1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
get_nr_dentry(void)123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
proc_nr_dentry(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
__d_free(struct rcu_head * head)217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
d_free(struct dentry * dentry)230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
dentry_rcuwalk_barrier(struct dentry * dentry)251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
dentry_iput(struct dentry * dentry)263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
dentry_unlink_inode(struct dentry * dentry)288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
dentry_lru_add(struct dentry * dentry)309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
__dentry_lru_del(struct dentry * dentry)320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
dentry_lru_del(struct dentry * dentry)331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
dentry_lru_move_list(struct dentry * dentry,struct list_head * list)340 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
341 {
342 spin_lock(&dcache_lru_lock);
343 if (list_empty(&dentry->d_lru)) {
344 list_add_tail(&dentry->d_lru, list);
345 dentry->d_sb->s_nr_dentry_unused++;
346 dentry_stat.nr_unused++;
347 } else {
348 list_move_tail(&dentry->d_lru, list);
349 }
350 spin_unlock(&dcache_lru_lock);
351 }
352
353 /**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
357 *
358 * The dentry must already be unhashed and removed from the LRU.
359 *
360 * If this is the root of the dentry tree, return NULL.
361 *
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
364 */
d_kill(struct dentry * dentry,struct dentry * parent)365 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
366 __releases(dentry->d_lock)
367 __releases(parent->d_lock)
368 __releases(dentry->d_inode->i_lock)
369 {
370 list_del(&dentry->d_u.d_child);
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
376 if (parent)
377 spin_unlock(&parent->d_lock);
378 dentry_iput(dentry);
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
383 d_free(dentry);
384 return parent;
385 }
386
387 /*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
__d_shrink(struct dentry * dentry)392 static void __d_shrink(struct dentry *dentry)
393 {
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406 }
407
408 /**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
__d_drop(struct dentry * dentry)423 void __d_drop(struct dentry *dentry)
424 {
425 if (!d_unhashed(dentry)) {
426 __d_shrink(dentry);
427 dentry_rcuwalk_barrier(dentry);
428 }
429 }
430 EXPORT_SYMBOL(__d_drop);
431
d_drop(struct dentry * dentry)432 void d_drop(struct dentry *dentry)
433 {
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
437 }
438 EXPORT_SYMBOL(d_drop);
439
440 /*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
dentry_kill(struct dentry * dentry,int ref)446 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448 {
449 struct inode *inode;
450 struct dentry *parent;
451
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
454 relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
464 if (inode)
465 spin_unlock(&inode->i_lock);
466 goto relock;
467 }
468
469 if (ref)
470 dentry->d_count--;
471 /*
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
475 if (dentry->d_flags & DCACHE_OP_PRUNE)
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482 }
483
484 /*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501 /*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
509 */
dput(struct dentry * dentry)510 void dput(struct dentry *dentry)
511 {
512 if (!dentry)
513 return;
514
515 repeat:
516 if (dentry->d_count == 1)
517 might_sleep();
518 spin_lock(&dentry->d_lock);
519 BUG_ON(!dentry->d_count);
520 if (dentry->d_count > 1) {
521 dentry->d_count--;
522 spin_unlock(&dentry->d_lock);
523 return;
524 }
525
526 if (dentry->d_flags & DCACHE_OP_DELETE) {
527 if (dentry->d_op->d_delete(dentry))
528 goto kill_it;
529 }
530
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry))
533 goto kill_it;
534
535 dentry->d_flags |= DCACHE_REFERENCED;
536 dentry_lru_add(dentry);
537
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
540 return;
541
542 kill_it:
543 dentry = dentry_kill(dentry, 1);
544 if (dentry)
545 goto repeat;
546 }
547 EXPORT_SYMBOL(dput);
548
549 /**
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
552 *
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
557 *
558 * no dcache lock.
559 */
560
d_invalidate(struct dentry * dentry)561 int d_invalidate(struct dentry * dentry)
562 {
563 /*
564 * If it's already been dropped, return OK.
565 */
566 spin_lock(&dentry->d_lock);
567 if (d_unhashed(dentry)) {
568 spin_unlock(&dentry->d_lock);
569 return 0;
570 }
571 /*
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
574 */
575 if (!list_empty(&dentry->d_subdirs)) {
576 spin_unlock(&dentry->d_lock);
577 shrink_dcache_parent(dentry);
578 spin_lock(&dentry->d_lock);
579 }
580
581 /*
582 * Somebody else still using it?
583 *
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
590 * We also need to leave mountpoints alone,
591 * directory or not.
592 */
593 if (dentry->d_count > 1 && dentry->d_inode) {
594 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
595 spin_unlock(&dentry->d_lock);
596 return -EBUSY;
597 }
598 }
599
600 __d_drop(dentry);
601 spin_unlock(&dentry->d_lock);
602 return 0;
603 }
604 EXPORT_SYMBOL(d_invalidate);
605
606 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)607 static inline void __dget_dlock(struct dentry *dentry)
608 {
609 dentry->d_count++;
610 }
611
__dget(struct dentry * dentry)612 static inline void __dget(struct dentry *dentry)
613 {
614 spin_lock(&dentry->d_lock);
615 __dget_dlock(dentry);
616 spin_unlock(&dentry->d_lock);
617 }
618
dget_parent(struct dentry * dentry)619 struct dentry *dget_parent(struct dentry *dentry)
620 {
621 struct dentry *ret;
622
623 repeat:
624 /*
625 * Don't need rcu_dereference because we re-check it was correct under
626 * the lock.
627 */
628 rcu_read_lock();
629 ret = dentry->d_parent;
630 spin_lock(&ret->d_lock);
631 if (unlikely(ret != dentry->d_parent)) {
632 spin_unlock(&ret->d_lock);
633 rcu_read_unlock();
634 goto repeat;
635 }
636 rcu_read_unlock();
637 BUG_ON(!ret->d_count);
638 ret->d_count++;
639 spin_unlock(&ret->d_lock);
640 return ret;
641 }
642 EXPORT_SYMBOL(dget_parent);
643
644 /**
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
649 *
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
654 * of a filesystem.
655 *
656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
659 */
__d_find_alias(struct inode * inode,int want_discon)660 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
661 {
662 struct dentry *alias, *discon_alias;
663
664 again:
665 discon_alias = NULL;
666 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
667 spin_lock(&alias->d_lock);
668 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
669 if (IS_ROOT(alias) &&
670 (alias->d_flags & DCACHE_DISCONNECTED)) {
671 discon_alias = alias;
672 } else if (!want_discon) {
673 __dget_dlock(alias);
674 spin_unlock(&alias->d_lock);
675 return alias;
676 }
677 }
678 spin_unlock(&alias->d_lock);
679 }
680 if (discon_alias) {
681 alias = discon_alias;
682 spin_lock(&alias->d_lock);
683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 if (IS_ROOT(alias) &&
685 (alias->d_flags & DCACHE_DISCONNECTED)) {
686 __dget_dlock(alias);
687 spin_unlock(&alias->d_lock);
688 return alias;
689 }
690 }
691 spin_unlock(&alias->d_lock);
692 goto again;
693 }
694 return NULL;
695 }
696
d_find_alias(struct inode * inode)697 struct dentry *d_find_alias(struct inode *inode)
698 {
699 struct dentry *de = NULL;
700
701 if (!hlist_empty(&inode->i_dentry)) {
702 spin_lock(&inode->i_lock);
703 de = __d_find_alias(inode, 0);
704 spin_unlock(&inode->i_lock);
705 }
706 return de;
707 }
708 EXPORT_SYMBOL(d_find_alias);
709
710 /*
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
713 */
d_prune_aliases(struct inode * inode)714 void d_prune_aliases(struct inode *inode)
715 {
716 struct dentry *dentry;
717 restart:
718 spin_lock(&inode->i_lock);
719 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
720 spin_lock(&dentry->d_lock);
721 if (!dentry->d_count) {
722 __dget_dlock(dentry);
723 __d_drop(dentry);
724 spin_unlock(&dentry->d_lock);
725 spin_unlock(&inode->i_lock);
726 dput(dentry);
727 goto restart;
728 }
729 spin_unlock(&dentry->d_lock);
730 }
731 spin_unlock(&inode->i_lock);
732 }
733 EXPORT_SYMBOL(d_prune_aliases);
734
735 /*
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
739 *
740 * This may fail if locks cannot be acquired no problem, just try again.
741 */
try_prune_one_dentry(struct dentry * dentry)742 static void try_prune_one_dentry(struct dentry *dentry)
743 __releases(dentry->d_lock)
744 {
745 struct dentry *parent;
746
747 parent = dentry_kill(dentry, 0);
748 /*
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
752 *
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
756 * fragmentation.
757 */
758 if (!parent)
759 return;
760 if (parent == dentry)
761 return;
762
763 /* Prune ancestors. */
764 dentry = parent;
765 while (dentry) {
766 spin_lock(&dentry->d_lock);
767 if (dentry->d_count > 1) {
768 dentry->d_count--;
769 spin_unlock(&dentry->d_lock);
770 return;
771 }
772 dentry = dentry_kill(dentry, 1);
773 }
774 }
775
shrink_dentry_list(struct list_head * list)776 static void shrink_dentry_list(struct list_head *list)
777 {
778 struct dentry *dentry;
779
780 rcu_read_lock();
781 for (;;) {
782 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
783 if (&dentry->d_lru == list)
784 break; /* empty */
785 spin_lock(&dentry->d_lock);
786 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
787 spin_unlock(&dentry->d_lock);
788 continue;
789 }
790
791 /*
792 * We found an inuse dentry which was not removed from
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
795 */
796 if (dentry->d_count) {
797 dentry_lru_del(dentry);
798 spin_unlock(&dentry->d_lock);
799 continue;
800 }
801
802 rcu_read_unlock();
803
804 try_prune_one_dentry(dentry);
805
806 rcu_read_lock();
807 }
808 rcu_read_unlock();
809 }
810
811 /**
812 * prune_dcache_sb - shrink the dcache
813 * @sb: superblock
814 * @count: number of entries to try to free
815 *
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
818 * function.
819 *
820 * This function may fail to free any resources if all the dentries are in
821 * use.
822 */
prune_dcache_sb(struct super_block * sb,int count)823 void prune_dcache_sb(struct super_block *sb, int count)
824 {
825 struct dentry *dentry;
826 LIST_HEAD(referenced);
827 LIST_HEAD(tmp);
828
829 relock:
830 spin_lock(&dcache_lru_lock);
831 while (!list_empty(&sb->s_dentry_lru)) {
832 dentry = list_entry(sb->s_dentry_lru.prev,
833 struct dentry, d_lru);
834 BUG_ON(dentry->d_sb != sb);
835
836 if (!spin_trylock(&dentry->d_lock)) {
837 spin_unlock(&dcache_lru_lock);
838 cpu_relax();
839 goto relock;
840 }
841
842 if (dentry->d_flags & DCACHE_REFERENCED) {
843 dentry->d_flags &= ~DCACHE_REFERENCED;
844 list_move(&dentry->d_lru, &referenced);
845 spin_unlock(&dentry->d_lock);
846 } else {
847 list_move_tail(&dentry->d_lru, &tmp);
848 dentry->d_flags |= DCACHE_SHRINK_LIST;
849 spin_unlock(&dentry->d_lock);
850 if (!--count)
851 break;
852 }
853 cond_resched_lock(&dcache_lru_lock);
854 }
855 if (!list_empty(&referenced))
856 list_splice(&referenced, &sb->s_dentry_lru);
857 spin_unlock(&dcache_lru_lock);
858
859 shrink_dentry_list(&tmp);
860 }
861
862 /**
863 * shrink_dcache_sb - shrink dcache for a superblock
864 * @sb: superblock
865 *
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
868 */
shrink_dcache_sb(struct super_block * sb)869 void shrink_dcache_sb(struct super_block *sb)
870 {
871 LIST_HEAD(tmp);
872
873 spin_lock(&dcache_lru_lock);
874 while (!list_empty(&sb->s_dentry_lru)) {
875 list_splice_init(&sb->s_dentry_lru, &tmp);
876 spin_unlock(&dcache_lru_lock);
877 shrink_dentry_list(&tmp);
878 spin_lock(&dcache_lru_lock);
879 }
880 spin_unlock(&dcache_lru_lock);
881 }
882 EXPORT_SYMBOL(shrink_dcache_sb);
883
884 /*
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
887 * locking
888 */
shrink_dcache_for_umount_subtree(struct dentry * dentry)889 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
890 {
891 struct dentry *parent;
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 for (;;) {
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry->d_subdirs))
898 dentry = list_entry(dentry->d_subdirs.next,
899 struct dentry, d_u.d_child);
900
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
903 do {
904 struct inode *inode;
905
906 /*
907 * inform the fs that this dentry is about to be
908 * unhashed and destroyed.
909 */
910 if (dentry->d_flags & DCACHE_OP_PRUNE)
911 dentry->d_op->d_prune(dentry);
912
913 dentry_lru_del(dentry);
914 __d_shrink(dentry);
915
916 if (dentry->d_count != 0) {
917 printk(KERN_ERR
918 "BUG: Dentry %p{i=%lx,n=%s}"
919 " still in use (%d)"
920 " [unmount of %s %s]\n",
921 dentry,
922 dentry->d_inode ?
923 dentry->d_inode->i_ino : 0UL,
924 dentry->d_name.name,
925 dentry->d_count,
926 dentry->d_sb->s_type->name,
927 dentry->d_sb->s_id);
928 BUG();
929 }
930
931 if (IS_ROOT(dentry)) {
932 parent = NULL;
933 list_del(&dentry->d_u.d_child);
934 } else {
935 parent = dentry->d_parent;
936 parent->d_count--;
937 list_del(&dentry->d_u.d_child);
938 }
939
940 inode = dentry->d_inode;
941 if (inode) {
942 dentry->d_inode = NULL;
943 hlist_del_init(&dentry->d_alias);
944 if (dentry->d_op && dentry->d_op->d_iput)
945 dentry->d_op->d_iput(dentry, inode);
946 else
947 iput(inode);
948 }
949
950 d_free(dentry);
951
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
955 if (!parent)
956 return;
957 dentry = parent;
958 } while (list_empty(&dentry->d_subdirs));
959
960 dentry = list_entry(dentry->d_subdirs.next,
961 struct dentry, d_u.d_child);
962 }
963 }
964
965 /*
966 * destroy the dentries attached to a superblock on unmounting
967 * - we don't need to use dentry->d_lock because:
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
973 * in this superblock
974 */
shrink_dcache_for_umount(struct super_block * sb)975 void shrink_dcache_for_umount(struct super_block *sb)
976 {
977 struct dentry *dentry;
978
979 if (down_read_trylock(&sb->s_umount))
980 BUG();
981
982 dentry = sb->s_root;
983 sb->s_root = NULL;
984 dentry->d_count--;
985 shrink_dcache_for_umount_subtree(dentry);
986
987 while (!hlist_bl_empty(&sb->s_anon)) {
988 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
989 shrink_dcache_for_umount_subtree(dentry);
990 }
991 }
992
993 /*
994 * This tries to ascend one level of parenthood, but
995 * we can race with renaming, so we need to re-check
996 * the parenthood after dropping the lock and check
997 * that the sequence number still matches.
998 */
try_to_ascend(struct dentry * old,int locked,unsigned seq)999 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1000 {
1001 struct dentry *new = old->d_parent;
1002
1003 rcu_read_lock();
1004 spin_unlock(&old->d_lock);
1005 spin_lock(&new->d_lock);
1006
1007 /*
1008 * might go back up the wrong parent if we have had a rename
1009 * or deletion
1010 */
1011 if (new != old->d_parent ||
1012 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1013 (!locked && read_seqretry(&rename_lock, seq))) {
1014 spin_unlock(&new->d_lock);
1015 new = NULL;
1016 }
1017 rcu_read_unlock();
1018 return new;
1019 }
1020
1021
1022 /*
1023 * Search for at least 1 mount point in the dentry's subdirs.
1024 * We descend to the next level whenever the d_subdirs
1025 * list is non-empty and continue searching.
1026 */
1027
1028 /**
1029 * have_submounts - check for mounts over a dentry
1030 * @parent: dentry to check.
1031 *
1032 * Return true if the parent or its subdirectories contain
1033 * a mount point
1034 */
have_submounts(struct dentry * parent)1035 int have_submounts(struct dentry *parent)
1036 {
1037 struct dentry *this_parent;
1038 struct list_head *next;
1039 unsigned seq;
1040 int locked = 0;
1041
1042 seq = read_seqbegin(&rename_lock);
1043 again:
1044 this_parent = parent;
1045
1046 if (d_mountpoint(parent))
1047 goto positive;
1048 spin_lock(&this_parent->d_lock);
1049 repeat:
1050 next = this_parent->d_subdirs.next;
1051 resume:
1052 while (next != &this_parent->d_subdirs) {
1053 struct list_head *tmp = next;
1054 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1055 next = tmp->next;
1056
1057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1058 /* Have we found a mount point ? */
1059 if (d_mountpoint(dentry)) {
1060 spin_unlock(&dentry->d_lock);
1061 spin_unlock(&this_parent->d_lock);
1062 goto positive;
1063 }
1064 if (!list_empty(&dentry->d_subdirs)) {
1065 spin_unlock(&this_parent->d_lock);
1066 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1067 this_parent = dentry;
1068 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1069 goto repeat;
1070 }
1071 spin_unlock(&dentry->d_lock);
1072 }
1073 /*
1074 * All done at this level ... ascend and resume the search.
1075 */
1076 if (this_parent != parent) {
1077 struct dentry *child = this_parent;
1078 this_parent = try_to_ascend(this_parent, locked, seq);
1079 if (!this_parent)
1080 goto rename_retry;
1081 next = child->d_u.d_child.next;
1082 goto resume;
1083 }
1084 spin_unlock(&this_parent->d_lock);
1085 if (!locked && read_seqretry(&rename_lock, seq))
1086 goto rename_retry;
1087 if (locked)
1088 write_sequnlock(&rename_lock);
1089 return 0; /* No mount points found in tree */
1090 positive:
1091 if (!locked && read_seqretry(&rename_lock, seq))
1092 goto rename_retry;
1093 if (locked)
1094 write_sequnlock(&rename_lock);
1095 return 1;
1096
1097 rename_retry:
1098 if (locked)
1099 goto again;
1100 locked = 1;
1101 write_seqlock(&rename_lock);
1102 goto again;
1103 }
1104 EXPORT_SYMBOL(have_submounts);
1105
1106 /*
1107 * Search the dentry child list of the specified parent,
1108 * and move any unused dentries to the end of the unused
1109 * list for prune_dcache(). We descend to the next level
1110 * whenever the d_subdirs list is non-empty and continue
1111 * searching.
1112 *
1113 * It returns zero iff there are no unused children,
1114 * otherwise it returns the number of children moved to
1115 * the end of the unused list. This may not be the total
1116 * number of unused children, because select_parent can
1117 * drop the lock and return early due to latency
1118 * constraints.
1119 */
select_parent(struct dentry * parent,struct list_head * dispose)1120 static int select_parent(struct dentry *parent, struct list_head *dispose)
1121 {
1122 struct dentry *this_parent;
1123 struct list_head *next;
1124 unsigned seq;
1125 int found = 0;
1126 int locked = 0;
1127
1128 seq = read_seqbegin(&rename_lock);
1129 again:
1130 this_parent = parent;
1131 spin_lock(&this_parent->d_lock);
1132 repeat:
1133 next = this_parent->d_subdirs.next;
1134 resume:
1135 while (next != &this_parent->d_subdirs) {
1136 struct list_head *tmp = next;
1137 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1138 next = tmp->next;
1139
1140 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1141
1142 /*
1143 * move only zero ref count dentries to the dispose list.
1144 *
1145 * Those which are presently on the shrink list, being processed
1146 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1147 * loop in shrink_dcache_parent() might not make any progress
1148 * and loop forever.
1149 */
1150 if (dentry->d_count) {
1151 dentry_lru_del(dentry);
1152 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1153 dentry_lru_move_list(dentry, dispose);
1154 dentry->d_flags |= DCACHE_SHRINK_LIST;
1155 found++;
1156 }
1157 /*
1158 * We can return to the caller if we have found some (this
1159 * ensures forward progress). We'll be coming back to find
1160 * the rest.
1161 */
1162 if (found && need_resched()) {
1163 spin_unlock(&dentry->d_lock);
1164 goto out;
1165 }
1166
1167 /*
1168 * Descend a level if the d_subdirs list is non-empty.
1169 */
1170 if (!list_empty(&dentry->d_subdirs)) {
1171 spin_unlock(&this_parent->d_lock);
1172 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1173 this_parent = dentry;
1174 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1175 goto repeat;
1176 }
1177
1178 spin_unlock(&dentry->d_lock);
1179 }
1180 /*
1181 * All done at this level ... ascend and resume the search.
1182 */
1183 if (this_parent != parent) {
1184 struct dentry *child = this_parent;
1185 this_parent = try_to_ascend(this_parent, locked, seq);
1186 if (!this_parent)
1187 goto rename_retry;
1188 next = child->d_u.d_child.next;
1189 goto resume;
1190 }
1191 out:
1192 spin_unlock(&this_parent->d_lock);
1193 if (!locked && read_seqretry(&rename_lock, seq))
1194 goto rename_retry;
1195 if (locked)
1196 write_sequnlock(&rename_lock);
1197 return found;
1198
1199 rename_retry:
1200 if (found)
1201 return found;
1202 if (locked)
1203 goto again;
1204 locked = 1;
1205 write_seqlock(&rename_lock);
1206 goto again;
1207 }
1208
1209 /**
1210 * shrink_dcache_parent - prune dcache
1211 * @parent: parent of entries to prune
1212 *
1213 * Prune the dcache to remove unused children of the parent dentry.
1214 */
shrink_dcache_parent(struct dentry * parent)1215 void shrink_dcache_parent(struct dentry * parent)
1216 {
1217 LIST_HEAD(dispose);
1218 int found;
1219
1220 while ((found = select_parent(parent, &dispose)) != 0) {
1221 shrink_dentry_list(&dispose);
1222 cond_resched();
1223 }
1224 }
1225 EXPORT_SYMBOL(shrink_dcache_parent);
1226
1227 /**
1228 * __d_alloc - allocate a dcache entry
1229 * @sb: filesystem it will belong to
1230 * @name: qstr of the name
1231 *
1232 * Allocates a dentry. It returns %NULL if there is insufficient memory
1233 * available. On a success the dentry is returned. The name passed in is
1234 * copied and the copy passed in may be reused after this call.
1235 */
1236
__d_alloc(struct super_block * sb,const struct qstr * name)1237 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1238 {
1239 struct dentry *dentry;
1240 char *dname;
1241
1242 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1243 if (!dentry)
1244 return NULL;
1245
1246 /*
1247 * We guarantee that the inline name is always NUL-terminated.
1248 * This way the memcpy() done by the name switching in rename
1249 * will still always have a NUL at the end, even if we might
1250 * be overwriting an internal NUL character
1251 */
1252 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1253 if (name->len > DNAME_INLINE_LEN-1) {
1254 dname = kmalloc(name->len + 1, GFP_KERNEL);
1255 if (!dname) {
1256 kmem_cache_free(dentry_cache, dentry);
1257 return NULL;
1258 }
1259 } else {
1260 dname = dentry->d_iname;
1261 }
1262
1263 dentry->d_name.len = name->len;
1264 dentry->d_name.hash = name->hash;
1265 memcpy(dname, name->name, name->len);
1266 dname[name->len] = 0;
1267
1268 /* Make sure we always see the terminating NUL character */
1269 smp_wmb();
1270 dentry->d_name.name = dname;
1271
1272 dentry->d_count = 1;
1273 dentry->d_flags = 0;
1274 spin_lock_init(&dentry->d_lock);
1275 seqcount_init(&dentry->d_seq);
1276 dentry->d_inode = NULL;
1277 dentry->d_parent = dentry;
1278 dentry->d_sb = sb;
1279 dentry->d_op = NULL;
1280 dentry->d_fsdata = NULL;
1281 INIT_HLIST_BL_NODE(&dentry->d_hash);
1282 INIT_LIST_HEAD(&dentry->d_lru);
1283 INIT_LIST_HEAD(&dentry->d_subdirs);
1284 INIT_HLIST_NODE(&dentry->d_alias);
1285 INIT_LIST_HEAD(&dentry->d_u.d_child);
1286 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1287
1288 this_cpu_inc(nr_dentry);
1289
1290 return dentry;
1291 }
1292
1293 /**
1294 * d_alloc - allocate a dcache entry
1295 * @parent: parent of entry to allocate
1296 * @name: qstr of the name
1297 *
1298 * Allocates a dentry. It returns %NULL if there is insufficient memory
1299 * available. On a success the dentry is returned. The name passed in is
1300 * copied and the copy passed in may be reused after this call.
1301 */
d_alloc(struct dentry * parent,const struct qstr * name)1302 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1303 {
1304 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1305 if (!dentry)
1306 return NULL;
1307
1308 spin_lock(&parent->d_lock);
1309 /*
1310 * don't need child lock because it is not subject
1311 * to concurrency here
1312 */
1313 __dget_dlock(parent);
1314 dentry->d_parent = parent;
1315 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1316 spin_unlock(&parent->d_lock);
1317
1318 return dentry;
1319 }
1320 EXPORT_SYMBOL(d_alloc);
1321
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1322 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1323 {
1324 struct dentry *dentry = __d_alloc(sb, name);
1325 if (dentry)
1326 dentry->d_flags |= DCACHE_DISCONNECTED;
1327 return dentry;
1328 }
1329 EXPORT_SYMBOL(d_alloc_pseudo);
1330
d_alloc_name(struct dentry * parent,const char * name)1331 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1332 {
1333 struct qstr q;
1334
1335 q.name = name;
1336 q.len = strlen(name);
1337 q.hash = full_name_hash(q.name, q.len);
1338 return d_alloc(parent, &q);
1339 }
1340 EXPORT_SYMBOL(d_alloc_name);
1341
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1342 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1343 {
1344 WARN_ON_ONCE(dentry->d_op);
1345 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1346 DCACHE_OP_COMPARE |
1347 DCACHE_OP_REVALIDATE |
1348 DCACHE_OP_WEAK_REVALIDATE |
1349 DCACHE_OP_DELETE ));
1350 dentry->d_op = op;
1351 if (!op)
1352 return;
1353 if (op->d_hash)
1354 dentry->d_flags |= DCACHE_OP_HASH;
1355 if (op->d_compare)
1356 dentry->d_flags |= DCACHE_OP_COMPARE;
1357 if (op->d_revalidate)
1358 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1359 if (op->d_weak_revalidate)
1360 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1361 if (op->d_delete)
1362 dentry->d_flags |= DCACHE_OP_DELETE;
1363 if (op->d_prune)
1364 dentry->d_flags |= DCACHE_OP_PRUNE;
1365
1366 }
1367 EXPORT_SYMBOL(d_set_d_op);
1368
__d_instantiate(struct dentry * dentry,struct inode * inode)1369 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1370 {
1371 spin_lock(&dentry->d_lock);
1372 if (inode) {
1373 if (unlikely(IS_AUTOMOUNT(inode)))
1374 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1375 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1376 }
1377 dentry->d_inode = inode;
1378 dentry_rcuwalk_barrier(dentry);
1379 spin_unlock(&dentry->d_lock);
1380 fsnotify_d_instantiate(dentry, inode);
1381 }
1382
1383 /**
1384 * d_instantiate - fill in inode information for a dentry
1385 * @entry: dentry to complete
1386 * @inode: inode to attach to this dentry
1387 *
1388 * Fill in inode information in the entry.
1389 *
1390 * This turns negative dentries into productive full members
1391 * of society.
1392 *
1393 * NOTE! This assumes that the inode count has been incremented
1394 * (or otherwise set) by the caller to indicate that it is now
1395 * in use by the dcache.
1396 */
1397
d_instantiate(struct dentry * entry,struct inode * inode)1398 void d_instantiate(struct dentry *entry, struct inode * inode)
1399 {
1400 BUG_ON(!hlist_unhashed(&entry->d_alias));
1401 if (inode)
1402 spin_lock(&inode->i_lock);
1403 __d_instantiate(entry, inode);
1404 if (inode)
1405 spin_unlock(&inode->i_lock);
1406 security_d_instantiate(entry, inode);
1407 }
1408 EXPORT_SYMBOL(d_instantiate);
1409
1410 /**
1411 * d_instantiate_unique - instantiate a non-aliased dentry
1412 * @entry: dentry to instantiate
1413 * @inode: inode to attach to this dentry
1414 *
1415 * Fill in inode information in the entry. On success, it returns NULL.
1416 * If an unhashed alias of "entry" already exists, then we return the
1417 * aliased dentry instead and drop one reference to inode.
1418 *
1419 * Note that in order to avoid conflicts with rename() etc, the caller
1420 * had better be holding the parent directory semaphore.
1421 *
1422 * This also assumes that the inode count has been incremented
1423 * (or otherwise set) by the caller to indicate that it is now
1424 * in use by the dcache.
1425 */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1426 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1427 struct inode *inode)
1428 {
1429 struct dentry *alias;
1430 int len = entry->d_name.len;
1431 const char *name = entry->d_name.name;
1432 unsigned int hash = entry->d_name.hash;
1433
1434 if (!inode) {
1435 __d_instantiate(entry, NULL);
1436 return NULL;
1437 }
1438
1439 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1440 /*
1441 * Don't need alias->d_lock here, because aliases with
1442 * d_parent == entry->d_parent are not subject to name or
1443 * parent changes, because the parent inode i_mutex is held.
1444 */
1445 if (alias->d_name.hash != hash)
1446 continue;
1447 if (alias->d_parent != entry->d_parent)
1448 continue;
1449 if (alias->d_name.len != len)
1450 continue;
1451 if (dentry_cmp(alias, name, len))
1452 continue;
1453 __dget(alias);
1454 return alias;
1455 }
1456
1457 __d_instantiate(entry, inode);
1458 return NULL;
1459 }
1460
d_instantiate_unique(struct dentry * entry,struct inode * inode)1461 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1462 {
1463 struct dentry *result;
1464
1465 BUG_ON(!hlist_unhashed(&entry->d_alias));
1466
1467 if (inode)
1468 spin_lock(&inode->i_lock);
1469 result = __d_instantiate_unique(entry, inode);
1470 if (inode)
1471 spin_unlock(&inode->i_lock);
1472
1473 if (!result) {
1474 security_d_instantiate(entry, inode);
1475 return NULL;
1476 }
1477
1478 BUG_ON(!d_unhashed(result));
1479 iput(inode);
1480 return result;
1481 }
1482
1483 EXPORT_SYMBOL(d_instantiate_unique);
1484
d_make_root(struct inode * root_inode)1485 struct dentry *d_make_root(struct inode *root_inode)
1486 {
1487 struct dentry *res = NULL;
1488
1489 if (root_inode) {
1490 static const struct qstr name = QSTR_INIT("/", 1);
1491
1492 res = __d_alloc(root_inode->i_sb, &name);
1493 if (res)
1494 d_instantiate(res, root_inode);
1495 else
1496 iput(root_inode);
1497 }
1498 return res;
1499 }
1500 EXPORT_SYMBOL(d_make_root);
1501
__d_find_any_alias(struct inode * inode)1502 static struct dentry * __d_find_any_alias(struct inode *inode)
1503 {
1504 struct dentry *alias;
1505
1506 if (hlist_empty(&inode->i_dentry))
1507 return NULL;
1508 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1509 __dget(alias);
1510 return alias;
1511 }
1512
1513 /**
1514 * d_find_any_alias - find any alias for a given inode
1515 * @inode: inode to find an alias for
1516 *
1517 * If any aliases exist for the given inode, take and return a
1518 * reference for one of them. If no aliases exist, return %NULL.
1519 */
d_find_any_alias(struct inode * inode)1520 struct dentry *d_find_any_alias(struct inode *inode)
1521 {
1522 struct dentry *de;
1523
1524 spin_lock(&inode->i_lock);
1525 de = __d_find_any_alias(inode);
1526 spin_unlock(&inode->i_lock);
1527 return de;
1528 }
1529 EXPORT_SYMBOL(d_find_any_alias);
1530
1531 /**
1532 * d_obtain_alias - find or allocate a dentry for a given inode
1533 * @inode: inode to allocate the dentry for
1534 *
1535 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536 * similar open by handle operations. The returned dentry may be anonymous,
1537 * or may have a full name (if the inode was already in the cache).
1538 *
1539 * When called on a directory inode, we must ensure that the inode only ever
1540 * has one dentry. If a dentry is found, that is returned instead of
1541 * allocating a new one.
1542 *
1543 * On successful return, the reference to the inode has been transferred
1544 * to the dentry. In case of an error the reference on the inode is released.
1545 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546 * be passed in and will be the error will be propagate to the return value,
1547 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1548 */
d_obtain_alias(struct inode * inode)1549 struct dentry *d_obtain_alias(struct inode *inode)
1550 {
1551 static const struct qstr anonstring = QSTR_INIT("/", 1);
1552 struct dentry *tmp;
1553 struct dentry *res;
1554
1555 if (!inode)
1556 return ERR_PTR(-ESTALE);
1557 if (IS_ERR(inode))
1558 return ERR_CAST(inode);
1559
1560 res = d_find_any_alias(inode);
1561 if (res)
1562 goto out_iput;
1563
1564 tmp = __d_alloc(inode->i_sb, &anonstring);
1565 if (!tmp) {
1566 res = ERR_PTR(-ENOMEM);
1567 goto out_iput;
1568 }
1569
1570 spin_lock(&inode->i_lock);
1571 res = __d_find_any_alias(inode);
1572 if (res) {
1573 spin_unlock(&inode->i_lock);
1574 dput(tmp);
1575 goto out_iput;
1576 }
1577
1578 /* attach a disconnected dentry */
1579 spin_lock(&tmp->d_lock);
1580 tmp->d_inode = inode;
1581 tmp->d_flags |= DCACHE_DISCONNECTED;
1582 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1583 hlist_bl_lock(&tmp->d_sb->s_anon);
1584 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1585 hlist_bl_unlock(&tmp->d_sb->s_anon);
1586 spin_unlock(&tmp->d_lock);
1587 spin_unlock(&inode->i_lock);
1588 security_d_instantiate(tmp, inode);
1589
1590 return tmp;
1591
1592 out_iput:
1593 if (res && !IS_ERR(res))
1594 security_d_instantiate(res, inode);
1595 iput(inode);
1596 return res;
1597 }
1598 EXPORT_SYMBOL(d_obtain_alias);
1599
1600 /**
1601 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1602 * @inode: the inode which may have a disconnected dentry
1603 * @dentry: a negative dentry which we want to point to the inode.
1604 *
1605 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1606 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1607 * and return it, else simply d_add the inode to the dentry and return NULL.
1608 *
1609 * This is needed in the lookup routine of any filesystem that is exportable
1610 * (via knfsd) so that we can build dcache paths to directories effectively.
1611 *
1612 * If a dentry was found and moved, then it is returned. Otherwise NULL
1613 * is returned. This matches the expected return value of ->lookup.
1614 *
1615 */
d_splice_alias(struct inode * inode,struct dentry * dentry)1616 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1617 {
1618 struct dentry *new = NULL;
1619
1620 if (IS_ERR(inode))
1621 return ERR_CAST(inode);
1622
1623 if (inode && S_ISDIR(inode->i_mode)) {
1624 spin_lock(&inode->i_lock);
1625 new = __d_find_alias(inode, 1);
1626 if (new) {
1627 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1628 spin_unlock(&inode->i_lock);
1629 security_d_instantiate(new, inode);
1630 d_move(new, dentry);
1631 iput(inode);
1632 } else {
1633 /* already taking inode->i_lock, so d_add() by hand */
1634 __d_instantiate(dentry, inode);
1635 spin_unlock(&inode->i_lock);
1636 security_d_instantiate(dentry, inode);
1637 d_rehash(dentry);
1638 }
1639 } else
1640 d_add(dentry, inode);
1641 return new;
1642 }
1643 EXPORT_SYMBOL(d_splice_alias);
1644
1645 /**
1646 * d_add_ci - lookup or allocate new dentry with case-exact name
1647 * @inode: the inode case-insensitive lookup has found
1648 * @dentry: the negative dentry that was passed to the parent's lookup func
1649 * @name: the case-exact name to be associated with the returned dentry
1650 *
1651 * This is to avoid filling the dcache with case-insensitive names to the
1652 * same inode, only the actual correct case is stored in the dcache for
1653 * case-insensitive filesystems.
1654 *
1655 * For a case-insensitive lookup match and if the the case-exact dentry
1656 * already exists in in the dcache, use it and return it.
1657 *
1658 * If no entry exists with the exact case name, allocate new dentry with
1659 * the exact case, and return the spliced entry.
1660 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)1661 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1662 struct qstr *name)
1663 {
1664 struct dentry *found;
1665 struct dentry *new;
1666
1667 /*
1668 * First check if a dentry matching the name already exists,
1669 * if not go ahead and create it now.
1670 */
1671 found = d_hash_and_lookup(dentry->d_parent, name);
1672 if (unlikely(IS_ERR(found)))
1673 goto err_out;
1674 if (!found) {
1675 new = d_alloc(dentry->d_parent, name);
1676 if (!new) {
1677 found = ERR_PTR(-ENOMEM);
1678 goto err_out;
1679 }
1680
1681 found = d_splice_alias(inode, new);
1682 if (found) {
1683 dput(new);
1684 return found;
1685 }
1686 return new;
1687 }
1688
1689 /*
1690 * If a matching dentry exists, and it's not negative use it.
1691 *
1692 * Decrement the reference count to balance the iget() done
1693 * earlier on.
1694 */
1695 if (found->d_inode) {
1696 if (unlikely(found->d_inode != inode)) {
1697 /* This can't happen because bad inodes are unhashed. */
1698 BUG_ON(!is_bad_inode(inode));
1699 BUG_ON(!is_bad_inode(found->d_inode));
1700 }
1701 iput(inode);
1702 return found;
1703 }
1704
1705 /*
1706 * Negative dentry: instantiate it unless the inode is a directory and
1707 * already has a dentry.
1708 */
1709 new = d_splice_alias(inode, found);
1710 if (new) {
1711 dput(found);
1712 found = new;
1713 }
1714 return found;
1715
1716 err_out:
1717 iput(inode);
1718 return found;
1719 }
1720 EXPORT_SYMBOL(d_add_ci);
1721
1722 /*
1723 * Do the slow-case of the dentry name compare.
1724 *
1725 * Unlike the dentry_cmp() function, we need to atomically
1726 * load the name, length and inode information, so that the
1727 * filesystem can rely on them, and can use the 'name' and
1728 * 'len' information without worrying about walking off the
1729 * end of memory etc.
1730 *
1731 * Thus the read_seqcount_retry() and the "duplicate" info
1732 * in arguments (the low-level filesystem should not look
1733 * at the dentry inode or name contents directly, since
1734 * rename can change them while we're in RCU mode).
1735 */
1736 enum slow_d_compare {
1737 D_COMP_OK,
1738 D_COMP_NOMATCH,
1739 D_COMP_SEQRETRY,
1740 };
1741
slow_dentry_cmp(const struct dentry * parent,struct inode * inode,struct dentry * dentry,unsigned int seq,const struct qstr * name)1742 static noinline enum slow_d_compare slow_dentry_cmp(
1743 const struct dentry *parent,
1744 struct inode *inode,
1745 struct dentry *dentry,
1746 unsigned int seq,
1747 const struct qstr *name)
1748 {
1749 int tlen = dentry->d_name.len;
1750 const char *tname = dentry->d_name.name;
1751 struct inode *i = dentry->d_inode;
1752
1753 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1754 cpu_relax();
1755 return D_COMP_SEQRETRY;
1756 }
1757 if (parent->d_op->d_compare(parent, inode,
1758 dentry, i,
1759 tlen, tname, name))
1760 return D_COMP_NOMATCH;
1761 return D_COMP_OK;
1762 }
1763
1764 /**
1765 * __d_lookup_rcu - search for a dentry (racy, store-free)
1766 * @parent: parent dentry
1767 * @name: qstr of name we wish to find
1768 * @seqp: returns d_seq value at the point where the dentry was found
1769 * @inode: returns dentry->d_inode when the inode was found valid.
1770 * Returns: dentry, or NULL
1771 *
1772 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1773 * resolution (store-free path walking) design described in
1774 * Documentation/filesystems/path-lookup.txt.
1775 *
1776 * This is not to be used outside core vfs.
1777 *
1778 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1779 * held, and rcu_read_lock held. The returned dentry must not be stored into
1780 * without taking d_lock and checking d_seq sequence count against @seq
1781 * returned here.
1782 *
1783 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1784 * function.
1785 *
1786 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1787 * the returned dentry, so long as its parent's seqlock is checked after the
1788 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1789 * is formed, giving integrity down the path walk.
1790 *
1791 * NOTE! The caller *has* to check the resulting dentry against the sequence
1792 * number we've returned before using any of the resulting dentry state!
1793 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp,struct inode * inode)1794 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1795 const struct qstr *name,
1796 unsigned *seqp, struct inode *inode)
1797 {
1798 u64 hashlen = name->hash_len;
1799 const unsigned char *str = name->name;
1800 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1801 struct hlist_bl_node *node;
1802 struct dentry *dentry;
1803
1804 /*
1805 * Note: There is significant duplication with __d_lookup_rcu which is
1806 * required to prevent single threaded performance regressions
1807 * especially on architectures where smp_rmb (in seqcounts) are costly.
1808 * Keep the two functions in sync.
1809 */
1810
1811 /*
1812 * The hash list is protected using RCU.
1813 *
1814 * Carefully use d_seq when comparing a candidate dentry, to avoid
1815 * races with d_move().
1816 *
1817 * It is possible that concurrent renames can mess up our list
1818 * walk here and result in missing our dentry, resulting in the
1819 * false-negative result. d_lookup() protects against concurrent
1820 * renames using rename_lock seqlock.
1821 *
1822 * See Documentation/filesystems/path-lookup.txt for more details.
1823 */
1824 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1825 unsigned seq;
1826
1827 seqretry:
1828 /*
1829 * The dentry sequence count protects us from concurrent
1830 * renames, and thus protects inode, parent and name fields.
1831 *
1832 * The caller must perform a seqcount check in order
1833 * to do anything useful with the returned dentry,
1834 * including using the 'd_inode' pointer.
1835 *
1836 * NOTE! We do a "raw" seqcount_begin here. That means that
1837 * we don't wait for the sequence count to stabilize if it
1838 * is in the middle of a sequence change. If we do the slow
1839 * dentry compare, we will do seqretries until it is stable,
1840 * and if we end up with a successful lookup, we actually
1841 * want to exit RCU lookup anyway.
1842 */
1843 seq = raw_seqcount_begin(&dentry->d_seq);
1844 if (dentry->d_parent != parent)
1845 continue;
1846 if (d_unhashed(dentry))
1847 continue;
1848 *seqp = seq;
1849
1850 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1851 if (dentry->d_name.hash != hashlen_hash(hashlen))
1852 continue;
1853 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1854 case D_COMP_OK:
1855 return dentry;
1856 case D_COMP_NOMATCH:
1857 continue;
1858 default:
1859 goto seqretry;
1860 }
1861 }
1862
1863 if (dentry->d_name.hash_len != hashlen)
1864 continue;
1865 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1866 return dentry;
1867 }
1868 return NULL;
1869 }
1870
1871 /**
1872 * d_lookup - search for a dentry
1873 * @parent: parent dentry
1874 * @name: qstr of name we wish to find
1875 * Returns: dentry, or NULL
1876 *
1877 * d_lookup searches the children of the parent dentry for the name in
1878 * question. If the dentry is found its reference count is incremented and the
1879 * dentry is returned. The caller must use dput to free the entry when it has
1880 * finished using it. %NULL is returned if the dentry does not exist.
1881 */
d_lookup(const struct dentry * parent,const struct qstr * name)1882 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1883 {
1884 struct dentry *dentry;
1885 unsigned seq;
1886
1887 do {
1888 seq = read_seqbegin(&rename_lock);
1889 dentry = __d_lookup(parent, name);
1890 if (dentry)
1891 break;
1892 } while (read_seqretry(&rename_lock, seq));
1893 return dentry;
1894 }
1895 EXPORT_SYMBOL(d_lookup);
1896
1897 /**
1898 * __d_lookup - search for a dentry (racy)
1899 * @parent: parent dentry
1900 * @name: qstr of name we wish to find
1901 * Returns: dentry, or NULL
1902 *
1903 * __d_lookup is like d_lookup, however it may (rarely) return a
1904 * false-negative result due to unrelated rename activity.
1905 *
1906 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1907 * however it must be used carefully, eg. with a following d_lookup in
1908 * the case of failure.
1909 *
1910 * __d_lookup callers must be commented.
1911 */
__d_lookup(const struct dentry * parent,const struct qstr * name)1912 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1913 {
1914 unsigned int len = name->len;
1915 unsigned int hash = name->hash;
1916 const unsigned char *str = name->name;
1917 struct hlist_bl_head *b = d_hash(parent, hash);
1918 struct hlist_bl_node *node;
1919 struct dentry *found = NULL;
1920 struct dentry *dentry;
1921
1922 /*
1923 * Note: There is significant duplication with __d_lookup_rcu which is
1924 * required to prevent single threaded performance regressions
1925 * especially on architectures where smp_rmb (in seqcounts) are costly.
1926 * Keep the two functions in sync.
1927 */
1928
1929 /*
1930 * The hash list is protected using RCU.
1931 *
1932 * Take d_lock when comparing a candidate dentry, to avoid races
1933 * with d_move().
1934 *
1935 * It is possible that concurrent renames can mess up our list
1936 * walk here and result in missing our dentry, resulting in the
1937 * false-negative result. d_lookup() protects against concurrent
1938 * renames using rename_lock seqlock.
1939 *
1940 * See Documentation/filesystems/path-lookup.txt for more details.
1941 */
1942 rcu_read_lock();
1943
1944 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1945
1946 if (dentry->d_name.hash != hash)
1947 continue;
1948
1949 spin_lock(&dentry->d_lock);
1950 if (dentry->d_parent != parent)
1951 goto next;
1952 if (d_unhashed(dentry))
1953 goto next;
1954
1955 /*
1956 * It is safe to compare names since d_move() cannot
1957 * change the qstr (protected by d_lock).
1958 */
1959 if (parent->d_flags & DCACHE_OP_COMPARE) {
1960 int tlen = dentry->d_name.len;
1961 const char *tname = dentry->d_name.name;
1962 if (parent->d_op->d_compare(parent, parent->d_inode,
1963 dentry, dentry->d_inode,
1964 tlen, tname, name))
1965 goto next;
1966 } else {
1967 if (dentry->d_name.len != len)
1968 goto next;
1969 if (dentry_cmp(dentry, str, len))
1970 goto next;
1971 }
1972
1973 dentry->d_count++;
1974 found = dentry;
1975 spin_unlock(&dentry->d_lock);
1976 break;
1977 next:
1978 spin_unlock(&dentry->d_lock);
1979 }
1980 rcu_read_unlock();
1981
1982 return found;
1983 }
1984
1985 /**
1986 * d_hash_and_lookup - hash the qstr then search for a dentry
1987 * @dir: Directory to search in
1988 * @name: qstr of name we wish to find
1989 *
1990 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1991 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)1992 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1993 {
1994 /*
1995 * Check for a fs-specific hash function. Note that we must
1996 * calculate the standard hash first, as the d_op->d_hash()
1997 * routine may choose to leave the hash value unchanged.
1998 */
1999 name->hash = full_name_hash(name->name, name->len);
2000 if (dir->d_flags & DCACHE_OP_HASH) {
2001 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2002 if (unlikely(err < 0))
2003 return ERR_PTR(err);
2004 }
2005 return d_lookup(dir, name);
2006 }
2007 EXPORT_SYMBOL(d_hash_and_lookup);
2008
2009 /**
2010 * d_validate - verify dentry provided from insecure source (deprecated)
2011 * @dentry: The dentry alleged to be valid child of @dparent
2012 * @dparent: The parent dentry (known to be valid)
2013 *
2014 * An insecure source has sent us a dentry, here we verify it and dget() it.
2015 * This is used by ncpfs in its readdir implementation.
2016 * Zero is returned in the dentry is invalid.
2017 *
2018 * This function is slow for big directories, and deprecated, do not use it.
2019 */
d_validate(struct dentry * dentry,struct dentry * dparent)2020 int d_validate(struct dentry *dentry, struct dentry *dparent)
2021 {
2022 struct dentry *child;
2023
2024 spin_lock(&dparent->d_lock);
2025 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2026 if (dentry == child) {
2027 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2028 __dget_dlock(dentry);
2029 spin_unlock(&dentry->d_lock);
2030 spin_unlock(&dparent->d_lock);
2031 return 1;
2032 }
2033 }
2034 spin_unlock(&dparent->d_lock);
2035
2036 return 0;
2037 }
2038 EXPORT_SYMBOL(d_validate);
2039
2040 /*
2041 * When a file is deleted, we have two options:
2042 * - turn this dentry into a negative dentry
2043 * - unhash this dentry and free it.
2044 *
2045 * Usually, we want to just turn this into
2046 * a negative dentry, but if anybody else is
2047 * currently using the dentry or the inode
2048 * we can't do that and we fall back on removing
2049 * it from the hash queues and waiting for
2050 * it to be deleted later when it has no users
2051 */
2052
2053 /**
2054 * d_delete - delete a dentry
2055 * @dentry: The dentry to delete
2056 *
2057 * Turn the dentry into a negative dentry if possible, otherwise
2058 * remove it from the hash queues so it can be deleted later
2059 */
2060
d_delete(struct dentry * dentry)2061 void d_delete(struct dentry * dentry)
2062 {
2063 struct inode *inode;
2064 int isdir = 0;
2065 /*
2066 * Are we the only user?
2067 */
2068 again:
2069 spin_lock(&dentry->d_lock);
2070 inode = dentry->d_inode;
2071 isdir = S_ISDIR(inode->i_mode);
2072 if (dentry->d_count == 1) {
2073 if (!spin_trylock(&inode->i_lock)) {
2074 spin_unlock(&dentry->d_lock);
2075 cpu_relax();
2076 goto again;
2077 }
2078 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2079 dentry_unlink_inode(dentry);
2080 fsnotify_nameremove(dentry, isdir);
2081 return;
2082 }
2083
2084 if (!d_unhashed(dentry))
2085 __d_drop(dentry);
2086
2087 spin_unlock(&dentry->d_lock);
2088
2089 fsnotify_nameremove(dentry, isdir);
2090 }
2091 EXPORT_SYMBOL(d_delete);
2092
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2093 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2094 {
2095 BUG_ON(!d_unhashed(entry));
2096 hlist_bl_lock(b);
2097 entry->d_flags |= DCACHE_RCUACCESS;
2098 hlist_bl_add_head_rcu(&entry->d_hash, b);
2099 hlist_bl_unlock(b);
2100 }
2101
_d_rehash(struct dentry * entry)2102 static void _d_rehash(struct dentry * entry)
2103 {
2104 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2105 }
2106
2107 /**
2108 * d_rehash - add an entry back to the hash
2109 * @entry: dentry to add to the hash
2110 *
2111 * Adds a dentry to the hash according to its name.
2112 */
2113
d_rehash(struct dentry * entry)2114 void d_rehash(struct dentry * entry)
2115 {
2116 spin_lock(&entry->d_lock);
2117 _d_rehash(entry);
2118 spin_unlock(&entry->d_lock);
2119 }
2120 EXPORT_SYMBOL(d_rehash);
2121
2122 /**
2123 * dentry_update_name_case - update case insensitive dentry with a new name
2124 * @dentry: dentry to be updated
2125 * @name: new name
2126 *
2127 * Update a case insensitive dentry with new case of name.
2128 *
2129 * dentry must have been returned by d_lookup with name @name. Old and new
2130 * name lengths must match (ie. no d_compare which allows mismatched name
2131 * lengths).
2132 *
2133 * Parent inode i_mutex must be held over d_lookup and into this call (to
2134 * keep renames and concurrent inserts, and readdir(2) away).
2135 */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2136 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2137 {
2138 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2139 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2140
2141 spin_lock(&dentry->d_lock);
2142 write_seqcount_begin(&dentry->d_seq);
2143 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2144 write_seqcount_end(&dentry->d_seq);
2145 spin_unlock(&dentry->d_lock);
2146 }
2147 EXPORT_SYMBOL(dentry_update_name_case);
2148
switch_names(struct dentry * dentry,struct dentry * target)2149 static void switch_names(struct dentry *dentry, struct dentry *target)
2150 {
2151 if (dname_external(target)) {
2152 if (dname_external(dentry)) {
2153 /*
2154 * Both external: swap the pointers
2155 */
2156 swap(target->d_name.name, dentry->d_name.name);
2157 } else {
2158 /*
2159 * dentry:internal, target:external. Steal target's
2160 * storage and make target internal.
2161 */
2162 memcpy(target->d_iname, dentry->d_name.name,
2163 dentry->d_name.len + 1);
2164 dentry->d_name.name = target->d_name.name;
2165 target->d_name.name = target->d_iname;
2166 }
2167 } else {
2168 if (dname_external(dentry)) {
2169 /*
2170 * dentry:external, target:internal. Give dentry's
2171 * storage to target and make dentry internal
2172 */
2173 memcpy(dentry->d_iname, target->d_name.name,
2174 target->d_name.len + 1);
2175 target->d_name.name = dentry->d_name.name;
2176 dentry->d_name.name = dentry->d_iname;
2177 } else {
2178 /*
2179 * Both are internal. Just copy target to dentry
2180 */
2181 memcpy(dentry->d_iname, target->d_name.name,
2182 target->d_name.len + 1);
2183 dentry->d_name.len = target->d_name.len;
2184 return;
2185 }
2186 }
2187 swap(dentry->d_name.len, target->d_name.len);
2188 }
2189
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2190 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2191 {
2192 /*
2193 * XXXX: do we really need to take target->d_lock?
2194 */
2195 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2196 spin_lock(&target->d_parent->d_lock);
2197 else {
2198 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2199 spin_lock(&dentry->d_parent->d_lock);
2200 spin_lock_nested(&target->d_parent->d_lock,
2201 DENTRY_D_LOCK_NESTED);
2202 } else {
2203 spin_lock(&target->d_parent->d_lock);
2204 spin_lock_nested(&dentry->d_parent->d_lock,
2205 DENTRY_D_LOCK_NESTED);
2206 }
2207 }
2208 if (target < dentry) {
2209 spin_lock_nested(&target->d_lock, 2);
2210 spin_lock_nested(&dentry->d_lock, 3);
2211 } else {
2212 spin_lock_nested(&dentry->d_lock, 2);
2213 spin_lock_nested(&target->d_lock, 3);
2214 }
2215 }
2216
dentry_unlock_parents_for_move(struct dentry * dentry,struct dentry * target)2217 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2218 struct dentry *target)
2219 {
2220 if (target->d_parent != dentry->d_parent)
2221 spin_unlock(&dentry->d_parent->d_lock);
2222 if (target->d_parent != target)
2223 spin_unlock(&target->d_parent->d_lock);
2224 }
2225
2226 /*
2227 * When switching names, the actual string doesn't strictly have to
2228 * be preserved in the target - because we're dropping the target
2229 * anyway. As such, we can just do a simple memcpy() to copy over
2230 * the new name before we switch.
2231 *
2232 * Note that we have to be a lot more careful about getting the hash
2233 * switched - we have to switch the hash value properly even if it
2234 * then no longer matches the actual (corrupted) string of the target.
2235 * The hash value has to match the hash queue that the dentry is on..
2236 */
2237 /*
2238 * __d_move - move a dentry
2239 * @dentry: entry to move
2240 * @target: new dentry
2241 *
2242 * Update the dcache to reflect the move of a file name. Negative
2243 * dcache entries should not be moved in this way. Caller must hold
2244 * rename_lock, the i_mutex of the source and target directories,
2245 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2246 */
__d_move(struct dentry * dentry,struct dentry * target)2247 static void __d_move(struct dentry * dentry, struct dentry * target)
2248 {
2249 if (!dentry->d_inode)
2250 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2251
2252 BUG_ON(d_ancestor(dentry, target));
2253 BUG_ON(d_ancestor(target, dentry));
2254
2255 dentry_lock_for_move(dentry, target);
2256
2257 write_seqcount_begin(&dentry->d_seq);
2258 write_seqcount_begin(&target->d_seq);
2259
2260 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2261
2262 /*
2263 * Move the dentry to the target hash queue. Don't bother checking
2264 * for the same hash queue because of how unlikely it is.
2265 */
2266 __d_drop(dentry);
2267 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2268
2269 /* Unhash the target: dput() will then get rid of it */
2270 __d_drop(target);
2271
2272 list_del(&dentry->d_u.d_child);
2273 list_del(&target->d_u.d_child);
2274
2275 /* Switch the names.. */
2276 switch_names(dentry, target);
2277 swap(dentry->d_name.hash, target->d_name.hash);
2278
2279 /* ... and switch the parents */
2280 if (IS_ROOT(dentry)) {
2281 dentry->d_parent = target->d_parent;
2282 target->d_parent = target;
2283 INIT_LIST_HEAD(&target->d_u.d_child);
2284 } else {
2285 swap(dentry->d_parent, target->d_parent);
2286
2287 /* And add them back to the (new) parent lists */
2288 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2289 }
2290
2291 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2292
2293 write_seqcount_end(&target->d_seq);
2294 write_seqcount_end(&dentry->d_seq);
2295
2296 dentry_unlock_parents_for_move(dentry, target);
2297 spin_unlock(&target->d_lock);
2298 fsnotify_d_move(dentry);
2299 spin_unlock(&dentry->d_lock);
2300 }
2301
2302 /*
2303 * d_move - move a dentry
2304 * @dentry: entry to move
2305 * @target: new dentry
2306 *
2307 * Update the dcache to reflect the move of a file name. Negative
2308 * dcache entries should not be moved in this way. See the locking
2309 * requirements for __d_move.
2310 */
d_move(struct dentry * dentry,struct dentry * target)2311 void d_move(struct dentry *dentry, struct dentry *target)
2312 {
2313 write_seqlock(&rename_lock);
2314 __d_move(dentry, target);
2315 write_sequnlock(&rename_lock);
2316 }
2317 EXPORT_SYMBOL(d_move);
2318
2319 /**
2320 * d_ancestor - search for an ancestor
2321 * @p1: ancestor dentry
2322 * @p2: child dentry
2323 *
2324 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2325 * an ancestor of p2, else NULL.
2326 */
d_ancestor(struct dentry * p1,struct dentry * p2)2327 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2328 {
2329 struct dentry *p;
2330
2331 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2332 if (p->d_parent == p1)
2333 return p;
2334 }
2335 return NULL;
2336 }
2337
2338 /*
2339 * This helper attempts to cope with remotely renamed directories
2340 *
2341 * It assumes that the caller is already holding
2342 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2343 *
2344 * Note: If ever the locking in lock_rename() changes, then please
2345 * remember to update this too...
2346 */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2347 static struct dentry *__d_unalias(struct inode *inode,
2348 struct dentry *dentry, struct dentry *alias)
2349 {
2350 struct mutex *m1 = NULL, *m2 = NULL;
2351 struct dentry *ret = ERR_PTR(-EBUSY);
2352
2353 /* If alias and dentry share a parent, then no extra locks required */
2354 if (alias->d_parent == dentry->d_parent)
2355 goto out_unalias;
2356
2357 /* See lock_rename() */
2358 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2359 goto out_err;
2360 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2361 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2362 goto out_err;
2363 m2 = &alias->d_parent->d_inode->i_mutex;
2364 out_unalias:
2365 if (likely(!d_mountpoint(alias))) {
2366 __d_move(alias, dentry);
2367 ret = alias;
2368 }
2369 out_err:
2370 spin_unlock(&inode->i_lock);
2371 if (m2)
2372 mutex_unlock(m2);
2373 if (m1)
2374 mutex_unlock(m1);
2375 return ret;
2376 }
2377
2378 /*
2379 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2380 * named dentry in place of the dentry to be replaced.
2381 * returns with anon->d_lock held!
2382 */
__d_materialise_dentry(struct dentry * dentry,struct dentry * anon)2383 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2384 {
2385 struct dentry *dparent;
2386
2387 dentry_lock_for_move(anon, dentry);
2388
2389 write_seqcount_begin(&dentry->d_seq);
2390 write_seqcount_begin(&anon->d_seq);
2391
2392 dparent = dentry->d_parent;
2393
2394 switch_names(dentry, anon);
2395 swap(dentry->d_name.hash, anon->d_name.hash);
2396
2397 dentry->d_parent = dentry;
2398 list_del_init(&dentry->d_u.d_child);
2399 anon->d_parent = dparent;
2400 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2401
2402 write_seqcount_end(&dentry->d_seq);
2403 write_seqcount_end(&anon->d_seq);
2404
2405 dentry_unlock_parents_for_move(anon, dentry);
2406 spin_unlock(&dentry->d_lock);
2407
2408 /* anon->d_lock still locked, returns locked */
2409 anon->d_flags &= ~DCACHE_DISCONNECTED;
2410 }
2411
2412 /**
2413 * d_materialise_unique - introduce an inode into the tree
2414 * @dentry: candidate dentry
2415 * @inode: inode to bind to the dentry, to which aliases may be attached
2416 *
2417 * Introduces an dentry into the tree, substituting an extant disconnected
2418 * root directory alias in its place if there is one. Caller must hold the
2419 * i_mutex of the parent directory.
2420 */
d_materialise_unique(struct dentry * dentry,struct inode * inode)2421 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2422 {
2423 struct dentry *actual;
2424
2425 BUG_ON(!d_unhashed(dentry));
2426
2427 if (!inode) {
2428 actual = dentry;
2429 __d_instantiate(dentry, NULL);
2430 d_rehash(actual);
2431 goto out_nolock;
2432 }
2433
2434 spin_lock(&inode->i_lock);
2435
2436 if (S_ISDIR(inode->i_mode)) {
2437 struct dentry *alias;
2438
2439 /* Does an aliased dentry already exist? */
2440 alias = __d_find_alias(inode, 0);
2441 if (alias) {
2442 actual = alias;
2443 write_seqlock(&rename_lock);
2444
2445 if (d_ancestor(alias, dentry)) {
2446 /* Check for loops */
2447 actual = ERR_PTR(-ELOOP);
2448 spin_unlock(&inode->i_lock);
2449 } else if (IS_ROOT(alias)) {
2450 /* Is this an anonymous mountpoint that we
2451 * could splice into our tree? */
2452 __d_materialise_dentry(dentry, alias);
2453 write_sequnlock(&rename_lock);
2454 __d_drop(alias);
2455 goto found;
2456 } else {
2457 /* Nope, but we must(!) avoid directory
2458 * aliasing. This drops inode->i_lock */
2459 actual = __d_unalias(inode, dentry, alias);
2460 }
2461 write_sequnlock(&rename_lock);
2462 if (IS_ERR(actual)) {
2463 if (PTR_ERR(actual) == -ELOOP)
2464 pr_warn_ratelimited(
2465 "VFS: Lookup of '%s' in %s %s"
2466 " would have caused loop\n",
2467 dentry->d_name.name,
2468 inode->i_sb->s_type->name,
2469 inode->i_sb->s_id);
2470 dput(alias);
2471 }
2472 goto out_nolock;
2473 }
2474 }
2475
2476 /* Add a unique reference */
2477 actual = __d_instantiate_unique(dentry, inode);
2478 if (!actual)
2479 actual = dentry;
2480 else
2481 BUG_ON(!d_unhashed(actual));
2482
2483 spin_lock(&actual->d_lock);
2484 found:
2485 _d_rehash(actual);
2486 spin_unlock(&actual->d_lock);
2487 spin_unlock(&inode->i_lock);
2488 out_nolock:
2489 if (actual == dentry) {
2490 security_d_instantiate(dentry, inode);
2491 return NULL;
2492 }
2493
2494 iput(inode);
2495 return actual;
2496 }
2497 EXPORT_SYMBOL_GPL(d_materialise_unique);
2498
prepend(char ** buffer,int * buflen,const char * str,int namelen)2499 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2500 {
2501 *buflen -= namelen;
2502 if (*buflen < 0)
2503 return -ENAMETOOLONG;
2504 *buffer -= namelen;
2505 memcpy(*buffer, str, namelen);
2506 return 0;
2507 }
2508
prepend_name(char ** buffer,int * buflen,struct qstr * name)2509 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2510 {
2511 return prepend(buffer, buflen, name->name, name->len);
2512 }
2513
2514 /**
2515 * prepend_path - Prepend path string to a buffer
2516 * @path: the dentry/vfsmount to report
2517 * @root: root vfsmnt/dentry
2518 * @buffer: pointer to the end of the buffer
2519 * @buflen: pointer to buffer length
2520 *
2521 * Caller holds the rename_lock.
2522 */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2523 static int prepend_path(const struct path *path,
2524 const struct path *root,
2525 char **buffer, int *buflen)
2526 {
2527 struct dentry *dentry = path->dentry;
2528 struct vfsmount *vfsmnt = path->mnt;
2529 struct mount *mnt = real_mount(vfsmnt);
2530 bool slash = false;
2531 int error = 0;
2532
2533 while (dentry != root->dentry || vfsmnt != root->mnt) {
2534 struct dentry * parent;
2535
2536 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2537 /* Global root? */
2538 if (!mnt_has_parent(mnt))
2539 goto global_root;
2540 dentry = mnt->mnt_mountpoint;
2541 mnt = mnt->mnt_parent;
2542 vfsmnt = &mnt->mnt;
2543 continue;
2544 }
2545 parent = dentry->d_parent;
2546 prefetch(parent);
2547 spin_lock(&dentry->d_lock);
2548 error = prepend_name(buffer, buflen, &dentry->d_name);
2549 spin_unlock(&dentry->d_lock);
2550 if (!error)
2551 error = prepend(buffer, buflen, "/", 1);
2552 if (error)
2553 break;
2554
2555 slash = true;
2556 dentry = parent;
2557 }
2558
2559 if (!error && !slash)
2560 error = prepend(buffer, buflen, "/", 1);
2561
2562 return error;
2563
2564 global_root:
2565 /*
2566 * Filesystems needing to implement special "root names"
2567 * should do so with ->d_dname()
2568 */
2569 if (IS_ROOT(dentry) &&
2570 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2571 WARN(1, "Root dentry has weird name <%.*s>\n",
2572 (int) dentry->d_name.len, dentry->d_name.name);
2573 }
2574 if (!slash)
2575 error = prepend(buffer, buflen, "/", 1);
2576 if (!error)
2577 error = is_mounted(vfsmnt) ? 1 : 2;
2578 return error;
2579 }
2580
2581 /**
2582 * __d_path - return the path of a dentry
2583 * @path: the dentry/vfsmount to report
2584 * @root: root vfsmnt/dentry
2585 * @buf: buffer to return value in
2586 * @buflen: buffer length
2587 *
2588 * Convert a dentry into an ASCII path name.
2589 *
2590 * Returns a pointer into the buffer or an error code if the
2591 * path was too long.
2592 *
2593 * "buflen" should be positive.
2594 *
2595 * If the path is not reachable from the supplied root, return %NULL.
2596 */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)2597 char *__d_path(const struct path *path,
2598 const struct path *root,
2599 char *buf, int buflen)
2600 {
2601 char *res = buf + buflen;
2602 int error;
2603
2604 prepend(&res, &buflen, "\0", 1);
2605 br_read_lock(&vfsmount_lock);
2606 write_seqlock(&rename_lock);
2607 error = prepend_path(path, root, &res, &buflen);
2608 write_sequnlock(&rename_lock);
2609 br_read_unlock(&vfsmount_lock);
2610
2611 if (error < 0)
2612 return ERR_PTR(error);
2613 if (error > 0)
2614 return NULL;
2615 return res;
2616 }
2617
d_absolute_path(const struct path * path,char * buf,int buflen)2618 char *d_absolute_path(const struct path *path,
2619 char *buf, int buflen)
2620 {
2621 struct path root = {};
2622 char *res = buf + buflen;
2623 int error;
2624
2625 prepend(&res, &buflen, "\0", 1);
2626 br_read_lock(&vfsmount_lock);
2627 write_seqlock(&rename_lock);
2628 error = prepend_path(path, &root, &res, &buflen);
2629 write_sequnlock(&rename_lock);
2630 br_read_unlock(&vfsmount_lock);
2631
2632 if (error > 1)
2633 error = -EINVAL;
2634 if (error < 0)
2635 return ERR_PTR(error);
2636 return res;
2637 }
2638
2639 /*
2640 * same as __d_path but appends "(deleted)" for unlinked files.
2641 */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)2642 static int path_with_deleted(const struct path *path,
2643 const struct path *root,
2644 char **buf, int *buflen)
2645 {
2646 prepend(buf, buflen, "\0", 1);
2647 if (d_unlinked(path->dentry)) {
2648 int error = prepend(buf, buflen, " (deleted)", 10);
2649 if (error)
2650 return error;
2651 }
2652
2653 return prepend_path(path, root, buf, buflen);
2654 }
2655
prepend_unreachable(char ** buffer,int * buflen)2656 static int prepend_unreachable(char **buffer, int *buflen)
2657 {
2658 return prepend(buffer, buflen, "(unreachable)", 13);
2659 }
2660
2661 /**
2662 * d_path - return the path of a dentry
2663 * @path: path to report
2664 * @buf: buffer to return value in
2665 * @buflen: buffer length
2666 *
2667 * Convert a dentry into an ASCII path name. If the entry has been deleted
2668 * the string " (deleted)" is appended. Note that this is ambiguous.
2669 *
2670 * Returns a pointer into the buffer or an error code if the path was
2671 * too long. Note: Callers should use the returned pointer, not the passed
2672 * in buffer, to use the name! The implementation often starts at an offset
2673 * into the buffer, and may leave 0 bytes at the start.
2674 *
2675 * "buflen" should be positive.
2676 */
d_path(const struct path * path,char * buf,int buflen)2677 char *d_path(const struct path *path, char *buf, int buflen)
2678 {
2679 char *res = buf + buflen;
2680 struct path root;
2681 int error;
2682
2683 /*
2684 * We have various synthetic filesystems that never get mounted. On
2685 * these filesystems dentries are never used for lookup purposes, and
2686 * thus don't need to be hashed. They also don't need a name until a
2687 * user wants to identify the object in /proc/pid/fd/. The little hack
2688 * below allows us to generate a name for these objects on demand:
2689 */
2690 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2691 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2692
2693 get_fs_root(current->fs, &root);
2694 br_read_lock(&vfsmount_lock);
2695 write_seqlock(&rename_lock);
2696 error = path_with_deleted(path, &root, &res, &buflen);
2697 write_sequnlock(&rename_lock);
2698 br_read_unlock(&vfsmount_lock);
2699 if (error < 0)
2700 res = ERR_PTR(error);
2701 path_put(&root);
2702 return res;
2703 }
2704 EXPORT_SYMBOL(d_path);
2705
2706 /*
2707 * Helper function for dentry_operations.d_dname() members
2708 */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)2709 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2710 const char *fmt, ...)
2711 {
2712 va_list args;
2713 char temp[64];
2714 int sz;
2715
2716 va_start(args, fmt);
2717 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2718 va_end(args);
2719
2720 if (sz > sizeof(temp) || sz > buflen)
2721 return ERR_PTR(-ENAMETOOLONG);
2722
2723 buffer += buflen - sz;
2724 return memcpy(buffer, temp, sz);
2725 }
2726
simple_dname(struct dentry * dentry,char * buffer,int buflen)2727 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2728 {
2729 char *end = buffer + buflen;
2730 /* these dentries are never renamed, so d_lock is not needed */
2731 if (prepend(&end, &buflen, " (deleted)", 11) ||
2732 prepend_name(&end, &buflen, &dentry->d_name) ||
2733 prepend(&end, &buflen, "/", 1))
2734 end = ERR_PTR(-ENAMETOOLONG);
2735 return end;
2736 }
2737
2738 /*
2739 * Write full pathname from the root of the filesystem into the buffer.
2740 */
__dentry_path(struct dentry * dentry,char * buf,int buflen)2741 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2742 {
2743 char *end = buf + buflen;
2744 char *retval;
2745
2746 prepend(&end, &buflen, "\0", 1);
2747 if (buflen < 1)
2748 goto Elong;
2749 /* Get '/' right */
2750 retval = end-1;
2751 *retval = '/';
2752
2753 while (!IS_ROOT(dentry)) {
2754 struct dentry *parent = dentry->d_parent;
2755 int error;
2756
2757 prefetch(parent);
2758 spin_lock(&dentry->d_lock);
2759 error = prepend_name(&end, &buflen, &dentry->d_name);
2760 spin_unlock(&dentry->d_lock);
2761 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2762 goto Elong;
2763
2764 retval = end;
2765 dentry = parent;
2766 }
2767 return retval;
2768 Elong:
2769 return ERR_PTR(-ENAMETOOLONG);
2770 }
2771
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)2772 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2773 {
2774 char *retval;
2775
2776 write_seqlock(&rename_lock);
2777 retval = __dentry_path(dentry, buf, buflen);
2778 write_sequnlock(&rename_lock);
2779
2780 return retval;
2781 }
2782 EXPORT_SYMBOL(dentry_path_raw);
2783
dentry_path(struct dentry * dentry,char * buf,int buflen)2784 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2785 {
2786 char *p = NULL;
2787 char *retval;
2788
2789 write_seqlock(&rename_lock);
2790 if (d_unlinked(dentry)) {
2791 p = buf + buflen;
2792 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2793 goto Elong;
2794 buflen++;
2795 }
2796 retval = __dentry_path(dentry, buf, buflen);
2797 write_sequnlock(&rename_lock);
2798 if (!IS_ERR(retval) && p)
2799 *p = '/'; /* restore '/' overriden with '\0' */
2800 return retval;
2801 Elong:
2802 return ERR_PTR(-ENAMETOOLONG);
2803 }
2804
2805 /*
2806 * NOTE! The user-level library version returns a
2807 * character pointer. The kernel system call just
2808 * returns the length of the buffer filled (which
2809 * includes the ending '\0' character), or a negative
2810 * error value. So libc would do something like
2811 *
2812 * char *getcwd(char * buf, size_t size)
2813 * {
2814 * int retval;
2815 *
2816 * retval = sys_getcwd(buf, size);
2817 * if (retval >= 0)
2818 * return buf;
2819 * errno = -retval;
2820 * return NULL;
2821 * }
2822 */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)2823 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2824 {
2825 int error;
2826 struct path pwd, root;
2827 char *page = (char *) __get_free_page(GFP_USER);
2828
2829 if (!page)
2830 return -ENOMEM;
2831
2832 get_fs_root_and_pwd(current->fs, &root, &pwd);
2833
2834 error = -ENOENT;
2835 br_read_lock(&vfsmount_lock);
2836 write_seqlock(&rename_lock);
2837 if (!d_unlinked(pwd.dentry)) {
2838 unsigned long len;
2839 char *cwd = page + PAGE_SIZE;
2840 int buflen = PAGE_SIZE;
2841
2842 prepend(&cwd, &buflen, "\0", 1);
2843 error = prepend_path(&pwd, &root, &cwd, &buflen);
2844 write_sequnlock(&rename_lock);
2845 br_read_unlock(&vfsmount_lock);
2846
2847 if (error < 0)
2848 goto out;
2849
2850 /* Unreachable from current root */
2851 if (error > 0) {
2852 error = prepend_unreachable(&cwd, &buflen);
2853 if (error)
2854 goto out;
2855 }
2856
2857 error = -ERANGE;
2858 len = PAGE_SIZE + page - cwd;
2859 if (len <= size) {
2860 error = len;
2861 if (copy_to_user(buf, cwd, len))
2862 error = -EFAULT;
2863 }
2864 } else {
2865 write_sequnlock(&rename_lock);
2866 br_read_unlock(&vfsmount_lock);
2867 }
2868
2869 out:
2870 path_put(&pwd);
2871 path_put(&root);
2872 free_page((unsigned long) page);
2873 return error;
2874 }
2875
2876 /*
2877 * Test whether new_dentry is a subdirectory of old_dentry.
2878 *
2879 * Trivially implemented using the dcache structure
2880 */
2881
2882 /**
2883 * is_subdir - is new dentry a subdirectory of old_dentry
2884 * @new_dentry: new dentry
2885 * @old_dentry: old dentry
2886 *
2887 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2888 * Returns 0 otherwise.
2889 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2890 */
2891
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)2892 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2893 {
2894 int result;
2895 unsigned seq;
2896
2897 if (new_dentry == old_dentry)
2898 return 1;
2899
2900 do {
2901 /* for restarting inner loop in case of seq retry */
2902 seq = read_seqbegin(&rename_lock);
2903 /*
2904 * Need rcu_readlock to protect against the d_parent trashing
2905 * due to d_move
2906 */
2907 rcu_read_lock();
2908 if (d_ancestor(old_dentry, new_dentry))
2909 result = 1;
2910 else
2911 result = 0;
2912 rcu_read_unlock();
2913 } while (read_seqretry(&rename_lock, seq));
2914
2915 return result;
2916 }
2917
d_genocide(struct dentry * root)2918 void d_genocide(struct dentry *root)
2919 {
2920 struct dentry *this_parent;
2921 struct list_head *next;
2922 unsigned seq;
2923 int locked = 0;
2924
2925 seq = read_seqbegin(&rename_lock);
2926 again:
2927 this_parent = root;
2928 spin_lock(&this_parent->d_lock);
2929 repeat:
2930 next = this_parent->d_subdirs.next;
2931 resume:
2932 while (next != &this_parent->d_subdirs) {
2933 struct list_head *tmp = next;
2934 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2935 next = tmp->next;
2936
2937 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2938 if (d_unhashed(dentry) || !dentry->d_inode) {
2939 spin_unlock(&dentry->d_lock);
2940 continue;
2941 }
2942 if (!list_empty(&dentry->d_subdirs)) {
2943 spin_unlock(&this_parent->d_lock);
2944 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2945 this_parent = dentry;
2946 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2947 goto repeat;
2948 }
2949 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2950 dentry->d_flags |= DCACHE_GENOCIDE;
2951 dentry->d_count--;
2952 }
2953 spin_unlock(&dentry->d_lock);
2954 }
2955 if (this_parent != root) {
2956 struct dentry *child = this_parent;
2957 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2958 this_parent->d_flags |= DCACHE_GENOCIDE;
2959 this_parent->d_count--;
2960 }
2961 this_parent = try_to_ascend(this_parent, locked, seq);
2962 if (!this_parent)
2963 goto rename_retry;
2964 next = child->d_u.d_child.next;
2965 goto resume;
2966 }
2967 spin_unlock(&this_parent->d_lock);
2968 if (!locked && read_seqretry(&rename_lock, seq))
2969 goto rename_retry;
2970 if (locked)
2971 write_sequnlock(&rename_lock);
2972 return;
2973
2974 rename_retry:
2975 if (locked)
2976 goto again;
2977 locked = 1;
2978 write_seqlock(&rename_lock);
2979 goto again;
2980 }
2981
2982 /**
2983 * find_inode_number - check for dentry with name
2984 * @dir: directory to check
2985 * @name: Name to find.
2986 *
2987 * Check whether a dentry already exists for the given name,
2988 * and return the inode number if it has an inode. Otherwise
2989 * 0 is returned.
2990 *
2991 * This routine is used to post-process directory listings for
2992 * filesystems using synthetic inode numbers, and is necessary
2993 * to keep getcwd() working.
2994 */
2995
find_inode_number(struct dentry * dir,struct qstr * name)2996 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2997 {
2998 struct dentry * dentry;
2999 ino_t ino = 0;
3000
3001 dentry = d_hash_and_lookup(dir, name);
3002 if (!IS_ERR_OR_NULL(dentry)) {
3003 if (dentry->d_inode)
3004 ino = dentry->d_inode->i_ino;
3005 dput(dentry);
3006 }
3007 return ino;
3008 }
3009 EXPORT_SYMBOL(find_inode_number);
3010
3011 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3012 static int __init set_dhash_entries(char *str)
3013 {
3014 if (!str)
3015 return 0;
3016 dhash_entries = simple_strtoul(str, &str, 0);
3017 return 1;
3018 }
3019 __setup("dhash_entries=", set_dhash_entries);
3020
dcache_init_early(void)3021 static void __init dcache_init_early(void)
3022 {
3023 unsigned int loop;
3024
3025 /* If hashes are distributed across NUMA nodes, defer
3026 * hash allocation until vmalloc space is available.
3027 */
3028 if (hashdist)
3029 return;
3030
3031 dentry_hashtable =
3032 alloc_large_system_hash("Dentry cache",
3033 sizeof(struct hlist_bl_head),
3034 dhash_entries,
3035 13,
3036 HASH_EARLY,
3037 &d_hash_shift,
3038 &d_hash_mask,
3039 0,
3040 0);
3041
3042 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3043 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3044 }
3045
dcache_init(void)3046 static void __init dcache_init(void)
3047 {
3048 unsigned int loop;
3049
3050 /*
3051 * A constructor could be added for stable state like the lists,
3052 * but it is probably not worth it because of the cache nature
3053 * of the dcache.
3054 */
3055 dentry_cache = KMEM_CACHE(dentry,
3056 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3057
3058 /* Hash may have been set up in dcache_init_early */
3059 if (!hashdist)
3060 return;
3061
3062 dentry_hashtable =
3063 alloc_large_system_hash("Dentry cache",
3064 sizeof(struct hlist_bl_head),
3065 dhash_entries,
3066 13,
3067 0,
3068 &d_hash_shift,
3069 &d_hash_mask,
3070 0,
3071 0);
3072
3073 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3074 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3075 }
3076
3077 /* SLAB cache for __getname() consumers */
3078 struct kmem_cache *names_cachep __read_mostly;
3079 EXPORT_SYMBOL(names_cachep);
3080
3081 EXPORT_SYMBOL(d_genocide);
3082
vfs_caches_init_early(void)3083 void __init vfs_caches_init_early(void)
3084 {
3085 dcache_init_early();
3086 inode_init_early();
3087 }
3088
vfs_caches_init(unsigned long mempages)3089 void __init vfs_caches_init(unsigned long mempages)
3090 {
3091 unsigned long reserve;
3092
3093 /* Base hash sizes on available memory, with a reserve equal to
3094 150% of current kernel size */
3095
3096 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3097 mempages -= reserve;
3098
3099 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3100 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3101
3102 dcache_init();
3103 inode_init();
3104 files_init(mempages);
3105 mnt_init();
3106 bdev_cache_init();
3107 chrdev_init();
3108 }
3109