• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * This code generally works in units of "dio_blocks".  A dio_block is
50  * somewhere between the hard sector size and the filesystem block size.  it
51  * is determined on a per-invocation basis.   When talking to the filesystem
52  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
54  * to bio_block quantities by shifting left by blkfactor.
55  *
56  * If blkfactor is zero then the user's request was aligned to the filesystem's
57  * blocksize.
58  */
59 
60 /* dio_state only used in the submission path */
61 
62 struct dio_submit {
63 	struct bio *bio;		/* bio under assembly */
64 	unsigned blkbits;		/* doesn't change */
65 	unsigned blkfactor;		/* When we're using an alignment which
66 					   is finer than the filesystem's soft
67 					   blocksize, this specifies how much
68 					   finer.  blkfactor=2 means 1/4-block
69 					   alignment.  Does not change */
70 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
71 					   been performed at the start of a
72 					   write */
73 	int pages_in_io;		/* approximate total IO pages */
74 	size_t	size;			/* total request size (doesn't change)*/
75 	sector_t block_in_file;		/* Current offset into the underlying
76 					   file in dio_block units. */
77 	unsigned blocks_available;	/* At block_in_file.  changes */
78 	int reap_counter;		/* rate limit reaping */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	get_block_t *get_block;		/* block mapping function */
83 	dio_submit_t *submit_io;	/* IO submition function */
84 
85 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
86 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
87 	sector_t next_block_for_io;	/* next block to be put under IO,
88 					   in dio_blocks units */
89 
90 	/*
91 	 * Deferred addition of a page to the dio.  These variables are
92 	 * private to dio_send_cur_page(), submit_page_section() and
93 	 * dio_bio_add_page().
94 	 */
95 	struct page *cur_page;		/* The page */
96 	unsigned cur_page_offset;	/* Offset into it, in bytes */
97 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
98 	sector_t cur_page_block;	/* Where it starts */
99 	loff_t cur_page_fs_offset;	/* Offset in file */
100 
101 	/*
102 	 * Page fetching state. These variables belong to dio_refill_pages().
103 	 */
104 	int curr_page;			/* changes */
105 	int total_pages;		/* doesn't change */
106 	unsigned long curr_user_address;/* changes */
107 
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	int rw;
120 	struct inode *inode;
121 	loff_t i_size;			/* i_size when submitted */
122 	dio_iodone_t *end_io;		/* IO completion function */
123 
124 	void *private;			/* copy from map_bh.b_private */
125 
126 	/* BIO completion state */
127 	spinlock_t bio_lock;		/* protects BIO fields below */
128 	int page_errors;		/* errno from get_user_pages() */
129 	int is_async;			/* is IO async ? */
130 	bool defer_completion;		/* defer AIO completion to workqueue? */
131 	int io_error;			/* IO error in completion path */
132 	unsigned long refcount;		/* direct_io_worker() and bios */
133 	struct bio *bio_list;		/* singly linked via bi_private */
134 	struct task_struct *waiter;	/* waiting task (NULL if none) */
135 
136 	/* AIO related stuff */
137 	struct kiocb *iocb;		/* kiocb */
138 	ssize_t result;                 /* IO result */
139 
140 	/*
141 	 * pages[] (and any fields placed after it) are not zeroed out at
142 	 * allocation time.  Don't add new fields after pages[] unless you
143 	 * wish that they not be zeroed.
144 	 */
145 	union {
146 		struct page *pages[DIO_PAGES];	/* page buffer */
147 		struct work_struct complete_work;/* deferred AIO completion */
148 	};
149 } ____cacheline_aligned_in_smp;
150 
151 static struct kmem_cache *dio_cache __read_mostly;
152 
153 /*
154  * How many pages are in the queue?
155  */
dio_pages_present(struct dio_submit * sdio)156 static inline unsigned dio_pages_present(struct dio_submit *sdio)
157 {
158 	return sdio->tail - sdio->head;
159 }
160 
161 /*
162  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
163  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)164 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
165 {
166 	int ret;
167 	int nr_pages;
168 
169 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
170 	ret = get_user_pages_fast(
171 		sdio->curr_user_address,		/* Where from? */
172 		nr_pages,			/* How many pages? */
173 		dio->rw == READ,		/* Write to memory? */
174 		&dio->pages[0]);		/* Put results here */
175 
176 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
177 		struct page *page = ZERO_PAGE(0);
178 		/*
179 		 * A memory fault, but the filesystem has some outstanding
180 		 * mapped blocks.  We need to use those blocks up to avoid
181 		 * leaking stale data in the file.
182 		 */
183 		if (dio->page_errors == 0)
184 			dio->page_errors = ret;
185 		page_cache_get(page);
186 		dio->pages[0] = page;
187 		sdio->head = 0;
188 		sdio->tail = 1;
189 		ret = 0;
190 		goto out;
191 	}
192 
193 	if (ret >= 0) {
194 		sdio->curr_user_address += ret * PAGE_SIZE;
195 		sdio->curr_page += ret;
196 		sdio->head = 0;
197 		sdio->tail = ret;
198 		ret = 0;
199 	}
200 out:
201 	return ret;
202 }
203 
204 /*
205  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
206  * buffered inside the dio so that we can call get_user_pages() against a
207  * decent number of pages, less frequently.  To provide nicer use of the
208  * L1 cache.
209  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)210 static inline struct page *dio_get_page(struct dio *dio,
211 		struct dio_submit *sdio)
212 {
213 	if (dio_pages_present(sdio) == 0) {
214 		int ret;
215 
216 		ret = dio_refill_pages(dio, sdio);
217 		if (ret)
218 			return ERR_PTR(ret);
219 		BUG_ON(dio_pages_present(sdio) == 0);
220 	}
221 	return dio->pages[sdio->head++];
222 }
223 
224 /**
225  * dio_complete() - called when all DIO BIO I/O has been completed
226  * @offset: the byte offset in the file of the completed operation
227  *
228  * This drops i_dio_count, lets interested parties know that a DIO operation
229  * has completed, and calculates the resulting return code for the operation.
230  *
231  * It lets the filesystem know if it registered an interest earlier via
232  * get_block.  Pass the private field of the map buffer_head so that
233  * filesystems can use it to hold additional state between get_block calls and
234  * dio_complete.
235  */
dio_complete(struct dio * dio,loff_t offset,ssize_t ret,bool is_async)236 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
237 		bool is_async)
238 {
239 	ssize_t transferred = 0;
240 
241 	/*
242 	 * AIO submission can race with bio completion to get here while
243 	 * expecting to have the last io completed by bio completion.
244 	 * In that case -EIOCBQUEUED is in fact not an error we want
245 	 * to preserve through this call.
246 	 */
247 	if (ret == -EIOCBQUEUED)
248 		ret = 0;
249 
250 	if (dio->result) {
251 		transferred = dio->result;
252 
253 		/* Check for short read case */
254 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
255 			transferred = dio->i_size - offset;
256 	}
257 
258 	if (ret == 0)
259 		ret = dio->page_errors;
260 	if (ret == 0)
261 		ret = dio->io_error;
262 	if (ret == 0)
263 		ret = transferred;
264 
265 	if (dio->end_io && dio->result)
266 		dio->end_io(dio->iocb, offset, transferred, dio->private);
267 
268 	inode_dio_done(dio->inode);
269 	if (is_async)
270 		aio_complete(dio->iocb, ret, 0);
271 
272 	kmem_cache_free(dio_cache, dio);
273 	return ret;
274 }
275 
dio_aio_complete_work(struct work_struct * work)276 static void dio_aio_complete_work(struct work_struct *work)
277 {
278 	struct dio *dio = container_of(work, struct dio, complete_work);
279 
280 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 }
282 
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284 
285 /*
286  * Asynchronous IO callback.
287  */
dio_bio_end_aio(struct bio * bio,int error)288 static void dio_bio_end_aio(struct bio *bio, int error)
289 {
290 	struct dio *dio = bio->bi_private;
291 	unsigned long remaining;
292 	unsigned long flags;
293 
294 	/* cleanup the bio */
295 	dio_bio_complete(dio, bio);
296 
297 	spin_lock_irqsave(&dio->bio_lock, flags);
298 	remaining = --dio->refcount;
299 	if (remaining == 1 && dio->waiter)
300 		wake_up_process(dio->waiter);
301 	spin_unlock_irqrestore(&dio->bio_lock, flags);
302 
303 	if (remaining == 0) {
304 		if (dio->result && dio->defer_completion) {
305 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306 			queue_work(dio->inode->i_sb->s_dio_done_wq,
307 				   &dio->complete_work);
308 		} else {
309 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
310 		}
311 	}
312 }
313 
314 /*
315  * The BIO completion handler simply queues the BIO up for the process-context
316  * handler.
317  *
318  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
319  * implement a singly-linked list of completed BIOs, at dio->bio_list.
320  */
dio_bio_end_io(struct bio * bio,int error)321 static void dio_bio_end_io(struct bio *bio, int error)
322 {
323 	struct dio *dio = bio->bi_private;
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(&dio->bio_lock, flags);
327 	bio->bi_private = dio->bio_list;
328 	dio->bio_list = bio;
329 	if (--dio->refcount == 1 && dio->waiter)
330 		wake_up_process(dio->waiter);
331 	spin_unlock_irqrestore(&dio->bio_lock, flags);
332 }
333 
334 /**
335  * dio_end_io - handle the end io action for the given bio
336  * @bio: The direct io bio thats being completed
337  * @error: Error if there was one
338  *
339  * This is meant to be called by any filesystem that uses their own dio_submit_t
340  * so that the DIO specific endio actions are dealt with after the filesystem
341  * has done it's completion work.
342  */
dio_end_io(struct bio * bio,int error)343 void dio_end_io(struct bio *bio, int error)
344 {
345 	struct dio *dio = bio->bi_private;
346 
347 	if (dio->is_async)
348 		dio_bio_end_aio(bio, error);
349 	else
350 		dio_bio_end_io(bio, error);
351 }
352 EXPORT_SYMBOL_GPL(dio_end_io);
353 
354 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)355 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356 	      struct block_device *bdev,
357 	      sector_t first_sector, int nr_vecs)
358 {
359 	struct bio *bio;
360 
361 	/*
362 	 * bio_alloc() is guaranteed to return a bio when called with
363 	 * __GFP_WAIT and we request a valid number of vectors.
364 	 */
365 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
366 
367 	bio->bi_bdev = bdev;
368 	bio->bi_sector = first_sector;
369 	if (dio->is_async)
370 		bio->bi_end_io = dio_bio_end_aio;
371 	else
372 		bio->bi_end_io = dio_bio_end_io;
373 
374 	sdio->bio = bio;
375 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376 }
377 
378 /*
379  * In the AIO read case we speculatively dirty the pages before starting IO.
380  * During IO completion, any of these pages which happen to have been written
381  * back will be redirtied by bio_check_pages_dirty().
382  *
383  * bios hold a dio reference between submit_bio and ->end_io.
384  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)385 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386 {
387 	struct bio *bio = sdio->bio;
388 	unsigned long flags;
389 
390 	bio->bi_private = dio;
391 
392 	spin_lock_irqsave(&dio->bio_lock, flags);
393 	dio->refcount++;
394 	spin_unlock_irqrestore(&dio->bio_lock, flags);
395 
396 	if (dio->is_async && dio->rw == READ)
397 		bio_set_pages_dirty(bio);
398 
399 	if (sdio->submit_io)
400 		sdio->submit_io(dio->rw, bio, dio->inode,
401 			       sdio->logical_offset_in_bio);
402 	else
403 		submit_bio(dio->rw, bio);
404 
405 	sdio->bio = NULL;
406 	sdio->boundary = 0;
407 	sdio->logical_offset_in_bio = 0;
408 }
409 
410 /*
411  * Release any resources in case of a failure
412  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)413 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414 {
415 	while (dio_pages_present(sdio))
416 		page_cache_release(dio_get_page(dio, sdio));
417 }
418 
419 /*
420  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
421  * returned once all BIOs have been completed.  This must only be called once
422  * all bios have been issued so that dio->refcount can only decrease.  This
423  * requires that that the caller hold a reference on the dio.
424  */
dio_await_one(struct dio * dio)425 static struct bio *dio_await_one(struct dio *dio)
426 {
427 	unsigned long flags;
428 	struct bio *bio = NULL;
429 
430 	spin_lock_irqsave(&dio->bio_lock, flags);
431 
432 	/*
433 	 * Wait as long as the list is empty and there are bios in flight.  bio
434 	 * completion drops the count, maybe adds to the list, and wakes while
435 	 * holding the bio_lock so we don't need set_current_state()'s barrier
436 	 * and can call it after testing our condition.
437 	 */
438 	while (dio->refcount > 1 && dio->bio_list == NULL) {
439 		__set_current_state(TASK_UNINTERRUPTIBLE);
440 		dio->waiter = current;
441 		spin_unlock_irqrestore(&dio->bio_lock, flags);
442 		io_schedule();
443 		/* wake up sets us TASK_RUNNING */
444 		spin_lock_irqsave(&dio->bio_lock, flags);
445 		dio->waiter = NULL;
446 	}
447 	if (dio->bio_list) {
448 		bio = dio->bio_list;
449 		dio->bio_list = bio->bi_private;
450 	}
451 	spin_unlock_irqrestore(&dio->bio_lock, flags);
452 	return bio;
453 }
454 
455 /*
456  * Process one completed BIO.  No locks are held.
457  */
dio_bio_complete(struct dio * dio,struct bio * bio)458 static int dio_bio_complete(struct dio *dio, struct bio *bio)
459 {
460 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	struct bio_vec *bvec;
462 	unsigned i;
463 
464 	if (!uptodate)
465 		dio->io_error = -EIO;
466 
467 	if (dio->is_async && dio->rw == READ) {
468 		bio_check_pages_dirty(bio);	/* transfers ownership */
469 	} else {
470 		bio_for_each_segment_all(bvec, bio, i) {
471 			struct page *page = bvec->bv_page;
472 
473 			if (dio->rw == READ && !PageCompound(page))
474 				set_page_dirty_lock(page);
475 			page_cache_release(page);
476 		}
477 		bio_put(bio);
478 	}
479 	return uptodate ? 0 : -EIO;
480 }
481 
482 /*
483  * Wait on and process all in-flight BIOs.  This must only be called once
484  * all bios have been issued so that the refcount can only decrease.
485  * This just waits for all bios to make it through dio_bio_complete.  IO
486  * errors are propagated through dio->io_error and should be propagated via
487  * dio_complete().
488  */
dio_await_completion(struct dio * dio)489 static void dio_await_completion(struct dio *dio)
490 {
491 	struct bio *bio;
492 	do {
493 		bio = dio_await_one(dio);
494 		if (bio)
495 			dio_bio_complete(dio, bio);
496 	} while (bio);
497 }
498 
499 /*
500  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
501  * to keep the memory consumption sane we periodically reap any completed BIOs
502  * during the BIO generation phase.
503  *
504  * This also helps to limit the peak amount of pinned userspace memory.
505  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)506 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
507 {
508 	int ret = 0;
509 
510 	if (sdio->reap_counter++ >= 64) {
511 		while (dio->bio_list) {
512 			unsigned long flags;
513 			struct bio *bio;
514 			int ret2;
515 
516 			spin_lock_irqsave(&dio->bio_lock, flags);
517 			bio = dio->bio_list;
518 			dio->bio_list = bio->bi_private;
519 			spin_unlock_irqrestore(&dio->bio_lock, flags);
520 			ret2 = dio_bio_complete(dio, bio);
521 			if (ret == 0)
522 				ret = ret2;
523 		}
524 		sdio->reap_counter = 0;
525 	}
526 	return ret;
527 }
528 
529 /*
530  * Create workqueue for deferred direct IO completions. We allocate the
531  * workqueue when it's first needed. This avoids creating workqueue for
532  * filesystems that don't need it and also allows us to create the workqueue
533  * late enough so the we can include s_id in the name of the workqueue.
534  */
sb_init_dio_done_wq(struct super_block * sb)535 static int sb_init_dio_done_wq(struct super_block *sb)
536 {
537 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
538 						      WQ_MEM_RECLAIM, 0,
539 						      sb->s_id);
540 	if (!wq)
541 		return -ENOMEM;
542 	/*
543 	 * This has to be atomic as more DIOs can race to create the workqueue
544 	 */
545 	cmpxchg(&sb->s_dio_done_wq, NULL, wq);
546 	/* Someone created workqueue before us? Free ours... */
547 	if (wq != sb->s_dio_done_wq)
548 		destroy_workqueue(wq);
549 	return 0;
550 }
551 
dio_set_defer_completion(struct dio * dio)552 static int dio_set_defer_completion(struct dio *dio)
553 {
554 	struct super_block *sb = dio->inode->i_sb;
555 
556 	if (dio->defer_completion)
557 		return 0;
558 	dio->defer_completion = true;
559 	if (!sb->s_dio_done_wq)
560 		return sb_init_dio_done_wq(sb);
561 	return 0;
562 }
563 
564 /*
565  * Call into the fs to map some more disk blocks.  We record the current number
566  * of available blocks at sdio->blocks_available.  These are in units of the
567  * fs blocksize, (1 << inode->i_blkbits).
568  *
569  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
570  * it uses the passed inode-relative block number as the file offset, as usual.
571  *
572  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
573  * has remaining to do.  The fs should not map more than this number of blocks.
574  *
575  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
576  * indicate how much contiguous disk space has been made available at
577  * bh->b_blocknr.
578  *
579  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
580  * This isn't very efficient...
581  *
582  * In the case of filesystem holes: the fs may return an arbitrarily-large
583  * hole by returning an appropriate value in b_size and by clearing
584  * buffer_mapped().  However the direct-io code will only process holes one
585  * block at a time - it will repeatedly call get_block() as it walks the hole.
586  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)587 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
588 			   struct buffer_head *map_bh)
589 {
590 	int ret;
591 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
592 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
593 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
594 	int create;
595 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
596 
597 	/*
598 	 * If there was a memory error and we've overwritten all the
599 	 * mapped blocks then we can now return that memory error
600 	 */
601 	ret = dio->page_errors;
602 	if (ret == 0) {
603 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
604 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
605 		fs_endblk = (sdio->final_block_in_request - 1) >>
606 					sdio->blkfactor;
607 		fs_count = fs_endblk - fs_startblk + 1;
608 
609 		map_bh->b_state = 0;
610 		map_bh->b_size = fs_count << i_blkbits;
611 
612 		/*
613 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
614 		 * forbid block creations: only overwrites are permitted.
615 		 * We will return early to the caller once we see an
616 		 * unmapped buffer head returned, and the caller will fall
617 		 * back to buffered I/O.
618 		 *
619 		 * Otherwise the decision is left to the get_blocks method,
620 		 * which may decide to handle it or also return an unmapped
621 		 * buffer head.
622 		 */
623 		create = dio->rw & WRITE;
624 		if (dio->flags & DIO_SKIP_HOLES) {
625 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
626 							sdio->blkbits))
627 				create = 0;
628 		}
629 
630 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
631 						map_bh, create);
632 
633 		/* Store for completion */
634 		dio->private = map_bh->b_private;
635 
636 		if (ret == 0 && buffer_defer_completion(map_bh))
637 			ret = dio_set_defer_completion(dio);
638 	}
639 	return ret;
640 }
641 
642 /*
643  * There is no bio.  Make one now.
644  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)645 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
646 		sector_t start_sector, struct buffer_head *map_bh)
647 {
648 	sector_t sector;
649 	int ret, nr_pages;
650 
651 	ret = dio_bio_reap(dio, sdio);
652 	if (ret)
653 		goto out;
654 	sector = start_sector << (sdio->blkbits - 9);
655 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
656 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
657 	BUG_ON(nr_pages <= 0);
658 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
659 	sdio->boundary = 0;
660 out:
661 	return ret;
662 }
663 
664 /*
665  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
666  * that was successful then update final_block_in_bio and take a ref against
667  * the just-added page.
668  *
669  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
670  */
dio_bio_add_page(struct dio_submit * sdio)671 static inline int dio_bio_add_page(struct dio_submit *sdio)
672 {
673 	int ret;
674 
675 	ret = bio_add_page(sdio->bio, sdio->cur_page,
676 			sdio->cur_page_len, sdio->cur_page_offset);
677 	if (ret == sdio->cur_page_len) {
678 		/*
679 		 * Decrement count only, if we are done with this page
680 		 */
681 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
682 			sdio->pages_in_io--;
683 		page_cache_get(sdio->cur_page);
684 		sdio->final_block_in_bio = sdio->cur_page_block +
685 			(sdio->cur_page_len >> sdio->blkbits);
686 		ret = 0;
687 	} else {
688 		ret = 1;
689 	}
690 	return ret;
691 }
692 
693 /*
694  * Put cur_page under IO.  The section of cur_page which is described by
695  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
696  * starts on-disk at cur_page_block.
697  *
698  * We take a ref against the page here (on behalf of its presence in the bio).
699  *
700  * The caller of this function is responsible for removing cur_page from the
701  * dio, and for dropping the refcount which came from that presence.
702  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)703 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
704 		struct buffer_head *map_bh)
705 {
706 	int ret = 0;
707 
708 	if (sdio->bio) {
709 		loff_t cur_offset = sdio->cur_page_fs_offset;
710 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
711 			sdio->bio->bi_size;
712 
713 		/*
714 		 * See whether this new request is contiguous with the old.
715 		 *
716 		 * Btrfs cannot handle having logically non-contiguous requests
717 		 * submitted.  For example if you have
718 		 *
719 		 * Logical:  [0-4095][HOLE][8192-12287]
720 		 * Physical: [0-4095]      [4096-8191]
721 		 *
722 		 * We cannot submit those pages together as one BIO.  So if our
723 		 * current logical offset in the file does not equal what would
724 		 * be the next logical offset in the bio, submit the bio we
725 		 * have.
726 		 */
727 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
728 		    cur_offset != bio_next_offset)
729 			dio_bio_submit(dio, sdio);
730 	}
731 
732 	if (sdio->bio == NULL) {
733 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
734 		if (ret)
735 			goto out;
736 	}
737 
738 	if (dio_bio_add_page(sdio) != 0) {
739 		dio_bio_submit(dio, sdio);
740 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
741 		if (ret == 0) {
742 			ret = dio_bio_add_page(sdio);
743 			BUG_ON(ret != 0);
744 		}
745 	}
746 out:
747 	return ret;
748 }
749 
750 /*
751  * An autonomous function to put a chunk of a page under deferred IO.
752  *
753  * The caller doesn't actually know (or care) whether this piece of page is in
754  * a BIO, or is under IO or whatever.  We just take care of all possible
755  * situations here.  The separation between the logic of do_direct_IO() and
756  * that of submit_page_section() is important for clarity.  Please don't break.
757  *
758  * The chunk of page starts on-disk at blocknr.
759  *
760  * We perform deferred IO, by recording the last-submitted page inside our
761  * private part of the dio structure.  If possible, we just expand the IO
762  * across that page here.
763  *
764  * If that doesn't work out then we put the old page into the bio and add this
765  * page to the dio instead.
766  */
767 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)768 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
769 		    unsigned offset, unsigned len, sector_t blocknr,
770 		    struct buffer_head *map_bh)
771 {
772 	int ret = 0;
773 
774 	if (dio->rw & WRITE) {
775 		/*
776 		 * Read accounting is performed in submit_bio()
777 		 */
778 		task_io_account_write(len);
779 	}
780 
781 	/*
782 	 * Can we just grow the current page's presence in the dio?
783 	 */
784 	if (sdio->cur_page == page &&
785 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
786 	    sdio->cur_page_block +
787 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
788 		sdio->cur_page_len += len;
789 		goto out;
790 	}
791 
792 	/*
793 	 * If there's a deferred page already there then send it.
794 	 */
795 	if (sdio->cur_page) {
796 		ret = dio_send_cur_page(dio, sdio, map_bh);
797 		page_cache_release(sdio->cur_page);
798 		sdio->cur_page = NULL;
799 		if (ret)
800 			return ret;
801 	}
802 
803 	page_cache_get(page);		/* It is in dio */
804 	sdio->cur_page = page;
805 	sdio->cur_page_offset = offset;
806 	sdio->cur_page_len = len;
807 	sdio->cur_page_block = blocknr;
808 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809 out:
810 	/*
811 	 * If sdio->boundary then we want to schedule the IO now to
812 	 * avoid metadata seeks.
813 	 */
814 	if (sdio->boundary) {
815 		ret = dio_send_cur_page(dio, sdio, map_bh);
816 		dio_bio_submit(dio, sdio);
817 		page_cache_release(sdio->cur_page);
818 		sdio->cur_page = NULL;
819 	}
820 	return ret;
821 }
822 
823 /*
824  * Clean any dirty buffers in the blockdev mapping which alias newly-created
825  * file blocks.  Only called for S_ISREG files - blockdevs do not set
826  * buffer_new
827  */
clean_blockdev_aliases(struct dio * dio,struct buffer_head * map_bh)828 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
829 {
830 	unsigned i;
831 	unsigned nblocks;
832 
833 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
834 
835 	for (i = 0; i < nblocks; i++) {
836 		unmap_underlying_metadata(map_bh->b_bdev,
837 					  map_bh->b_blocknr + i);
838 	}
839 }
840 
841 /*
842  * If we are not writing the entire block and get_block() allocated
843  * the block for us, we need to fill-in the unused portion of the
844  * block with zeros. This happens only if user-buffer, fileoffset or
845  * io length is not filesystem block-size multiple.
846  *
847  * `end' is zero if we're doing the start of the IO, 1 at the end of the
848  * IO.
849  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)850 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
851 		int end, struct buffer_head *map_bh)
852 {
853 	unsigned dio_blocks_per_fs_block;
854 	unsigned this_chunk_blocks;	/* In dio_blocks */
855 	unsigned this_chunk_bytes;
856 	struct page *page;
857 
858 	sdio->start_zero_done = 1;
859 	if (!sdio->blkfactor || !buffer_new(map_bh))
860 		return;
861 
862 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
863 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
864 
865 	if (!this_chunk_blocks)
866 		return;
867 
868 	/*
869 	 * We need to zero out part of an fs block.  It is either at the
870 	 * beginning or the end of the fs block.
871 	 */
872 	if (end)
873 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
874 
875 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
876 
877 	page = ZERO_PAGE(0);
878 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
879 				sdio->next_block_for_io, map_bh))
880 		return;
881 
882 	sdio->next_block_for_io += this_chunk_blocks;
883 }
884 
885 /*
886  * Walk the user pages, and the file, mapping blocks to disk and generating
887  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
888  * into submit_page_section(), which takes care of the next stage of submission
889  *
890  * Direct IO against a blockdev is different from a file.  Because we can
891  * happily perform page-sized but 512-byte aligned IOs.  It is important that
892  * blockdev IO be able to have fine alignment and large sizes.
893  *
894  * So what we do is to permit the ->get_block function to populate bh.b_size
895  * with the size of IO which is permitted at this offset and this i_blkbits.
896  *
897  * For best results, the blockdev should be set up with 512-byte i_blkbits and
898  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
899  * fine alignment but still allows this function to work in PAGE_SIZE units.
900  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)901 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
902 			struct buffer_head *map_bh)
903 {
904 	const unsigned blkbits = sdio->blkbits;
905 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
906 	struct page *page;
907 	unsigned block_in_page;
908 	int ret = 0;
909 
910 	/* The I/O can start at any block offset within the first page */
911 	block_in_page = sdio->first_block_in_page;
912 
913 	while (sdio->block_in_file < sdio->final_block_in_request) {
914 		page = dio_get_page(dio, sdio);
915 		if (IS_ERR(page)) {
916 			ret = PTR_ERR(page);
917 			goto out;
918 		}
919 
920 		while (block_in_page < blocks_per_page) {
921 			unsigned offset_in_page = block_in_page << blkbits;
922 			unsigned this_chunk_bytes;	/* # of bytes mapped */
923 			unsigned this_chunk_blocks;	/* # of blocks */
924 			unsigned u;
925 
926 			if (sdio->blocks_available == 0) {
927 				/*
928 				 * Need to go and map some more disk
929 				 */
930 				unsigned long blkmask;
931 				unsigned long dio_remainder;
932 
933 				ret = get_more_blocks(dio, sdio, map_bh);
934 				if (ret) {
935 					page_cache_release(page);
936 					goto out;
937 				}
938 				if (!buffer_mapped(map_bh))
939 					goto do_holes;
940 
941 				sdio->blocks_available =
942 						map_bh->b_size >> sdio->blkbits;
943 				sdio->next_block_for_io =
944 					map_bh->b_blocknr << sdio->blkfactor;
945 				if (buffer_new(map_bh))
946 					clean_blockdev_aliases(dio, map_bh);
947 
948 				if (!sdio->blkfactor)
949 					goto do_holes;
950 
951 				blkmask = (1 << sdio->blkfactor) - 1;
952 				dio_remainder = (sdio->block_in_file & blkmask);
953 
954 				/*
955 				 * If we are at the start of IO and that IO
956 				 * starts partway into a fs-block,
957 				 * dio_remainder will be non-zero.  If the IO
958 				 * is a read then we can simply advance the IO
959 				 * cursor to the first block which is to be
960 				 * read.  But if the IO is a write and the
961 				 * block was newly allocated we cannot do that;
962 				 * the start of the fs block must be zeroed out
963 				 * on-disk
964 				 */
965 				if (!buffer_new(map_bh))
966 					sdio->next_block_for_io += dio_remainder;
967 				sdio->blocks_available -= dio_remainder;
968 			}
969 do_holes:
970 			/* Handle holes */
971 			if (!buffer_mapped(map_bh)) {
972 				loff_t i_size_aligned;
973 
974 				/* AKPM: eargh, -ENOTBLK is a hack */
975 				if (dio->rw & WRITE) {
976 					page_cache_release(page);
977 					return -ENOTBLK;
978 				}
979 
980 				/*
981 				 * Be sure to account for a partial block as the
982 				 * last block in the file
983 				 */
984 				i_size_aligned = ALIGN(i_size_read(dio->inode),
985 							1 << blkbits);
986 				if (sdio->block_in_file >=
987 						i_size_aligned >> blkbits) {
988 					/* We hit eof */
989 					page_cache_release(page);
990 					goto out;
991 				}
992 				zero_user(page, block_in_page << blkbits,
993 						1 << blkbits);
994 				sdio->block_in_file++;
995 				block_in_page++;
996 				goto next_block;
997 			}
998 
999 			/*
1000 			 * If we're performing IO which has an alignment which
1001 			 * is finer than the underlying fs, go check to see if
1002 			 * we must zero out the start of this block.
1003 			 */
1004 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1005 				dio_zero_block(dio, sdio, 0, map_bh);
1006 
1007 			/*
1008 			 * Work out, in this_chunk_blocks, how much disk we
1009 			 * can add to this page
1010 			 */
1011 			this_chunk_blocks = sdio->blocks_available;
1012 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
1013 			if (this_chunk_blocks > u)
1014 				this_chunk_blocks = u;
1015 			u = sdio->final_block_in_request - sdio->block_in_file;
1016 			if (this_chunk_blocks > u)
1017 				this_chunk_blocks = u;
1018 			this_chunk_bytes = this_chunk_blocks << blkbits;
1019 			BUG_ON(this_chunk_bytes == 0);
1020 
1021 			if (this_chunk_blocks == sdio->blocks_available)
1022 				sdio->boundary = buffer_boundary(map_bh);
1023 			ret = submit_page_section(dio, sdio, page,
1024 						  offset_in_page,
1025 						  this_chunk_bytes,
1026 						  sdio->next_block_for_io,
1027 						  map_bh);
1028 			if (ret) {
1029 				page_cache_release(page);
1030 				goto out;
1031 			}
1032 			sdio->next_block_for_io += this_chunk_blocks;
1033 
1034 			sdio->block_in_file += this_chunk_blocks;
1035 			block_in_page += this_chunk_blocks;
1036 			sdio->blocks_available -= this_chunk_blocks;
1037 next_block:
1038 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039 			if (sdio->block_in_file == sdio->final_block_in_request)
1040 				break;
1041 		}
1042 
1043 		/* Drop the ref which was taken in get_user_pages() */
1044 		page_cache_release(page);
1045 		block_in_page = 0;
1046 	}
1047 out:
1048 	return ret;
1049 }
1050 
drop_refcount(struct dio * dio)1051 static inline int drop_refcount(struct dio *dio)
1052 {
1053 	int ret2;
1054 	unsigned long flags;
1055 
1056 	/*
1057 	 * Sync will always be dropping the final ref and completing the
1058 	 * operation.  AIO can if it was a broken operation described above or
1059 	 * in fact if all the bios race to complete before we get here.  In
1060 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1061 	 * return code that the caller will hand to aio_complete().
1062 	 *
1063 	 * This is managed by the bio_lock instead of being an atomic_t so that
1064 	 * completion paths can drop their ref and use the remaining count to
1065 	 * decide to wake the submission path atomically.
1066 	 */
1067 	spin_lock_irqsave(&dio->bio_lock, flags);
1068 	ret2 = --dio->refcount;
1069 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1070 	return ret2;
1071 }
1072 
1073 /*
1074  * This is a library function for use by filesystem drivers.
1075  *
1076  * The locking rules are governed by the flags parameter:
1077  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1078  *    scheme for dumb filesystems.
1079  *    For writes this function is called under i_mutex and returns with
1080  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1081  *    taken and dropped again before returning.
1082  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1083  *    internal locking but rather rely on the filesystem to synchronize
1084  *    direct I/O reads/writes versus each other and truncate.
1085  *
1086  * To help with locking against truncate we incremented the i_dio_count
1087  * counter before starting direct I/O, and decrement it once we are done.
1088  * Truncate can wait for it to reach zero to provide exclusion.  It is
1089  * expected that filesystem provide exclusion between new direct I/O
1090  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1091  * but other filesystems need to take care of this on their own.
1092  *
1093  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1094  * is always inlined. Otherwise gcc is unable to split the structure into
1095  * individual fields and will generate much worse code. This is important
1096  * for the whole file.
1097  */
1098 static inline ssize_t
do_blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1099 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1100 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1101 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1102 	dio_submit_t submit_io,	int flags)
1103 {
1104 	int seg;
1105 	size_t size;
1106 	unsigned long addr;
1107 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1108 	unsigned blkbits = i_blkbits;
1109 	unsigned blocksize_mask = (1 << blkbits) - 1;
1110 	ssize_t retval = -EINVAL;
1111 	loff_t end = offset;
1112 	struct dio *dio;
1113 	struct dio_submit sdio = { 0, };
1114 	unsigned long user_addr;
1115 	size_t bytes;
1116 	struct buffer_head map_bh = { 0, };
1117 	struct blk_plug plug;
1118 
1119 	if (rw & WRITE)
1120 		rw = WRITE_ODIRECT;
1121 
1122 	/*
1123 	 * Avoid references to bdev if not absolutely needed to give
1124 	 * the early prefetch in the caller enough time.
1125 	 */
1126 
1127 	if (offset & blocksize_mask) {
1128 		if (bdev)
1129 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1130 		blocksize_mask = (1 << blkbits) - 1;
1131 		if (offset & blocksize_mask)
1132 			goto out;
1133 	}
1134 
1135 	/* Check the memory alignment.  Blocks cannot straddle pages */
1136 	for (seg = 0; seg < nr_segs; seg++) {
1137 		addr = (unsigned long)iov[seg].iov_base;
1138 		size = iov[seg].iov_len;
1139 		end += size;
1140 		if (unlikely((addr & blocksize_mask) ||
1141 			     (size & blocksize_mask))) {
1142 			if (bdev)
1143 				blkbits = blksize_bits(
1144 					 bdev_logical_block_size(bdev));
1145 			blocksize_mask = (1 << blkbits) - 1;
1146 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1147 				goto out;
1148 		}
1149 	}
1150 
1151 	/* watch out for a 0 len io from a tricksy fs */
1152 	if (rw == READ && end == offset)
1153 		return 0;
1154 
1155 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1156 	retval = -ENOMEM;
1157 	if (!dio)
1158 		goto out;
1159 	/*
1160 	 * Believe it or not, zeroing out the page array caused a .5%
1161 	 * performance regression in a database benchmark.  So, we take
1162 	 * care to only zero out what's needed.
1163 	 */
1164 	memset(dio, 0, offsetof(struct dio, pages));
1165 
1166 	dio->flags = flags;
1167 	if (dio->flags & DIO_LOCKING) {
1168 		if (rw == READ) {
1169 			struct address_space *mapping =
1170 					iocb->ki_filp->f_mapping;
1171 
1172 			/* will be released by direct_io_worker */
1173 			mutex_lock(&inode->i_mutex);
1174 
1175 			retval = filemap_write_and_wait_range(mapping, offset,
1176 							      end - 1);
1177 			if (retval) {
1178 				mutex_unlock(&inode->i_mutex);
1179 				kmem_cache_free(dio_cache, dio);
1180 				goto out;
1181 			}
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * Will be decremented at I/O completion time.
1187 	 */
1188 	atomic_inc(&inode->i_dio_count);
1189 
1190 	/*
1191 	 * For file extending writes updating i_size before data
1192 	 * writeouts complete can expose uninitialized blocks. So
1193 	 * even for AIO, we need to wait for i/o to complete before
1194 	 * returning in this case.
1195 	 */
1196 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1197 		(end > i_size_read(inode)));
1198 
1199 	retval = 0;
1200 
1201 	dio->inode = inode;
1202 	dio->rw = rw;
1203 	sdio.blkbits = blkbits;
1204 	sdio.blkfactor = i_blkbits - blkbits;
1205 	sdio.block_in_file = offset >> blkbits;
1206 
1207 	sdio.get_block = get_block;
1208 	dio->end_io = end_io;
1209 	sdio.submit_io = submit_io;
1210 	sdio.final_block_in_bio = -1;
1211 	sdio.next_block_for_io = -1;
1212 
1213 	dio->iocb = iocb;
1214 	dio->i_size = i_size_read(inode);
1215 
1216 	spin_lock_init(&dio->bio_lock);
1217 	dio->refcount = 1;
1218 
1219 	/*
1220 	 * In case of non-aligned buffers, we may need 2 more
1221 	 * pages since we need to zero out first and last block.
1222 	 */
1223 	if (unlikely(sdio.blkfactor))
1224 		sdio.pages_in_io = 2;
1225 
1226 	for (seg = 0; seg < nr_segs; seg++) {
1227 		user_addr = (unsigned long)iov[seg].iov_base;
1228 		sdio.pages_in_io +=
1229 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1230 				PAGE_SIZE - user_addr / PAGE_SIZE);
1231 	}
1232 
1233 	blk_start_plug(&plug);
1234 
1235 	for (seg = 0; seg < nr_segs; seg++) {
1236 		user_addr = (unsigned long)iov[seg].iov_base;
1237 		sdio.size += bytes = iov[seg].iov_len;
1238 
1239 		/* Index into the first page of the first block */
1240 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1241 		sdio.final_block_in_request = sdio.block_in_file +
1242 						(bytes >> blkbits);
1243 		/* Page fetching state */
1244 		sdio.head = 0;
1245 		sdio.tail = 0;
1246 		sdio.curr_page = 0;
1247 
1248 		sdio.total_pages = 0;
1249 		if (user_addr & (PAGE_SIZE-1)) {
1250 			sdio.total_pages++;
1251 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1252 		}
1253 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1254 		sdio.curr_user_address = user_addr;
1255 
1256 		retval = do_direct_IO(dio, &sdio, &map_bh);
1257 
1258 		dio->result += iov[seg].iov_len -
1259 			((sdio.final_block_in_request - sdio.block_in_file) <<
1260 					blkbits);
1261 
1262 		if (retval) {
1263 			dio_cleanup(dio, &sdio);
1264 			break;
1265 		}
1266 	} /* end iovec loop */
1267 
1268 	if (retval == -ENOTBLK) {
1269 		/*
1270 		 * The remaining part of the request will be
1271 		 * be handled by buffered I/O when we return
1272 		 */
1273 		retval = 0;
1274 	}
1275 	/*
1276 	 * There may be some unwritten disk at the end of a part-written
1277 	 * fs-block-sized block.  Go zero that now.
1278 	 */
1279 	dio_zero_block(dio, &sdio, 1, &map_bh);
1280 
1281 	if (sdio.cur_page) {
1282 		ssize_t ret2;
1283 
1284 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1285 		if (retval == 0)
1286 			retval = ret2;
1287 		page_cache_release(sdio.cur_page);
1288 		sdio.cur_page = NULL;
1289 	}
1290 	if (sdio.bio)
1291 		dio_bio_submit(dio, &sdio);
1292 
1293 	blk_finish_plug(&plug);
1294 
1295 	/*
1296 	 * It is possible that, we return short IO due to end of file.
1297 	 * In that case, we need to release all the pages we got hold on.
1298 	 */
1299 	dio_cleanup(dio, &sdio);
1300 
1301 	/*
1302 	 * All block lookups have been performed. For READ requests
1303 	 * we can let i_mutex go now that its achieved its purpose
1304 	 * of protecting us from looking up uninitialized blocks.
1305 	 */
1306 	if (rw == READ && (dio->flags & DIO_LOCKING))
1307 		mutex_unlock(&dio->inode->i_mutex);
1308 
1309 	/*
1310 	 * The only time we want to leave bios in flight is when a successful
1311 	 * partial aio read or full aio write have been setup.  In that case
1312 	 * bio completion will call aio_complete.  The only time it's safe to
1313 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1314 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1315 	 */
1316 	BUG_ON(retval == -EIOCBQUEUED);
1317 	if (dio->is_async && retval == 0 && dio->result &&
1318 	    ((rw == READ) || (dio->result == sdio.size)))
1319 		retval = -EIOCBQUEUED;
1320 
1321 	if (retval != -EIOCBQUEUED)
1322 		dio_await_completion(dio);
1323 
1324 	if (drop_refcount(dio) == 0) {
1325 		retval = dio_complete(dio, offset, retval, false);
1326 	} else
1327 		BUG_ON(retval != -EIOCBQUEUED);
1328 
1329 out:
1330 	return retval;
1331 }
1332 
1333 ssize_t
__blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1334 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1335 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1336 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1337 	dio_submit_t submit_io,	int flags)
1338 {
1339 	/*
1340 	 * The block device state is needed in the end to finally
1341 	 * submit everything.  Since it's likely to be cache cold
1342 	 * prefetch it here as first thing to hide some of the
1343 	 * latency.
1344 	 *
1345 	 * Attempt to prefetch the pieces we likely need later.
1346 	 */
1347 	prefetch(&bdev->bd_disk->part_tbl);
1348 	prefetch(bdev->bd_queue);
1349 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1350 
1351 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1352 				     nr_segs, get_block, end_io,
1353 				     submit_io, flags);
1354 }
1355 
1356 EXPORT_SYMBOL(__blockdev_direct_IO);
1357 
dio_init(void)1358 static __init int dio_init(void)
1359 {
1360 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1361 	return 0;
1362 }
1363 module_init(dio_init)
1364