• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40 
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44 
45 #include <trace/events/sched.h>
46 
47 int core_uses_pid;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 unsigned int core_pipe_limit;
50 
51 struct core_name {
52 	char *corename;
53 	int used, size;
54 };
55 static atomic_t call_count = ATOMIC_INIT(1);
56 
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58 
expand_corename(struct core_name * cn)59 static int expand_corename(struct core_name *cn)
60 {
61 	char *old_corename = cn->corename;
62 
63 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
64 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
65 
66 	if (!cn->corename) {
67 		kfree(old_corename);
68 		return -ENOMEM;
69 	}
70 
71 	return 0;
72 }
73 
cn_printf(struct core_name * cn,const char * fmt,...)74 static int cn_printf(struct core_name *cn, const char *fmt, ...)
75 {
76 	char *cur;
77 	int need;
78 	int ret;
79 	va_list arg;
80 
81 	va_start(arg, fmt);
82 	need = vsnprintf(NULL, 0, fmt, arg);
83 	va_end(arg);
84 
85 	if (likely(need < cn->size - cn->used - 1))
86 		goto out_printf;
87 
88 	ret = expand_corename(cn);
89 	if (ret)
90 		goto expand_fail;
91 
92 out_printf:
93 	cur = cn->corename + cn->used;
94 	va_start(arg, fmt);
95 	vsnprintf(cur, need + 1, fmt, arg);
96 	va_end(arg);
97 	cn->used += need;
98 	return 0;
99 
100 expand_fail:
101 	return ret;
102 }
103 
cn_escape(char * str)104 static void cn_escape(char *str)
105 {
106 	for (; *str; str++)
107 		if (*str == '/')
108 			*str = '!';
109 }
110 
cn_print_exe_file(struct core_name * cn)111 static int cn_print_exe_file(struct core_name *cn)
112 {
113 	struct file *exe_file;
114 	char *pathbuf, *path;
115 	int ret;
116 
117 	exe_file = get_mm_exe_file(current->mm);
118 	if (!exe_file) {
119 		char *commstart = cn->corename + cn->used;
120 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
121 		cn_escape(commstart);
122 		return ret;
123 	}
124 
125 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
126 	if (!pathbuf) {
127 		ret = -ENOMEM;
128 		goto put_exe_file;
129 	}
130 
131 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
132 	if (IS_ERR(path)) {
133 		ret = PTR_ERR(path);
134 		goto free_buf;
135 	}
136 
137 	cn_escape(path);
138 
139 	ret = cn_printf(cn, "%s", path);
140 
141 free_buf:
142 	kfree(pathbuf);
143 put_exe_file:
144 	fput(exe_file);
145 	return ret;
146 }
147 
148 /* format_corename will inspect the pattern parameter, and output a
149  * name into corename, which must have space for at least
150  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
151  */
format_corename(struct core_name * cn,struct coredump_params * cprm)152 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
153 {
154 	const struct cred *cred = current_cred();
155 	const char *pat_ptr = core_pattern;
156 	int ispipe = (*pat_ptr == '|');
157 	int pid_in_pattern = 0;
158 	int err = 0;
159 
160 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
161 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
162 	cn->used = 0;
163 
164 	if (!cn->corename)
165 		return -ENOMEM;
166 
167 	/* Repeat as long as we have more pattern to process and more output
168 	   space */
169 	while (*pat_ptr) {
170 		if (*pat_ptr != '%') {
171 			if (*pat_ptr == 0)
172 				goto out;
173 			err = cn_printf(cn, "%c", *pat_ptr++);
174 		} else {
175 			switch (*++pat_ptr) {
176 			/* single % at the end, drop that */
177 			case 0:
178 				goto out;
179 			/* Double percent, output one percent */
180 			case '%':
181 				err = cn_printf(cn, "%c", '%');
182 				break;
183 			/* pid */
184 			case 'p':
185 				pid_in_pattern = 1;
186 				err = cn_printf(cn, "%d",
187 					      task_tgid_vnr(current));
188 				break;
189 			/* uid */
190 			case 'u':
191 				err = cn_printf(cn, "%d", cred->uid);
192 				break;
193 			/* gid */
194 			case 'g':
195 				err = cn_printf(cn, "%d", cred->gid);
196 				break;
197 			case 'd':
198 				err = cn_printf(cn, "%d",
199 					__get_dumpable(cprm->mm_flags));
200 				break;
201 			/* signal that caused the coredump */
202 			case 's':
203 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
204 				break;
205 			/* UNIX time of coredump */
206 			case 't': {
207 				struct timeval tv;
208 				do_gettimeofday(&tv);
209 				err = cn_printf(cn, "%lu", tv.tv_sec);
210 				break;
211 			}
212 			/* hostname */
213 			case 'h': {
214 				char *namestart = cn->corename + cn->used;
215 				down_read(&uts_sem);
216 				err = cn_printf(cn, "%s",
217 					      utsname()->nodename);
218 				up_read(&uts_sem);
219 				cn_escape(namestart);
220 				break;
221 			}
222 			/* executable */
223 			case 'e': {
224 				char *commstart = cn->corename + cn->used;
225 				err = cn_printf(cn, "%s", current->comm);
226 				cn_escape(commstart);
227 				break;
228 			}
229 			case 'E':
230 				err = cn_print_exe_file(cn);
231 				break;
232 			/* core limit size */
233 			case 'c':
234 				err = cn_printf(cn, "%lu",
235 					      rlimit(RLIMIT_CORE));
236 				break;
237 			default:
238 				break;
239 			}
240 			++pat_ptr;
241 		}
242 
243 		if (err)
244 			return err;
245 	}
246 
247 	/* Backward compatibility with core_uses_pid:
248 	 *
249 	 * If core_pattern does not include a %p (as is the default)
250 	 * and core_uses_pid is set, then .%pid will be appended to
251 	 * the filename. Do not do this for piped commands. */
252 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
253 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
254 		if (err)
255 			return err;
256 	}
257 out:
258 	return ispipe;
259 }
260 
zap_process(struct task_struct * start,int exit_code)261 static int zap_process(struct task_struct *start, int exit_code)
262 {
263 	struct task_struct *t;
264 	int nr = 0;
265 
266 	start->signal->group_exit_code = exit_code;
267 	start->signal->group_stop_count = 0;
268 
269 	t = start;
270 	do {
271 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
272 		if (t != current && t->mm) {
273 			sigaddset(&t->pending.signal, SIGKILL);
274 			signal_wake_up(t, 1);
275 			nr++;
276 		}
277 	} while_each_thread(start, t);
278 
279 	return nr;
280 }
281 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)282 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
283 			struct core_state *core_state, int exit_code)
284 {
285 	struct task_struct *g, *p;
286 	unsigned long flags;
287 	int nr = -EAGAIN;
288 
289 	spin_lock_irq(&tsk->sighand->siglock);
290 	if (!signal_group_exit(tsk->signal)) {
291 		mm->core_state = core_state;
292 		nr = zap_process(tsk, exit_code);
293 		tsk->signal->group_exit_task = tsk;
294 		/* ignore all signals except SIGKILL, see prepare_signal() */
295 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
296 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
297 	}
298 	spin_unlock_irq(&tsk->sighand->siglock);
299 	if (unlikely(nr < 0))
300 		return nr;
301 
302 	tsk->flags = PF_DUMPCORE;
303 	if (atomic_read(&mm->mm_users) == nr + 1)
304 		goto done;
305 	/*
306 	 * We should find and kill all tasks which use this mm, and we should
307 	 * count them correctly into ->nr_threads. We don't take tasklist
308 	 * lock, but this is safe wrt:
309 	 *
310 	 * fork:
311 	 *	None of sub-threads can fork after zap_process(leader). All
312 	 *	processes which were created before this point should be
313 	 *	visible to zap_threads() because copy_process() adds the new
314 	 *	process to the tail of init_task.tasks list, and lock/unlock
315 	 *	of ->siglock provides a memory barrier.
316 	 *
317 	 * do_exit:
318 	 *	The caller holds mm->mmap_sem. This means that the task which
319 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
320 	 *	its ->mm.
321 	 *
322 	 * de_thread:
323 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
324 	 *	we must see either old or new leader, this does not matter.
325 	 *	However, it can change p->sighand, so lock_task_sighand(p)
326 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
327 	 *	it can't fail.
328 	 *
329 	 *	Note also that "g" can be the old leader with ->mm == NULL
330 	 *	and already unhashed and thus removed from ->thread_group.
331 	 *	This is OK, __unhash_process()->list_del_rcu() does not
332 	 *	clear the ->next pointer, we will find the new leader via
333 	 *	next_thread().
334 	 */
335 	rcu_read_lock();
336 	for_each_process(g) {
337 		if (g == tsk->group_leader)
338 			continue;
339 		if (g->flags & PF_KTHREAD)
340 			continue;
341 		p = g;
342 		do {
343 			if (p->mm) {
344 				if (unlikely(p->mm == mm)) {
345 					lock_task_sighand(p, &flags);
346 					nr += zap_process(p, exit_code);
347 					p->signal->flags = SIGNAL_GROUP_EXIT;
348 					unlock_task_sighand(p, &flags);
349 				}
350 				break;
351 			}
352 		} while_each_thread(g, p);
353 	}
354 	rcu_read_unlock();
355 done:
356 	atomic_set(&core_state->nr_threads, nr);
357 	return nr;
358 }
359 
coredump_wait(int exit_code,struct core_state * core_state)360 static int coredump_wait(int exit_code, struct core_state *core_state)
361 {
362 	struct task_struct *tsk = current;
363 	struct mm_struct *mm = tsk->mm;
364 	int core_waiters = -EBUSY;
365 
366 	init_completion(&core_state->startup);
367 	core_state->dumper.task = tsk;
368 	core_state->dumper.next = NULL;
369 
370 	down_write(&mm->mmap_sem);
371 	if (!mm->core_state)
372 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
373 	up_write(&mm->mmap_sem);
374 
375 	if (core_waiters > 0) {
376 		struct core_thread *ptr;
377 
378 		wait_for_completion(&core_state->startup);
379 		/*
380 		 * Wait for all the threads to become inactive, so that
381 		 * all the thread context (extended register state, like
382 		 * fpu etc) gets copied to the memory.
383 		 */
384 		ptr = core_state->dumper.next;
385 		while (ptr != NULL) {
386 			wait_task_inactive(ptr->task, 0);
387 			ptr = ptr->next;
388 		}
389 	}
390 
391 	return core_waiters;
392 }
393 
coredump_finish(struct mm_struct * mm,bool core_dumped)394 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
395 {
396 	struct core_thread *curr, *next;
397 	struct task_struct *task;
398 
399 	spin_lock_irq(&current->sighand->siglock);
400 	if (core_dumped && !__fatal_signal_pending(current))
401 		current->signal->group_exit_code |= 0x80;
402 	current->signal->group_exit_task = NULL;
403 	current->signal->flags = SIGNAL_GROUP_EXIT;
404 	spin_unlock_irq(&current->sighand->siglock);
405 
406 	next = mm->core_state->dumper.next;
407 	while ((curr = next) != NULL) {
408 		next = curr->next;
409 		task = curr->task;
410 		/*
411 		 * see exit_mm(), curr->task must not see
412 		 * ->task == NULL before we read ->next.
413 		 */
414 		smp_mb();
415 		curr->task = NULL;
416 		wake_up_process(task);
417 	}
418 
419 	mm->core_state = NULL;
420 }
421 
dump_interrupted(void)422 static bool dump_interrupted(void)
423 {
424 	/*
425 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
426 	 * can do try_to_freeze() and check __fatal_signal_pending(),
427 	 * but then we need to teach dump_write() to restart and clear
428 	 * TIF_SIGPENDING.
429 	 */
430 	return signal_pending(current);
431 }
432 
wait_for_dump_helpers(struct file * file)433 static void wait_for_dump_helpers(struct file *file)
434 {
435 	struct pipe_inode_info *pipe = file->private_data;
436 
437 	pipe_lock(pipe);
438 	pipe->readers++;
439 	pipe->writers--;
440 	wake_up_interruptible_sync(&pipe->wait);
441 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
442 	pipe_unlock(pipe);
443 
444 	/*
445 	 * We actually want wait_event_freezable() but then we need
446 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
447 	 */
448 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
449 
450 	pipe_lock(pipe);
451 	pipe->readers--;
452 	pipe->writers++;
453 	pipe_unlock(pipe);
454 }
455 
456 /*
457  * umh_pipe_setup
458  * helper function to customize the process used
459  * to collect the core in userspace.  Specifically
460  * it sets up a pipe and installs it as fd 0 (stdin)
461  * for the process.  Returns 0 on success, or
462  * PTR_ERR on failure.
463  * Note that it also sets the core limit to 1.  This
464  * is a special value that we use to trap recursive
465  * core dumps
466  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)467 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
468 {
469 	struct file *files[2];
470 	struct coredump_params *cp = (struct coredump_params *)info->data;
471 	int err = create_pipe_files(files, 0);
472 	if (err)
473 		return err;
474 
475 	cp->file = files[1];
476 
477 	err = replace_fd(0, files[0], 0);
478 	fput(files[0]);
479 	/* and disallow core files too */
480 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
481 
482 	return err;
483 }
484 
do_coredump(siginfo_t * siginfo)485 void do_coredump(siginfo_t *siginfo)
486 {
487 	struct core_state core_state;
488 	struct core_name cn;
489 	struct mm_struct *mm = current->mm;
490 	struct linux_binfmt * binfmt;
491 	const struct cred *old_cred;
492 	struct cred *cred;
493 	int retval = 0;
494 	int flag = 0;
495 	int ispipe;
496 	struct files_struct *displaced;
497 	bool need_nonrelative = false;
498 	bool core_dumped = false;
499 	static atomic_t core_dump_count = ATOMIC_INIT(0);
500 	struct coredump_params cprm = {
501 		.siginfo = siginfo,
502 		.regs = signal_pt_regs(),
503 		.limit = rlimit(RLIMIT_CORE),
504 		/*
505 		 * We must use the same mm->flags while dumping core to avoid
506 		 * inconsistency of bit flags, since this flag is not protected
507 		 * by any locks.
508 		 */
509 		.mm_flags = mm->flags,
510 	};
511 
512 	audit_core_dumps(siginfo->si_signo);
513 
514 	binfmt = mm->binfmt;
515 	if (!binfmt || !binfmt->core_dump)
516 		goto fail;
517 	if (!__get_dumpable(cprm.mm_flags))
518 		goto fail;
519 
520 	cred = prepare_creds();
521 	if (!cred)
522 		goto fail;
523 	/*
524 	 * We cannot trust fsuid as being the "true" uid of the process
525 	 * nor do we know its entire history. We only know it was tainted
526 	 * so we dump it as root in mode 2, and only into a controlled
527 	 * environment (pipe handler or fully qualified path).
528 	 */
529 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
530 		/* Setuid core dump mode */
531 		flag = O_EXCL;		/* Stop rewrite attacks */
532 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
533 		need_nonrelative = true;
534 	}
535 
536 	retval = coredump_wait(siginfo->si_signo, &core_state);
537 	if (retval < 0)
538 		goto fail_creds;
539 
540 	old_cred = override_creds(cred);
541 
542 	ispipe = format_corename(&cn, &cprm);
543 
544 	if (ispipe) {
545 		int dump_count;
546 		char **helper_argv;
547 		struct subprocess_info *sub_info;
548 
549 		if (ispipe < 0) {
550 			printk(KERN_WARNING "format_corename failed\n");
551 			printk(KERN_WARNING "Aborting core\n");
552 			goto fail_corename;
553 		}
554 
555 		if (cprm.limit == 1) {
556 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
557 			 *
558 			 * Normally core limits are irrelevant to pipes, since
559 			 * we're not writing to the file system, but we use
560 			 * cprm.limit of 1 here as a speacial value, this is a
561 			 * consistent way to catch recursive crashes.
562 			 * We can still crash if the core_pattern binary sets
563 			 * RLIM_CORE = !1, but it runs as root, and can do
564 			 * lots of stupid things.
565 			 *
566 			 * Note that we use task_tgid_vnr here to grab the pid
567 			 * of the process group leader.  That way we get the
568 			 * right pid if a thread in a multi-threaded
569 			 * core_pattern process dies.
570 			 */
571 			printk(KERN_WARNING
572 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
573 				task_tgid_vnr(current), current->comm);
574 			printk(KERN_WARNING "Aborting core\n");
575 			goto fail_unlock;
576 		}
577 		cprm.limit = RLIM_INFINITY;
578 
579 		dump_count = atomic_inc_return(&core_dump_count);
580 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
581 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
582 			       task_tgid_vnr(current), current->comm);
583 			printk(KERN_WARNING "Skipping core dump\n");
584 			goto fail_dropcount;
585 		}
586 
587 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
588 		if (!helper_argv) {
589 			printk(KERN_WARNING "%s failed to allocate memory\n",
590 			       __func__);
591 			goto fail_dropcount;
592 		}
593 
594 		retval = -ENOMEM;
595 		sub_info = call_usermodehelper_setup(helper_argv[0],
596 						helper_argv, NULL, GFP_KERNEL,
597 						umh_pipe_setup, NULL, &cprm);
598 		if (sub_info)
599 			retval = call_usermodehelper_exec(sub_info,
600 							  UMH_WAIT_EXEC);
601 
602 		argv_free(helper_argv);
603 		if (retval) {
604 			printk(KERN_INFO "Core dump to %s pipe failed\n",
605 			       cn.corename);
606 			goto close_fail;
607 		}
608 	} else {
609 		struct inode *inode;
610 
611 		if (cprm.limit < binfmt->min_coredump)
612 			goto fail_unlock;
613 
614 		if (need_nonrelative && cn.corename[0] != '/') {
615 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
616 				"to fully qualified path!\n",
617 				task_tgid_vnr(current), current->comm);
618 			printk(KERN_WARNING "Skipping core dump\n");
619 			goto fail_unlock;
620 		}
621 
622 		cprm.file = filp_open(cn.corename,
623 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
624 				 0600);
625 		if (IS_ERR(cprm.file))
626 			goto fail_unlock;
627 
628 		inode = file_inode(cprm.file);
629 		if (inode->i_nlink > 1)
630 			goto close_fail;
631 		if (d_unhashed(cprm.file->f_path.dentry))
632 			goto close_fail;
633 		/*
634 		 * AK: actually i see no reason to not allow this for named
635 		 * pipes etc, but keep the previous behaviour for now.
636 		 */
637 		if (!S_ISREG(inode->i_mode))
638 			goto close_fail;
639 		/*
640 		 * Dont allow local users get cute and trick others to coredump
641 		 * into their pre-created files.
642 		 */
643 		if (!uid_eq(inode->i_uid, current_fsuid()))
644 			goto close_fail;
645 		if (!cprm.file->f_op || !cprm.file->f_op->write)
646 			goto close_fail;
647 		if (do_truncate2(cprm.file->f_path.mnt, cprm.file->f_path.dentry, 0, 0, cprm.file))
648 			goto close_fail;
649 	}
650 
651 	/* get us an unshared descriptor table; almost always a no-op */
652 	retval = unshare_files(&displaced);
653 	if (retval)
654 		goto close_fail;
655 	if (displaced)
656 		put_files_struct(displaced);
657 	if (!dump_interrupted()) {
658 		file_start_write(cprm.file);
659 		core_dumped = binfmt->core_dump(&cprm);
660 		file_end_write(cprm.file);
661 	}
662 	if (ispipe && core_pipe_limit)
663 		wait_for_dump_helpers(cprm.file);
664 close_fail:
665 	if (cprm.file)
666 		filp_close(cprm.file, NULL);
667 fail_dropcount:
668 	if (ispipe)
669 		atomic_dec(&core_dump_count);
670 fail_unlock:
671 	kfree(cn.corename);
672 fail_corename:
673 	coredump_finish(mm, core_dumped);
674 	revert_creds(old_cred);
675 fail_creds:
676 	put_cred(cred);
677 fail:
678 	return;
679 }
680 
681 /*
682  * Core dumping helper functions.  These are the only things you should
683  * do on a core-file: use only these functions to write out all the
684  * necessary info.
685  */
dump_write(struct file * file,const void * addr,int nr)686 int dump_write(struct file *file, const void *addr, int nr)
687 {
688 	return !dump_interrupted() &&
689 		access_ok(VERIFY_READ, addr, nr) &&
690 		file->f_op->write(file, addr, nr, &file->f_pos) == nr;
691 }
692 EXPORT_SYMBOL(dump_write);
693 
dump_seek(struct file * file,loff_t off)694 int dump_seek(struct file *file, loff_t off)
695 {
696 	int ret = 1;
697 
698 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
699 		if (dump_interrupted() ||
700 		    file->f_op->llseek(file, off, SEEK_CUR) < 0)
701 			return 0;
702 	} else {
703 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
704 
705 		if (!buf)
706 			return 0;
707 		while (off > 0) {
708 			unsigned long n = off;
709 
710 			if (n > PAGE_SIZE)
711 				n = PAGE_SIZE;
712 			if (!dump_write(file, buf, n)) {
713 				ret = 0;
714 				break;
715 			}
716 			off -= n;
717 		}
718 		free_page((unsigned long)buf);
719 	}
720 	return ret;
721 }
722 EXPORT_SYMBOL(dump_seek);
723