• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33 
34 struct bdev_inode {
35 	struct block_device bdev;
36 	struct inode vfs_inode;
37 };
38 
39 static const struct address_space_operations def_blk_aops;
40 
BDEV_I(struct inode * inode)41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 	return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45 
I_BDEV(struct inode * inode)46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 	return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51 
52 /*
53  * Move the inode from its current bdi to a new bdi. If the inode is dirty we
54  * need to move it onto the dirty list of @dst so that the inode is always on
55  * the right list.
56  */
bdev_inode_switch_bdi(struct inode * inode,struct backing_dev_info * dst)57 static void bdev_inode_switch_bdi(struct inode *inode,
58 			struct backing_dev_info *dst)
59 {
60 	struct backing_dev_info *old = inode->i_data.backing_dev_info;
61 
62 	if (unlikely(dst == old))		/* deadlock avoidance */
63 		return;
64 	bdi_lock_two(&old->wb, &dst->wb);
65 	spin_lock(&inode->i_lock);
66 	inode->i_data.backing_dev_info = dst;
67 	if (inode->i_state & I_DIRTY)
68 		list_move(&inode->i_wb_list, &dst->wb.b_dirty);
69 	spin_unlock(&inode->i_lock);
70 	spin_unlock(&old->wb.list_lock);
71 	spin_unlock(&dst->wb.list_lock);
72 }
73 
74 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)75 void kill_bdev(struct block_device *bdev)
76 {
77 	struct address_space *mapping = bdev->bd_inode->i_mapping;
78 
79 	if (mapping->nrpages == 0)
80 		return;
81 
82 	invalidate_bh_lrus();
83 	truncate_inode_pages(mapping, 0);
84 }
85 EXPORT_SYMBOL(kill_bdev);
86 
87 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)88 void invalidate_bdev(struct block_device *bdev)
89 {
90 	struct address_space *mapping = bdev->bd_inode->i_mapping;
91 
92 	if (mapping->nrpages == 0)
93 		return;
94 
95 	invalidate_bh_lrus();
96 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
97 	invalidate_mapping_pages(mapping, 0, -1);
98 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
99 	 * But, for the strange corners, lets be cautious
100 	 */
101 	cleancache_invalidate_inode(mapping);
102 }
103 EXPORT_SYMBOL(invalidate_bdev);
104 
set_blocksize(struct block_device * bdev,int size)105 int set_blocksize(struct block_device *bdev, int size)
106 {
107 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
108 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
109 		return -EINVAL;
110 
111 	/* Size cannot be smaller than the size supported by the device */
112 	if (size < bdev_logical_block_size(bdev))
113 		return -EINVAL;
114 
115 	/* Don't change the size if it is same as current */
116 	if (bdev->bd_block_size != size) {
117 		sync_blockdev(bdev);
118 		bdev->bd_block_size = size;
119 		bdev->bd_inode->i_blkbits = blksize_bits(size);
120 		kill_bdev(bdev);
121 	}
122 	return 0;
123 }
124 
125 EXPORT_SYMBOL(set_blocksize);
126 
sb_set_blocksize(struct super_block * sb,int size)127 int sb_set_blocksize(struct super_block *sb, int size)
128 {
129 	if (set_blocksize(sb->s_bdev, size))
130 		return 0;
131 	/* If we get here, we know size is power of two
132 	 * and it's value is between 512 and PAGE_SIZE */
133 	sb->s_blocksize = size;
134 	sb->s_blocksize_bits = blksize_bits(size);
135 	return sb->s_blocksize;
136 }
137 
138 EXPORT_SYMBOL(sb_set_blocksize);
139 
sb_min_blocksize(struct super_block * sb,int size)140 int sb_min_blocksize(struct super_block *sb, int size)
141 {
142 	int minsize = bdev_logical_block_size(sb->s_bdev);
143 	if (size < minsize)
144 		size = minsize;
145 	return sb_set_blocksize(sb, size);
146 }
147 
148 EXPORT_SYMBOL(sb_min_blocksize);
149 
150 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)151 blkdev_get_block(struct inode *inode, sector_t iblock,
152 		struct buffer_head *bh, int create)
153 {
154 	bh->b_bdev = I_BDEV(inode);
155 	bh->b_blocknr = iblock;
156 	set_buffer_mapped(bh);
157 	return 0;
158 }
159 
160 static ssize_t
blkdev_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)161 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
162 			loff_t offset, unsigned long nr_segs)
163 {
164 	struct file *file = iocb->ki_filp;
165 	struct inode *inode = file->f_mapping->host;
166 
167 	return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
168 				    nr_segs, blkdev_get_block, NULL, NULL, 0);
169 }
170 
__sync_blockdev(struct block_device * bdev,int wait)171 int __sync_blockdev(struct block_device *bdev, int wait)
172 {
173 	if (!bdev)
174 		return 0;
175 	if (!wait)
176 		return filemap_flush(bdev->bd_inode->i_mapping);
177 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
178 }
179 
180 /*
181  * Write out and wait upon all the dirty data associated with a block
182  * device via its mapping.  Does not take the superblock lock.
183  */
sync_blockdev(struct block_device * bdev)184 int sync_blockdev(struct block_device *bdev)
185 {
186 	return __sync_blockdev(bdev, 1);
187 }
188 EXPORT_SYMBOL(sync_blockdev);
189 
190 /*
191  * Write out and wait upon all dirty data associated with this
192  * device.   Filesystem data as well as the underlying block
193  * device.  Takes the superblock lock.
194  */
fsync_bdev(struct block_device * bdev)195 int fsync_bdev(struct block_device *bdev)
196 {
197 	struct super_block *sb = get_super(bdev);
198 	if (sb) {
199 		int res = sync_filesystem(sb);
200 		drop_super(sb);
201 		return res;
202 	}
203 	return sync_blockdev(bdev);
204 }
205 EXPORT_SYMBOL(fsync_bdev);
206 
207 /**
208  * freeze_bdev  --  lock a filesystem and force it into a consistent state
209  * @bdev:	blockdevice to lock
210  *
211  * If a superblock is found on this device, we take the s_umount semaphore
212  * on it to make sure nobody unmounts until the snapshot creation is done.
213  * The reference counter (bd_fsfreeze_count) guarantees that only the last
214  * unfreeze process can unfreeze the frozen filesystem actually when multiple
215  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
216  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
217  * actually.
218  */
freeze_bdev(struct block_device * bdev)219 struct super_block *freeze_bdev(struct block_device *bdev)
220 {
221 	struct super_block *sb;
222 	int error = 0;
223 
224 	mutex_lock(&bdev->bd_fsfreeze_mutex);
225 	if (++bdev->bd_fsfreeze_count > 1) {
226 		/*
227 		 * We don't even need to grab a reference - the first call
228 		 * to freeze_bdev grab an active reference and only the last
229 		 * thaw_bdev drops it.
230 		 */
231 		sb = get_super(bdev);
232 		drop_super(sb);
233 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
234 		return sb;
235 	}
236 
237 	sb = get_active_super(bdev);
238 	if (!sb)
239 		goto out;
240 	error = freeze_super(sb);
241 	if (error) {
242 		deactivate_super(sb);
243 		bdev->bd_fsfreeze_count--;
244 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
245 		return ERR_PTR(error);
246 	}
247 	deactivate_super(sb);
248  out:
249 	sync_blockdev(bdev);
250 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
251 	return sb;	/* thaw_bdev releases s->s_umount */
252 }
253 EXPORT_SYMBOL(freeze_bdev);
254 
255 /**
256  * thaw_bdev  -- unlock filesystem
257  * @bdev:	blockdevice to unlock
258  * @sb:		associated superblock
259  *
260  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
261  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)262 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
263 {
264 	int error = -EINVAL;
265 
266 	mutex_lock(&bdev->bd_fsfreeze_mutex);
267 	if (!bdev->bd_fsfreeze_count)
268 		goto out;
269 
270 	error = 0;
271 	if (--bdev->bd_fsfreeze_count > 0)
272 		goto out;
273 
274 	if (!sb)
275 		goto out;
276 
277 	error = thaw_super(sb);
278 	if (error) {
279 		bdev->bd_fsfreeze_count++;
280 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
281 		return error;
282 	}
283 out:
284 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
285 	return 0;
286 }
287 EXPORT_SYMBOL(thaw_bdev);
288 
blkdev_writepage(struct page * page,struct writeback_control * wbc)289 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
290 {
291 	return block_write_full_page(page, blkdev_get_block, wbc);
292 }
293 
blkdev_readpage(struct file * file,struct page * page)294 static int blkdev_readpage(struct file * file, struct page * page)
295 {
296 	return block_read_full_page(page, blkdev_get_block);
297 }
298 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)299 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
300 			loff_t pos, unsigned len, unsigned flags,
301 			struct page **pagep, void **fsdata)
302 {
303 	return block_write_begin(mapping, pos, len, flags, pagep,
304 				 blkdev_get_block);
305 }
306 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)307 static int blkdev_write_end(struct file *file, struct address_space *mapping,
308 			loff_t pos, unsigned len, unsigned copied,
309 			struct page *page, void *fsdata)
310 {
311 	int ret;
312 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
313 
314 	unlock_page(page);
315 	page_cache_release(page);
316 
317 	return ret;
318 }
319 
320 /*
321  * private llseek:
322  * for a block special file file_inode(file)->i_size is zero
323  * so we compute the size by hand (just as in block_read/write above)
324  */
block_llseek(struct file * file,loff_t offset,int whence)325 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
326 {
327 	struct inode *bd_inode = file->f_mapping->host;
328 	loff_t size;
329 	loff_t retval;
330 
331 	mutex_lock(&bd_inode->i_mutex);
332 	size = i_size_read(bd_inode);
333 
334 	retval = -EINVAL;
335 	switch (whence) {
336 		case SEEK_END:
337 			offset += size;
338 			break;
339 		case SEEK_CUR:
340 			offset += file->f_pos;
341 		case SEEK_SET:
342 			break;
343 		default:
344 			goto out;
345 	}
346 	if (offset >= 0 && offset <= size) {
347 		if (offset != file->f_pos) {
348 			file->f_pos = offset;
349 		}
350 		retval = offset;
351 	}
352 out:
353 	mutex_unlock(&bd_inode->i_mutex);
354 	return retval;
355 }
356 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)357 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
358 {
359 	struct inode *bd_inode = filp->f_mapping->host;
360 	struct block_device *bdev = I_BDEV(bd_inode);
361 	int error;
362 
363 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
364 	if (error)
365 		return error;
366 
367 	/*
368 	 * There is no need to serialise calls to blkdev_issue_flush with
369 	 * i_mutex and doing so causes performance issues with concurrent
370 	 * O_SYNC writers to a block device.
371 	 */
372 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
373 	if (error == -EOPNOTSUPP)
374 		error = 0;
375 
376 	return error;
377 }
378 EXPORT_SYMBOL(blkdev_fsync);
379 
380 /*
381  * pseudo-fs
382  */
383 
384 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
385 static struct kmem_cache * bdev_cachep __read_mostly;
386 
bdev_alloc_inode(struct super_block * sb)387 static struct inode *bdev_alloc_inode(struct super_block *sb)
388 {
389 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
390 	if (!ei)
391 		return NULL;
392 	return &ei->vfs_inode;
393 }
394 
bdev_i_callback(struct rcu_head * head)395 static void bdev_i_callback(struct rcu_head *head)
396 {
397 	struct inode *inode = container_of(head, struct inode, i_rcu);
398 	struct bdev_inode *bdi = BDEV_I(inode);
399 
400 	kmem_cache_free(bdev_cachep, bdi);
401 }
402 
bdev_destroy_inode(struct inode * inode)403 static void bdev_destroy_inode(struct inode *inode)
404 {
405 	call_rcu(&inode->i_rcu, bdev_i_callback);
406 }
407 
init_once(void * foo)408 static void init_once(void *foo)
409 {
410 	struct bdev_inode *ei = (struct bdev_inode *) foo;
411 	struct block_device *bdev = &ei->bdev;
412 
413 	memset(bdev, 0, sizeof(*bdev));
414 	mutex_init(&bdev->bd_mutex);
415 	INIT_LIST_HEAD(&bdev->bd_inodes);
416 	INIT_LIST_HEAD(&bdev->bd_list);
417 #ifdef CONFIG_SYSFS
418 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
419 #endif
420 	inode_init_once(&ei->vfs_inode);
421 	/* Initialize mutex for freeze. */
422 	mutex_init(&bdev->bd_fsfreeze_mutex);
423 }
424 
__bd_forget(struct inode * inode)425 static inline void __bd_forget(struct inode *inode)
426 {
427 	list_del_init(&inode->i_devices);
428 	inode->i_bdev = NULL;
429 	inode->i_mapping = &inode->i_data;
430 }
431 
bdev_evict_inode(struct inode * inode)432 static void bdev_evict_inode(struct inode *inode)
433 {
434 	struct block_device *bdev = &BDEV_I(inode)->bdev;
435 	struct list_head *p;
436 	truncate_inode_pages(&inode->i_data, 0);
437 	invalidate_inode_buffers(inode); /* is it needed here? */
438 	clear_inode(inode);
439 	spin_lock(&bdev_lock);
440 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
441 		__bd_forget(list_entry(p, struct inode, i_devices));
442 	}
443 	list_del_init(&bdev->bd_list);
444 	spin_unlock(&bdev_lock);
445 }
446 
447 static const struct super_operations bdev_sops = {
448 	.statfs = simple_statfs,
449 	.alloc_inode = bdev_alloc_inode,
450 	.destroy_inode = bdev_destroy_inode,
451 	.drop_inode = generic_delete_inode,
452 	.evict_inode = bdev_evict_inode,
453 };
454 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)455 static struct dentry *bd_mount(struct file_system_type *fs_type,
456 	int flags, const char *dev_name, void *data)
457 {
458 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
459 }
460 
461 static struct file_system_type bd_type = {
462 	.name		= "bdev",
463 	.mount		= bd_mount,
464 	.kill_sb	= kill_anon_super,
465 };
466 
467 static struct super_block *blockdev_superblock __read_mostly;
468 
bdev_cache_init(void)469 void __init bdev_cache_init(void)
470 {
471 	int err;
472 	static struct vfsmount *bd_mnt;
473 
474 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
475 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
476 				SLAB_MEM_SPREAD|SLAB_PANIC),
477 			init_once);
478 	err = register_filesystem(&bd_type);
479 	if (err)
480 		panic("Cannot register bdev pseudo-fs");
481 	bd_mnt = kern_mount(&bd_type);
482 	if (IS_ERR(bd_mnt))
483 		panic("Cannot create bdev pseudo-fs");
484 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
485 }
486 
487 /*
488  * Most likely _very_ bad one - but then it's hardly critical for small
489  * /dev and can be fixed when somebody will need really large one.
490  * Keep in mind that it will be fed through icache hash function too.
491  */
hash(dev_t dev)492 static inline unsigned long hash(dev_t dev)
493 {
494 	return MAJOR(dev)+MINOR(dev);
495 }
496 
bdev_test(struct inode * inode,void * data)497 static int bdev_test(struct inode *inode, void *data)
498 {
499 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
500 }
501 
bdev_set(struct inode * inode,void * data)502 static int bdev_set(struct inode *inode, void *data)
503 {
504 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
505 	return 0;
506 }
507 
508 static LIST_HEAD(all_bdevs);
509 
bdget(dev_t dev)510 struct block_device *bdget(dev_t dev)
511 {
512 	struct block_device *bdev;
513 	struct inode *inode;
514 
515 	inode = iget5_locked(blockdev_superblock, hash(dev),
516 			bdev_test, bdev_set, &dev);
517 
518 	if (!inode)
519 		return NULL;
520 
521 	bdev = &BDEV_I(inode)->bdev;
522 
523 	if (inode->i_state & I_NEW) {
524 		bdev->bd_contains = NULL;
525 		bdev->bd_super = NULL;
526 		bdev->bd_inode = inode;
527 		bdev->bd_block_size = (1 << inode->i_blkbits);
528 		bdev->bd_part_count = 0;
529 		bdev->bd_invalidated = 0;
530 		inode->i_mode = S_IFBLK;
531 		inode->i_rdev = dev;
532 		inode->i_bdev = bdev;
533 		inode->i_data.a_ops = &def_blk_aops;
534 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
535 		inode->i_data.backing_dev_info = &default_backing_dev_info;
536 		spin_lock(&bdev_lock);
537 		list_add(&bdev->bd_list, &all_bdevs);
538 		spin_unlock(&bdev_lock);
539 		unlock_new_inode(inode);
540 	}
541 	return bdev;
542 }
543 
544 EXPORT_SYMBOL(bdget);
545 
546 /**
547  * bdgrab -- Grab a reference to an already referenced block device
548  * @bdev:	Block device to grab a reference to.
549  */
bdgrab(struct block_device * bdev)550 struct block_device *bdgrab(struct block_device *bdev)
551 {
552 	ihold(bdev->bd_inode);
553 	return bdev;
554 }
555 EXPORT_SYMBOL(bdgrab);
556 
nr_blockdev_pages(void)557 long nr_blockdev_pages(void)
558 {
559 	struct block_device *bdev;
560 	long ret = 0;
561 	spin_lock(&bdev_lock);
562 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
563 		ret += bdev->bd_inode->i_mapping->nrpages;
564 	}
565 	spin_unlock(&bdev_lock);
566 	return ret;
567 }
568 
bdput(struct block_device * bdev)569 void bdput(struct block_device *bdev)
570 {
571 	iput(bdev->bd_inode);
572 }
573 
574 EXPORT_SYMBOL(bdput);
575 
bd_acquire(struct inode * inode)576 static struct block_device *bd_acquire(struct inode *inode)
577 {
578 	struct block_device *bdev;
579 
580 	spin_lock(&bdev_lock);
581 	bdev = inode->i_bdev;
582 	if (bdev) {
583 		ihold(bdev->bd_inode);
584 		spin_unlock(&bdev_lock);
585 		return bdev;
586 	}
587 	spin_unlock(&bdev_lock);
588 
589 	bdev = bdget(inode->i_rdev);
590 	if (bdev) {
591 		spin_lock(&bdev_lock);
592 		if (!inode->i_bdev) {
593 			/*
594 			 * We take an additional reference to bd_inode,
595 			 * and it's released in clear_inode() of inode.
596 			 * So, we can access it via ->i_mapping always
597 			 * without igrab().
598 			 */
599 			ihold(bdev->bd_inode);
600 			inode->i_bdev = bdev;
601 			inode->i_mapping = bdev->bd_inode->i_mapping;
602 			list_add(&inode->i_devices, &bdev->bd_inodes);
603 		}
604 		spin_unlock(&bdev_lock);
605 	}
606 	return bdev;
607 }
608 
sb_is_blkdev_sb(struct super_block * sb)609 static inline int sb_is_blkdev_sb(struct super_block *sb)
610 {
611 	return sb == blockdev_superblock;
612 }
613 
614 /* Call when you free inode */
615 
bd_forget(struct inode * inode)616 void bd_forget(struct inode *inode)
617 {
618 	struct block_device *bdev = NULL;
619 
620 	spin_lock(&bdev_lock);
621 	if (!sb_is_blkdev_sb(inode->i_sb))
622 		bdev = inode->i_bdev;
623 	__bd_forget(inode);
624 	spin_unlock(&bdev_lock);
625 
626 	if (bdev)
627 		iput(bdev->bd_inode);
628 }
629 
630 /**
631  * bd_may_claim - test whether a block device can be claimed
632  * @bdev: block device of interest
633  * @whole: whole block device containing @bdev, may equal @bdev
634  * @holder: holder trying to claim @bdev
635  *
636  * Test whether @bdev can be claimed by @holder.
637  *
638  * CONTEXT:
639  * spin_lock(&bdev_lock).
640  *
641  * RETURNS:
642  * %true if @bdev can be claimed, %false otherwise.
643  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)644 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
645 			 void *holder)
646 {
647 	if (bdev->bd_holder == holder)
648 		return true;	 /* already a holder */
649 	else if (bdev->bd_holder != NULL)
650 		return false; 	 /* held by someone else */
651 	else if (bdev->bd_contains == bdev)
652 		return true;  	 /* is a whole device which isn't held */
653 
654 	else if (whole->bd_holder == bd_may_claim)
655 		return true; 	 /* is a partition of a device that is being partitioned */
656 	else if (whole->bd_holder != NULL)
657 		return false;	 /* is a partition of a held device */
658 	else
659 		return true;	 /* is a partition of an un-held device */
660 }
661 
662 /**
663  * bd_prepare_to_claim - prepare to claim a block device
664  * @bdev: block device of interest
665  * @whole: the whole device containing @bdev, may equal @bdev
666  * @holder: holder trying to claim @bdev
667  *
668  * Prepare to claim @bdev.  This function fails if @bdev is already
669  * claimed by another holder and waits if another claiming is in
670  * progress.  This function doesn't actually claim.  On successful
671  * return, the caller has ownership of bd_claiming and bd_holder[s].
672  *
673  * CONTEXT:
674  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
675  * it multiple times.
676  *
677  * RETURNS:
678  * 0 if @bdev can be claimed, -EBUSY otherwise.
679  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)680 static int bd_prepare_to_claim(struct block_device *bdev,
681 			       struct block_device *whole, void *holder)
682 {
683 retry:
684 	/* if someone else claimed, fail */
685 	if (!bd_may_claim(bdev, whole, holder))
686 		return -EBUSY;
687 
688 	/* if claiming is already in progress, wait for it to finish */
689 	if (whole->bd_claiming) {
690 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
691 		DEFINE_WAIT(wait);
692 
693 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
694 		spin_unlock(&bdev_lock);
695 		schedule();
696 		finish_wait(wq, &wait);
697 		spin_lock(&bdev_lock);
698 		goto retry;
699 	}
700 
701 	/* yay, all mine */
702 	return 0;
703 }
704 
705 /**
706  * bd_start_claiming - start claiming a block device
707  * @bdev: block device of interest
708  * @holder: holder trying to claim @bdev
709  *
710  * @bdev is about to be opened exclusively.  Check @bdev can be opened
711  * exclusively and mark that an exclusive open is in progress.  Each
712  * successful call to this function must be matched with a call to
713  * either bd_finish_claiming() or bd_abort_claiming() (which do not
714  * fail).
715  *
716  * This function is used to gain exclusive access to the block device
717  * without actually causing other exclusive open attempts to fail. It
718  * should be used when the open sequence itself requires exclusive
719  * access but may subsequently fail.
720  *
721  * CONTEXT:
722  * Might sleep.
723  *
724  * RETURNS:
725  * Pointer to the block device containing @bdev on success, ERR_PTR()
726  * value on failure.
727  */
bd_start_claiming(struct block_device * bdev,void * holder)728 static struct block_device *bd_start_claiming(struct block_device *bdev,
729 					      void *holder)
730 {
731 	struct gendisk *disk;
732 	struct block_device *whole;
733 	int partno, err;
734 
735 	might_sleep();
736 
737 	/*
738 	 * @bdev might not have been initialized properly yet, look up
739 	 * and grab the outer block device the hard way.
740 	 */
741 	disk = get_gendisk(bdev->bd_dev, &partno);
742 	if (!disk)
743 		return ERR_PTR(-ENXIO);
744 
745 	/*
746 	 * Normally, @bdev should equal what's returned from bdget_disk()
747 	 * if partno is 0; however, some drivers (floppy) use multiple
748 	 * bdev's for the same physical device and @bdev may be one of the
749 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
750 	 * tracking is broken for those devices but it has always been that
751 	 * way.
752 	 */
753 	if (partno)
754 		whole = bdget_disk(disk, 0);
755 	else
756 		whole = bdgrab(bdev);
757 
758 	module_put(disk->fops->owner);
759 	put_disk(disk);
760 	if (!whole)
761 		return ERR_PTR(-ENOMEM);
762 
763 	/* prepare to claim, if successful, mark claiming in progress */
764 	spin_lock(&bdev_lock);
765 
766 	err = bd_prepare_to_claim(bdev, whole, holder);
767 	if (err == 0) {
768 		whole->bd_claiming = holder;
769 		spin_unlock(&bdev_lock);
770 		return whole;
771 	} else {
772 		spin_unlock(&bdev_lock);
773 		bdput(whole);
774 		return ERR_PTR(err);
775 	}
776 }
777 
778 #ifdef CONFIG_SYSFS
779 struct bd_holder_disk {
780 	struct list_head	list;
781 	struct gendisk		*disk;
782 	int			refcnt;
783 };
784 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)785 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
786 						  struct gendisk *disk)
787 {
788 	struct bd_holder_disk *holder;
789 
790 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
791 		if (holder->disk == disk)
792 			return holder;
793 	return NULL;
794 }
795 
add_symlink(struct kobject * from,struct kobject * to)796 static int add_symlink(struct kobject *from, struct kobject *to)
797 {
798 	return sysfs_create_link(from, to, kobject_name(to));
799 }
800 
del_symlink(struct kobject * from,struct kobject * to)801 static void del_symlink(struct kobject *from, struct kobject *to)
802 {
803 	sysfs_remove_link(from, kobject_name(to));
804 }
805 
806 /**
807  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
808  * @bdev: the claimed slave bdev
809  * @disk: the holding disk
810  *
811  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
812  *
813  * This functions creates the following sysfs symlinks.
814  *
815  * - from "slaves" directory of the holder @disk to the claimed @bdev
816  * - from "holders" directory of the @bdev to the holder @disk
817  *
818  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
819  * passed to bd_link_disk_holder(), then:
820  *
821  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
822  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
823  *
824  * The caller must have claimed @bdev before calling this function and
825  * ensure that both @bdev and @disk are valid during the creation and
826  * lifetime of these symlinks.
827  *
828  * CONTEXT:
829  * Might sleep.
830  *
831  * RETURNS:
832  * 0 on success, -errno on failure.
833  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)834 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
835 {
836 	struct bd_holder_disk *holder;
837 	int ret = 0;
838 
839 	mutex_lock(&bdev->bd_mutex);
840 
841 	WARN_ON_ONCE(!bdev->bd_holder);
842 
843 	/* FIXME: remove the following once add_disk() handles errors */
844 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
845 		goto out_unlock;
846 
847 	holder = bd_find_holder_disk(bdev, disk);
848 	if (holder) {
849 		holder->refcnt++;
850 		goto out_unlock;
851 	}
852 
853 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
854 	if (!holder) {
855 		ret = -ENOMEM;
856 		goto out_unlock;
857 	}
858 
859 	INIT_LIST_HEAD(&holder->list);
860 	holder->disk = disk;
861 	holder->refcnt = 1;
862 
863 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
864 	if (ret)
865 		goto out_free;
866 
867 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
868 	if (ret)
869 		goto out_del;
870 	/*
871 	 * bdev could be deleted beneath us which would implicitly destroy
872 	 * the holder directory.  Hold on to it.
873 	 */
874 	kobject_get(bdev->bd_part->holder_dir);
875 
876 	list_add(&holder->list, &bdev->bd_holder_disks);
877 	goto out_unlock;
878 
879 out_del:
880 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
881 out_free:
882 	kfree(holder);
883 out_unlock:
884 	mutex_unlock(&bdev->bd_mutex);
885 	return ret;
886 }
887 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
888 
889 /**
890  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
891  * @bdev: the calimed slave bdev
892  * @disk: the holding disk
893  *
894  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
895  *
896  * CONTEXT:
897  * Might sleep.
898  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)899 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
900 {
901 	struct bd_holder_disk *holder;
902 
903 	mutex_lock(&bdev->bd_mutex);
904 
905 	holder = bd_find_holder_disk(bdev, disk);
906 
907 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
908 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
909 		del_symlink(bdev->bd_part->holder_dir,
910 			    &disk_to_dev(disk)->kobj);
911 		kobject_put(bdev->bd_part->holder_dir);
912 		list_del_init(&holder->list);
913 		kfree(holder);
914 	}
915 
916 	mutex_unlock(&bdev->bd_mutex);
917 }
918 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
919 #endif
920 
921 /**
922  * flush_disk - invalidates all buffer-cache entries on a disk
923  *
924  * @bdev:      struct block device to be flushed
925  * @kill_dirty: flag to guide handling of dirty inodes
926  *
927  * Invalidates all buffer-cache entries on a disk. It should be called
928  * when a disk has been changed -- either by a media change or online
929  * resize.
930  */
flush_disk(struct block_device * bdev,bool kill_dirty)931 static void flush_disk(struct block_device *bdev, bool kill_dirty)
932 {
933 	if (__invalidate_device(bdev, kill_dirty)) {
934 		char name[BDEVNAME_SIZE] = "";
935 
936 		if (bdev->bd_disk)
937 			disk_name(bdev->bd_disk, 0, name);
938 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
939 		       "resized disk %s\n", name);
940 	}
941 
942 	if (!bdev->bd_disk)
943 		return;
944 	if (disk_part_scan_enabled(bdev->bd_disk))
945 		bdev->bd_invalidated = 1;
946 }
947 
948 /**
949  * check_disk_size_change - checks for disk size change and adjusts bdev size.
950  * @disk: struct gendisk to check
951  * @bdev: struct bdev to adjust.
952  *
953  * This routine checks to see if the bdev size does not match the disk size
954  * and adjusts it if it differs.
955  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)956 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
957 {
958 	loff_t disk_size, bdev_size;
959 
960 	disk_size = (loff_t)get_capacity(disk) << 9;
961 	bdev_size = i_size_read(bdev->bd_inode);
962 	if (disk_size != bdev_size) {
963 		char name[BDEVNAME_SIZE];
964 
965 		disk_name(disk, 0, name);
966 		printk(KERN_INFO
967 		       "%s: detected capacity change from %lld to %lld\n",
968 		       name, bdev_size, disk_size);
969 		i_size_write(bdev->bd_inode, disk_size);
970 		flush_disk(bdev, false);
971 	}
972 }
973 EXPORT_SYMBOL(check_disk_size_change);
974 
975 /**
976  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
977  * @disk: struct gendisk to be revalidated
978  *
979  * This routine is a wrapper for lower-level driver's revalidate_disk
980  * call-backs.  It is used to do common pre and post operations needed
981  * for all revalidate_disk operations.
982  */
revalidate_disk(struct gendisk * disk)983 int revalidate_disk(struct gendisk *disk)
984 {
985 	struct block_device *bdev;
986 	int ret = 0;
987 
988 	if (disk->fops->revalidate_disk)
989 		ret = disk->fops->revalidate_disk(disk);
990 
991 	bdev = bdget_disk(disk, 0);
992 	if (!bdev)
993 		return ret;
994 
995 	mutex_lock(&bdev->bd_mutex);
996 	check_disk_size_change(disk, bdev);
997 	bdev->bd_invalidated = 0;
998 	mutex_unlock(&bdev->bd_mutex);
999 	bdput(bdev);
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL(revalidate_disk);
1003 
1004 /*
1005  * This routine checks whether a removable media has been changed,
1006  * and invalidates all buffer-cache-entries in that case. This
1007  * is a relatively slow routine, so we have to try to minimize using
1008  * it. Thus it is called only upon a 'mount' or 'open'. This
1009  * is the best way of combining speed and utility, I think.
1010  * People changing diskettes in the middle of an operation deserve
1011  * to lose :-)
1012  */
check_disk_change(struct block_device * bdev)1013 int check_disk_change(struct block_device *bdev)
1014 {
1015 	struct gendisk *disk = bdev->bd_disk;
1016 	const struct block_device_operations *bdops = disk->fops;
1017 	unsigned int events;
1018 
1019 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1020 				   DISK_EVENT_EJECT_REQUEST);
1021 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1022 		return 0;
1023 
1024 	flush_disk(bdev, true);
1025 	if (bdops->revalidate_disk)
1026 		bdops->revalidate_disk(bdev->bd_disk);
1027 	return 1;
1028 }
1029 
1030 EXPORT_SYMBOL(check_disk_change);
1031 
bd_set_size(struct block_device * bdev,loff_t size)1032 void bd_set_size(struct block_device *bdev, loff_t size)
1033 {
1034 	unsigned bsize = bdev_logical_block_size(bdev);
1035 
1036 	mutex_lock(&bdev->bd_inode->i_mutex);
1037 	i_size_write(bdev->bd_inode, size);
1038 	mutex_unlock(&bdev->bd_inode->i_mutex);
1039 	while (bsize < PAGE_CACHE_SIZE) {
1040 		if (size & bsize)
1041 			break;
1042 		bsize <<= 1;
1043 	}
1044 	bdev->bd_block_size = bsize;
1045 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1046 }
1047 EXPORT_SYMBOL(bd_set_size);
1048 
1049 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1050 
1051 /*
1052  * bd_mutex locking:
1053  *
1054  *  mutex_lock(part->bd_mutex)
1055  *    mutex_lock_nested(whole->bd_mutex, 1)
1056  */
1057 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1058 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1059 {
1060 	struct gendisk *disk;
1061 	struct module *owner;
1062 	int ret;
1063 	int partno;
1064 	int perm = 0;
1065 
1066 	if (mode & FMODE_READ)
1067 		perm |= MAY_READ;
1068 	if (mode & FMODE_WRITE)
1069 		perm |= MAY_WRITE;
1070 	/*
1071 	 * hooks: /n/, see "layering violations".
1072 	 */
1073 	if (!for_part) {
1074 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1075 		if (ret != 0) {
1076 			bdput(bdev);
1077 			return ret;
1078 		}
1079 	}
1080 
1081  restart:
1082 
1083 	ret = -ENXIO;
1084 	disk = get_gendisk(bdev->bd_dev, &partno);
1085 	if (!disk)
1086 		goto out;
1087 	owner = disk->fops->owner;
1088 
1089 	disk_block_events(disk);
1090 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1091 	if (!bdev->bd_openers) {
1092 		bdev->bd_disk = disk;
1093 		bdev->bd_queue = disk->queue;
1094 		bdev->bd_contains = bdev;
1095 		if (!partno) {
1096 			struct backing_dev_info *bdi;
1097 
1098 			ret = -ENXIO;
1099 			bdev->bd_part = disk_get_part(disk, partno);
1100 			if (!bdev->bd_part)
1101 				goto out_clear;
1102 
1103 			ret = 0;
1104 			if (disk->fops->open) {
1105 				ret = disk->fops->open(bdev, mode);
1106 				if (ret == -ERESTARTSYS) {
1107 					/* Lost a race with 'disk' being
1108 					 * deleted, try again.
1109 					 * See md.c
1110 					 */
1111 					disk_put_part(bdev->bd_part);
1112 					bdev->bd_part = NULL;
1113 					bdev->bd_disk = NULL;
1114 					bdev->bd_queue = NULL;
1115 					mutex_unlock(&bdev->bd_mutex);
1116 					disk_unblock_events(disk);
1117 					put_disk(disk);
1118 					module_put(owner);
1119 					goto restart;
1120 				}
1121 			}
1122 
1123 			if (!ret) {
1124 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1125 				bdi = blk_get_backing_dev_info(bdev);
1126 				if (bdi == NULL)
1127 					bdi = &default_backing_dev_info;
1128 				bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1129 			}
1130 
1131 			/*
1132 			 * If the device is invalidated, rescan partition
1133 			 * if open succeeded or failed with -ENOMEDIUM.
1134 			 * The latter is necessary to prevent ghost
1135 			 * partitions on a removed medium.
1136 			 */
1137 			if (bdev->bd_invalidated) {
1138 				if (!ret)
1139 					rescan_partitions(disk, bdev);
1140 				else if (ret == -ENOMEDIUM)
1141 					invalidate_partitions(disk, bdev);
1142 			}
1143 			if (ret)
1144 				goto out_clear;
1145 		} else {
1146 			struct block_device *whole;
1147 			whole = bdget_disk(disk, 0);
1148 			ret = -ENOMEM;
1149 			if (!whole)
1150 				goto out_clear;
1151 			BUG_ON(for_part);
1152 			ret = __blkdev_get(whole, mode, 1);
1153 			if (ret)
1154 				goto out_clear;
1155 			bdev->bd_contains = whole;
1156 			bdev_inode_switch_bdi(bdev->bd_inode,
1157 				whole->bd_inode->i_data.backing_dev_info);
1158 			bdev->bd_part = disk_get_part(disk, partno);
1159 			if (!(disk->flags & GENHD_FL_UP) ||
1160 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1161 				ret = -ENXIO;
1162 				goto out_clear;
1163 			}
1164 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1165 		}
1166 	} else {
1167 		if (bdev->bd_contains == bdev) {
1168 			ret = 0;
1169 			if (bdev->bd_disk->fops->open)
1170 				ret = bdev->bd_disk->fops->open(bdev, mode);
1171 			/* the same as first opener case, read comment there */
1172 			if (bdev->bd_invalidated) {
1173 				if (!ret)
1174 					rescan_partitions(bdev->bd_disk, bdev);
1175 				else if (ret == -ENOMEDIUM)
1176 					invalidate_partitions(bdev->bd_disk, bdev);
1177 			}
1178 			if (ret)
1179 				goto out_unlock_bdev;
1180 		}
1181 		/* only one opener holds refs to the module and disk */
1182 		put_disk(disk);
1183 		module_put(owner);
1184 	}
1185 	bdev->bd_openers++;
1186 	if (for_part)
1187 		bdev->bd_part_count++;
1188 	mutex_unlock(&bdev->bd_mutex);
1189 	disk_unblock_events(disk);
1190 	return 0;
1191 
1192  out_clear:
1193 	disk_put_part(bdev->bd_part);
1194 	bdev->bd_disk = NULL;
1195 	bdev->bd_part = NULL;
1196 	bdev->bd_queue = NULL;
1197 	bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1198 	if (bdev != bdev->bd_contains)
1199 		__blkdev_put(bdev->bd_contains, mode, 1);
1200 	bdev->bd_contains = NULL;
1201  out_unlock_bdev:
1202 	mutex_unlock(&bdev->bd_mutex);
1203 	disk_unblock_events(disk);
1204 	put_disk(disk);
1205 	module_put(owner);
1206  out:
1207 	bdput(bdev);
1208 
1209 	return ret;
1210 }
1211 
1212 /**
1213  * blkdev_get - open a block device
1214  * @bdev: block_device to open
1215  * @mode: FMODE_* mask
1216  * @holder: exclusive holder identifier
1217  *
1218  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1219  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1220  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1221  *
1222  * On success, the reference count of @bdev is unchanged.  On failure,
1223  * @bdev is put.
1224  *
1225  * CONTEXT:
1226  * Might sleep.
1227  *
1228  * RETURNS:
1229  * 0 on success, -errno on failure.
1230  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1231 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1232 {
1233 	struct block_device *whole = NULL;
1234 	int res;
1235 
1236 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1237 
1238 	if ((mode & FMODE_EXCL) && holder) {
1239 		whole = bd_start_claiming(bdev, holder);
1240 		if (IS_ERR(whole)) {
1241 			bdput(bdev);
1242 			return PTR_ERR(whole);
1243 		}
1244 	}
1245 
1246 	res = __blkdev_get(bdev, mode, 0);
1247 
1248 	if (whole) {
1249 		struct gendisk *disk = whole->bd_disk;
1250 
1251 		/* finish claiming */
1252 		mutex_lock(&bdev->bd_mutex);
1253 		spin_lock(&bdev_lock);
1254 
1255 		if (!res) {
1256 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1257 			/*
1258 			 * Note that for a whole device bd_holders
1259 			 * will be incremented twice, and bd_holder
1260 			 * will be set to bd_may_claim before being
1261 			 * set to holder
1262 			 */
1263 			whole->bd_holders++;
1264 			whole->bd_holder = bd_may_claim;
1265 			bdev->bd_holders++;
1266 			bdev->bd_holder = holder;
1267 		}
1268 
1269 		/* tell others that we're done */
1270 		BUG_ON(whole->bd_claiming != holder);
1271 		whole->bd_claiming = NULL;
1272 		wake_up_bit(&whole->bd_claiming, 0);
1273 
1274 		spin_unlock(&bdev_lock);
1275 
1276 		/*
1277 		 * Block event polling for write claims if requested.  Any
1278 		 * write holder makes the write_holder state stick until
1279 		 * all are released.  This is good enough and tracking
1280 		 * individual writeable reference is too fragile given the
1281 		 * way @mode is used in blkdev_get/put().
1282 		 */
1283 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1284 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1285 			bdev->bd_write_holder = true;
1286 			disk_block_events(disk);
1287 		}
1288 
1289 		mutex_unlock(&bdev->bd_mutex);
1290 		bdput(whole);
1291 	}
1292 
1293 	return res;
1294 }
1295 EXPORT_SYMBOL(blkdev_get);
1296 
1297 /**
1298  * blkdev_get_by_path - open a block device by name
1299  * @path: path to the block device to open
1300  * @mode: FMODE_* mask
1301  * @holder: exclusive holder identifier
1302  *
1303  * Open the blockdevice described by the device file at @path.  @mode
1304  * and @holder are identical to blkdev_get().
1305  *
1306  * On success, the returned block_device has reference count of one.
1307  *
1308  * CONTEXT:
1309  * Might sleep.
1310  *
1311  * RETURNS:
1312  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1313  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1314 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1315 					void *holder)
1316 {
1317 	struct block_device *bdev;
1318 	int err;
1319 
1320 	bdev = lookup_bdev(path);
1321 	if (IS_ERR(bdev))
1322 		return bdev;
1323 
1324 	err = blkdev_get(bdev, mode, holder);
1325 	if (err)
1326 		return ERR_PTR(err);
1327 
1328 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1329 		blkdev_put(bdev, mode);
1330 		return ERR_PTR(-EACCES);
1331 	}
1332 
1333 	return bdev;
1334 }
1335 EXPORT_SYMBOL(blkdev_get_by_path);
1336 
1337 /**
1338  * blkdev_get_by_dev - open a block device by device number
1339  * @dev: device number of block device to open
1340  * @mode: FMODE_* mask
1341  * @holder: exclusive holder identifier
1342  *
1343  * Open the blockdevice described by device number @dev.  @mode and
1344  * @holder are identical to blkdev_get().
1345  *
1346  * Use it ONLY if you really do not have anything better - i.e. when
1347  * you are behind a truly sucky interface and all you are given is a
1348  * device number.  _Never_ to be used for internal purposes.  If you
1349  * ever need it - reconsider your API.
1350  *
1351  * On success, the returned block_device has reference count of one.
1352  *
1353  * CONTEXT:
1354  * Might sleep.
1355  *
1356  * RETURNS:
1357  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1358  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1359 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1360 {
1361 	struct block_device *bdev;
1362 	int err;
1363 
1364 	bdev = bdget(dev);
1365 	if (!bdev)
1366 		return ERR_PTR(-ENOMEM);
1367 
1368 	err = blkdev_get(bdev, mode, holder);
1369 	if (err)
1370 		return ERR_PTR(err);
1371 
1372 	return bdev;
1373 }
1374 EXPORT_SYMBOL(blkdev_get_by_dev);
1375 
blkdev_open(struct inode * inode,struct file * filp)1376 static int blkdev_open(struct inode * inode, struct file * filp)
1377 {
1378 	struct block_device *bdev;
1379 
1380 	/*
1381 	 * Preserve backwards compatibility and allow large file access
1382 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1383 	 * binary needs it. We might want to drop this workaround
1384 	 * during an unstable branch.
1385 	 */
1386 	filp->f_flags |= O_LARGEFILE;
1387 
1388 	if (filp->f_flags & O_NDELAY)
1389 		filp->f_mode |= FMODE_NDELAY;
1390 	if (filp->f_flags & O_EXCL)
1391 		filp->f_mode |= FMODE_EXCL;
1392 	if ((filp->f_flags & O_ACCMODE) == 3)
1393 		filp->f_mode |= FMODE_WRITE_IOCTL;
1394 
1395 	bdev = bd_acquire(inode);
1396 	if (bdev == NULL)
1397 		return -ENOMEM;
1398 
1399 	filp->f_mapping = bdev->bd_inode->i_mapping;
1400 
1401 	return blkdev_get(bdev, filp->f_mode, filp);
1402 }
1403 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1404 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1405 {
1406 	struct gendisk *disk = bdev->bd_disk;
1407 	struct block_device *victim = NULL;
1408 
1409 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1410 	if (for_part)
1411 		bdev->bd_part_count--;
1412 
1413 	if (!--bdev->bd_openers) {
1414 		WARN_ON_ONCE(bdev->bd_holders);
1415 		sync_blockdev(bdev);
1416 		kill_bdev(bdev);
1417 		/* ->release can cause the old bdi to disappear,
1418 		 * so must switch it out first
1419 		 */
1420 		bdev_inode_switch_bdi(bdev->bd_inode,
1421 					&default_backing_dev_info);
1422 	}
1423 	if (bdev->bd_contains == bdev) {
1424 		if (disk->fops->release)
1425 			disk->fops->release(disk, mode);
1426 	}
1427 	if (!bdev->bd_openers) {
1428 		struct module *owner = disk->fops->owner;
1429 
1430 		disk_put_part(bdev->bd_part);
1431 		bdev->bd_part = NULL;
1432 		bdev->bd_disk = NULL;
1433 		if (bdev != bdev->bd_contains)
1434 			victim = bdev->bd_contains;
1435 		bdev->bd_contains = NULL;
1436 
1437 		put_disk(disk);
1438 		module_put(owner);
1439 	}
1440 	mutex_unlock(&bdev->bd_mutex);
1441 	bdput(bdev);
1442 	if (victim)
1443 		__blkdev_put(victim, mode, 1);
1444 }
1445 
blkdev_put(struct block_device * bdev,fmode_t mode)1446 void blkdev_put(struct block_device *bdev, fmode_t mode)
1447 {
1448 	mutex_lock(&bdev->bd_mutex);
1449 
1450 	if (mode & FMODE_EXCL) {
1451 		bool bdev_free;
1452 
1453 		/*
1454 		 * Release a claim on the device.  The holder fields
1455 		 * are protected with bdev_lock.  bd_mutex is to
1456 		 * synchronize disk_holder unlinking.
1457 		 */
1458 		spin_lock(&bdev_lock);
1459 
1460 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1461 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1462 
1463 		/* bd_contains might point to self, check in a separate step */
1464 		if ((bdev_free = !bdev->bd_holders))
1465 			bdev->bd_holder = NULL;
1466 		if (!bdev->bd_contains->bd_holders)
1467 			bdev->bd_contains->bd_holder = NULL;
1468 
1469 		spin_unlock(&bdev_lock);
1470 
1471 		/*
1472 		 * If this was the last claim, remove holder link and
1473 		 * unblock evpoll if it was a write holder.
1474 		 */
1475 		if (bdev_free && bdev->bd_write_holder) {
1476 			disk_unblock_events(bdev->bd_disk);
1477 			bdev->bd_write_holder = false;
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1483 	 * event.  This is to ensure detection of media removal commanded
1484 	 * from userland - e.g. eject(1).
1485 	 */
1486 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1487 
1488 	mutex_unlock(&bdev->bd_mutex);
1489 
1490 	__blkdev_put(bdev, mode, 0);
1491 }
1492 EXPORT_SYMBOL(blkdev_put);
1493 
blkdev_close(struct inode * inode,struct file * filp)1494 static int blkdev_close(struct inode * inode, struct file * filp)
1495 {
1496 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1497 	blkdev_put(bdev, filp->f_mode);
1498 	return 0;
1499 }
1500 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1501 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1502 {
1503 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1504 	fmode_t mode = file->f_mode;
1505 
1506 	/*
1507 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1508 	 * to updated it before every ioctl.
1509 	 */
1510 	if (file->f_flags & O_NDELAY)
1511 		mode |= FMODE_NDELAY;
1512 	else
1513 		mode &= ~FMODE_NDELAY;
1514 
1515 	return blkdev_ioctl(bdev, mode, cmd, arg);
1516 }
1517 
1518 /*
1519  * Write data to the block device.  Only intended for the block device itself
1520  * and the raw driver which basically is a fake block device.
1521  *
1522  * Does not take i_mutex for the write and thus is not for general purpose
1523  * use.
1524  */
blkdev_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1525 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1526 			 unsigned long nr_segs, loff_t pos)
1527 {
1528 	struct file *file = iocb->ki_filp;
1529 	struct blk_plug plug;
1530 	ssize_t ret;
1531 
1532 	BUG_ON(iocb->ki_pos != pos);
1533 
1534 	blk_start_plug(&plug);
1535 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1536 	if (ret > 0 || ret == -EIOCBQUEUED) {
1537 		ssize_t err;
1538 
1539 		err = generic_write_sync(file, pos, ret);
1540 		if (err < 0 && ret > 0)
1541 			ret = err;
1542 	}
1543 	blk_finish_plug(&plug);
1544 	return ret;
1545 }
1546 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1547 
blkdev_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1548 static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov,
1549 			 unsigned long nr_segs, loff_t pos)
1550 {
1551 	struct file *file = iocb->ki_filp;
1552 	struct inode *bd_inode = file->f_mapping->host;
1553 	loff_t size = i_size_read(bd_inode);
1554 
1555 	if (pos >= size)
1556 		return 0;
1557 
1558 	size -= pos;
1559 	if (size < iocb->ki_left)
1560 		nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size);
1561 	return generic_file_aio_read(iocb, iov, nr_segs, pos);
1562 }
1563 
1564 /*
1565  * Try to release a page associated with block device when the system
1566  * is under memory pressure.
1567  */
blkdev_releasepage(struct page * page,gfp_t wait)1568 static int blkdev_releasepage(struct page *page, gfp_t wait)
1569 {
1570 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1571 
1572 	if (super && super->s_op->bdev_try_to_free_page)
1573 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1574 
1575 	return try_to_free_buffers(page);
1576 }
1577 
1578 static const struct address_space_operations def_blk_aops = {
1579 	.readpage	= blkdev_readpage,
1580 	.writepage	= blkdev_writepage,
1581 	.write_begin	= blkdev_write_begin,
1582 	.write_end	= blkdev_write_end,
1583 	.writepages	= generic_writepages,
1584 	.releasepage	= blkdev_releasepage,
1585 	.direct_IO	= blkdev_direct_IO,
1586 };
1587 
1588 const struct file_operations def_blk_fops = {
1589 	.open		= blkdev_open,
1590 	.release	= blkdev_close,
1591 	.llseek		= block_llseek,
1592 	.read		= do_sync_read,
1593 	.write		= do_sync_write,
1594 	.aio_read	= blkdev_aio_read,
1595 	.aio_write	= blkdev_aio_write,
1596 	.mmap		= generic_file_mmap,
1597 	.fsync		= blkdev_fsync,
1598 	.unlocked_ioctl	= block_ioctl,
1599 #ifdef CONFIG_COMPAT
1600 	.compat_ioctl	= compat_blkdev_ioctl,
1601 #endif
1602 	.splice_read	= generic_file_splice_read,
1603 	.splice_write	= generic_file_splice_write,
1604 };
1605 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1606 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1607 {
1608 	int res;
1609 	mm_segment_t old_fs = get_fs();
1610 	set_fs(KERNEL_DS);
1611 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1612 	set_fs(old_fs);
1613 	return res;
1614 }
1615 
1616 EXPORT_SYMBOL(ioctl_by_bdev);
1617 
1618 /**
1619  * lookup_bdev  - lookup a struct block_device by name
1620  * @pathname:	special file representing the block device
1621  *
1622  * Get a reference to the blockdevice at @pathname in the current
1623  * namespace if possible and return it.  Return ERR_PTR(error)
1624  * otherwise.
1625  */
lookup_bdev(const char * pathname)1626 struct block_device *lookup_bdev(const char *pathname)
1627 {
1628 	struct block_device *bdev;
1629 	struct inode *inode;
1630 	struct path path;
1631 	int error;
1632 
1633 	if (!pathname || !*pathname)
1634 		return ERR_PTR(-EINVAL);
1635 
1636 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1637 	if (error)
1638 		return ERR_PTR(error);
1639 
1640 	inode = path.dentry->d_inode;
1641 	error = -ENOTBLK;
1642 	if (!S_ISBLK(inode->i_mode))
1643 		goto fail;
1644 	error = -EACCES;
1645 	if (path.mnt->mnt_flags & MNT_NODEV)
1646 		goto fail;
1647 	error = -ENOMEM;
1648 	bdev = bd_acquire(inode);
1649 	if (!bdev)
1650 		goto fail;
1651 out:
1652 	path_put(&path);
1653 	return bdev;
1654 fail:
1655 	bdev = ERR_PTR(error);
1656 	goto out;
1657 }
1658 EXPORT_SYMBOL(lookup_bdev);
1659 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1660 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1661 {
1662 	struct super_block *sb = get_super(bdev);
1663 	int res = 0;
1664 
1665 	if (sb) {
1666 		/*
1667 		 * no need to lock the super, get_super holds the
1668 		 * read mutex so the filesystem cannot go away
1669 		 * under us (->put_super runs with the write lock
1670 		 * hold).
1671 		 */
1672 		shrink_dcache_sb(sb);
1673 		res = invalidate_inodes(sb, kill_dirty);
1674 		drop_super(sb);
1675 	}
1676 	invalidate_bdev(bdev);
1677 	return res;
1678 }
1679 EXPORT_SYMBOL(__invalidate_device);
1680 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1681 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1682 {
1683 	struct inode *inode, *old_inode = NULL;
1684 
1685 	spin_lock(&inode_sb_list_lock);
1686 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1687 		struct address_space *mapping = inode->i_mapping;
1688 
1689 		spin_lock(&inode->i_lock);
1690 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1691 		    mapping->nrpages == 0) {
1692 			spin_unlock(&inode->i_lock);
1693 			continue;
1694 		}
1695 		__iget(inode);
1696 		spin_unlock(&inode->i_lock);
1697 		spin_unlock(&inode_sb_list_lock);
1698 		/*
1699 		 * We hold a reference to 'inode' so it couldn't have been
1700 		 * removed from s_inodes list while we dropped the
1701 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1702 		 * be holding the last reference and we cannot iput it under
1703 		 * inode_sb_list_lock. So we keep the reference and iput it
1704 		 * later.
1705 		 */
1706 		iput(old_inode);
1707 		old_inode = inode;
1708 
1709 		func(I_BDEV(inode), arg);
1710 
1711 		spin_lock(&inode_sb_list_lock);
1712 	}
1713 	spin_unlock(&inode_sb_list_lock);
1714 	iput(old_inode);
1715 }
1716