct rq_map_data * map_data,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1199 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1200 			  unsigned long uaddr, unsigned int len,
1201 			  int write_to_vm, gfp_t gfp_mask)
1202 {
1203 	struct sg_iovec iov;
1204 
1205 	iov.iov_base = (void __user *)uaddr;
1206 	iov.iov_len = len;
1207 
1208 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1209 }
1210 EXPORT_SYMBOL(bio_copy_user);
1211 
__bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1212 static struct bio *__bio_map_user_iov(struct request_queue *q,
1213 				      struct block_device *bdev,
1214 				      struct sg_iovec *iov, int iov_count,
1215 				      int write_to_vm, gfp_t gfp_mask)
1216 {
1217 	int i, j;
1218 	int nr_pages = 0;
1219 	struct page **pages;
1220 	struct bio *bio;
1221 	int cur_page = 0;
1222 	int ret, offset;
1223 
1224 	for (i = 0; i < iov_count; i++) {
1225 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1226 		unsigned long len = iov[i].iov_len;
1227 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1228 		unsigned long start = uaddr >> PAGE_SHIFT;
1229 
1230 		/*
1231 		 * Overflow, abort
1232 		 */
1233 		if (end < start)
1234 			return ERR_PTR(-EINVAL);
1235 
1236 		nr_pages += end - start;
1237 		/*
1238 		 * buffer must be aligned to at least hardsector size for now
1239 		 */
1240 		if (uaddr & queue_dma_alignment(q))
1241 			return ERR_PTR(-EINVAL);
1242 	}
1243 
1244 	if (!nr_pages)
1245 		return ERR_PTR(-EINVAL);
1246 
1247 	bio = bio_kmalloc(gfp_mask, nr_pages);
1248 	if (!bio)
1249 		return ERR_PTR(-ENOMEM);
1250 
1251 	ret = -ENOMEM;
1252 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1253 	if (!pages)
1254 		goto out;
1255 
1256 	for (i = 0; i < iov_count; i++) {
1257 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1258 		unsigned long len = iov[i].iov_len;
1259 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260 		unsigned long start = uaddr >> PAGE_SHIFT;
1261 		const int local_nr_pages = end - start;
1262 		const int page_limit = cur_page + local_nr_pages;
1263 
1264 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1265 				write_to_vm, &pages[cur_page]);
1266 		if (ret < local_nr_pages) {
1267 			ret = -EFAULT;
1268 			goto out_unmap;
1269 		}
1270 
1271 		offset = uaddr & ~PAGE_MASK;
1272 		for (j = cur_page; j < page_limit; j++) {
1273 			unsigned int bytes = PAGE_SIZE - offset;
1274 
1275 			if (len <= 0)
1276 				break;
1277 
1278 			if (bytes > len)
1279 				bytes = len;
1280 
1281 			/*
1282 			 * sorry...
1283 			 */
1284 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1285 					    bytes)
1286 				break;
1287 
1288 			len -= bytes;
1289 			offset = 0;
1290 		}
1291 
1292 		cur_page = j;
1293 		/*
1294 		 * release the pages we didn't map into the bio, if any
1295 		 */
1296 		while (j < page_limit)
1297 			page_cache_release(pages[j++]);
1298 	}
1299 
1300 	kfree(pages);
1301 
1302 	/*
1303 	 * set data direction, and check if mapped pages need bouncing
1304 	 */
1305 	if (!write_to_vm)
1306 		bio->bi_rw |= REQ_WRITE;
1307 
1308 	bio->bi_bdev = bdev;
1309 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1310 	return bio;
1311 
1312  out_unmap:
1313 	for (i = 0; i < nr_pages; i++) {
1314 		if(!pages[i])
1315 			break;
1316 		page_cache_release(pages[i]);
1317 	}
1318  out:
1319 	kfree(pages);
1320 	bio_put(bio);
1321 	return ERR_PTR(ret);
1322 }
1323 
1324 /**
1325  *	bio_map_user	-	map user address into bio
1326  *	@q: the struct request_queue for the bio
1327  *	@bdev: destination block device
1328  *	@uaddr: start of user address
1329  *	@len: length in bytes
1330  *	@write_to_vm: bool indicating writing to pages or not
1331  *	@gfp_mask: memory allocation flags
1332  *
1333  *	Map the user space address into a bio suitable for io to a block
1334  *	device. Returns an error pointer in case of error.
1335  */
bio_map_user(struct request_queue * q,struct block_device * bdev,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1336 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1337 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1338 			 gfp_t gfp_mask)
1339 {
1340 	struct sg_iovec iov;
1341 
1342 	iov.iov_base = (void __user *)uaddr;
1343 	iov.iov_len = len;
1344 
1345 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1346 }
1347 EXPORT_SYMBOL(bio_map_user);
1348 
1349 /**
1350  *	bio_map_user_iov - map user sg_iovec table into bio
1351  *	@q: the struct request_queue for the bio
1352  *	@bdev: destination block device
1353  *	@iov:	the iovec.
1354  *	@iov_count: number of elements in the iovec
1355  *	@write_to_vm: bool indicating writing to pages or not
1356  *	@gfp_mask: memory allocation flags
1357  *
1358  *	Map the user space address into a bio suitable for io to a block
1359  *	device. Returns an error pointer in case of error.
1360  */
bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1361 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1362 			     struct sg_iovec *iov, int iov_count,
1363 			     int write_to_vm, gfp_t gfp_mask)
1364 {
1365 	struct bio *bio;
1366 
1367 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1368 				 gfp_mask);
1369 	if (IS_ERR(bio))
1370 		return bio;
1371 
1372 	/*
1373 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1374 	 * it would normally disappear when its bi_end_io is run.
1375 	 * however, we need it for the unmap, so grab an extra
1376 	 * reference to it
1377 	 */
1378 	bio_get(bio);
1379 
1380 	return bio;
1381 }
1382 
__bio_unmap_user(struct bio * bio)1383 static void __bio_unmap_user(struct bio *bio)
1384 {
1385 	struct bio_vec *bvec;
1386 	int i;
1387 
1388 	/*
1389 	 * make sure we dirty pages we wrote to
1390 	 */
1391 	bio_for_each_segment_all(bvec, bio, i) {
1392 		if (bio_data_dir(bio) == READ)
1393 			set_page_dirty_lock(bvec->bv_page);
1394 
1395 		page_cache_release(bvec->bv_page);
1396 	}
1397 
1398 	bio_put(bio);
1399 }
1400 
1401 /**
1402  *	bio_unmap_user	-	unmap a bio
1403  *	@bio:		the bio being unmapped
1404  *
1405  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1406  *	a process context.
1407  *
1408  *	bio_unmap_user() may sleep.
1409  */
bio_unmap_user(struct bio * bio)1410 void bio_unmap_user(struct bio *bio)
1411 {
1412 	__bio_unmap_user(bio);
1413 	bio_put(bio);
1414 }
1415 EXPORT_SYMBOL(bio_unmap_user);
1416 
bio_map_kern_endio(struct bio * bio,int err)1417 static void bio_map_kern_endio(struct bio *bio, int err)
1418 {
1419 	bio_put(bio);
1420 }
1421 
__bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1422 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1423 				  unsigned int len, gfp_t gfp_mask)
1424 {
1425 	unsigned long kaddr = (unsigned long)data;
1426 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 	unsigned long start = kaddr >> PAGE_SHIFT;
1428 	const int nr_pages = end - start;
1429 	int offset, i;
1430 	struct bio *bio;
1431 
1432 	bio = bio_kmalloc(gfp_mask, nr_pages);
1433 	if (!bio)
1434 		return ERR_PTR(-ENOMEM);
1435 
1436 	offset = offset_in_page(kaddr);
1437 	for (i = 0; i < nr_pages; i++) {
1438 		unsigned int bytes = PAGE_SIZE - offset;
1439 
1440 		if (len <= 0)
1441 			break;
1442 
1443 		if (bytes > len)
1444 			bytes = len;
1445 
1446 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1447 				    offset) < bytes)
1448 			break;
1449 
1450 		data += bytes;
1451 		len -= bytes;
1452 		offset = 0;
1453 	}
1454 
1455 	bio->bi_end_io = bio_map_kern_endio;
1456 	return bio;
1457 }
1458 
1459 /**
1460  *	bio_map_kern	-	map kernel address into bio
1461  *	@q: the struct request_queue for the bio
1462  *	@data: pointer to buffer to map
1463  *	@len: length in bytes
1464  *	@gfp_mask: allocation flags for bio allocation
1465  *
1466  *	Map the kernel address into a bio suitable for io to a block
1467  *	device. Returns an error pointer in case of error.
1468  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1469 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1470 			 gfp_t gfp_mask)
1471 {
1472 	struct bio *bio;
1473 
1474 	bio = __bio_map_kern(q, data, len, gfp_mask);
1475 	if (IS_ERR(bio))
1476 		return bio;
1477 
1478 	if (bio->bi_size == len)
1479 		return bio;
1480 
1481 	/*
1482 	 * Don't support partial mappings.
1483 	 */
1484 	bio_put(bio);
1485 	return ERR_PTR(-EINVAL);
1486 }
1487 EXPORT_SYMBOL(bio_map_kern);
1488 
bio_copy_kern_endio(struct bio * bio,int err)1489 static void bio_copy_kern_endio(struct bio *bio, int err)
1490 {
1491 	struct bio_vec *bvec;
1492 	const int read = bio_data_dir(bio) == READ;
1493 	struct bio_map_data *bmd = bio->bi_private;
1494 	int i;
1495 	char *p = bmd->sgvecs[0].iov_base;
1496 
1497 	bio_for_each_segment_all(bvec, bio, i) {
1498 		char *addr = page_address(bvec->bv_page);
1499 		int len = bmd->iovecs[i].bv_len;
1500 
1501 		if (read)
1502 			memcpy(p, addr, len);
1503 
1504 		__free_page(bvec->bv_page);
1505 		p += len;
1506 	}
1507 
1508 	bio_free_map_data(bmd);
1509 	bio_put(bio);
1510 }
1511 
1512 /**
1513  *	bio_copy_kern	-	copy kernel address into bio
1514  *	@q: the struct request_queue for the bio
1515  *	@data: pointer to buffer to copy
1516  *	@len: length in bytes
1517  *	@gfp_mask: allocation flags for bio and page allocation
1518  *	@reading: data direction is READ
1519  *
1520  *	copy the kernel address into a bio suitable for io to a block
1521  *	device. Returns an error pointer in case of error.
1522  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1523 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1524 			  gfp_t gfp_mask, int reading)
1525 {
1526 	struct bio *bio;
1527 	struct bio_vec *bvec;
1528 	int i;
1529 
1530 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1531 	if (IS_ERR(bio))
1532 		return bio;
1533 
1534 	if (!reading) {
1535 		void *p = data;
1536 
1537 		bio_for_each_segment_all(bvec, bio, i) {
1538 			char *addr = page_address(bvec->bv_page);
1539 
1540 			memcpy(addr, p, bvec->bv_len);
1541 			p += bvec->bv_len;
1542 		}
1543 	}
1544 
1545 	bio->bi_end_io = bio_copy_kern_endio;
1546 
1547 	return bio;
1548 }
1549 EXPORT_SYMBOL(bio_copy_kern);
1550 
1551 /*
1552  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1553  * for performing direct-IO in BIOs.
1554  *
1555  * The problem is that we cannot run set_page_dirty() from interrupt context
1556  * because the required locks are not interrupt-safe.  So what we can do is to
1557  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1558  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1559  * in process context.
1560  *
1561  * We special-case compound pages here: normally this means reads into hugetlb
1562  * pages.  The logic in here doesn't really work right for compound pages
1563  * because the VM does not uniformly chase down the head page in all cases.
1564  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1565  * handle them at all.  So we skip compound pages here at an early stage.
1566  *
1567  * Note that this code is very hard to test under normal circumstances because
1568  * direct-io pins the pages with get_user_pages().  This makes
1569  * is_page_cache_freeable return false, and the VM will not clean the pages.
1570  * But other code (eg, flusher threads) could clean the pages if they are mapped
1571  * pagecache.
1572  *
1573  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1574  * deferred bio dirtying paths.
1575  */
1576 
1577 /*
1578  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1579  */
bio_set_pages_dirty(struct bio * bio)1580 void bio_set_pages_dirty(struct bio *bio)
1581 {
1582 	struct bio_vec *bvec;
1583 	int i;
1584 
1585 	bio_for_each_segment_all(bvec, bio, i) {
1586 		struct page *page = bvec->bv_page;
1587 
1588 		if (page && !PageCompound(page))
1589 			set_page_dirty_lock(page);
1590 	}
1591 }
1592 
bio_release_pages(struct bio * bio)1593 static void bio_release_pages(struct bio *bio)
1594 {
1595 	struct bio_vec *bvec;
1596 	int i;
1597 
1598 	bio_for_each_segment_all(bvec, bio, i) {
1599 		struct page *page = bvec->bv_page;
1600 
1601 		if (page)
1602 			put_page(page);
1603 	}
1604 }
1605 
1606 /*
1607  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1608  * If they are, then fine.  If, however, some pages are clean then they must
1609  * have been written out during the direct-IO read.  So we take another ref on
1610  * the BIO and the offending pages and re-dirty the pages in process context.
1611  *
1612  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1613  * here on.  It will run one page_cache_release() against each page and will
1614  * run one bio_put() against the BIO.
1615  */
1616 
1617 static void bio_dirty_fn(struct work_struct *work);
1618 
1619 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1620 static DEFINE_SPINLOCK(bio_dirty_lock);
1621 static struct bio *bio_dirty_list;
1622 
1623 /*
1624  * This runs in process context
1625  */
bio_dirty_fn(struct work_struct * work)1626 static void bio_dirty_fn(struct work_struct *work)
1627 {
1628 	unsigned long flags;
1629 	struct bio *bio;
1630 
1631 	spin_lock_irqsave(&bio_dirty_lock, flags);
1632 	bio = bio_dirty_list;
1633 	bio_dirty_list = NULL;
1634 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1635 
1636 	while (bio) {
1637 		struct bio *next = bio->bi_private;
1638 
1639 		bio_set_pages_dirty(bio);
1640 		bio_release_pages(bio);
1641 		bio_put(bio);
1642 		bio = next;
1643 	}
1644 }
1645 
bio_check_pages_dirty(struct bio * bio)1646 void bio_check_pages_dirty(struct bio *bio)
1647 {
1648 	struct bio_vec *bvec;
1649 	int nr_clean_pages = 0;
1650 	int i;
1651 
1652 	bio_for_each_segment_all(bvec, bio, i) {
1653 		struct page *page = bvec->bv_page;
1654 
1655 		if (PageDirty(page) || PageCompound(page)) {
1656 			page_cache_release(page);
1657 			bvec->bv_page = NULL;
1658 		} else {
1659 			nr_clean_pages++;
1660 		}
1661 	}
1662 
1663 	if (nr_clean_pages) {
1664 		unsigned long flags;
1665 
1666 		spin_lock_irqsave(&bio_dirty_lock, flags);
1667 		bio->bi_private = bio_dirty_list;
1668 		bio_dirty_list = bio;
1669 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1670 		schedule_work(&bio_dirty_work);
1671 	} else {
1672 		bio_put(bio);
1673 	}
1674 }
1675 
1676 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1677 void bio_flush_dcache_pages(struct bio *bi)
1678 {
1679 	int i;
1680 	struct bio_vec *bvec;
1681 
1682 	bio_for_each_segment(bvec, bi, i)
1683 		flush_dcache_page(bvec->bv_page);
1684 }
1685 EXPORT_SYMBOL(bio_flush_dcache_pages);
1686 #endif
1687 
1688 /**
1689  * bio_endio - end I/O on a bio
1690  * @bio:	bio
1691  * @error:	error, if any
1692  *
1693  * Description:
1694  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1695  *   preferred way to end I/O on a bio, it takes care of clearing
1696  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1697  *   established -Exxxx (-EIO, for instance) error values in case
1698  *   something went wrong. No one should call bi_end_io() directly on a
1699  *   bio unless they own it and thus know that it has an end_io
1700  *   function.
1701  **/
bio_endio(struct bio * bio,int error)1702 void bio_endio(struct bio *bio, int error)
1703 {
1704 	if (error)
1705 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1706 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1707 		error = -EIO;
1708 
1709 	if (bio->bi_end_io)
1710 		bio->bi_end_io(bio, error);
1711 }
1712 EXPORT_SYMBOL(bio_endio);
1713 
bio_pair_release(struct bio_pair * bp)1714 void bio_pair_release(struct bio_pair *bp)
1715 {
1716 	if (atomic_dec_and_test(&bp->cnt)) {
1717 		struct bio *master = bp->bio1.bi_private;
1718 
1719 		bio_endio(master, bp->error);
1720 		mempool_free(bp, bp->bio2.bi_private);
1721 	}
1722 }
1723 EXPORT_SYMBOL(bio_pair_release);
1724 
bio_pair_end_1(struct bio * bi,int err)1725 static void bio_pair_end_1(struct bio *bi, int err)
1726 {
1727 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1728 
1729 	if (err)
1730 		bp->error = err;
1731 
1732 	bio_pair_release(bp);
1733 }
1734 
bio_pair_end_2(struct bio * bi,int err)1735 static void bio_pair_end_2(struct bio *bi, int err)
1736 {
1737 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1738 
1739 	if (err)
1740 		bp->error = err;
1741 
1742 	bio_pair_release(bp);
1743 }
1744 
1745 /*
1746  * split a bio - only worry about a bio with a single page in its iovec
1747  */
bio_split(struct bio * bi,int first_sectors)1748 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1749 {
1750 	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1751 
1752 	if (!bp)
1753 		return bp;
1754 
1755 	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1756 				bi->bi_sector + first_sectors);
1757 
1758 	BUG_ON(bio_segments(bi) > 1);
1759 	atomic_set(&bp->cnt, 3);
1760 	bp->error = 0;
1761 	bp->bio1 = *bi;
1762 	bp->bio2 = *bi;
1763 	bp->bio2.bi_sector += first_sectors;
1764 	bp->bio2.bi_size -= first_sectors << 9;
1765 	bp->bio1.bi_size = first_sectors << 9;
1766 
1767 	if (bi->bi_vcnt != 0) {
1768 		bp->bv1 = *bio_iovec(bi);
1769 		bp->bv2 = *bio_iovec(bi);
1770 
1771 		if (bio_is_rw(bi)) {
1772 			bp->bv2.bv_offset += first_sectors << 9;
1773 			bp->bv2.bv_len -= first_sectors << 9;
1774 			bp->bv1.bv_len = first_sectors << 9;
1775 		}
1776 
1777 		bp->bio1.bi_io_vec = &bp->bv1;
1778 		bp->bio2.bi_io_vec = &bp->bv2;
1779 
1780 		bp->bio1.bi_max_vecs = 1;
1781 		bp->bio2.bi_max_vecs = 1;
1782 	}
1783 
1784 	bp->bio1.bi_end_io = bio_pair_end_1;
1785 	bp->bio2.bi_end_io = bio_pair_end_2;
1786 
1787 	bp->bio1.bi_private = bi;
1788 	bp->bio2.bi_private = bio_split_pool;
1789 
1790 	if (bio_integrity(bi))
1791 		bio_integrity_split(bi, bp, first_sectors);
1792 
1793 	return bp;
1794 }
1795 EXPORT_SYMBOL(bio_split);
1796 
1797 /**
1798  *      bio_sector_offset - Find hardware sector offset in bio
1799  *      @bio:           bio to inspect
1800  *      @index:         bio_vec index
1801  *      @offset:        offset in bv_page
1802  *
1803  *      Return the number of hardware sectors between beginning of bio
1804  *      and an end point indicated by a bio_vec index and an offset
1805  *      within that vector's page.
1806  */
bio_sector_offset(struct bio * bio,unsigned short index,unsigned int offset)1807 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1808 			   unsigned int offset)
1809 {
1810 	unsigned int sector_sz;
1811 	struct bio_vec *bv;
1812 	sector_t sectors;
1813 	int i;
1814 
1815 	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1816 	sectors = 0;
1817 
1818 	if (index >= bio->bi_idx)
1819 		index = bio->bi_vcnt - 1;
1820 
1821 	bio_for_each_segment_all(bv, bio, i) {
1822 		if (i == index) {
1823 			if (offset > bv->bv_offset)
1824 				sectors += (offset - bv->bv_offset) / sector_sz;
1825 			break;
1826 		}
1827 
1828 		sectors += bv->bv_len / sector_sz;
1829 	}
1830 
1831 	return sectors;
1832 }
1833 EXPORT_SYMBOL(bio_sector_offset);
1834 
1835 /*
1836  * create memory pools for biovec's in a bio_set.
1837  * use the global biovec slabs created for general use.
1838  */
biovec_create_pool(struct bio_set * bs,int pool_entries)1839 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1840 {
1841 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1842 
1843 	return mempool_create_slab_pool(pool_entries, bp->slab);
1844 }
1845 
bioset_free(struct bio_set * bs)1846 void bioset_free(struct bio_set *bs)
1847 {
1848 	if (bs->rescue_workqueue)
1849 		destroy_workqueue(bs->rescue_workqueue);
1850 
1851 	if (bs->bio_pool)
1852 		mempool_destroy(bs->bio_pool);
1853 
1854 	if (bs->bvec_pool)
1855 		mempool_destroy(bs->bvec_pool);
1856 
1857 	bioset_integrity_free(bs);
1858 	bio_put_slab(bs);
1859 
1860 	kfree(bs);
1861 }
1862 EXPORT_SYMBOL(bioset_free);
1863 
1864 /**
1865  * bioset_create  - Create a bio_set
1866  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1867  * @front_pad:	Number of bytes to allocate in front of the returned bio
1868  *
1869  * Description:
1870  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1871  *    to ask for a number of bytes to be allocated in front of the bio.
1872  *    Front pad allocation is useful for embedding the bio inside
1873  *    another structure, to avoid allocating extra data to go with the bio.
1874  *    Note that the bio must be embedded at the END of that structure always,
1875  *    or things will break badly.
1876  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1877 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1878 {
1879 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1880 	struct bio_set *bs;
1881 
1882 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1883 	if (!bs)
1884 		return NULL;
1885 
1886 	bs->front_pad = front_pad;
1887 
1888 	spin_lock_init(&bs->rescue_lock);
1889 	bio_list_init(&bs->rescue_list);
1890 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1891 
1892 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1893 	if (!bs->bio_slab) {
1894 		kfree(bs);
1895 		return NULL;
1896 	}
1897 
1898 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1899 	if (!bs->bio_pool)
1900 		goto bad;
1901 
1902 	bs->bvec_pool = biovec_create_pool(bs, pool_size);
1903 	if (!bs->bvec_pool)
1904 		goto bad;
1905 
1906 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1907 	if (!bs->rescue_workqueue)
1908 		goto bad;
1909 
1910 	return bs;
1911 bad:
1912 	bioset_free(bs);
1913 	return NULL;
1914 }
1915 EXPORT_SYMBOL(bioset_create);
1916 
1917 #ifdef CONFIG_BLK_CGROUP
1918 /**
1919  * bio_associate_current - associate a bio with %current
1920  * @bio: target bio
1921  *
1922  * Associate @bio with %current if it hasn't been associated yet.  Block
1923  * layer will treat @bio as if it were issued by %current no matter which
1924  * task actually issues it.
1925  *
1926  * This function takes an extra reference of @task's io_context and blkcg
1927  * which will be put when @bio is released.  The caller must own @bio,
1928  * ensure %current->io_context exists, and is responsible for synchronizing
1929  * calls to this function.
1930  */
bio_associate_current(struct bio * bio)1931 int bio_associate_current(struct bio *bio)
1932 {
1933 	struct io_context *ioc;
1934 	struct cgroup_subsys_state *css;
1935 
1936 	if (bio->bi_ioc)
1937 		return -EBUSY;
1938 
1939 	ioc = current->io_context;
1940 	if (!ioc)
1941 		return -ENOENT;
1942 
1943 	/* acquire active ref on @ioc and associate */
1944 	get_io_context_active(ioc);
1945 	bio->bi_ioc = ioc;
1946 
1947 	/* associate blkcg if exists */
1948 	rcu_read_lock();
1949 	css = task_subsys_state(current, blkio_subsys_id);
1950 	if (css && css_tryget(css))
1951 		bio->bi_css = css;
1952 	rcu_read_unlock();
1953 
1954 	return 0;
1955 }
1956 
1957 /**
1958  * bio_disassociate_task - undo bio_associate_current()
1959  * @bio: target bio
1960  */
bio_disassociate_task(struct bio * bio)1961 void bio_disassociate_task(struct bio *bio)
1962 {
1963 	if (bio->bi_ioc) {
1964 		put_io_context(bio->bi_ioc);
1965 		bio->bi_ioc = NULL;
1966 	}
1967 	if (bio->bi_css) {
1968 		css_put(bio->bi_css);
1969 		bio->bi_css = NULL;
1970 	}
1971 }
1972 
1973 #endif /* CONFIG_BLK_CGROUP */
1974 
biovec_init_slabs(void)1975 static void __init biovec_init_slabs(void)
1976 {
1977 	int i;
1978 
1979 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1980 		int size;
1981 		struct biovec_slab *bvs = bvec_slabs + i;
1982 
1983 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1984 			bvs->slab = NULL;
1985 			continue;
1986 		}
1987 
1988 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1989 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1990                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1991 	}
1992 }
1993 
init_bio(void)1994 static int __init init_bio(void)
1995 {
1996 	bio_slab_max = 2;
1997 	bio_slab_nr = 0;
1998 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1999 	if (!bio_slabs)
2000 		panic("bio: can't allocate bios\n");
2001 
2002 	bio_integrity_init();
2003 	biovec_init_slabs();
2004 
2005 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2006 	if (!fs_bio_set)
2007 		panic("bio: can't allocate bios\n");
2008 
2009 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2010 		panic("bio: can't create integrity pool\n");
2011 
2012 	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2013 						     sizeof(struct bio_pair));
2014 	if (!bio_split_pool)
2015 		panic("bio: can't create split pool\n");
2016 
2017 	return 0;
2018 }
2019 subsys_initcall(init_bio);
2020