• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
init_buffer(struct buffer_head * bh,bh_end_io_t * handler,void * private)50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
touch_buffer(struct buffer_head * bh)57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
sleep_on_buffer(void * word)64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
__lock_buffer(struct buffer_head * bh)70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
unlock_buffer(struct buffer_head * bh)77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
__wait_on_buffer(struct buffer_head * bh)90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95 
96 static void
__clear_page_buffers(struct page * page)97 __clear_page_buffers(struct page *page)
98 {
99 	ClearPagePrivate(page);
100 	set_page_private(page, 0);
101 	page_cache_release(page);
102 }
103 
104 
quiet_error(struct buffer_head * bh)105 static int quiet_error(struct buffer_head *bh)
106 {
107 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 		return 0;
109 	return 1;
110 }
111 
112 
buffer_io_error(struct buffer_head * bh)113 static void buffer_io_error(struct buffer_head *bh)
114 {
115 	char b[BDEVNAME_SIZE];
116 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 			bdevname(bh->b_bdev, b),
118 			(unsigned long long)bh->b_blocknr);
119 }
120 
121 /*
122  * End-of-IO handler helper function which does not touch the bh after
123  * unlocking it.
124  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125  * a race there is benign: unlock_buffer() only use the bh's address for
126  * hashing after unlocking the buffer, so it doesn't actually touch the bh
127  * itself.
128  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131 	if (uptodate) {
132 		set_buffer_uptodate(bh);
133 	} else {
134 		/* This happens, due to failed READA attempts. */
135 		clear_buffer_uptodate(bh);
136 	}
137 	unlock_buffer(bh);
138 }
139 
140 /*
141  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
142  * unlock the buffer. This is what ll_rw_block uses too.
143  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146 	__end_buffer_read_notouch(bh, uptodate);
147 	put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153 	char b[BDEVNAME_SIZE];
154 
155 	if (uptodate) {
156 		set_buffer_uptodate(bh);
157 	} else {
158 		if (!quiet_error(bh)) {
159 			buffer_io_error(bh);
160 			printk(KERN_WARNING "lost page write due to "
161 					"I/O error on %s\n",
162 				       bdevname(bh->b_bdev, b));
163 		}
164 		set_buffer_write_io_error(bh);
165 		clear_buffer_uptodate(bh);
166 	}
167 	unlock_buffer(bh);
168 	put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171 
172 /*
173  * Various filesystems appear to want __find_get_block to be non-blocking.
174  * But it's the page lock which protects the buffers.  To get around this,
175  * we get exclusion from try_to_free_buffers with the blockdev mapping's
176  * private_lock.
177  *
178  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179  * may be quite high.  This code could TryLock the page, and if that
180  * succeeds, there is no need to take private_lock. (But if
181  * private_lock is contended then so is mapping->tree_lock).
182  */
183 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186 	struct inode *bd_inode = bdev->bd_inode;
187 	struct address_space *bd_mapping = bd_inode->i_mapping;
188 	struct buffer_head *ret = NULL;
189 	pgoff_t index;
190 	struct buffer_head *bh;
191 	struct buffer_head *head;
192 	struct page *page;
193 	int all_mapped = 1;
194 
195 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 	page = find_get_page(bd_mapping, index);
197 	if (!page)
198 		goto out;
199 
200 	spin_lock(&bd_mapping->private_lock);
201 	if (!page_has_buffers(page))
202 		goto out_unlock;
203 	head = page_buffers(page);
204 	bh = head;
205 	do {
206 		if (!buffer_mapped(bh))
207 			all_mapped = 0;
208 		else if (bh->b_blocknr == block) {
209 			ret = bh;
210 			get_bh(bh);
211 			goto out_unlock;
212 		}
213 		bh = bh->b_this_page;
214 	} while (bh != head);
215 
216 	/* we might be here because some of the buffers on this page are
217 	 * not mapped.  This is due to various races between
218 	 * file io on the block device and getblk.  It gets dealt with
219 	 * elsewhere, don't buffer_error if we had some unmapped buffers
220 	 */
221 	if (all_mapped) {
222 		char b[BDEVNAME_SIZE];
223 
224 		printk("__find_get_block_slow() failed. "
225 			"block=%llu, b_blocknr=%llu\n",
226 			(unsigned long long)block,
227 			(unsigned long long)bh->b_blocknr);
228 		printk("b_state=0x%08lx, b_size=%zu\n",
229 			bh->b_state, bh->b_size);
230 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 			1 << bd_inode->i_blkbits);
232 	}
233 out_unlock:
234 	spin_unlock(&bd_mapping->private_lock);
235 	page_cache_release(page);
236 out:
237 	return ret;
238 }
239 
240 /*
241  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242  */
free_more_memory(void)243 static void free_more_memory(void)
244 {
245 	struct zone *zone;
246 	int nid;
247 
248 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 	yield();
250 
251 	for_each_online_node(nid) {
252 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 						gfp_zone(GFP_NOFS), NULL,
254 						&zone);
255 		if (zone)
256 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 						GFP_NOFS, NULL);
258 	}
259 }
260 
261 /*
262  * I/O completion handler for block_read_full_page() - pages
263  * which come unlocked at the end of I/O.
264  */
end_buffer_async_read(struct buffer_head * bh,int uptodate)265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267 	unsigned long flags;
268 	struct buffer_head *first;
269 	struct buffer_head *tmp;
270 	struct page *page;
271 	int page_uptodate = 1;
272 
273 	BUG_ON(!buffer_async_read(bh));
274 
275 	page = bh->b_page;
276 	if (uptodate) {
277 		set_buffer_uptodate(bh);
278 	} else {
279 		clear_buffer_uptodate(bh);
280 		if (!quiet_error(bh))
281 			buffer_io_error(bh);
282 		SetPageError(page);
283 	}
284 
285 	/*
286 	 * Be _very_ careful from here on. Bad things can happen if
287 	 * two buffer heads end IO at almost the same time and both
288 	 * decide that the page is now completely done.
289 	 */
290 	first = page_buffers(page);
291 	local_irq_save(flags);
292 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 	clear_buffer_async_read(bh);
294 	unlock_buffer(bh);
295 	tmp = bh;
296 	do {
297 		if (!buffer_uptodate(tmp))
298 			page_uptodate = 0;
299 		if (buffer_async_read(tmp)) {
300 			BUG_ON(!buffer_locked(tmp));
301 			goto still_busy;
302 		}
303 		tmp = tmp->b_this_page;
304 	} while (tmp != bh);
305 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 	local_irq_restore(flags);
307 
308 	/*
309 	 * If none of the buffers had errors and they are all
310 	 * uptodate then we can set the page uptodate.
311 	 */
312 	if (page_uptodate && !PageError(page))
313 		SetPageUptodate(page);
314 	unlock_page(page);
315 	return;
316 
317 still_busy:
318 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 	local_irq_restore(flags);
320 	return;
321 }
322 
323 /*
324  * Completion handler for block_write_full_page() - pages which are unlocked
325  * during I/O, and which have PageWriteback cleared upon I/O completion.
326  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329 	char b[BDEVNAME_SIZE];
330 	unsigned long flags;
331 	struct buffer_head *first;
332 	struct buffer_head *tmp;
333 	struct page *page;
334 
335 	BUG_ON(!buffer_async_write(bh));
336 
337 	page = bh->b_page;
338 	if (uptodate) {
339 		set_buffer_uptodate(bh);
340 	} else {
341 		if (!quiet_error(bh)) {
342 			buffer_io_error(bh);
343 			printk(KERN_WARNING "lost page write due to "
344 					"I/O error on %s\n",
345 			       bdevname(bh->b_bdev, b));
346 		}
347 		set_bit(AS_EIO, &page->mapping->flags);
348 		set_buffer_write_io_error(bh);
349 		clear_buffer_uptodate(bh);
350 		SetPageError(page);
351 	}
352 
353 	first = page_buffers(page);
354 	local_irq_save(flags);
355 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356 
357 	clear_buffer_async_write(bh);
358 	unlock_buffer(bh);
359 	tmp = bh->b_this_page;
360 	while (tmp != bh) {
361 		if (buffer_async_write(tmp)) {
362 			BUG_ON(!buffer_locked(tmp));
363 			goto still_busy;
364 		}
365 		tmp = tmp->b_this_page;
366 	}
367 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 	local_irq_restore(flags);
369 	end_page_writeback(page);
370 	return;
371 
372 still_busy:
373 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 	local_irq_restore(flags);
375 	return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378 
379 /*
380  * If a page's buffers are under async readin (end_buffer_async_read
381  * completion) then there is a possibility that another thread of
382  * control could lock one of the buffers after it has completed
383  * but while some of the other buffers have not completed.  This
384  * locked buffer would confuse end_buffer_async_read() into not unlocking
385  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
386  * that this buffer is not under async I/O.
387  *
388  * The page comes unlocked when it has no locked buffer_async buffers
389  * left.
390  *
391  * PageLocked prevents anyone starting new async I/O reads any of
392  * the buffers.
393  *
394  * PageWriteback is used to prevent simultaneous writeout of the same
395  * page.
396  *
397  * PageLocked prevents anyone from starting writeback of a page which is
398  * under read I/O (PageWriteback is only ever set against a locked page).
399  */
mark_buffer_async_read(struct buffer_head * bh)400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402 	bh->b_end_io = end_buffer_async_read;
403 	set_buffer_async_read(bh);
404 }
405 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 					  bh_end_io_t *handler)
408 {
409 	bh->b_end_io = handler;
410 	set_buffer_async_write(bh);
411 }
412 
mark_buffer_async_write(struct buffer_head * bh)413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418 
419 
420 /*
421  * fs/buffer.c contains helper functions for buffer-backed address space's
422  * fsync functions.  A common requirement for buffer-based filesystems is
423  * that certain data from the backing blockdev needs to be written out for
424  * a successful fsync().  For example, ext2 indirect blocks need to be
425  * written back and waited upon before fsync() returns.
426  *
427  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429  * management of a list of dependent buffers at ->i_mapping->private_list.
430  *
431  * Locking is a little subtle: try_to_free_buffers() will remove buffers
432  * from their controlling inode's queue when they are being freed.  But
433  * try_to_free_buffers() will be operating against the *blockdev* mapping
434  * at the time, not against the S_ISREG file which depends on those buffers.
435  * So the locking for private_list is via the private_lock in the address_space
436  * which backs the buffers.  Which is different from the address_space
437  * against which the buffers are listed.  So for a particular address_space,
438  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
439  * mapping->private_list will always be protected by the backing blockdev's
440  * ->private_lock.
441  *
442  * Which introduces a requirement: all buffers on an address_space's
443  * ->private_list must be from the same address_space: the blockdev's.
444  *
445  * address_spaces which do not place buffers at ->private_list via these
446  * utility functions are free to use private_lock and private_list for
447  * whatever they want.  The only requirement is that list_empty(private_list)
448  * be true at clear_inode() time.
449  *
450  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
451  * filesystems should do that.  invalidate_inode_buffers() should just go
452  * BUG_ON(!list_empty).
453  *
454  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
455  * take an address_space, not an inode.  And it should be called
456  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457  * queued up.
458  *
459  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460  * list if it is already on a list.  Because if the buffer is on a list,
461  * it *must* already be on the right one.  If not, the filesystem is being
462  * silly.  This will save a ton of locking.  But first we have to ensure
463  * that buffers are taken *off* the old inode's list when they are freed
464  * (presumably in truncate).  That requires careful auditing of all
465  * filesystems (do it inside bforget()).  It could also be done by bringing
466  * b_inode back.
467  */
468 
469 /*
470  * The buffer's backing address_space's private_lock must be held
471  */
__remove_assoc_queue(struct buffer_head * bh)472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474 	list_del_init(&bh->b_assoc_buffers);
475 	WARN_ON(!bh->b_assoc_map);
476 	if (buffer_write_io_error(bh))
477 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 	bh->b_assoc_map = NULL;
479 }
480 
inode_has_buffers(struct inode * inode)481 int inode_has_buffers(struct inode *inode)
482 {
483 	return !list_empty(&inode->i_data.private_list);
484 }
485 
486 /*
487  * osync is designed to support O_SYNC io.  It waits synchronously for
488  * all already-submitted IO to complete, but does not queue any new
489  * writes to the disk.
490  *
491  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492  * you dirty the buffers, and then use osync_inode_buffers to wait for
493  * completion.  Any other dirty buffers which are not yet queued for
494  * write will not be flushed to disk by the osync.
495  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498 	struct buffer_head *bh;
499 	struct list_head *p;
500 	int err = 0;
501 
502 	spin_lock(lock);
503 repeat:
504 	list_for_each_prev(p, list) {
505 		bh = BH_ENTRY(p);
506 		if (buffer_locked(bh)) {
507 			get_bh(bh);
508 			spin_unlock(lock);
509 			wait_on_buffer(bh);
510 			if (!buffer_uptodate(bh))
511 				err = -EIO;
512 			brelse(bh);
513 			spin_lock(lock);
514 			goto repeat;
515 		}
516 	}
517 	spin_unlock(lock);
518 	return err;
519 }
520 
do_thaw_one(struct super_block * sb,void * unused)521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523 	char b[BDEVNAME_SIZE];
524 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 		printk(KERN_WARNING "Emergency Thaw on %s\n",
526 		       bdevname(sb->s_bdev, b));
527 }
528 
do_thaw_all(struct work_struct * work)529 static void do_thaw_all(struct work_struct *work)
530 {
531 	iterate_supers(do_thaw_one, NULL);
532 	kfree(work);
533 	printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535 
536 /**
537  * emergency_thaw_all -- forcibly thaw every frozen filesystem
538  *
539  * Used for emergency unfreeze of all filesystems via SysRq
540  */
emergency_thaw_all(void)541 void emergency_thaw_all(void)
542 {
543 	struct work_struct *work;
544 
545 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 	if (work) {
547 		INIT_WORK(work, do_thaw_all);
548 		schedule_work(work);
549 	}
550 }
551 
552 /**
553  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554  * @mapping: the mapping which wants those buffers written
555  *
556  * Starts I/O against the buffers at mapping->private_list, and waits upon
557  * that I/O.
558  *
559  * Basically, this is a convenience function for fsync().
560  * @mapping is a file or directory which needs those buffers to be written for
561  * a successful fsync().
562  */
sync_mapping_buffers(struct address_space * mapping)563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565 	struct address_space *buffer_mapping = mapping->private_data;
566 
567 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 		return 0;
569 
570 	return fsync_buffers_list(&buffer_mapping->private_lock,
571 					&mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574 
575 /*
576  * Called when we've recently written block `bblock', and it is known that
577  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
578  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
579  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
580  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)581 void write_boundary_block(struct block_device *bdev,
582 			sector_t bblock, unsigned blocksize)
583 {
584 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 	if (bh) {
586 		if (buffer_dirty(bh))
587 			ll_rw_block(WRITE, 1, &bh);
588 		put_bh(bh);
589 	}
590 }
591 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594 	struct address_space *mapping = inode->i_mapping;
595 	struct address_space *buffer_mapping = bh->b_page->mapping;
596 
597 	mark_buffer_dirty(bh);
598 	if (!mapping->private_data) {
599 		mapping->private_data = buffer_mapping;
600 	} else {
601 		BUG_ON(mapping->private_data != buffer_mapping);
602 	}
603 	if (!bh->b_assoc_map) {
604 		spin_lock(&buffer_mapping->private_lock);
605 		list_move_tail(&bh->b_assoc_buffers,
606 				&mapping->private_list);
607 		bh->b_assoc_map = mapping;
608 		spin_unlock(&buffer_mapping->private_lock);
609 	}
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612 
613 /*
614  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615  * dirty.
616  *
617  * If warn is true, then emit a warning if the page is not uptodate and has
618  * not been truncated.
619  */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)620 static void __set_page_dirty(struct page *page,
621 		struct address_space *mapping, int warn)
622 {
623 	spin_lock_irq(&mapping->tree_lock);
624 	if (page->mapping) {	/* Race with truncate? */
625 		WARN_ON_ONCE(warn && !PageUptodate(page));
626 		account_page_dirtied(page, mapping);
627 		radix_tree_tag_set(&mapping->page_tree,
628 				page_index(page), PAGECACHE_TAG_DIRTY);
629 	}
630 	spin_unlock_irq(&mapping->tree_lock);
631 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633 
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
__set_page_dirty_buffers(struct page * page)659 int __set_page_dirty_buffers(struct page *page)
660 {
661 	int newly_dirty;
662 	struct address_space *mapping = page_mapping(page);
663 
664 	if (unlikely(!mapping))
665 		return !TestSetPageDirty(page);
666 
667 	spin_lock(&mapping->private_lock);
668 	if (page_has_buffers(page)) {
669 		struct buffer_head *head = page_buffers(page);
670 		struct buffer_head *bh = head;
671 
672 		do {
673 			set_buffer_dirty(bh);
674 			bh = bh->b_this_page;
675 		} while (bh != head);
676 	}
677 	newly_dirty = !TestSetPageDirty(page);
678 	spin_unlock(&mapping->private_lock);
679 
680 	if (newly_dirty)
681 		__set_page_dirty(page, mapping, 1);
682 	return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685 
686 /*
687  * Write out and wait upon a list of buffers.
688  *
689  * We have conflicting pressures: we want to make sure that all
690  * initially dirty buffers get waited on, but that any subsequently
691  * dirtied buffers don't.  After all, we don't want fsync to last
692  * forever if somebody is actively writing to the file.
693  *
694  * Do this in two main stages: first we copy dirty buffers to a
695  * temporary inode list, queueing the writes as we go.  Then we clean
696  * up, waiting for those writes to complete.
697  *
698  * During this second stage, any subsequent updates to the file may end
699  * up refiling the buffer on the original inode's dirty list again, so
700  * there is a chance we will end up with a buffer queued for write but
701  * not yet completed on that list.  So, as a final cleanup we go through
702  * the osync code to catch these locked, dirty buffers without requeuing
703  * any newly dirty buffers for write.
704  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707 	struct buffer_head *bh;
708 	struct list_head tmp;
709 	struct address_space *mapping;
710 	int err = 0, err2;
711 	struct blk_plug plug;
712 
713 	INIT_LIST_HEAD(&tmp);
714 	blk_start_plug(&plug);
715 
716 	spin_lock(lock);
717 	while (!list_empty(list)) {
718 		bh = BH_ENTRY(list->next);
719 		mapping = bh->b_assoc_map;
720 		__remove_assoc_queue(bh);
721 		/* Avoid race with mark_buffer_dirty_inode() which does
722 		 * a lockless check and we rely on seeing the dirty bit */
723 		smp_mb();
724 		if (buffer_dirty(bh) || buffer_locked(bh)) {
725 			list_add(&bh->b_assoc_buffers, &tmp);
726 			bh->b_assoc_map = mapping;
727 			if (buffer_dirty(bh)) {
728 				get_bh(bh);
729 				spin_unlock(lock);
730 				/*
731 				 * Ensure any pending I/O completes so that
732 				 * write_dirty_buffer() actually writes the
733 				 * current contents - it is a noop if I/O is
734 				 * still in flight on potentially older
735 				 * contents.
736 				 */
737 				write_dirty_buffer(bh, WRITE_SYNC);
738 
739 				/*
740 				 * Kick off IO for the previous mapping. Note
741 				 * that we will not run the very last mapping,
742 				 * wait_on_buffer() will do that for us
743 				 * through sync_buffer().
744 				 */
745 				brelse(bh);
746 				spin_lock(lock);
747 			}
748 		}
749 	}
750 
751 	spin_unlock(lock);
752 	blk_finish_plug(&plug);
753 	spin_lock(lock);
754 
755 	while (!list_empty(&tmp)) {
756 		bh = BH_ENTRY(tmp.prev);
757 		get_bh(bh);
758 		mapping = bh->b_assoc_map;
759 		__remove_assoc_queue(bh);
760 		/* Avoid race with mark_buffer_dirty_inode() which does
761 		 * a lockless check and we rely on seeing the dirty bit */
762 		smp_mb();
763 		if (buffer_dirty(bh)) {
764 			list_add(&bh->b_assoc_buffers,
765 				 &mapping->private_list);
766 			bh->b_assoc_map = mapping;
767 		}
768 		spin_unlock(lock);
769 		wait_on_buffer(bh);
770 		if (!buffer_uptodate(bh))
771 			err = -EIO;
772 		brelse(bh);
773 		spin_lock(lock);
774 	}
775 
776 	spin_unlock(lock);
777 	err2 = osync_buffers_list(lock, list);
778 	if (err)
779 		return err;
780 	else
781 		return err2;
782 }
783 
784 /*
785  * Invalidate any and all dirty buffers on a given inode.  We are
786  * probably unmounting the fs, but that doesn't mean we have already
787  * done a sync().  Just drop the buffers from the inode list.
788  *
789  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
790  * assumes that all the buffers are against the blockdev.  Not true
791  * for reiserfs.
792  */
invalidate_inode_buffers(struct inode * inode)793 void invalidate_inode_buffers(struct inode *inode)
794 {
795 	if (inode_has_buffers(inode)) {
796 		struct address_space *mapping = &inode->i_data;
797 		struct list_head *list = &mapping->private_list;
798 		struct address_space *buffer_mapping = mapping->private_data;
799 
800 		spin_lock(&buffer_mapping->private_lock);
801 		while (!list_empty(list))
802 			__remove_assoc_queue(BH_ENTRY(list->next));
803 		spin_unlock(&buffer_mapping->private_lock);
804 	}
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807 
808 /*
809  * Remove any clean buffers from the inode's buffer list.  This is called
810  * when we're trying to free the inode itself.  Those buffers can pin it.
811  *
812  * Returns true if all buffers were removed.
813  */
remove_inode_buffers(struct inode * inode)814 int remove_inode_buffers(struct inode *inode)
815 {
816 	int ret = 1;
817 
818 	if (inode_has_buffers(inode)) {
819 		struct address_space *mapping = &inode->i_data;
820 		struct list_head *list = &mapping->private_list;
821 		struct address_space *buffer_mapping = mapping->private_data;
822 
823 		spin_lock(&buffer_mapping->private_lock);
824 		while (!list_empty(list)) {
825 			struct buffer_head *bh = BH_ENTRY(list->next);
826 			if (buffer_dirty(bh)) {
827 				ret = 0;
828 				break;
829 			}
830 			__remove_assoc_queue(bh);
831 		}
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 	return ret;
835 }
836 
837 /*
838  * Create the appropriate buffers when given a page for data area and
839  * the size of each buffer.. Use the bh->b_this_page linked list to
840  * follow the buffers created.  Return NULL if unable to create more
841  * buffers.
842  *
843  * The retry flag is used to differentiate async IO (paging, swapping)
844  * which may not fail from ordinary buffer allocations.
845  */
alloc_page_buffers(struct page * page,unsigned long size,int retry)846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847 		int retry)
848 {
849 	struct buffer_head *bh, *head;
850 	long offset;
851 
852 try_again:
853 	head = NULL;
854 	offset = PAGE_SIZE;
855 	while ((offset -= size) >= 0) {
856 		bh = alloc_buffer_head(GFP_NOFS);
857 		if (!bh)
858 			goto no_grow;
859 
860 		bh->b_this_page = head;
861 		bh->b_blocknr = -1;
862 		head = bh;
863 
864 		bh->b_size = size;
865 
866 		/* Link the buffer to its page */
867 		set_bh_page(bh, page, offset);
868 	}
869 	return head;
870 /*
871  * In case anything failed, we just free everything we got.
872  */
873 no_grow:
874 	if (head) {
875 		do {
876 			bh = head;
877 			head = head->b_this_page;
878 			free_buffer_head(bh);
879 		} while (head);
880 	}
881 
882 	/*
883 	 * Return failure for non-async IO requests.  Async IO requests
884 	 * are not allowed to fail, so we have to wait until buffer heads
885 	 * become available.  But we don't want tasks sleeping with
886 	 * partially complete buffers, so all were released above.
887 	 */
888 	if (!retry)
889 		return NULL;
890 
891 	/* We're _really_ low on memory. Now we just
892 	 * wait for old buffer heads to become free due to
893 	 * finishing IO.  Since this is an async request and
894 	 * the reserve list is empty, we're sure there are
895 	 * async buffer heads in use.
896 	 */
897 	free_more_memory();
898 	goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901 
902 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905 	struct buffer_head *bh, *tail;
906 
907 	bh = head;
908 	do {
909 		tail = bh;
910 		bh = bh->b_this_page;
911 	} while (bh);
912 	tail->b_this_page = head;
913 	attach_page_buffers(page, head);
914 }
915 
blkdev_max_block(struct block_device * bdev,unsigned int size)916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918 	sector_t retval = ~((sector_t)0);
919 	loff_t sz = i_size_read(bdev->bd_inode);
920 
921 	if (sz) {
922 		unsigned int sizebits = blksize_bits(size);
923 		retval = (sz >> sizebits);
924 	}
925 	return retval;
926 }
927 
928 /*
929  * Initialise the state of a blockdev page's buffers.
930  */
931 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)932 init_page_buffers(struct page *page, struct block_device *bdev,
933 			sector_t block, int size)
934 {
935 	struct buffer_head *head = page_buffers(page);
936 	struct buffer_head *bh = head;
937 	int uptodate = PageUptodate(page);
938 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939 
940 	do {
941 		if (!buffer_mapped(bh)) {
942 			init_buffer(bh, NULL, NULL);
943 			bh->b_bdev = bdev;
944 			bh->b_blocknr = block;
945 			if (uptodate)
946 				set_buffer_uptodate(bh);
947 			if (block < end_block)
948 				set_buffer_mapped(bh);
949 		}
950 		block++;
951 		bh = bh->b_this_page;
952 	} while (bh != head);
953 
954 	/*
955 	 * Caller needs to validate requested block against end of device.
956 	 */
957 	return end_block;
958 }
959 
960 /*
961  * Create the page-cache page that contains the requested block.
962  *
963  * This is used purely for blockdev mappings.
964  */
965 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits)966 grow_dev_page(struct block_device *bdev, sector_t block,
967 		pgoff_t index, int size, int sizebits)
968 {
969 	struct inode *inode = bdev->bd_inode;
970 	struct page *page;
971 	struct buffer_head *bh;
972 	sector_t end_block;
973 	int ret = 0;		/* Will call free_more_memory() */
974 
975 	page = find_or_create_page(inode->i_mapping, index,
976 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977 	if (!page)
978 		return ret;
979 
980 	BUG_ON(!PageLocked(page));
981 
982 	if (page_has_buffers(page)) {
983 		bh = page_buffers(page);
984 		if (bh->b_size == size) {
985 			end_block = init_page_buffers(page, bdev,
986 						index << sizebits, size);
987 			goto done;
988 		}
989 		if (!try_to_free_buffers(page))
990 			goto failed;
991 	}
992 
993 	/*
994 	 * Allocate some buffers for this page
995 	 */
996 	bh = alloc_page_buffers(page, size, 0);
997 	if (!bh)
998 		goto failed;
999 
1000 	/*
1001 	 * Link the page to the buffers and initialise them.  Take the
1002 	 * lock to be atomic wrt __find_get_block(), which does not
1003 	 * run under the page lock.
1004 	 */
1005 	spin_lock(&inode->i_mapping->private_lock);
1006 	link_dev_buffers(page, bh);
1007 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008 	spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010 	ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012 	unlock_page(page);
1013 	page_cache_release(page);
1014 	return ret;
1015 }
1016 
1017 /*
1018  * Create buffers for the specified block device block's page.  If
1019  * that page was dirty, the buffers are set dirty also.
1020  */
1021 static int
grow_buffers(struct block_device * bdev,sector_t block,int size)1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1023 {
1024 	pgoff_t index;
1025 	int sizebits;
1026 
1027 	sizebits = -1;
1028 	do {
1029 		sizebits++;
1030 	} while ((size << sizebits) < PAGE_SIZE);
1031 
1032 	index = block >> sizebits;
1033 
1034 	/*
1035 	 * Check for a block which wants to lie outside our maximum possible
1036 	 * pagecache index.  (this comparison is done using sector_t types).
1037 	 */
1038 	if (unlikely(index != block >> sizebits)) {
1039 		char b[BDEVNAME_SIZE];
1040 
1041 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042 			"device %s\n",
1043 			__func__, (unsigned long long)block,
1044 			bdevname(bdev, b));
1045 		return -EIO;
1046 	}
1047 
1048 	/* Create a page with the proper size buffers.. */
1049 	return grow_dev_page(bdev, block, index, size, sizebits);
1050 }
1051 
1052 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,int size)1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1054 {
1055 	/* Size must be multiple of hard sectorsize */
1056 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057 			(size < 512 || size > PAGE_SIZE))) {
1058 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059 					size);
1060 		printk(KERN_ERR "logical block size: %d\n",
1061 					bdev_logical_block_size(bdev));
1062 
1063 		dump_stack();
1064 		return NULL;
1065 	}
1066 
1067 	for (;;) {
1068 		struct buffer_head *bh;
1069 		int ret;
1070 
1071 		bh = __find_get_block(bdev, block, size);
1072 		if (bh)
1073 			return bh;
1074 
1075 		ret = grow_buffers(bdev, block, size);
1076 		if (ret < 0)
1077 			return NULL;
1078 		if (ret == 0)
1079 			free_more_memory();
1080 	}
1081 }
1082 
1083 /*
1084  * The relationship between dirty buffers and dirty pages:
1085  *
1086  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087  * the page is tagged dirty in its radix tree.
1088  *
1089  * At all times, the dirtiness of the buffers represents the dirtiness of
1090  * subsections of the page.  If the page has buffers, the page dirty bit is
1091  * merely a hint about the true dirty state.
1092  *
1093  * When a page is set dirty in its entirety, all its buffers are marked dirty
1094  * (if the page has buffers).
1095  *
1096  * When a buffer is marked dirty, its page is dirtied, but the page's other
1097  * buffers are not.
1098  *
1099  * Also.  When blockdev buffers are explicitly read with bread(), they
1100  * individually become uptodate.  But their backing page remains not
1101  * uptodate - even if all of its buffers are uptodate.  A subsequent
1102  * block_read_full_page() against that page will discover all the uptodate
1103  * buffers, will set the page uptodate and will perform no I/O.
1104  */
1105 
1106 /**
1107  * mark_buffer_dirty - mark a buffer_head as needing writeout
1108  * @bh: the buffer_head to mark dirty
1109  *
1110  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111  * backing page dirty, then tag the page as dirty in its address_space's radix
1112  * tree and then attach the address_space's inode to its superblock's dirty
1113  * inode list.
1114  *
1115  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1116  * mapping->tree_lock and mapping->host->i_lock.
1117  */
mark_buffer_dirty(struct buffer_head * bh)1118 void mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120 	WARN_ON_ONCE(!buffer_uptodate(bh));
1121 
1122 	trace_block_dirty_buffer(bh);
1123 
1124 	/*
1125 	 * Very *carefully* optimize the it-is-already-dirty case.
1126 	 *
1127 	 * Don't let the final "is it dirty" escape to before we
1128 	 * perhaps modified the buffer.
1129 	 */
1130 	if (buffer_dirty(bh)) {
1131 		smp_mb();
1132 		if (buffer_dirty(bh))
1133 			return;
1134 	}
1135 
1136 	if (!test_set_buffer_dirty(bh)) {
1137 		struct page *page = bh->b_page;
1138 		if (!TestSetPageDirty(page)) {
1139 			struct address_space *mapping = page_mapping(page);
1140 			if (mapping)
1141 				__set_page_dirty(page, mapping, 0);
1142 		}
1143 	}
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146 
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
__brelse(struct buffer_head * buf)1154 void __brelse(struct buffer_head * buf)
1155 {
1156 	if (atomic_read(&buf->b_count)) {
1157 		put_bh(buf);
1158 		return;
1159 	}
1160 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 }
1162 EXPORT_SYMBOL(__brelse);
1163 
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
__bforget(struct buffer_head * bh)1168 void __bforget(struct buffer_head *bh)
1169 {
1170 	clear_buffer_dirty(bh);
1171 	if (bh->b_assoc_map) {
1172 		struct address_space *buffer_mapping = bh->b_page->mapping;
1173 
1174 		spin_lock(&buffer_mapping->private_lock);
1175 		list_del_init(&bh->b_assoc_buffers);
1176 		bh->b_assoc_map = NULL;
1177 		spin_unlock(&buffer_mapping->private_lock);
1178 	}
1179 	__brelse(bh);
1180 }
1181 EXPORT_SYMBOL(__bforget);
1182 
__bread_slow(struct buffer_head * bh)1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185 	lock_buffer(bh);
1186 	if (buffer_uptodate(bh)) {
1187 		unlock_buffer(bh);
1188 		return bh;
1189 	} else {
1190 		get_bh(bh);
1191 		bh->b_end_io = end_buffer_read_sync;
1192 		submit_bh(READ, bh);
1193 		wait_on_buffer(bh);
1194 		if (buffer_uptodate(bh))
1195 			return bh;
1196 	}
1197 	brelse(bh);
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1203  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1204  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1205  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1206  * CPU's LRUs at the same time.
1207  *
1208  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209  * sb_find_get_block().
1210  *
1211  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1212  * a local interrupt disable for that.
1213  */
1214 
1215 #define BH_LRU_SIZE	8
1216 
1217 struct bh_lru {
1218 	struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220 
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222 
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock()	local_irq_disable()
1225 #define bh_lru_unlock()	local_irq_enable()
1226 #else
1227 #define bh_lru_lock()	preempt_disable()
1228 #define bh_lru_unlock()	preempt_enable()
1229 #endif
1230 
check_irqs_on(void)1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234 	BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237 
1238 /*
1239  * The LRU management algorithm is dopey-but-simple.  Sorry.
1240  */
bh_lru_install(struct buffer_head * bh)1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243 	struct buffer_head *evictee = NULL;
1244 
1245 	check_irqs_on();
1246 	bh_lru_lock();
1247 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248 		struct buffer_head *bhs[BH_LRU_SIZE];
1249 		int in;
1250 		int out = 0;
1251 
1252 		get_bh(bh);
1253 		bhs[out++] = bh;
1254 		for (in = 0; in < BH_LRU_SIZE; in++) {
1255 			struct buffer_head *bh2 =
1256 				__this_cpu_read(bh_lrus.bhs[in]);
1257 
1258 			if (bh2 == bh) {
1259 				__brelse(bh2);
1260 			} else {
1261 				if (out >= BH_LRU_SIZE) {
1262 					BUG_ON(evictee != NULL);
1263 					evictee = bh2;
1264 				} else {
1265 					bhs[out++] = bh2;
1266 				}
1267 			}
1268 		}
1269 		while (out < BH_LRU_SIZE)
1270 			bhs[out++] = NULL;
1271 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1272 	}
1273 	bh_lru_unlock();
1274 
1275 	if (evictee)
1276 		__brelse(evictee);
1277 }
1278 
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285 	struct buffer_head *ret = NULL;
1286 	unsigned int i;
1287 
1288 	check_irqs_on();
1289 	bh_lru_lock();
1290 	for (i = 0; i < BH_LRU_SIZE; i++) {
1291 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292 
1293 		if (bh && bh->b_bdev == bdev &&
1294 				bh->b_blocknr == block && bh->b_size == size) {
1295 			if (i) {
1296 				while (i) {
1297 					__this_cpu_write(bh_lrus.bhs[i],
1298 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1299 					i--;
1300 				}
1301 				__this_cpu_write(bh_lrus.bhs[0], bh);
1302 			}
1303 			get_bh(bh);
1304 			ret = bh;
1305 			break;
1306 		}
1307 	}
1308 	bh_lru_unlock();
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321 
1322 	if (bh == NULL) {
1323 		bh = __find_get_block_slow(bdev, block);
1324 		if (bh)
1325 			bh_lru_install(bh);
1326 	}
1327 	if (bh)
1328 		touch_buffer(bh);
1329 	return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332 
1333 /*
1334  * __getblk will locate (and, if necessary, create) the buffer_head
1335  * which corresponds to the passed block_device, block and size. The
1336  * returned buffer has its reference count incremented.
1337  *
1338  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339  * attempt is failing.  FIXME, perhaps?
1340  */
1341 struct buffer_head *
__getblk(struct block_device * bdev,sector_t block,unsigned size)1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1345 
1346 	might_sleep();
1347 	if (bh == NULL)
1348 		bh = __getblk_slow(bdev, block, size);
1349 	return bh;
1350 }
1351 EXPORT_SYMBOL(__getblk);
1352 
1353 /*
1354  * Do async read-ahead on a buffer..
1355  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *bh = __getblk(bdev, block, size);
1359 	if (likely(bh)) {
1360 		ll_rw_block(READA, 1, &bh);
1361 		brelse(bh);
1362 	}
1363 }
1364 EXPORT_SYMBOL(__breadahead);
1365 
1366 /**
1367  *  __bread() - reads a specified block and returns the bh
1368  *  @bdev: the block_device to read from
1369  *  @block: number of block
1370  *  @size: size (in bytes) to read
1371  *
1372  *  Reads a specified block, and returns buffer head that contains it.
1373  *  It returns NULL if the block was unreadable.
1374  */
1375 struct buffer_head *
__bread(struct block_device * bdev,sector_t block,unsigned size)1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378 	struct buffer_head *bh = __getblk(bdev, block, size);
1379 
1380 	if (likely(bh) && !buffer_uptodate(bh))
1381 		bh = __bread_slow(bh);
1382 	return bh;
1383 }
1384 EXPORT_SYMBOL(__bread);
1385 
1386 /*
1387  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388  * This doesn't race because it runs in each cpu either in irq
1389  * or with preempt disabled.
1390  */
invalidate_bh_lru(void * arg)1391 static void invalidate_bh_lru(void *arg)
1392 {
1393 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1394 	int i;
1395 
1396 	for (i = 0; i < BH_LRU_SIZE; i++) {
1397 		brelse(b->bhs[i]);
1398 		b->bhs[i] = NULL;
1399 	}
1400 	put_cpu_var(bh_lrus);
1401 }
1402 
has_bh_in_lru(int cpu,void * dummy)1403 static bool has_bh_in_lru(int cpu, void *dummy)
1404 {
1405 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406 	int i;
1407 
1408 	for (i = 0; i < BH_LRU_SIZE; i++) {
1409 		if (b->bhs[i])
1410 			return 1;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
invalidate_bh_lrus(void)1416 void invalidate_bh_lrus(void)
1417 {
1418 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1421 
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1422 void set_bh_page(struct buffer_head *bh,
1423 		struct page *page, unsigned long offset)
1424 {
1425 	bh->b_page = page;
1426 	BUG_ON(offset >= PAGE_SIZE);
1427 	if (PageHighMem(page))
1428 		/*
1429 		 * This catches illegal uses and preserves the offset:
1430 		 */
1431 		bh->b_data = (char *)(0 + offset);
1432 	else
1433 		bh->b_data = page_address(page) + offset;
1434 }
1435 EXPORT_SYMBOL(set_bh_page);
1436 
1437 /*
1438  * Called when truncating a buffer on a page completely.
1439  */
discard_buffer(struct buffer_head * bh)1440 static void discard_buffer(struct buffer_head * bh)
1441 {
1442 	lock_buffer(bh);
1443 	clear_buffer_dirty(bh);
1444 	bh->b_bdev = NULL;
1445 	clear_buffer_mapped(bh);
1446 	clear_buffer_req(bh);
1447 	clear_buffer_new(bh);
1448 	clear_buffer_delay(bh);
1449 	clear_buffer_unwritten(bh);
1450 	unlock_buffer(bh);
1451 }
1452 
1453 /**
1454  * block_invalidatepage - invalidate part or all of a buffer-backed page
1455  *
1456  * @page: the page which is affected
1457  * @offset: start of the range to invalidate
1458  * @length: length of the range to invalidate
1459  *
1460  * block_invalidatepage() is called when all or part of the page has become
1461  * invalidated by a truncate operation.
1462  *
1463  * block_invalidatepage() does not have to release all buffers, but it must
1464  * ensure that no dirty buffer is left outside @offset and that no I/O
1465  * is underway against any of the blocks which are outside the truncation
1466  * point.  Because the caller is about to free (and possibly reuse) those
1467  * blocks on-disk.
1468  */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1469 void block_invalidatepage(struct page *page, unsigned int offset,
1470 			  unsigned int length)
1471 {
1472 	struct buffer_head *head, *bh, *next;
1473 	unsigned int curr_off = 0;
1474 	unsigned int stop = length + offset;
1475 
1476 	BUG_ON(!PageLocked(page));
1477 	if (!page_has_buffers(page))
1478 		goto out;
1479 
1480 	/*
1481 	 * Check for overflow
1482 	 */
1483 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1484 
1485 	head = page_buffers(page);
1486 	bh = head;
1487 	do {
1488 		unsigned int next_off = curr_off + bh->b_size;
1489 		next = bh->b_this_page;
1490 
1491 		/*
1492 		 * Are we still fully in range ?
1493 		 */
1494 		if (next_off > stop)
1495 			goto out;
1496 
1497 		/*
1498 		 * is this block fully invalidated?
1499 		 */
1500 		if (offset <= curr_off)
1501 			discard_buffer(bh);
1502 		curr_off = next_off;
1503 		bh = next;
1504 	} while (bh != head);
1505 
1506 	/*
1507 	 * We release buffers only if the entire page is being invalidated.
1508 	 * The get_block cached value has been unconditionally invalidated,
1509 	 * so real IO is not possible anymore.
1510 	 */
1511 	if (offset == 0)
1512 		try_to_release_page(page, 0);
1513 out:
1514 	return;
1515 }
1516 EXPORT_SYMBOL(block_invalidatepage);
1517 
1518 
1519 /*
1520  * We attach and possibly dirty the buffers atomically wrt
1521  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1522  * is already excluded via the page lock.
1523  */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1524 void create_empty_buffers(struct page *page,
1525 			unsigned long blocksize, unsigned long b_state)
1526 {
1527 	struct buffer_head *bh, *head, *tail;
1528 
1529 	head = alloc_page_buffers(page, blocksize, 1);
1530 	bh = head;
1531 	do {
1532 		bh->b_state |= b_state;
1533 		tail = bh;
1534 		bh = bh->b_this_page;
1535 	} while (bh);
1536 	tail->b_this_page = head;
1537 
1538 	spin_lock(&page->mapping->private_lock);
1539 	if (PageUptodate(page) || PageDirty(page)) {
1540 		bh = head;
1541 		do {
1542 			if (PageDirty(page))
1543 				set_buffer_dirty(bh);
1544 			if (PageUptodate(page))
1545 				set_buffer_uptodate(bh);
1546 			bh = bh->b_this_page;
1547 		} while (bh != head);
1548 	}
1549 	attach_page_buffers(page, head);
1550 	spin_unlock(&page->mapping->private_lock);
1551 }
1552 EXPORT_SYMBOL(create_empty_buffers);
1553 
1554 /*
1555  * We are taking a block for data and we don't want any output from any
1556  * buffer-cache aliases starting from return from that function and
1557  * until the moment when something will explicitly mark the buffer
1558  * dirty (hopefully that will not happen until we will free that block ;-)
1559  * We don't even need to mark it not-uptodate - nobody can expect
1560  * anything from a newly allocated buffer anyway. We used to used
1561  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1562  * don't want to mark the alias unmapped, for example - it would confuse
1563  * anyone who might pick it with bread() afterwards...
1564  *
1565  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1566  * be writeout I/O going on against recently-freed buffers.  We don't
1567  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1568  * only if we really need to.  That happens here.
1569  */
unmap_underlying_metadata(struct block_device * bdev,sector_t block)1570 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1571 {
1572 	struct buffer_head *old_bh;
1573 
1574 	might_sleep();
1575 
1576 	old_bh = __find_get_block_slow(bdev, block);
1577 	if (old_bh) {
1578 		clear_buffer_dirty(old_bh);
1579 		wait_on_buffer(old_bh);
1580 		clear_buffer_req(old_bh);
1581 		__brelse(old_bh);
1582 	}
1583 }
1584 EXPORT_SYMBOL(unmap_underlying_metadata);
1585 
1586 /*
1587  * Size is a power-of-two in the range 512..PAGE_SIZE,
1588  * and the case we care about most is PAGE_SIZE.
1589  *
1590  * So this *could* possibly be written with those
1591  * constraints in mind (relevant mostly if some
1592  * architecture has a slow bit-scan instruction)
1593  */
block_size_bits(unsigned int blocksize)1594 static inline int block_size_bits(unsigned int blocksize)
1595 {
1596 	return ilog2(blocksize);
1597 }
1598 
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1599 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1600 {
1601 	BUG_ON(!PageLocked(page));
1602 
1603 	if (!page_has_buffers(page))
1604 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1605 	return page_buffers(page);
1606 }
1607 
1608 /*
1609  * NOTE! All mapped/uptodate combinations are valid:
1610  *
1611  *	Mapped	Uptodate	Meaning
1612  *
1613  *	No	No		"unknown" - must do get_block()
1614  *	No	Yes		"hole" - zero-filled
1615  *	Yes	No		"allocated" - allocated on disk, not read in
1616  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1617  *
1618  * "Dirty" is valid only with the last case (mapped+uptodate).
1619  */
1620 
1621 /*
1622  * While block_write_full_page is writing back the dirty buffers under
1623  * the page lock, whoever dirtied the buffers may decide to clean them
1624  * again at any time.  We handle that by only looking at the buffer
1625  * state inside lock_buffer().
1626  *
1627  * If block_write_full_page() is called for regular writeback
1628  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1629  * locked buffer.   This only can happen if someone has written the buffer
1630  * directly, with submit_bh().  At the address_space level PageWriteback
1631  * prevents this contention from occurring.
1632  *
1633  * If block_write_full_page() is called with wbc->sync_mode ==
1634  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1635  * causes the writes to be flagged as synchronous writes.
1636  */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1637 static int __block_write_full_page(struct inode *inode, struct page *page,
1638 			get_block_t *get_block, struct writeback_control *wbc,
1639 			bh_end_io_t *handler)
1640 {
1641 	int err;
1642 	sector_t block;
1643 	sector_t last_block;
1644 	struct buffer_head *bh, *head;
1645 	unsigned int blocksize, bbits;
1646 	int nr_underway = 0;
1647 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1648 			WRITE_SYNC : WRITE);
1649 
1650 	head = create_page_buffers(page, inode,
1651 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1652 
1653 	/*
1654 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1655 	 * here, and the (potentially unmapped) buffers may become dirty at
1656 	 * any time.  If a buffer becomes dirty here after we've inspected it
1657 	 * then we just miss that fact, and the page stays dirty.
1658 	 *
1659 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1660 	 * handle that here by just cleaning them.
1661 	 */
1662 
1663 	bh = head;
1664 	blocksize = bh->b_size;
1665 	bbits = block_size_bits(blocksize);
1666 
1667 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1668 	last_block = (i_size_read(inode) - 1) >> bbits;
1669 
1670 	/*
1671 	 * Get all the dirty buffers mapped to disk addresses and
1672 	 * handle any aliases from the underlying blockdev's mapping.
1673 	 */
1674 	do {
1675 		if (block > last_block) {
1676 			/*
1677 			 * mapped buffers outside i_size will occur, because
1678 			 * this page can be outside i_size when there is a
1679 			 * truncate in progress.
1680 			 */
1681 			/*
1682 			 * The buffer was zeroed by block_write_full_page()
1683 			 */
1684 			clear_buffer_dirty(bh);
1685 			set_buffer_uptodate(bh);
1686 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1687 			   buffer_dirty(bh)) {
1688 			WARN_ON(bh->b_size != blocksize);
1689 			err = get_block(inode, block, bh, 1);
1690 			if (err)
1691 				goto recover;
1692 			clear_buffer_delay(bh);
1693 			if (buffer_new(bh)) {
1694 				/* blockdev mappings never come here */
1695 				clear_buffer_new(bh);
1696 				unmap_underlying_metadata(bh->b_bdev,
1697 							bh->b_blocknr);
1698 			}
1699 		}
1700 		bh = bh->b_this_page;
1701 		block++;
1702 	} while (bh != head);
1703 
1704 	do {
1705 		if (!buffer_mapped(bh))
1706 			continue;
1707 		/*
1708 		 * If it's a fully non-blocking write attempt and we cannot
1709 		 * lock the buffer then redirty the page.  Note that this can
1710 		 * potentially cause a busy-wait loop from writeback threads
1711 		 * and kswapd activity, but those code paths have their own
1712 		 * higher-level throttling.
1713 		 */
1714 		if (wbc->sync_mode != WB_SYNC_NONE) {
1715 			lock_buffer(bh);
1716 		} else if (!trylock_buffer(bh)) {
1717 			redirty_page_for_writepage(wbc, page);
1718 			continue;
1719 		}
1720 		if (test_clear_buffer_dirty(bh)) {
1721 			mark_buffer_async_write_endio(bh, handler);
1722 		} else {
1723 			unlock_buffer(bh);
1724 		}
1725 	} while ((bh = bh->b_this_page) != head);
1726 
1727 	/*
1728 	 * The page and its buffers are protected by PageWriteback(), so we can
1729 	 * drop the bh refcounts early.
1730 	 */
1731 	BUG_ON(PageWriteback(page));
1732 	set_page_writeback(page);
1733 
1734 	do {
1735 		struct buffer_head *next = bh->b_this_page;
1736 		if (buffer_async_write(bh)) {
1737 			submit_bh(write_op, bh);
1738 			nr_underway++;
1739 		}
1740 		bh = next;
1741 	} while (bh != head);
1742 	unlock_page(page);
1743 
1744 	err = 0;
1745 done:
1746 	if (nr_underway == 0) {
1747 		/*
1748 		 * The page was marked dirty, but the buffers were
1749 		 * clean.  Someone wrote them back by hand with
1750 		 * ll_rw_block/submit_bh.  A rare case.
1751 		 */
1752 		end_page_writeback(page);
1753 
1754 		/*
1755 		 * The page and buffer_heads can be released at any time from
1756 		 * here on.
1757 		 */
1758 	}
1759 	return err;
1760 
1761 recover:
1762 	/*
1763 	 * ENOSPC, or some other error.  We may already have added some
1764 	 * blocks to the file, so we need to write these out to avoid
1765 	 * exposing stale data.
1766 	 * The page is currently locked and not marked for writeback
1767 	 */
1768 	bh = head;
1769 	/* Recovery: lock and submit the mapped buffers */
1770 	do {
1771 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1772 		    !buffer_delay(bh)) {
1773 			lock_buffer(bh);
1774 			mark_buffer_async_write_endio(bh, handler);
1775 		} else {
1776 			/*
1777 			 * The buffer may have been set dirty during
1778 			 * attachment to a dirty page.
1779 			 */
1780 			clear_buffer_dirty(bh);
1781 		}
1782 	} while ((bh = bh->b_this_page) != head);
1783 	SetPageError(page);
1784 	BUG_ON(PageWriteback(page));
1785 	mapping_set_error(page->mapping, err);
1786 	set_page_writeback(page);
1787 	do {
1788 		struct buffer_head *next = bh->b_this_page;
1789 		if (buffer_async_write(bh)) {
1790 			clear_buffer_dirty(bh);
1791 			submit_bh(write_op, bh);
1792 			nr_underway++;
1793 		}
1794 		bh = next;
1795 	} while (bh != head);
1796 	unlock_page(page);
1797 	goto done;
1798 }
1799 
1800 /*
1801  * If a page has any new buffers, zero them out here, and mark them uptodate
1802  * and dirty so they'll be written out (in order to prevent uninitialised
1803  * block data from leaking). And clear the new bit.
1804  */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1805 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1806 {
1807 	unsigned int block_start, block_end;
1808 	struct buffer_head *head, *bh;
1809 
1810 	BUG_ON(!PageLocked(page));
1811 	if (!page_has_buffers(page))
1812 		return;
1813 
1814 	bh = head = page_buffers(page);
1815 	block_start = 0;
1816 	do {
1817 		block_end = block_start + bh->b_size;
1818 
1819 		if (buffer_new(bh)) {
1820 			if (block_end > from && block_start < to) {
1821 				if (!PageUptodate(page)) {
1822 					unsigned start, size;
1823 
1824 					start = max(from, block_start);
1825 					size = min(to, block_end) - start;
1826 
1827 					zero_user(page, start, size);
1828 					set_buffer_uptodate(bh);
1829 				}
1830 
1831 				clear_buffer_new(bh);
1832 				mark_buffer_dirty(bh);
1833 			}
1834 		}
1835 
1836 		block_start = block_end;
1837 		bh = bh->b_this_page;
1838 	} while (bh != head);
1839 }
1840 EXPORT_SYMBOL(page_zero_new_buffers);
1841 
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1842 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1843 		get_block_t *get_block)
1844 {
1845 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1846 	unsigned to = from + len;
1847 	struct inode *inode = page->mapping->host;
1848 	unsigned block_start, block_end;
1849 	sector_t block;
1850 	int err = 0;
1851 	unsigned blocksize, bbits;
1852 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1853 
1854 	BUG_ON(!PageLocked(page));
1855 	BUG_ON(from > PAGE_CACHE_SIZE);
1856 	BUG_ON(to > PAGE_CACHE_SIZE);
1857 	BUG_ON(from > to);
1858 
1859 	head = create_page_buffers(page, inode, 0);
1860 	blocksize = head->b_size;
1861 	bbits = block_size_bits(blocksize);
1862 
1863 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1864 
1865 	for(bh = head, block_start = 0; bh != head || !block_start;
1866 	    block++, block_start=block_end, bh = bh->b_this_page) {
1867 		block_end = block_start + blocksize;
1868 		if (block_end <= from || block_start >= to) {
1869 			if (PageUptodate(page)) {
1870 				if (!buffer_uptodate(bh))
1871 					set_buffer_uptodate(bh);
1872 			}
1873 			continue;
1874 		}
1875 		if (buffer_new(bh))
1876 			clear_buffer_new(bh);
1877 		if (!buffer_mapped(bh)) {
1878 			WARN_ON(bh->b_size != blocksize);
1879 			err = get_block(inode, block, bh, 1);
1880 			if (err)
1881 				break;
1882 			if (buffer_new(bh)) {
1883 				unmap_underlying_metadata(bh->b_bdev,
1884 							bh->b_blocknr);
1885 				if (PageUptodate(page)) {
1886 					clear_buffer_new(bh);
1887 					set_buffer_uptodate(bh);
1888 					mark_buffer_dirty(bh);
1889 					continue;
1890 				}
1891 				if (block_end > to || block_start < from)
1892 					zero_user_segments(page,
1893 						to, block_end,
1894 						block_start, from);
1895 				continue;
1896 			}
1897 		}
1898 		if (PageUptodate(page)) {
1899 			if (!buffer_uptodate(bh))
1900 				set_buffer_uptodate(bh);
1901 			continue;
1902 		}
1903 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1904 		    !buffer_unwritten(bh) &&
1905 		     (block_start < from || block_end > to)) {
1906 			ll_rw_block(READ, 1, &bh);
1907 			*wait_bh++=bh;
1908 		}
1909 	}
1910 	/*
1911 	 * If we issued read requests - let them complete.
1912 	 */
1913 	while(wait_bh > wait) {
1914 		wait_on_buffer(*--wait_bh);
1915 		if (!buffer_uptodate(*wait_bh))
1916 			err = -EIO;
1917 	}
1918 	if (unlikely(err))
1919 		page_zero_new_buffers(page, from, to);
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(__block_write_begin);
1923 
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)1924 static int __block_commit_write(struct inode *inode, struct page *page,
1925 		unsigned from, unsigned to)
1926 {
1927 	unsigned block_start, block_end;
1928 	int partial = 0;
1929 	unsigned blocksize;
1930 	struct buffer_head *bh, *head;
1931 
1932 	bh = head = page_buffers(page);
1933 	blocksize = bh->b_size;
1934 
1935 	block_start = 0;
1936 	do {
1937 		block_end = block_start + blocksize;
1938 		if (block_end <= from || block_start >= to) {
1939 			if (!buffer_uptodate(bh))
1940 				partial = 1;
1941 		} else {
1942 			set_buffer_uptodate(bh);
1943 			mark_buffer_dirty(bh);
1944 		}
1945 		clear_buffer_new(bh);
1946 
1947 		block_start = block_end;
1948 		bh = bh->b_this_page;
1949 	} while (bh != head);
1950 
1951 	/*
1952 	 * If this is a partial write which happened to make all buffers
1953 	 * uptodate then we can optimize away a bogus readpage() for
1954 	 * the next read(). Here we 'discover' whether the page went
1955 	 * uptodate as a result of this (potentially partial) write.
1956 	 */
1957 	if (!partial)
1958 		SetPageUptodate(page);
1959 	return 0;
1960 }
1961 
1962 /*
1963  * block_write_begin takes care of the basic task of block allocation and
1964  * bringing partial write blocks uptodate first.
1965  *
1966  * The filesystem needs to handle block truncation upon failure.
1967  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)1968 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1969 		unsigned flags, struct page **pagep, get_block_t *get_block)
1970 {
1971 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1972 	struct page *page;
1973 	int status;
1974 
1975 	page = grab_cache_page_write_begin(mapping, index, flags);
1976 	if (!page)
1977 		return -ENOMEM;
1978 
1979 	status = __block_write_begin(page, pos, len, get_block);
1980 	if (unlikely(status)) {
1981 		unlock_page(page);
1982 		page_cache_release(page);
1983 		page = NULL;
1984 	}
1985 
1986 	*pagep = page;
1987 	return status;
1988 }
1989 EXPORT_SYMBOL(block_write_begin);
1990 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1991 int block_write_end(struct file *file, struct address_space *mapping,
1992 			loff_t pos, unsigned len, unsigned copied,
1993 			struct page *page, void *fsdata)
1994 {
1995 	struct inode *inode = mapping->host;
1996 	unsigned start;
1997 
1998 	start = pos & (PAGE_CACHE_SIZE - 1);
1999 
2000 	if (unlikely(copied < len)) {
2001 		/*
2002 		 * The buffers that were written will now be uptodate, so we
2003 		 * don't have to worry about a readpage reading them and
2004 		 * overwriting a partial write. However if we have encountered
2005 		 * a short write and only partially written into a buffer, it
2006 		 * will not be marked uptodate, so a readpage might come in and
2007 		 * destroy our partial write.
2008 		 *
2009 		 * Do the simplest thing, and just treat any short write to a
2010 		 * non uptodate page as a zero-length write, and force the
2011 		 * caller to redo the whole thing.
2012 		 */
2013 		if (!PageUptodate(page))
2014 			copied = 0;
2015 
2016 		page_zero_new_buffers(page, start+copied, start+len);
2017 	}
2018 	flush_dcache_page(page);
2019 
2020 	/* This could be a short (even 0-length) commit */
2021 	__block_commit_write(inode, page, start, start+copied);
2022 
2023 	return copied;
2024 }
2025 EXPORT_SYMBOL(block_write_end);
2026 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2027 int generic_write_end(struct file *file, struct address_space *mapping,
2028 			loff_t pos, unsigned len, unsigned copied,
2029 			struct page *page, void *fsdata)
2030 {
2031 	struct inode *inode = mapping->host;
2032 	loff_t old_size = inode->i_size;
2033 	int i_size_changed = 0;
2034 
2035 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2036 
2037 	/*
2038 	 * No need to use i_size_read() here, the i_size
2039 	 * cannot change under us because we hold i_mutex.
2040 	 *
2041 	 * But it's important to update i_size while still holding page lock:
2042 	 * page writeout could otherwise come in and zero beyond i_size.
2043 	 */
2044 	if (pos+copied > inode->i_size) {
2045 		i_size_write(inode, pos+copied);
2046 		i_size_changed = 1;
2047 	}
2048 
2049 	unlock_page(page);
2050 	page_cache_release(page);
2051 
2052 	if (old_size < pos)
2053 		pagecache_isize_extended(inode, old_size, pos);
2054 	/*
2055 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2056 	 * makes the holding time of page lock longer. Second, it forces lock
2057 	 * ordering of page lock and transaction start for journaling
2058 	 * filesystems.
2059 	 */
2060 	if (i_size_changed)
2061 		mark_inode_dirty(inode);
2062 
2063 	return copied;
2064 }
2065 EXPORT_SYMBOL(generic_write_end);
2066 
2067 /*
2068  * block_is_partially_uptodate checks whether buffers within a page are
2069  * uptodate or not.
2070  *
2071  * Returns true if all buffers which correspond to a file portion
2072  * we want to read are uptodate.
2073  */
block_is_partially_uptodate(struct page * page,read_descriptor_t * desc,unsigned long from)2074 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2075 					unsigned long from)
2076 {
2077 	unsigned block_start, block_end, blocksize;
2078 	unsigned to;
2079 	struct buffer_head *bh, *head;
2080 	int ret = 1;
2081 
2082 	if (!page_has_buffers(page))
2083 		return 0;
2084 
2085 	head = page_buffers(page);
2086 	blocksize = head->b_size;
2087 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2088 	to = from + to;
2089 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2090 		return 0;
2091 
2092 	bh = head;
2093 	block_start = 0;
2094 	do {
2095 		block_end = block_start + blocksize;
2096 		if (block_end > from && block_start < to) {
2097 			if (!buffer_uptodate(bh)) {
2098 				ret = 0;
2099 				break;
2100 			}
2101 			if (block_end >= to)
2102 				break;
2103 		}
2104 		block_start = block_end;
2105 		bh = bh->b_this_page;
2106 	} while (bh != head);
2107 
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL(block_is_partially_uptodate);
2111 
2112 /*
2113  * Generic "read page" function for block devices that have the normal
2114  * get_block functionality. This is most of the block device filesystems.
2115  * Reads the page asynchronously --- the unlock_buffer() and
2116  * set/clear_buffer_uptodate() functions propagate buffer state into the
2117  * page struct once IO has completed.
2118  */
block_read_full_page(struct page * page,get_block_t * get_block)2119 int block_read_full_page(struct page *page, get_block_t *get_block)
2120 {
2121 	struct inode *inode = page->mapping->host;
2122 	sector_t iblock, lblock;
2123 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2124 	unsigned int blocksize, bbits;
2125 	int nr, i;
2126 	int fully_mapped = 1;
2127 
2128 	head = create_page_buffers(page, inode, 0);
2129 	blocksize = head->b_size;
2130 	bbits = block_size_bits(blocksize);
2131 
2132 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2133 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2134 	bh = head;
2135 	nr = 0;
2136 	i = 0;
2137 
2138 	do {
2139 		if (buffer_uptodate(bh))
2140 			continue;
2141 
2142 		if (!buffer_mapped(bh)) {
2143 			int err = 0;
2144 
2145 			fully_mapped = 0;
2146 			if (iblock < lblock) {
2147 				WARN_ON(bh->b_size != blocksize);
2148 				err = get_block(inode, iblock, bh, 0);
2149 				if (err)
2150 					SetPageError(page);
2151 			}
2152 			if (!buffer_mapped(bh)) {
2153 				zero_user(page, i * blocksize, blocksize);
2154 				if (!err)
2155 					set_buffer_uptodate(bh);
2156 				continue;
2157 			}
2158 			/*
2159 			 * get_block() might have updated the buffer
2160 			 * synchronously
2161 			 */
2162 			if (buffer_uptodate(bh))
2163 				continue;
2164 		}
2165 		arr[nr++] = bh;
2166 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2167 
2168 	if (fully_mapped)
2169 		SetPageMappedToDisk(page);
2170 
2171 	if (!nr) {
2172 		/*
2173 		 * All buffers are uptodate - we can set the page uptodate
2174 		 * as well. But not if get_block() returned an error.
2175 		 */
2176 		if (!PageError(page))
2177 			SetPageUptodate(page);
2178 		unlock_page(page);
2179 		return 0;
2180 	}
2181 
2182 	/* Stage two: lock the buffers */
2183 	for (i = 0; i < nr; i++) {
2184 		bh = arr[i];
2185 		lock_buffer(bh);
2186 		mark_buffer_async_read(bh);
2187 	}
2188 
2189 	/*
2190 	 * Stage 3: start the IO.  Check for uptodateness
2191 	 * inside the buffer lock in case another process reading
2192 	 * the underlying blockdev brought it uptodate (the sct fix).
2193 	 */
2194 	for (i = 0; i < nr; i++) {
2195 		bh = arr[i];
2196 		if (buffer_uptodate(bh))
2197 			end_buffer_async_read(bh, 1);
2198 		else
2199 			submit_bh(READ, bh);
2200 	}
2201 	return 0;
2202 }
2203 EXPORT_SYMBOL(block_read_full_page);
2204 
2205 /* utility function for filesystems that need to do work on expanding
2206  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2207  * deal with the hole.
2208  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2209 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2210 {
2211 	struct address_space *mapping = inode->i_mapping;
2212 	struct page *page;
2213 	void *fsdata;
2214 	int err;
2215 
2216 	err = inode_newsize_ok(inode, size);
2217 	if (err)
2218 		goto out;
2219 
2220 	err = pagecache_write_begin(NULL, mapping, size, 0,
2221 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2222 				&page, &fsdata);
2223 	if (err)
2224 		goto out;
2225 
2226 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2227 	BUG_ON(err > 0);
2228 
2229 out:
2230 	return err;
2231 }
2232 EXPORT_SYMBOL(generic_cont_expand_simple);
2233 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2234 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2235 			    loff_t pos, loff_t *bytes)
2236 {
2237 	struct inode *inode = mapping->host;
2238 	unsigned blocksize = 1 << inode->i_blkbits;
2239 	struct page *page;
2240 	void *fsdata;
2241 	pgoff_t index, curidx;
2242 	loff_t curpos;
2243 	unsigned zerofrom, offset, len;
2244 	int err = 0;
2245 
2246 	index = pos >> PAGE_CACHE_SHIFT;
2247 	offset = pos & ~PAGE_CACHE_MASK;
2248 
2249 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2250 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2251 		if (zerofrom & (blocksize-1)) {
2252 			*bytes |= (blocksize-1);
2253 			(*bytes)++;
2254 		}
2255 		len = PAGE_CACHE_SIZE - zerofrom;
2256 
2257 		err = pagecache_write_begin(file, mapping, curpos, len,
2258 						AOP_FLAG_UNINTERRUPTIBLE,
2259 						&page, &fsdata);
2260 		if (err)
2261 			goto out;
2262 		zero_user(page, zerofrom, len);
2263 		err = pagecache_write_end(file, mapping, curpos, len, len,
2264 						page, fsdata);
2265 		if (err < 0)
2266 			goto out;
2267 		BUG_ON(err != len);
2268 		err = 0;
2269 
2270 		balance_dirty_pages_ratelimited(mapping);
2271 	}
2272 
2273 	/* page covers the boundary, find the boundary offset */
2274 	if (index == curidx) {
2275 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2276 		/* if we will expand the thing last block will be filled */
2277 		if (offset <= zerofrom) {
2278 			goto out;
2279 		}
2280 		if (zerofrom & (blocksize-1)) {
2281 			*bytes |= (blocksize-1);
2282 			(*bytes)++;
2283 		}
2284 		len = offset - zerofrom;
2285 
2286 		err = pagecache_write_begin(file, mapping, curpos, len,
2287 						AOP_FLAG_UNINTERRUPTIBLE,
2288 						&page, &fsdata);
2289 		if (err)
2290 			goto out;
2291 		zero_user(page, zerofrom, len);
2292 		err = pagecache_write_end(file, mapping, curpos, len, len,
2293 						page, fsdata);
2294 		if (err < 0)
2295 			goto out;
2296 		BUG_ON(err != len);
2297 		err = 0;
2298 	}
2299 out:
2300 	return err;
2301 }
2302 
2303 /*
2304  * For moronic filesystems that do not allow holes in file.
2305  * We may have to extend the file.
2306  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2307 int cont_write_begin(struct file *file, struct address_space *mapping,
2308 			loff_t pos, unsigned len, unsigned flags,
2309 			struct page **pagep, void **fsdata,
2310 			get_block_t *get_block, loff_t *bytes)
2311 {
2312 	struct inode *inode = mapping->host;
2313 	unsigned blocksize = 1 << inode->i_blkbits;
2314 	unsigned zerofrom;
2315 	int err;
2316 
2317 	err = cont_expand_zero(file, mapping, pos, bytes);
2318 	if (err)
2319 		return err;
2320 
2321 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2322 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2323 		*bytes |= (blocksize-1);
2324 		(*bytes)++;
2325 	}
2326 
2327 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2328 }
2329 EXPORT_SYMBOL(cont_write_begin);
2330 
block_commit_write(struct page * page,unsigned from,unsigned to)2331 int block_commit_write(struct page *page, unsigned from, unsigned to)
2332 {
2333 	struct inode *inode = page->mapping->host;
2334 	__block_commit_write(inode,page,from,to);
2335 	return 0;
2336 }
2337 EXPORT_SYMBOL(block_commit_write);
2338 
2339 /*
2340  * block_page_mkwrite() is not allowed to change the file size as it gets
2341  * called from a page fault handler when a page is first dirtied. Hence we must
2342  * be careful to check for EOF conditions here. We set the page up correctly
2343  * for a written page which means we get ENOSPC checking when writing into
2344  * holes and correct delalloc and unwritten extent mapping on filesystems that
2345  * support these features.
2346  *
2347  * We are not allowed to take the i_mutex here so we have to play games to
2348  * protect against truncate races as the page could now be beyond EOF.  Because
2349  * truncate writes the inode size before removing pages, once we have the
2350  * page lock we can determine safely if the page is beyond EOF. If it is not
2351  * beyond EOF, then the page is guaranteed safe against truncation until we
2352  * unlock the page.
2353  *
2354  * Direct callers of this function should protect against filesystem freezing
2355  * using sb_start_write() - sb_end_write() functions.
2356  */
__block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2357 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2358 			 get_block_t get_block)
2359 {
2360 	struct page *page = vmf->page;
2361 	struct inode *inode = file_inode(vma->vm_file);
2362 	unsigned long end;
2363 	loff_t size;
2364 	int ret;
2365 
2366 	lock_page(page);
2367 	size = i_size_read(inode);
2368 	if ((page->mapping != inode->i_mapping) ||
2369 	    (page_offset(page) > size)) {
2370 		/* We overload EFAULT to mean page got truncated */
2371 		ret = -EFAULT;
2372 		goto out_unlock;
2373 	}
2374 
2375 	/* page is wholly or partially inside EOF */
2376 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2377 		end = size & ~PAGE_CACHE_MASK;
2378 	else
2379 		end = PAGE_CACHE_SIZE;
2380 
2381 	ret = __block_write_begin(page, 0, end, get_block);
2382 	if (!ret)
2383 		ret = block_commit_write(page, 0, end);
2384 
2385 	if (unlikely(ret < 0))
2386 		goto out_unlock;
2387 	set_page_dirty(page);
2388 	wait_for_stable_page(page);
2389 	return 0;
2390 out_unlock:
2391 	unlock_page(page);
2392 	return ret;
2393 }
2394 EXPORT_SYMBOL(__block_page_mkwrite);
2395 
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2396 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2397 		   get_block_t get_block)
2398 {
2399 	int ret;
2400 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2401 
2402 	sb_start_pagefault(sb);
2403 
2404 	/*
2405 	 * Update file times before taking page lock. We may end up failing the
2406 	 * fault so this update may be superfluous but who really cares...
2407 	 */
2408 	file_update_time(vma->vm_file);
2409 
2410 	ret = __block_page_mkwrite(vma, vmf, get_block);
2411 	sb_end_pagefault(sb);
2412 	return block_page_mkwrite_return(ret);
2413 }
2414 EXPORT_SYMBOL(block_page_mkwrite);
2415 
2416 /*
2417  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2418  * immediately, while under the page lock.  So it needs a special end_io
2419  * handler which does not touch the bh after unlocking it.
2420  */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2421 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2422 {
2423 	__end_buffer_read_notouch(bh, uptodate);
2424 }
2425 
2426 /*
2427  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2428  * the page (converting it to circular linked list and taking care of page
2429  * dirty races).
2430  */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2431 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2432 {
2433 	struct buffer_head *bh;
2434 
2435 	BUG_ON(!PageLocked(page));
2436 
2437 	spin_lock(&page->mapping->private_lock);
2438 	bh = head;
2439 	do {
2440 		if (PageDirty(page))
2441 			set_buffer_dirty(bh);
2442 		if (!bh->b_this_page)
2443 			bh->b_this_page = head;
2444 		bh = bh->b_this_page;
2445 	} while (bh != head);
2446 	attach_page_buffers(page, head);
2447 	spin_unlock(&page->mapping->private_lock);
2448 }
2449 
2450 /*
2451  * On entry, the page is fully not uptodate.
2452  * On exit the page is fully uptodate in the areas outside (from,to)
2453  * The filesystem needs to handle block truncation upon failure.
2454  */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2455 int nobh_write_begin(struct address_space *mapping,
2456 			loff_t pos, unsigned len, unsigned flags,
2457 			struct page **pagep, void **fsdata,
2458 			get_block_t *get_block)
2459 {
2460 	struct inode *inode = mapping->host;
2461 	const unsigned blkbits = inode->i_blkbits;
2462 	const unsigned blocksize = 1 << blkbits;
2463 	struct buffer_head *head, *bh;
2464 	struct page *page;
2465 	pgoff_t index;
2466 	unsigned from, to;
2467 	unsigned block_in_page;
2468 	unsigned block_start, block_end;
2469 	sector_t block_in_file;
2470 	int nr_reads = 0;
2471 	int ret = 0;
2472 	int is_mapped_to_disk = 1;
2473 
2474 	index = pos >> PAGE_CACHE_SHIFT;
2475 	from = pos & (PAGE_CACHE_SIZE - 1);
2476 	to = from + len;
2477 
2478 	page = grab_cache_page_write_begin(mapping, index, flags);
2479 	if (!page)
2480 		return -ENOMEM;
2481 	*pagep = page;
2482 	*fsdata = NULL;
2483 
2484 	if (page_has_buffers(page)) {
2485 		ret = __block_write_begin(page, pos, len, get_block);
2486 		if (unlikely(ret))
2487 			goto out_release;
2488 		return ret;
2489 	}
2490 
2491 	if (PageMappedToDisk(page))
2492 		return 0;
2493 
2494 	/*
2495 	 * Allocate buffers so that we can keep track of state, and potentially
2496 	 * attach them to the page if an error occurs. In the common case of
2497 	 * no error, they will just be freed again without ever being attached
2498 	 * to the page (which is all OK, because we're under the page lock).
2499 	 *
2500 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2501 	 * than the circular one we're used to.
2502 	 */
2503 	head = alloc_page_buffers(page, blocksize, 0);
2504 	if (!head) {
2505 		ret = -ENOMEM;
2506 		goto out_release;
2507 	}
2508 
2509 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2510 
2511 	/*
2512 	 * We loop across all blocks in the page, whether or not they are
2513 	 * part of the affected region.  This is so we can discover if the
2514 	 * page is fully mapped-to-disk.
2515 	 */
2516 	for (block_start = 0, block_in_page = 0, bh = head;
2517 		  block_start < PAGE_CACHE_SIZE;
2518 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2519 		int create;
2520 
2521 		block_end = block_start + blocksize;
2522 		bh->b_state = 0;
2523 		create = 1;
2524 		if (block_start >= to)
2525 			create = 0;
2526 		ret = get_block(inode, block_in_file + block_in_page,
2527 					bh, create);
2528 		if (ret)
2529 			goto failed;
2530 		if (!buffer_mapped(bh))
2531 			is_mapped_to_disk = 0;
2532 		if (buffer_new(bh))
2533 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2534 		if (PageUptodate(page)) {
2535 			set_buffer_uptodate(bh);
2536 			continue;
2537 		}
2538 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2539 			zero_user_segments(page, block_start, from,
2540 							to, block_end);
2541 			continue;
2542 		}
2543 		if (buffer_uptodate(bh))
2544 			continue;	/* reiserfs does this */
2545 		if (block_start < from || block_end > to) {
2546 			lock_buffer(bh);
2547 			bh->b_end_io = end_buffer_read_nobh;
2548 			submit_bh(READ, bh);
2549 			nr_reads++;
2550 		}
2551 	}
2552 
2553 	if (nr_reads) {
2554 		/*
2555 		 * The page is locked, so these buffers are protected from
2556 		 * any VM or truncate activity.  Hence we don't need to care
2557 		 * for the buffer_head refcounts.
2558 		 */
2559 		for (bh = head; bh; bh = bh->b_this_page) {
2560 			wait_on_buffer(bh);
2561 			if (!buffer_uptodate(bh))
2562 				ret = -EIO;
2563 		}
2564 		if (ret)
2565 			goto failed;
2566 	}
2567 
2568 	if (is_mapped_to_disk)
2569 		SetPageMappedToDisk(page);
2570 
2571 	*fsdata = head; /* to be released by nobh_write_end */
2572 
2573 	return 0;
2574 
2575 failed:
2576 	BUG_ON(!ret);
2577 	/*
2578 	 * Error recovery is a bit difficult. We need to zero out blocks that
2579 	 * were newly allocated, and dirty them to ensure they get written out.
2580 	 * Buffers need to be attached to the page at this point, otherwise
2581 	 * the handling of potential IO errors during writeout would be hard
2582 	 * (could try doing synchronous writeout, but what if that fails too?)
2583 	 */
2584 	attach_nobh_buffers(page, head);
2585 	page_zero_new_buffers(page, from, to);
2586 
2587 out_release:
2588 	unlock_page(page);
2589 	page_cache_release(page);
2590 	*pagep = NULL;
2591 
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(nobh_write_begin);
2595 
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2596 int nobh_write_end(struct file *file, struct address_space *mapping,
2597 			loff_t pos, unsigned len, unsigned copied,
2598 			struct page *page, void *fsdata)
2599 {
2600 	struct inode *inode = page->mapping->host;
2601 	struct buffer_head *head = fsdata;
2602 	struct buffer_head *bh;
2603 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2604 
2605 	if (unlikely(copied < len) && head)
2606 		attach_nobh_buffers(page, head);
2607 	if (page_has_buffers(page))
2608 		return generic_write_end(file, mapping, pos, len,
2609 					copied, page, fsdata);
2610 
2611 	SetPageUptodate(page);
2612 	set_page_dirty(page);
2613 	if (pos+copied > inode->i_size) {
2614 		i_size_write(inode, pos+copied);
2615 		mark_inode_dirty(inode);
2616 	}
2617 
2618 	unlock_page(page);
2619 	page_cache_release(page);
2620 
2621 	while (head) {
2622 		bh = head;
2623 		head = head->b_this_page;
2624 		free_buffer_head(bh);
2625 	}
2626 
2627 	return copied;
2628 }
2629 EXPORT_SYMBOL(nobh_write_end);
2630 
2631 /*
2632  * nobh_writepage() - based on block_full_write_page() except
2633  * that it tries to operate without attaching bufferheads to
2634  * the page.
2635  */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2636 int nobh_writepage(struct page *page, get_block_t *get_block,
2637 			struct writeback_control *wbc)
2638 {
2639 	struct inode * const inode = page->mapping->host;
2640 	loff_t i_size = i_size_read(inode);
2641 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2642 	unsigned offset;
2643 	int ret;
2644 
2645 	/* Is the page fully inside i_size? */
2646 	if (page->index < end_index)
2647 		goto out;
2648 
2649 	/* Is the page fully outside i_size? (truncate in progress) */
2650 	offset = i_size & (PAGE_CACHE_SIZE-1);
2651 	if (page->index >= end_index+1 || !offset) {
2652 		/*
2653 		 * The page may have dirty, unmapped buffers.  For example,
2654 		 * they may have been added in ext3_writepage().  Make them
2655 		 * freeable here, so the page does not leak.
2656 		 */
2657 #if 0
2658 		/* Not really sure about this  - do we need this ? */
2659 		if (page->mapping->a_ops->invalidatepage)
2660 			page->mapping->a_ops->invalidatepage(page, offset);
2661 #endif
2662 		unlock_page(page);
2663 		return 0; /* don't care */
2664 	}
2665 
2666 	/*
2667 	 * The page straddles i_size.  It must be zeroed out on each and every
2668 	 * writepage invocation because it may be mmapped.  "A file is mapped
2669 	 * in multiples of the page size.  For a file that is not a multiple of
2670 	 * the  page size, the remaining memory is zeroed when mapped, and
2671 	 * writes to that region are not written out to the file."
2672 	 */
2673 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2674 out:
2675 	ret = mpage_writepage(page, get_block, wbc);
2676 	if (ret == -EAGAIN)
2677 		ret = __block_write_full_page(inode, page, get_block, wbc,
2678 					      end_buffer_async_write);
2679 	return ret;
2680 }
2681 EXPORT_SYMBOL(nobh_writepage);
2682 
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2683 int nobh_truncate_page(struct address_space *mapping,
2684 			loff_t from, get_block_t *get_block)
2685 {
2686 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2687 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2688 	unsigned blocksize;
2689 	sector_t iblock;
2690 	unsigned length, pos;
2691 	struct inode *inode = mapping->host;
2692 	struct page *page;
2693 	struct buffer_head map_bh;
2694 	int err;
2695 
2696 	blocksize = 1 << inode->i_blkbits;
2697 	length = offset & (blocksize - 1);
2698 
2699 	/* Block boundary? Nothing to do */
2700 	if (!length)
2701 		return 0;
2702 
2703 	length = blocksize - length;
2704 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2705 
2706 	page = grab_cache_page(mapping, index);
2707 	err = -ENOMEM;
2708 	if (!page)
2709 		goto out;
2710 
2711 	if (page_has_buffers(page)) {
2712 has_buffers:
2713 		unlock_page(page);
2714 		page_cache_release(page);
2715 		return block_truncate_page(mapping, from, get_block);
2716 	}
2717 
2718 	/* Find the buffer that contains "offset" */
2719 	pos = blocksize;
2720 	while (offset >= pos) {
2721 		iblock++;
2722 		pos += blocksize;
2723 	}
2724 
2725 	map_bh.b_size = blocksize;
2726 	map_bh.b_state = 0;
2727 	err = get_block(inode, iblock, &map_bh, 0);
2728 	if (err)
2729 		goto unlock;
2730 	/* unmapped? It's a hole - nothing to do */
2731 	if (!buffer_mapped(&map_bh))
2732 		goto unlock;
2733 
2734 	/* Ok, it's mapped. Make sure it's up-to-date */
2735 	if (!PageUptodate(page)) {
2736 		err = mapping->a_ops->readpage(NULL, page);
2737 		if (err) {
2738 			page_cache_release(page);
2739 			goto out;
2740 		}
2741 		lock_page(page);
2742 		if (!PageUptodate(page)) {
2743 			err = -EIO;
2744 			goto unlock;
2745 		}
2746 		if (page_has_buffers(page))
2747 			goto has_buffers;
2748 	}
2749 	zero_user(page, offset, length);
2750 	set_page_dirty(page);
2751 	err = 0;
2752 
2753 unlock:
2754 	unlock_page(page);
2755 	page_cache_release(page);
2756 out:
2757 	return err;
2758 }
2759 EXPORT_SYMBOL(nobh_truncate_page);
2760 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2761 int block_truncate_page(struct address_space *mapping,
2762 			loff_t from, get_block_t *get_block)
2763 {
2764 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2765 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2766 	unsigned blocksize;
2767 	sector_t iblock;
2768 	unsigned length, pos;
2769 	struct inode *inode = mapping->host;
2770 	struct page *page;
2771 	struct buffer_head *bh;
2772 	int err;
2773 
2774 	blocksize = 1 << inode->i_blkbits;
2775 	length = offset & (blocksize - 1);
2776 
2777 	/* Block boundary? Nothing to do */
2778 	if (!length)
2779 		return 0;
2780 
2781 	length = blocksize - length;
2782 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2783 
2784 	page = grab_cache_page(mapping, index);
2785 	err = -ENOMEM;
2786 	if (!page)
2787 		goto out;
2788 
2789 	if (!page_has_buffers(page))
2790 		create_empty_buffers(page, blocksize, 0);
2791 
2792 	/* Find the buffer that contains "offset" */
2793 	bh = page_buffers(page);
2794 	pos = blocksize;
2795 	while (offset >= pos) {
2796 		bh = bh->b_this_page;
2797 		iblock++;
2798 		pos += blocksize;
2799 	}
2800 
2801 	err = 0;
2802 	if (!buffer_mapped(bh)) {
2803 		WARN_ON(bh->b_size != blocksize);
2804 		err = get_block(inode, iblock, bh, 0);
2805 		if (err)
2806 			goto unlock;
2807 		/* unmapped? It's a hole - nothing to do */
2808 		if (!buffer_mapped(bh))
2809 			goto unlock;
2810 	}
2811 
2812 	/* Ok, it's mapped. Make sure it's up-to-date */
2813 	if (PageUptodate(page))
2814 		set_buffer_uptodate(bh);
2815 
2816 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2817 		err = -EIO;
2818 		ll_rw_block(READ, 1, &bh);
2819 		wait_on_buffer(bh);
2820 		/* Uhhuh. Read error. Complain and punt. */
2821 		if (!buffer_uptodate(bh))
2822 			goto unlock;
2823 	}
2824 
2825 	zero_user(page, offset, length);
2826 	mark_buffer_dirty(bh);
2827 	err = 0;
2828 
2829 unlock:
2830 	unlock_page(page);
2831 	page_cache_release(page);
2832 out:
2833 	return err;
2834 }
2835 EXPORT_SYMBOL(block_truncate_page);
2836 
2837 /*
2838  * The generic ->writepage function for buffer-backed address_spaces
2839  * this form passes in the end_io handler used to finish the IO.
2840  */
block_write_full_page_endio(struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)2841 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2842 			struct writeback_control *wbc, bh_end_io_t *handler)
2843 {
2844 	struct inode * const inode = page->mapping->host;
2845 	loff_t i_size = i_size_read(inode);
2846 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2847 	unsigned offset;
2848 
2849 	/* Is the page fully inside i_size? */
2850 	if (page->index < end_index)
2851 		return __block_write_full_page(inode, page, get_block, wbc,
2852 					       handler);
2853 
2854 	/* Is the page fully outside i_size? (truncate in progress) */
2855 	offset = i_size & (PAGE_CACHE_SIZE-1);
2856 	if (page->index >= end_index+1 || !offset) {
2857 		/*
2858 		 * The page may have dirty, unmapped buffers.  For example,
2859 		 * they may have been added in ext3_writepage().  Make them
2860 		 * freeable here, so the page does not leak.
2861 		 */
2862 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2863 		unlock_page(page);
2864 		return 0; /* don't care */
2865 	}
2866 
2867 	/*
2868 	 * The page straddles i_size.  It must be zeroed out on each and every
2869 	 * writepage invocation because it may be mmapped.  "A file is mapped
2870 	 * in multiples of the page size.  For a file that is not a multiple of
2871 	 * the  page size, the remaining memory is zeroed when mapped, and
2872 	 * writes to that region are not written out to the file."
2873 	 */
2874 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2875 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2876 }
2877 EXPORT_SYMBOL(block_write_full_page_endio);
2878 
2879 /*
2880  * The generic ->writepage function for buffer-backed address_spaces
2881  */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2882 int block_write_full_page(struct page *page, get_block_t *get_block,
2883 			struct writeback_control *wbc)
2884 {
2885 	return block_write_full_page_endio(page, get_block, wbc,
2886 					   end_buffer_async_write);
2887 }
2888 EXPORT_SYMBOL(block_write_full_page);
2889 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2890 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2891 			    get_block_t *get_block)
2892 {
2893 	struct buffer_head tmp;
2894 	struct inode *inode = mapping->host;
2895 	tmp.b_state = 0;
2896 	tmp.b_blocknr = 0;
2897 	tmp.b_size = 1 << inode->i_blkbits;
2898 	get_block(inode, block, &tmp, 0);
2899 	return tmp.b_blocknr;
2900 }
2901 EXPORT_SYMBOL(generic_block_bmap);
2902 
end_bio_bh_io_sync(struct bio * bio,int err)2903 static void end_bio_bh_io_sync(struct bio *bio, int err)
2904 {
2905 	struct buffer_head *bh = bio->bi_private;
2906 
2907 	if (err == -EOPNOTSUPP) {
2908 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2909 	}
2910 
2911 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2912 		set_bit(BH_Quiet, &bh->b_state);
2913 
2914 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2915 	bio_put(bio);
2916 }
2917 
2918 /*
2919  * This allows us to do IO even on the odd last sectors
2920  * of a device, even if the bh block size is some multiple
2921  * of the physical sector size.
2922  *
2923  * We'll just truncate the bio to the size of the device,
2924  * and clear the end of the buffer head manually.
2925  *
2926  * Truly out-of-range accesses will turn into actual IO
2927  * errors, this only handles the "we need to be able to
2928  * do IO at the final sector" case.
2929  */
guard_bh_eod(int rw,struct bio * bio,struct buffer_head * bh)2930 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2931 {
2932 	sector_t maxsector;
2933 	unsigned bytes;
2934 
2935 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2936 	if (!maxsector)
2937 		return;
2938 
2939 	/*
2940 	 * If the *whole* IO is past the end of the device,
2941 	 * let it through, and the IO layer will turn it into
2942 	 * an EIO.
2943 	 */
2944 	if (unlikely(bio->bi_sector >= maxsector))
2945 		return;
2946 
2947 	maxsector -= bio->bi_sector;
2948 	bytes = bio->bi_size;
2949 	if (likely((bytes >> 9) <= maxsector))
2950 		return;
2951 
2952 	/* Uhhuh. We've got a bh that straddles the device size! */
2953 	bytes = maxsector << 9;
2954 
2955 	/* Truncate the bio.. */
2956 	bio->bi_size = bytes;
2957 	bio->bi_io_vec[0].bv_len = bytes;
2958 
2959 	/* ..and clear the end of the buffer for reads */
2960 	if ((rw & RW_MASK) == READ) {
2961 		void *kaddr = kmap_atomic(bh->b_page);
2962 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2963 		kunmap_atomic(kaddr);
2964 		flush_dcache_page(bh->b_page);
2965 	}
2966 }
2967 
_submit_bh(int rw,struct buffer_head * bh,unsigned long bio_flags)2968 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2969 {
2970 	struct bio *bio;
2971 	int ret = 0;
2972 
2973 	BUG_ON(!buffer_locked(bh));
2974 	BUG_ON(!buffer_mapped(bh));
2975 	BUG_ON(!bh->b_end_io);
2976 	BUG_ON(buffer_delay(bh));
2977 	BUG_ON(buffer_unwritten(bh));
2978 
2979 	/*
2980 	 * Only clear out a write error when rewriting
2981 	 */
2982 	if (test_set_buffer_req(bh) && (rw & WRITE))
2983 		clear_buffer_write_io_error(bh);
2984 
2985 	/*
2986 	 * from here on down, it's all bio -- do the initial mapping,
2987 	 * submit_bio -> generic_make_request may further map this bio around
2988 	 */
2989 	bio = bio_alloc(GFP_NOIO, 1);
2990 
2991 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2992 	bio->bi_bdev = bh->b_bdev;
2993 	bio->bi_io_vec[0].bv_page = bh->b_page;
2994 	bio->bi_io_vec[0].bv_len = bh->b_size;
2995 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2996 
2997 	bio->bi_vcnt = 1;
2998 	bio->bi_size = bh->b_size;
2999 
3000 	bio->bi_end_io = end_bio_bh_io_sync;
3001 	bio->bi_private = bh;
3002 	bio->bi_flags |= bio_flags;
3003 
3004 	/* Take care of bh's that straddle the end of the device */
3005 	guard_bh_eod(rw, bio, bh);
3006 
3007 	if (buffer_meta(bh))
3008 		rw |= REQ_META;
3009 	if (buffer_prio(bh))
3010 		rw |= REQ_PRIO;
3011 
3012 	bio_get(bio);
3013 	submit_bio(rw, bio);
3014 
3015 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3016 		ret = -EOPNOTSUPP;
3017 
3018 	bio_put(bio);
3019 	return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(_submit_bh);
3022 
submit_bh(int rw,struct buffer_head * bh)3023 int submit_bh(int rw, struct buffer_head *bh)
3024 {
3025 	return _submit_bh(rw, bh, 0);
3026 }
3027 EXPORT_SYMBOL(submit_bh);
3028 
3029 /**
3030  * ll_rw_block: low-level access to block devices (DEPRECATED)
3031  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3032  * @nr: number of &struct buffer_heads in the array
3033  * @bhs: array of pointers to &struct buffer_head
3034  *
3035  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3036  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3037  * %READA option is described in the documentation for generic_make_request()
3038  * which ll_rw_block() calls.
3039  *
3040  * This function drops any buffer that it cannot get a lock on (with the
3041  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3042  * request, and any buffer that appears to be up-to-date when doing read
3043  * request.  Further it marks as clean buffers that are processed for
3044  * writing (the buffer cache won't assume that they are actually clean
3045  * until the buffer gets unlocked).
3046  *
3047  * ll_rw_block sets b_end_io to simple completion handler that marks
3048  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3049  * any waiters.
3050  *
3051  * All of the buffers must be for the same device, and must also be a
3052  * multiple of the current approved size for the device.
3053  */
ll_rw_block(int rw,int nr,struct buffer_head * bhs[])3054 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3055 {
3056 	int i;
3057 
3058 	for (i = 0; i < nr; i++) {
3059 		struct buffer_head *bh = bhs[i];
3060 
3061 		if (!trylock_buffer(bh))
3062 			continue;
3063 		if (rw == WRITE) {
3064 			if (test_clear_buffer_dirty(bh)) {
3065 				bh->b_end_io = end_buffer_write_sync;
3066 				get_bh(bh);
3067 				submit_bh(WRITE, bh);
3068 				continue;
3069 			}
3070 		} else {
3071 			if (!buffer_uptodate(bh)) {
3072 				bh->b_end_io = end_buffer_read_sync;
3073 				get_bh(bh);
3074 				submit_bh(rw, bh);
3075 				continue;
3076 			}
3077 		}
3078 		unlock_buffer(bh);
3079 	}
3080 }
3081 EXPORT_SYMBOL(ll_rw_block);
3082 
write_dirty_buffer(struct buffer_head * bh,int rw)3083 void write_dirty_buffer(struct buffer_head *bh, int rw)
3084 {
3085 	lock_buffer(bh);
3086 	if (!test_clear_buffer_dirty(bh)) {
3087 		unlock_buffer(bh);
3088 		return;
3089 	}
3090 	bh->b_end_io = end_buffer_write_sync;
3091 	get_bh(bh);
3092 	submit_bh(rw, bh);
3093 }
3094 EXPORT_SYMBOL(write_dirty_buffer);
3095 
3096 /*
3097  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3098  * and then start new I/O and then wait upon it.  The caller must have a ref on
3099  * the buffer_head.
3100  */
__sync_dirty_buffer(struct buffer_head * bh,int rw)3101 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3102 {
3103 	int ret = 0;
3104 
3105 	WARN_ON(atomic_read(&bh->b_count) < 1);
3106 	lock_buffer(bh);
3107 	if (test_clear_buffer_dirty(bh)) {
3108 		get_bh(bh);
3109 		bh->b_end_io = end_buffer_write_sync;
3110 		ret = submit_bh(rw, bh);
3111 		wait_on_buffer(bh);
3112 		if (!ret && !buffer_uptodate(bh))
3113 			ret = -EIO;
3114 	} else {
3115 		unlock_buffer(bh);
3116 	}
3117 	return ret;
3118 }
3119 EXPORT_SYMBOL(__sync_dirty_buffer);
3120 
sync_dirty_buffer(struct buffer_head * bh)3121 int sync_dirty_buffer(struct buffer_head *bh)
3122 {
3123 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3124 }
3125 EXPORT_SYMBOL(sync_dirty_buffer);
3126 
3127 /*
3128  * try_to_free_buffers() checks if all the buffers on this particular page
3129  * are unused, and releases them if so.
3130  *
3131  * Exclusion against try_to_free_buffers may be obtained by either
3132  * locking the page or by holding its mapping's private_lock.
3133  *
3134  * If the page is dirty but all the buffers are clean then we need to
3135  * be sure to mark the page clean as well.  This is because the page
3136  * may be against a block device, and a later reattachment of buffers
3137  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3138  * filesystem data on the same device.
3139  *
3140  * The same applies to regular filesystem pages: if all the buffers are
3141  * clean then we set the page clean and proceed.  To do that, we require
3142  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3143  * private_lock.
3144  *
3145  * try_to_free_buffers() is non-blocking.
3146  */
buffer_busy(struct buffer_head * bh)3147 static inline int buffer_busy(struct buffer_head *bh)
3148 {
3149 	return atomic_read(&bh->b_count) |
3150 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3151 }
3152 
3153 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3154 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3155 {
3156 	struct buffer_head *head = page_buffers(page);
3157 	struct buffer_head *bh;
3158 
3159 	bh = head;
3160 	do {
3161 		if (buffer_write_io_error(bh) && page->mapping)
3162 			set_bit(AS_EIO, &page->mapping->flags);
3163 		if (buffer_busy(bh))
3164 			goto failed;
3165 		bh = bh->b_this_page;
3166 	} while (bh != head);
3167 
3168 	do {
3169 		struct buffer_head *next = bh->b_this_page;
3170 
3171 		if (bh->b_assoc_map)
3172 			__remove_assoc_queue(bh);
3173 		bh = next;
3174 	} while (bh != head);
3175 	*buffers_to_free = head;
3176 	__clear_page_buffers(page);
3177 	return 1;
3178 failed:
3179 	return 0;
3180 }
3181 
try_to_free_buffers(struct page * page)3182 int try_to_free_buffers(struct page *page)
3183 {
3184 	struct address_space * const mapping = page->mapping;
3185 	struct buffer_head *buffers_to_free = NULL;
3186 	int ret = 0;
3187 
3188 	BUG_ON(!PageLocked(page));
3189 	if (PageWriteback(page))
3190 		return 0;
3191 
3192 	if (mapping == NULL) {		/* can this still happen? */
3193 		ret = drop_buffers(page, &buffers_to_free);
3194 		goto out;
3195 	}
3196 
3197 	spin_lock(&mapping->private_lock);
3198 	ret = drop_buffers(page, &buffers_to_free);
3199 
3200 	/*
3201 	 * If the filesystem writes its buffers by hand (eg ext3)
3202 	 * then we can have clean buffers against a dirty page.  We
3203 	 * clean the page here; otherwise the VM will never notice
3204 	 * that the filesystem did any IO at all.
3205 	 *
3206 	 * Also, during truncate, discard_buffer will have marked all
3207 	 * the page's buffers clean.  We discover that here and clean
3208 	 * the page also.
3209 	 *
3210 	 * private_lock must be held over this entire operation in order
3211 	 * to synchronise against __set_page_dirty_buffers and prevent the
3212 	 * dirty bit from being lost.
3213 	 */
3214 	if (ret)
3215 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3216 	spin_unlock(&mapping->private_lock);
3217 out:
3218 	if (buffers_to_free) {
3219 		struct buffer_head *bh = buffers_to_free;
3220 
3221 		do {
3222 			struct buffer_head *next = bh->b_this_page;
3223 			free_buffer_head(bh);
3224 			bh = next;
3225 		} while (bh != buffers_to_free);
3226 	}
3227 	return ret;
3228 }
3229 EXPORT_SYMBOL(try_to_free_buffers);
3230 
3231 /*
3232  * There are no bdflush tunables left.  But distributions are
3233  * still running obsolete flush daemons, so we terminate them here.
3234  *
3235  * Use of bdflush() is deprecated and will be removed in a future kernel.
3236  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3237  */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3238 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3239 {
3240 	static int msg_count;
3241 
3242 	if (!capable(CAP_SYS_ADMIN))
3243 		return -EPERM;
3244 
3245 	if (msg_count < 5) {
3246 		msg_count++;
3247 		printk(KERN_INFO
3248 			"warning: process `%s' used the obsolete bdflush"
3249 			" system call\n", current->comm);
3250 		printk(KERN_INFO "Fix your initscripts?\n");
3251 	}
3252 
3253 	if (func == 1)
3254 		do_exit(0);
3255 	return 0;
3256 }
3257 
3258 /*
3259  * Buffer-head allocation
3260  */
3261 static struct kmem_cache *bh_cachep __read_mostly;
3262 
3263 /*
3264  * Once the number of bh's in the machine exceeds this level, we start
3265  * stripping them in writeback.
3266  */
3267 static unsigned long max_buffer_heads;
3268 
3269 int buffer_heads_over_limit;
3270 
3271 struct bh_accounting {
3272 	int nr;			/* Number of live bh's */
3273 	int ratelimit;		/* Limit cacheline bouncing */
3274 };
3275 
3276 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3277 
recalc_bh_state(void)3278 static void recalc_bh_state(void)
3279 {
3280 	int i;
3281 	int tot = 0;
3282 
3283 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3284 		return;
3285 	__this_cpu_write(bh_accounting.ratelimit, 0);
3286 	for_each_online_cpu(i)
3287 		tot += per_cpu(bh_accounting, i).nr;
3288 	buffer_heads_over_limit = (tot > max_buffer_heads);
3289 }
3290 
alloc_buffer_head(gfp_t gfp_flags)3291 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3292 {
3293 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3294 	if (ret) {
3295 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3296 		preempt_disable();
3297 		__this_cpu_inc(bh_accounting.nr);
3298 		recalc_bh_state();
3299 		preempt_enable();
3300 	}
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL(alloc_buffer_head);
3304 
free_buffer_head(struct buffer_head * bh)3305 void free_buffer_head(struct buffer_head *bh)
3306 {
3307 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3308 	kmem_cache_free(bh_cachep, bh);
3309 	preempt_disable();
3310 	__this_cpu_dec(bh_accounting.nr);
3311 	recalc_bh_state();
3312 	preempt_enable();
3313 }
3314 EXPORT_SYMBOL(free_buffer_head);
3315 
buffer_exit_cpu(int cpu)3316 static void buffer_exit_cpu(int cpu)
3317 {
3318 	int i;
3319 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3320 
3321 	for (i = 0; i < BH_LRU_SIZE; i++) {
3322 		brelse(b->bhs[i]);
3323 		b->bhs[i] = NULL;
3324 	}
3325 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3326 	per_cpu(bh_accounting, cpu).nr = 0;
3327 }
3328 
buffer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3329 static int buffer_cpu_notify(struct notifier_block *self,
3330 			      unsigned long action, void *hcpu)
3331 {
3332 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3333 		buffer_exit_cpu((unsigned long)hcpu);
3334 	return NOTIFY_OK;
3335 }
3336 
3337 /**
3338  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3339  * @bh: struct buffer_head
3340  *
3341  * Return true if the buffer is up-to-date and false,
3342  * with the buffer locked, if not.
3343  */
bh_uptodate_or_lock(struct buffer_head * bh)3344 int bh_uptodate_or_lock(struct buffer_head *bh)
3345 {
3346 	if (!buffer_uptodate(bh)) {
3347 		lock_buffer(bh);
3348 		if (!buffer_uptodate(bh))
3349 			return 0;
3350 		unlock_buffer(bh);
3351 	}
3352 	return 1;
3353 }
3354 EXPORT_SYMBOL(bh_uptodate_or_lock);
3355 
3356 /**
3357  * bh_submit_read - Submit a locked buffer for reading
3358  * @bh: struct buffer_head
3359  *
3360  * Returns zero on success and -EIO on error.
3361  */
bh_submit_read(struct buffer_head * bh)3362 int bh_submit_read(struct buffer_head *bh)
3363 {
3364 	BUG_ON(!buffer_locked(bh));
3365 
3366 	if (buffer_uptodate(bh)) {
3367 		unlock_buffer(bh);
3368 		return 0;
3369 	}
3370 
3371 	get_bh(bh);
3372 	bh->b_end_io = end_buffer_read_sync;
3373 	submit_bh(READ, bh);
3374 	wait_on_buffer(bh);
3375 	if (buffer_uptodate(bh))
3376 		return 0;
3377 	return -EIO;
3378 }
3379 EXPORT_SYMBOL(bh_submit_read);
3380 
buffer_init(void)3381 void __init buffer_init(void)
3382 {
3383 	unsigned long nrpages;
3384 
3385 	bh_cachep = kmem_cache_create("buffer_head",
3386 			sizeof(struct buffer_head), 0,
3387 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3388 				SLAB_MEM_SPREAD),
3389 				NULL);
3390 
3391 	/*
3392 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3393 	 */
3394 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3395 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3396 	hotcpu_notifier(buffer_cpu_notify, 0);
3397 }
3398