1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41
42 /*
43 * How many user pages to map in one call to get_user_pages(). This determines
44 * the size of a structure in the slab cache
45 */
46 #define DIO_PAGES 64
47
48 /*
49 * This code generally works in units of "dio_blocks". A dio_block is
50 * somewhere between the hard sector size and the filesystem block size. it
51 * is determined on a per-invocation basis. When talking to the filesystem
52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
54 * to bio_block quantities by shifting left by blkfactor.
55 *
56 * If blkfactor is zero then the user's request was aligned to the filesystem's
57 * blocksize.
58 */
59
60 /* dio_state only used in the submission path */
61
62 struct dio_submit {
63 struct bio *bio; /* bio under assembly */
64 unsigned blkbits; /* doesn't change */
65 unsigned blkfactor; /* When we're using an alignment which
66 is finer than the filesystem's soft
67 blocksize, this specifies how much
68 finer. blkfactor=2 means 1/4-block
69 alignment. Does not change */
70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
71 been performed at the start of a
72 write */
73 int pages_in_io; /* approximate total IO pages */
74 size_t size; /* total request size (doesn't change)*/
75 sector_t block_in_file; /* Current offset into the underlying
76 file in dio_block units. */
77 unsigned blocks_available; /* At block_in_file. changes */
78 int reap_counter; /* rate limit reaping */
79 sector_t final_block_in_request;/* doesn't change */
80 unsigned first_block_in_page; /* doesn't change, Used only once */
81 int boundary; /* prev block is at a boundary */
82 get_block_t *get_block; /* block mapping function */
83 dio_submit_t *submit_io; /* IO submition function */
84
85 loff_t logical_offset_in_bio; /* current first logical block in bio */
86 sector_t final_block_in_bio; /* current final block in bio + 1 */
87 sector_t next_block_for_io; /* next block to be put under IO,
88 in dio_blocks units */
89
90 /*
91 * Deferred addition of a page to the dio. These variables are
92 * private to dio_send_cur_page(), submit_page_section() and
93 * dio_bio_add_page().
94 */
95 struct page *cur_page; /* The page */
96 unsigned cur_page_offset; /* Offset into it, in bytes */
97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
98 sector_t cur_page_block; /* Where it starts */
99 loff_t cur_page_fs_offset; /* Offset in file */
100
101 /*
102 * Page fetching state. These variables belong to dio_refill_pages().
103 */
104 int curr_page; /* changes */
105 int total_pages; /* doesn't change */
106 unsigned long curr_user_address;/* changes */
107
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 };
115
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 int flags; /* doesn't change */
119 int rw;
120 struct inode *inode;
121 loff_t i_size; /* i_size when submitted */
122 dio_iodone_t *end_io; /* IO completion function */
123
124 void *private; /* copy from map_bh.b_private */
125
126 /* BIO completion state */
127 spinlock_t bio_lock; /* protects BIO fields below */
128 int page_errors; /* errno from get_user_pages() */
129 int is_async; /* is IO async ? */
130 bool defer_completion; /* defer AIO completion to workqueue? */
131 int io_error; /* IO error in completion path */
132 unsigned long refcount; /* direct_io_worker() and bios */
133 struct bio *bio_list; /* singly linked via bi_private */
134 struct task_struct *waiter; /* waiting task (NULL if none) */
135
136 /* AIO related stuff */
137 struct kiocb *iocb; /* kiocb */
138 ssize_t result; /* IO result */
139
140 /*
141 * pages[] (and any fields placed after it) are not zeroed out at
142 * allocation time. Don't add new fields after pages[] unless you
143 * wish that they not be zeroed.
144 */
145 union {
146 struct page *pages[DIO_PAGES]; /* page buffer */
147 struct work_struct complete_work;/* deferred AIO completion */
148 };
149 } ____cacheline_aligned_in_smp;
150
151 static struct kmem_cache *dio_cache __read_mostly;
152
153 /*
154 * How many pages are in the queue?
155 */
dio_pages_present(struct dio_submit * sdio)156 static inline unsigned dio_pages_present(struct dio_submit *sdio)
157 {
158 return sdio->tail - sdio->head;
159 }
160
161 /*
162 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
163 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)164 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
165 {
166 int ret;
167 int nr_pages;
168
169 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
170 ret = get_user_pages_fast(
171 sdio->curr_user_address, /* Where from? */
172 nr_pages, /* How many pages? */
173 dio->rw == READ, /* Write to memory? */
174 &dio->pages[0]); /* Put results here */
175
176 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
177 struct page *page = ZERO_PAGE(0);
178 /*
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
182 */
183 if (dio->page_errors == 0)
184 dio->page_errors = ret;
185 page_cache_get(page);
186 dio->pages[0] = page;
187 sdio->head = 0;
188 sdio->tail = 1;
189 ret = 0;
190 goto out;
191 }
192
193 if (ret >= 0) {
194 sdio->curr_user_address += ret * PAGE_SIZE;
195 sdio->curr_page += ret;
196 sdio->head = 0;
197 sdio->tail = ret;
198 ret = 0;
199 }
200 out:
201 return ret;
202 }
203
204 /*
205 * Get another userspace page. Returns an ERR_PTR on error. Pages are
206 * buffered inside the dio so that we can call get_user_pages() against a
207 * decent number of pages, less frequently. To provide nicer use of the
208 * L1 cache.
209 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)210 static inline struct page *dio_get_page(struct dio *dio,
211 struct dio_submit *sdio)
212 {
213 if (dio_pages_present(sdio) == 0) {
214 int ret;
215
216 ret = dio_refill_pages(dio, sdio);
217 if (ret)
218 return ERR_PTR(ret);
219 BUG_ON(dio_pages_present(sdio) == 0);
220 }
221 return dio->pages[sdio->head++];
222 }
223
224 /**
225 * dio_complete() - called when all DIO BIO I/O has been completed
226 * @offset: the byte offset in the file of the completed operation
227 *
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
230 *
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
234 * dio_complete.
235 */
dio_complete(struct dio * dio,loff_t offset,ssize_t ret,bool is_async)236 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
237 bool is_async)
238 {
239 ssize_t transferred = 0;
240
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
255 transferred = dio->i_size - offset;
256 }
257
258 if (ret == 0)
259 ret = dio->page_errors;
260 if (ret == 0)
261 ret = dio->io_error;
262 if (ret == 0)
263 ret = transferred;
264
265 if (dio->end_io && dio->result)
266 dio->end_io(dio->iocb, offset, transferred, dio->private);
267
268 inode_dio_done(dio->inode);
269 if (is_async)
270 aio_complete(dio->iocb, ret, 0);
271
272 kmem_cache_free(dio_cache, dio);
273 return ret;
274 }
275
dio_aio_complete_work(struct work_struct * work)276 static void dio_aio_complete_work(struct work_struct *work)
277 {
278 struct dio *dio = container_of(work, struct dio, complete_work);
279
280 dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 }
282
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284
285 /*
286 * Asynchronous IO callback.
287 */
dio_bio_end_aio(struct bio * bio,int error)288 static void dio_bio_end_aio(struct bio *bio, int error)
289 {
290 struct dio *dio = bio->bi_private;
291 unsigned long remaining;
292 unsigned long flags;
293
294 /* cleanup the bio */
295 dio_bio_complete(dio, bio);
296
297 spin_lock_irqsave(&dio->bio_lock, flags);
298 remaining = --dio->refcount;
299 if (remaining == 1 && dio->waiter)
300 wake_up_process(dio->waiter);
301 spin_unlock_irqrestore(&dio->bio_lock, flags);
302
303 if (remaining == 0) {
304 if (dio->result && dio->defer_completion) {
305 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306 queue_work(dio->inode->i_sb->s_dio_done_wq,
307 &dio->complete_work);
308 } else {
309 dio_complete(dio, dio->iocb->ki_pos, 0, true);
310 }
311 }
312 }
313
314 /*
315 * The BIO completion handler simply queues the BIO up for the process-context
316 * handler.
317 *
318 * During I/O bi_private points at the dio. After I/O, bi_private is used to
319 * implement a singly-linked list of completed BIOs, at dio->bio_list.
320 */
dio_bio_end_io(struct bio * bio,int error)321 static void dio_bio_end_io(struct bio *bio, int error)
322 {
323 struct dio *dio = bio->bi_private;
324 unsigned long flags;
325
326 spin_lock_irqsave(&dio->bio_lock, flags);
327 bio->bi_private = dio->bio_list;
328 dio->bio_list = bio;
329 if (--dio->refcount == 1 && dio->waiter)
330 wake_up_process(dio->waiter);
331 spin_unlock_irqrestore(&dio->bio_lock, flags);
332 }
333
334 /**
335 * dio_end_io - handle the end io action for the given bio
336 * @bio: The direct io bio thats being completed
337 * @error: Error if there was one
338 *
339 * This is meant to be called by any filesystem that uses their own dio_submit_t
340 * so that the DIO specific endio actions are dealt with after the filesystem
341 * has done it's completion work.
342 */
dio_end_io(struct bio * bio,int error)343 void dio_end_io(struct bio *bio, int error)
344 {
345 struct dio *dio = bio->bi_private;
346
347 if (dio->is_async)
348 dio_bio_end_aio(bio, error);
349 else
350 dio_bio_end_io(bio, error);
351 }
352 EXPORT_SYMBOL_GPL(dio_end_io);
353
354 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)355 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356 struct block_device *bdev,
357 sector_t first_sector, int nr_vecs)
358 {
359 struct bio *bio;
360
361 /*
362 * bio_alloc() is guaranteed to return a bio when called with
363 * __GFP_WAIT and we request a valid number of vectors.
364 */
365 bio = bio_alloc(GFP_KERNEL, nr_vecs);
366
367 bio->bi_bdev = bdev;
368 bio->bi_sector = first_sector;
369 if (dio->is_async)
370 bio->bi_end_io = dio_bio_end_aio;
371 else
372 bio->bi_end_io = dio_bio_end_io;
373
374 sdio->bio = bio;
375 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376 }
377
378 /*
379 * In the AIO read case we speculatively dirty the pages before starting IO.
380 * During IO completion, any of these pages which happen to have been written
381 * back will be redirtied by bio_check_pages_dirty().
382 *
383 * bios hold a dio reference between submit_bio and ->end_io.
384 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)385 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386 {
387 struct bio *bio = sdio->bio;
388 unsigned long flags;
389
390 bio->bi_private = dio;
391
392 spin_lock_irqsave(&dio->bio_lock, flags);
393 dio->refcount++;
394 spin_unlock_irqrestore(&dio->bio_lock, flags);
395
396 if (dio->is_async && dio->rw == READ)
397 bio_set_pages_dirty(bio);
398
399 if (sdio->submit_io)
400 sdio->submit_io(dio->rw, bio, dio->inode,
401 sdio->logical_offset_in_bio);
402 else
403 submit_bio(dio->rw, bio);
404
405 sdio->bio = NULL;
406 sdio->boundary = 0;
407 sdio->logical_offset_in_bio = 0;
408 }
409
410 /*
411 * Release any resources in case of a failure
412 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)413 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414 {
415 while (dio_pages_present(sdio))
416 page_cache_release(dio_get_page(dio, sdio));
417 }
418
419 /*
420 * Wait for the next BIO to complete. Remove it and return it. NULL is
421 * returned once all BIOs have been completed. This must only be called once
422 * all bios have been issued so that dio->refcount can only decrease. This
423 * requires that that the caller hold a reference on the dio.
424 */
dio_await_one(struct dio * dio)425 static struct bio *dio_await_one(struct dio *dio)
426 {
427 unsigned long flags;
428 struct bio *bio = NULL;
429
430 spin_lock_irqsave(&dio->bio_lock, flags);
431
432 /*
433 * Wait as long as the list is empty and there are bios in flight. bio
434 * completion drops the count, maybe adds to the list, and wakes while
435 * holding the bio_lock so we don't need set_current_state()'s barrier
436 * and can call it after testing our condition.
437 */
438 while (dio->refcount > 1 && dio->bio_list == NULL) {
439 __set_current_state(TASK_UNINTERRUPTIBLE);
440 dio->waiter = current;
441 spin_unlock_irqrestore(&dio->bio_lock, flags);
442 io_schedule();
443 /* wake up sets us TASK_RUNNING */
444 spin_lock_irqsave(&dio->bio_lock, flags);
445 dio->waiter = NULL;
446 }
447 if (dio->bio_list) {
448 bio = dio->bio_list;
449 dio->bio_list = bio->bi_private;
450 }
451 spin_unlock_irqrestore(&dio->bio_lock, flags);
452 return bio;
453 }
454
455 /*
456 * Process one completed BIO. No locks are held.
457 */
dio_bio_complete(struct dio * dio,struct bio * bio)458 static int dio_bio_complete(struct dio *dio, struct bio *bio)
459 {
460 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 struct bio_vec *bvec;
462 unsigned i;
463
464 if (!uptodate)
465 dio->io_error = -EIO;
466
467 if (dio->is_async && dio->rw == READ) {
468 bio_check_pages_dirty(bio); /* transfers ownership */
469 } else {
470 bio_for_each_segment_all(bvec, bio, i) {
471 struct page *page = bvec->bv_page;
472
473 if (dio->rw == READ && !PageCompound(page))
474 set_page_dirty_lock(page);
475 page_cache_release(page);
476 }
477 bio_put(bio);
478 }
479 return uptodate ? 0 : -EIO;
480 }
481
482 /*
483 * Wait on and process all in-flight BIOs. This must only be called once
484 * all bios have been issued so that the refcount can only decrease.
485 * This just waits for all bios to make it through dio_bio_complete. IO
486 * errors are propagated through dio->io_error and should be propagated via
487 * dio_complete().
488 */
dio_await_completion(struct dio * dio)489 static void dio_await_completion(struct dio *dio)
490 {
491 struct bio *bio;
492 do {
493 bio = dio_await_one(dio);
494 if (bio)
495 dio_bio_complete(dio, bio);
496 } while (bio);
497 }
498
499 /*
500 * A really large O_DIRECT read or write can generate a lot of BIOs. So
501 * to keep the memory consumption sane we periodically reap any completed BIOs
502 * during the BIO generation phase.
503 *
504 * This also helps to limit the peak amount of pinned userspace memory.
505 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)506 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
507 {
508 int ret = 0;
509
510 if (sdio->reap_counter++ >= 64) {
511 while (dio->bio_list) {
512 unsigned long flags;
513 struct bio *bio;
514 int ret2;
515
516 spin_lock_irqsave(&dio->bio_lock, flags);
517 bio = dio->bio_list;
518 dio->bio_list = bio->bi_private;
519 spin_unlock_irqrestore(&dio->bio_lock, flags);
520 ret2 = dio_bio_complete(dio, bio);
521 if (ret == 0)
522 ret = ret2;
523 }
524 sdio->reap_counter = 0;
525 }
526 return ret;
527 }
528
529 /*
530 * Create workqueue for deferred direct IO completions. We allocate the
531 * workqueue when it's first needed. This avoids creating workqueue for
532 * filesystems that don't need it and also allows us to create the workqueue
533 * late enough so the we can include s_id in the name of the workqueue.
534 */
sb_init_dio_done_wq(struct super_block * sb)535 static int sb_init_dio_done_wq(struct super_block *sb)
536 {
537 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
538 WQ_MEM_RECLAIM, 0,
539 sb->s_id);
540 if (!wq)
541 return -ENOMEM;
542 /*
543 * This has to be atomic as more DIOs can race to create the workqueue
544 */
545 cmpxchg(&sb->s_dio_done_wq, NULL, wq);
546 /* Someone created workqueue before us? Free ours... */
547 if (wq != sb->s_dio_done_wq)
548 destroy_workqueue(wq);
549 return 0;
550 }
551
dio_set_defer_completion(struct dio * dio)552 static int dio_set_defer_completion(struct dio *dio)
553 {
554 struct super_block *sb = dio->inode->i_sb;
555
556 if (dio->defer_completion)
557 return 0;
558 dio->defer_completion = true;
559 if (!sb->s_dio_done_wq)
560 return sb_init_dio_done_wq(sb);
561 return 0;
562 }
563
564 /*
565 * Call into the fs to map some more disk blocks. We record the current number
566 * of available blocks at sdio->blocks_available. These are in units of the
567 * fs blocksize, (1 << inode->i_blkbits).
568 *
569 * The fs is allowed to map lots of blocks at once. If it wants to do that,
570 * it uses the passed inode-relative block number as the file offset, as usual.
571 *
572 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
573 * has remaining to do. The fs should not map more than this number of blocks.
574 *
575 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
576 * indicate how much contiguous disk space has been made available at
577 * bh->b_blocknr.
578 *
579 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
580 * This isn't very efficient...
581 *
582 * In the case of filesystem holes: the fs may return an arbitrarily-large
583 * hole by returning an appropriate value in b_size and by clearing
584 * buffer_mapped(). However the direct-io code will only process holes one
585 * block at a time - it will repeatedly call get_block() as it walks the hole.
586 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)587 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
588 struct buffer_head *map_bh)
589 {
590 int ret;
591 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
592 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
593 unsigned long fs_count; /* Number of filesystem-sized blocks */
594 int create;
595 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
596
597 /*
598 * If there was a memory error and we've overwritten all the
599 * mapped blocks then we can now return that memory error
600 */
601 ret = dio->page_errors;
602 if (ret == 0) {
603 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
604 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
605 fs_endblk = (sdio->final_block_in_request - 1) >>
606 sdio->blkfactor;
607 fs_count = fs_endblk - fs_startblk + 1;
608
609 map_bh->b_state = 0;
610 map_bh->b_size = fs_count << i_blkbits;
611
612 /*
613 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
614 * forbid block creations: only overwrites are permitted.
615 * We will return early to the caller once we see an
616 * unmapped buffer head returned, and the caller will fall
617 * back to buffered I/O.
618 *
619 * Otherwise the decision is left to the get_blocks method,
620 * which may decide to handle it or also return an unmapped
621 * buffer head.
622 */
623 create = dio->rw & WRITE;
624 if (dio->flags & DIO_SKIP_HOLES) {
625 if (sdio->block_in_file < (i_size_read(dio->inode) >>
626 sdio->blkbits))
627 create = 0;
628 }
629
630 ret = (*sdio->get_block)(dio->inode, fs_startblk,
631 map_bh, create);
632
633 /* Store for completion */
634 dio->private = map_bh->b_private;
635
636 if (ret == 0 && buffer_defer_completion(map_bh))
637 ret = dio_set_defer_completion(dio);
638 }
639 return ret;
640 }
641
642 /*
643 * There is no bio. Make one now.
644 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)645 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
646 sector_t start_sector, struct buffer_head *map_bh)
647 {
648 sector_t sector;
649 int ret, nr_pages;
650
651 ret = dio_bio_reap(dio, sdio);
652 if (ret)
653 goto out;
654 sector = start_sector << (sdio->blkbits - 9);
655 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
656 nr_pages = min(nr_pages, BIO_MAX_PAGES);
657 BUG_ON(nr_pages <= 0);
658 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
659 sdio->boundary = 0;
660 out:
661 return ret;
662 }
663
664 /*
665 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
666 * that was successful then update final_block_in_bio and take a ref against
667 * the just-added page.
668 *
669 * Return zero on success. Non-zero means the caller needs to start a new BIO.
670 */
dio_bio_add_page(struct dio_submit * sdio)671 static inline int dio_bio_add_page(struct dio_submit *sdio)
672 {
673 int ret;
674
675 ret = bio_add_page(sdio->bio, sdio->cur_page,
676 sdio->cur_page_len, sdio->cur_page_offset);
677 if (ret == sdio->cur_page_len) {
678 /*
679 * Decrement count only, if we are done with this page
680 */
681 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
682 sdio->pages_in_io--;
683 page_cache_get(sdio->cur_page);
684 sdio->final_block_in_bio = sdio->cur_page_block +
685 (sdio->cur_page_len >> sdio->blkbits);
686 ret = 0;
687 } else {
688 ret = 1;
689 }
690 return ret;
691 }
692
693 /*
694 * Put cur_page under IO. The section of cur_page which is described by
695 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
696 * starts on-disk at cur_page_block.
697 *
698 * We take a ref against the page here (on behalf of its presence in the bio).
699 *
700 * The caller of this function is responsible for removing cur_page from the
701 * dio, and for dropping the refcount which came from that presence.
702 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)703 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
704 struct buffer_head *map_bh)
705 {
706 int ret = 0;
707
708 if (sdio->bio) {
709 loff_t cur_offset = sdio->cur_page_fs_offset;
710 loff_t bio_next_offset = sdio->logical_offset_in_bio +
711 sdio->bio->bi_size;
712
713 /*
714 * See whether this new request is contiguous with the old.
715 *
716 * Btrfs cannot handle having logically non-contiguous requests
717 * submitted. For example if you have
718 *
719 * Logical: [0-4095][HOLE][8192-12287]
720 * Physical: [0-4095] [4096-8191]
721 *
722 * We cannot submit those pages together as one BIO. So if our
723 * current logical offset in the file does not equal what would
724 * be the next logical offset in the bio, submit the bio we
725 * have.
726 */
727 if (sdio->final_block_in_bio != sdio->cur_page_block ||
728 cur_offset != bio_next_offset)
729 dio_bio_submit(dio, sdio);
730 }
731
732 if (sdio->bio == NULL) {
733 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
734 if (ret)
735 goto out;
736 }
737
738 if (dio_bio_add_page(sdio) != 0) {
739 dio_bio_submit(dio, sdio);
740 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
741 if (ret == 0) {
742 ret = dio_bio_add_page(sdio);
743 BUG_ON(ret != 0);
744 }
745 }
746 out:
747 return ret;
748 }
749
750 /*
751 * An autonomous function to put a chunk of a page under deferred IO.
752 *
753 * The caller doesn't actually know (or care) whether this piece of page is in
754 * a BIO, or is under IO or whatever. We just take care of all possible
755 * situations here. The separation between the logic of do_direct_IO() and
756 * that of submit_page_section() is important for clarity. Please don't break.
757 *
758 * The chunk of page starts on-disk at blocknr.
759 *
760 * We perform deferred IO, by recording the last-submitted page inside our
761 * private part of the dio structure. If possible, we just expand the IO
762 * across that page here.
763 *
764 * If that doesn't work out then we put the old page into the bio and add this
765 * page to the dio instead.
766 */
767 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)768 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
769 unsigned offset, unsigned len, sector_t blocknr,
770 struct buffer_head *map_bh)
771 {
772 int ret = 0;
773
774 if (dio->rw & WRITE) {
775 /*
776 * Read accounting is performed in submit_bio()
777 */
778 task_io_account_write(len);
779 }
780
781 /*
782 * Can we just grow the current page's presence in the dio?
783 */
784 if (sdio->cur_page == page &&
785 sdio->cur_page_offset + sdio->cur_page_len == offset &&
786 sdio->cur_page_block +
787 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
788 sdio->cur_page_len += len;
789 goto out;
790 }
791
792 /*
793 * If there's a deferred page already there then send it.
794 */
795 if (sdio->cur_page) {
796 ret = dio_send_cur_page(dio, sdio, map_bh);
797 page_cache_release(sdio->cur_page);
798 sdio->cur_page = NULL;
799 if (ret)
800 return ret;
801 }
802
803 page_cache_get(page); /* It is in dio */
804 sdio->cur_page = page;
805 sdio->cur_page_offset = offset;
806 sdio->cur_page_len = len;
807 sdio->cur_page_block = blocknr;
808 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809 out:
810 /*
811 * If sdio->boundary then we want to schedule the IO now to
812 * avoid metadata seeks.
813 */
814 if (sdio->boundary) {
815 ret = dio_send_cur_page(dio, sdio, map_bh);
816 dio_bio_submit(dio, sdio);
817 page_cache_release(sdio->cur_page);
818 sdio->cur_page = NULL;
819 }
820 return ret;
821 }
822
823 /*
824 * Clean any dirty buffers in the blockdev mapping which alias newly-created
825 * file blocks. Only called for S_ISREG files - blockdevs do not set
826 * buffer_new
827 */
clean_blockdev_aliases(struct dio * dio,struct buffer_head * map_bh)828 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
829 {
830 unsigned i;
831 unsigned nblocks;
832
833 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
834
835 for (i = 0; i < nblocks; i++) {
836 unmap_underlying_metadata(map_bh->b_bdev,
837 map_bh->b_blocknr + i);
838 }
839 }
840
841 /*
842 * If we are not writing the entire block and get_block() allocated
843 * the block for us, we need to fill-in the unused portion of the
844 * block with zeros. This happens only if user-buffer, fileoffset or
845 * io length is not filesystem block-size multiple.
846 *
847 * `end' is zero if we're doing the start of the IO, 1 at the end of the
848 * IO.
849 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)850 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
851 int end, struct buffer_head *map_bh)
852 {
853 unsigned dio_blocks_per_fs_block;
854 unsigned this_chunk_blocks; /* In dio_blocks */
855 unsigned this_chunk_bytes;
856 struct page *page;
857
858 sdio->start_zero_done = 1;
859 if (!sdio->blkfactor || !buffer_new(map_bh))
860 return;
861
862 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
863 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
864
865 if (!this_chunk_blocks)
866 return;
867
868 /*
869 * We need to zero out part of an fs block. It is either at the
870 * beginning or the end of the fs block.
871 */
872 if (end)
873 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
874
875 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
876
877 page = ZERO_PAGE(0);
878 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
879 sdio->next_block_for_io, map_bh))
880 return;
881
882 sdio->next_block_for_io += this_chunk_blocks;
883 }
884
885 /*
886 * Walk the user pages, and the file, mapping blocks to disk and generating
887 * a sequence of (page,offset,len,block) mappings. These mappings are injected
888 * into submit_page_section(), which takes care of the next stage of submission
889 *
890 * Direct IO against a blockdev is different from a file. Because we can
891 * happily perform page-sized but 512-byte aligned IOs. It is important that
892 * blockdev IO be able to have fine alignment and large sizes.
893 *
894 * So what we do is to permit the ->get_block function to populate bh.b_size
895 * with the size of IO which is permitted at this offset and this i_blkbits.
896 *
897 * For best results, the blockdev should be set up with 512-byte i_blkbits and
898 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
899 * fine alignment but still allows this function to work in PAGE_SIZE units.
900 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)901 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
902 struct buffer_head *map_bh)
903 {
904 const unsigned blkbits = sdio->blkbits;
905 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
906 struct page *page;
907 unsigned block_in_page;
908 int ret = 0;
909
910 /* The I/O can start at any block offset within the first page */
911 block_in_page = sdio->first_block_in_page;
912
913 while (sdio->block_in_file < sdio->final_block_in_request) {
914 page = dio_get_page(dio, sdio);
915 if (IS_ERR(page)) {
916 ret = PTR_ERR(page);
917 goto out;
918 }
919
920 while (block_in_page < blocks_per_page) {
921 unsigned offset_in_page = block_in_page << blkbits;
922 unsigned this_chunk_bytes; /* # of bytes mapped */
923 unsigned this_chunk_blocks; /* # of blocks */
924 unsigned u;
925
926 if (sdio->blocks_available == 0) {
927 /*
928 * Need to go and map some more disk
929 */
930 unsigned long blkmask;
931 unsigned long dio_remainder;
932
933 ret = get_more_blocks(dio, sdio, map_bh);
934 if (ret) {
935 page_cache_release(page);
936 goto out;
937 }
938 if (!buffer_mapped(map_bh))
939 goto do_holes;
940
941 sdio->blocks_available =
942 map_bh->b_size >> sdio->blkbits;
943 sdio->next_block_for_io =
944 map_bh->b_blocknr << sdio->blkfactor;
945 if (buffer_new(map_bh))
946 clean_blockdev_aliases(dio, map_bh);
947
948 if (!sdio->blkfactor)
949 goto do_holes;
950
951 blkmask = (1 << sdio->blkfactor) - 1;
952 dio_remainder = (sdio->block_in_file & blkmask);
953
954 /*
955 * If we are at the start of IO and that IO
956 * starts partway into a fs-block,
957 * dio_remainder will be non-zero. If the IO
958 * is a read then we can simply advance the IO
959 * cursor to the first block which is to be
960 * read. But if the IO is a write and the
961 * block was newly allocated we cannot do that;
962 * the start of the fs block must be zeroed out
963 * on-disk
964 */
965 if (!buffer_new(map_bh))
966 sdio->next_block_for_io += dio_remainder;
967 sdio->blocks_available -= dio_remainder;
968 }
969 do_holes:
970 /* Handle holes */
971 if (!buffer_mapped(map_bh)) {
972 loff_t i_size_aligned;
973
974 /* AKPM: eargh, -ENOTBLK is a hack */
975 if (dio->rw & WRITE) {
976 page_cache_release(page);
977 return -ENOTBLK;
978 }
979
980 /*
981 * Be sure to account for a partial block as the
982 * last block in the file
983 */
984 i_size_aligned = ALIGN(i_size_read(dio->inode),
985 1 << blkbits);
986 if (sdio->block_in_file >=
987 i_size_aligned >> blkbits) {
988 /* We hit eof */
989 page_cache_release(page);
990 goto out;
991 }
992 zero_user(page, block_in_page << blkbits,
993 1 << blkbits);
994 sdio->block_in_file++;
995 block_in_page++;
996 goto next_block;
997 }
998
999 /*
1000 * If we're performing IO which has an alignment which
1001 * is finer than the underlying fs, go check to see if
1002 * we must zero out the start of this block.
1003 */
1004 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1005 dio_zero_block(dio, sdio, 0, map_bh);
1006
1007 /*
1008 * Work out, in this_chunk_blocks, how much disk we
1009 * can add to this page
1010 */
1011 this_chunk_blocks = sdio->blocks_available;
1012 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1013 if (this_chunk_blocks > u)
1014 this_chunk_blocks = u;
1015 u = sdio->final_block_in_request - sdio->block_in_file;
1016 if (this_chunk_blocks > u)
1017 this_chunk_blocks = u;
1018 this_chunk_bytes = this_chunk_blocks << blkbits;
1019 BUG_ON(this_chunk_bytes == 0);
1020
1021 if (this_chunk_blocks == sdio->blocks_available)
1022 sdio->boundary = buffer_boundary(map_bh);
1023 ret = submit_page_section(dio, sdio, page,
1024 offset_in_page,
1025 this_chunk_bytes,
1026 sdio->next_block_for_io,
1027 map_bh);
1028 if (ret) {
1029 page_cache_release(page);
1030 goto out;
1031 }
1032 sdio->next_block_for_io += this_chunk_blocks;
1033
1034 sdio->block_in_file += this_chunk_blocks;
1035 block_in_page += this_chunk_blocks;
1036 sdio->blocks_available -= this_chunk_blocks;
1037 next_block:
1038 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039 if (sdio->block_in_file == sdio->final_block_in_request)
1040 break;
1041 }
1042
1043 /* Drop the ref which was taken in get_user_pages() */
1044 page_cache_release(page);
1045 block_in_page = 0;
1046 }
1047 out:
1048 return ret;
1049 }
1050
drop_refcount(struct dio * dio)1051 static inline int drop_refcount(struct dio *dio)
1052 {
1053 int ret2;
1054 unsigned long flags;
1055
1056 /*
1057 * Sync will always be dropping the final ref and completing the
1058 * operation. AIO can if it was a broken operation described above or
1059 * in fact if all the bios race to complete before we get here. In
1060 * that case dio_complete() translates the EIOCBQUEUED into the proper
1061 * return code that the caller will hand to aio_complete().
1062 *
1063 * This is managed by the bio_lock instead of being an atomic_t so that
1064 * completion paths can drop their ref and use the remaining count to
1065 * decide to wake the submission path atomically.
1066 */
1067 spin_lock_irqsave(&dio->bio_lock, flags);
1068 ret2 = --dio->refcount;
1069 spin_unlock_irqrestore(&dio->bio_lock, flags);
1070 return ret2;
1071 }
1072
1073 /*
1074 * This is a library function for use by filesystem drivers.
1075 *
1076 * The locking rules are governed by the flags parameter:
1077 * - if the flags value contains DIO_LOCKING we use a fancy locking
1078 * scheme for dumb filesystems.
1079 * For writes this function is called under i_mutex and returns with
1080 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1081 * taken and dropped again before returning.
1082 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1083 * internal locking but rather rely on the filesystem to synchronize
1084 * direct I/O reads/writes versus each other and truncate.
1085 *
1086 * To help with locking against truncate we incremented the i_dio_count
1087 * counter before starting direct I/O, and decrement it once we are done.
1088 * Truncate can wait for it to reach zero to provide exclusion. It is
1089 * expected that filesystem provide exclusion between new direct I/O
1090 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1091 * but other filesystems need to take care of this on their own.
1092 *
1093 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1094 * is always inlined. Otherwise gcc is unable to split the structure into
1095 * individual fields and will generate much worse code. This is important
1096 * for the whole file.
1097 */
1098 static inline ssize_t
do_blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1099 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1100 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1101 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1102 dio_submit_t submit_io, int flags)
1103 {
1104 int seg;
1105 size_t size;
1106 unsigned long addr;
1107 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1108 unsigned blkbits = i_blkbits;
1109 unsigned blocksize_mask = (1 << blkbits) - 1;
1110 ssize_t retval = -EINVAL;
1111 loff_t end = offset;
1112 struct dio *dio;
1113 struct dio_submit sdio = { 0, };
1114 unsigned long user_addr;
1115 size_t bytes;
1116 struct buffer_head map_bh = { 0, };
1117 struct blk_plug plug;
1118
1119 if (rw & WRITE)
1120 rw = WRITE_ODIRECT;
1121
1122 /*
1123 * Avoid references to bdev if not absolutely needed to give
1124 * the early prefetch in the caller enough time.
1125 */
1126
1127 if (offset & blocksize_mask) {
1128 if (bdev)
1129 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1130 blocksize_mask = (1 << blkbits) - 1;
1131 if (offset & blocksize_mask)
1132 goto out;
1133 }
1134
1135 /* Check the memory alignment. Blocks cannot straddle pages */
1136 for (seg = 0; seg < nr_segs; seg++) {
1137 addr = (unsigned long)iov[seg].iov_base;
1138 size = iov[seg].iov_len;
1139 end += size;
1140 if (unlikely((addr & blocksize_mask) ||
1141 (size & blocksize_mask))) {
1142 if (bdev)
1143 blkbits = blksize_bits(
1144 bdev_logical_block_size(bdev));
1145 blocksize_mask = (1 << blkbits) - 1;
1146 if ((addr & blocksize_mask) || (size & blocksize_mask))
1147 goto out;
1148 }
1149 }
1150
1151 /* watch out for a 0 len io from a tricksy fs */
1152 if (rw == READ && end == offset)
1153 return 0;
1154
1155 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1156 retval = -ENOMEM;
1157 if (!dio)
1158 goto out;
1159 /*
1160 * Believe it or not, zeroing out the page array caused a .5%
1161 * performance regression in a database benchmark. So, we take
1162 * care to only zero out what's needed.
1163 */
1164 memset(dio, 0, offsetof(struct dio, pages));
1165
1166 dio->flags = flags;
1167 if (dio->flags & DIO_LOCKING) {
1168 if (rw == READ) {
1169 struct address_space *mapping =
1170 iocb->ki_filp->f_mapping;
1171
1172 /* will be released by direct_io_worker */
1173 mutex_lock(&inode->i_mutex);
1174
1175 retval = filemap_write_and_wait_range(mapping, offset,
1176 end - 1);
1177 if (retval) {
1178 mutex_unlock(&inode->i_mutex);
1179 kmem_cache_free(dio_cache, dio);
1180 goto out;
1181 }
1182 }
1183 }
1184
1185 /*
1186 * Will be decremented at I/O completion time.
1187 */
1188 atomic_inc(&inode->i_dio_count);
1189
1190 /*
1191 * For file extending writes updating i_size before data
1192 * writeouts complete can expose uninitialized blocks. So
1193 * even for AIO, we need to wait for i/o to complete before
1194 * returning in this case.
1195 */
1196 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1197 (end > i_size_read(inode)));
1198
1199 retval = 0;
1200
1201 dio->inode = inode;
1202 dio->rw = rw;
1203 sdio.blkbits = blkbits;
1204 sdio.blkfactor = i_blkbits - blkbits;
1205 sdio.block_in_file = offset >> blkbits;
1206
1207 sdio.get_block = get_block;
1208 dio->end_io = end_io;
1209 sdio.submit_io = submit_io;
1210 sdio.final_block_in_bio = -1;
1211 sdio.next_block_for_io = -1;
1212
1213 dio->iocb = iocb;
1214 dio->i_size = i_size_read(inode);
1215
1216 spin_lock_init(&dio->bio_lock);
1217 dio->refcount = 1;
1218
1219 /*
1220 * In case of non-aligned buffers, we may need 2 more
1221 * pages since we need to zero out first and last block.
1222 */
1223 if (unlikely(sdio.blkfactor))
1224 sdio.pages_in_io = 2;
1225
1226 for (seg = 0; seg < nr_segs; seg++) {
1227 user_addr = (unsigned long)iov[seg].iov_base;
1228 sdio.pages_in_io +=
1229 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1230 PAGE_SIZE - user_addr / PAGE_SIZE);
1231 }
1232
1233 blk_start_plug(&plug);
1234
1235 for (seg = 0; seg < nr_segs; seg++) {
1236 user_addr = (unsigned long)iov[seg].iov_base;
1237 sdio.size += bytes = iov[seg].iov_len;
1238
1239 /* Index into the first page of the first block */
1240 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1241 sdio.final_block_in_request = sdio.block_in_file +
1242 (bytes >> blkbits);
1243 /* Page fetching state */
1244 sdio.head = 0;
1245 sdio.tail = 0;
1246 sdio.curr_page = 0;
1247
1248 sdio.total_pages = 0;
1249 if (user_addr & (PAGE_SIZE-1)) {
1250 sdio.total_pages++;
1251 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1252 }
1253 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1254 sdio.curr_user_address = user_addr;
1255
1256 retval = do_direct_IO(dio, &sdio, &map_bh);
1257
1258 dio->result += iov[seg].iov_len -
1259 ((sdio.final_block_in_request - sdio.block_in_file) <<
1260 blkbits);
1261
1262 if (retval) {
1263 dio_cleanup(dio, &sdio);
1264 break;
1265 }
1266 } /* end iovec loop */
1267
1268 if (retval == -ENOTBLK) {
1269 /*
1270 * The remaining part of the request will be
1271 * be handled by buffered I/O when we return
1272 */
1273 retval = 0;
1274 }
1275 /*
1276 * There may be some unwritten disk at the end of a part-written
1277 * fs-block-sized block. Go zero that now.
1278 */
1279 dio_zero_block(dio, &sdio, 1, &map_bh);
1280
1281 if (sdio.cur_page) {
1282 ssize_t ret2;
1283
1284 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1285 if (retval == 0)
1286 retval = ret2;
1287 page_cache_release(sdio.cur_page);
1288 sdio.cur_page = NULL;
1289 }
1290 if (sdio.bio)
1291 dio_bio_submit(dio, &sdio);
1292
1293 blk_finish_plug(&plug);
1294
1295 /*
1296 * It is possible that, we return short IO due to end of file.
1297 * In that case, we need to release all the pages we got hold on.
1298 */
1299 dio_cleanup(dio, &sdio);
1300
1301 /*
1302 * All block lookups have been performed. For READ requests
1303 * we can let i_mutex go now that its achieved its purpose
1304 * of protecting us from looking up uninitialized blocks.
1305 */
1306 if (rw == READ && (dio->flags & DIO_LOCKING))
1307 mutex_unlock(&dio->inode->i_mutex);
1308
1309 /*
1310 * The only time we want to leave bios in flight is when a successful
1311 * partial aio read or full aio write have been setup. In that case
1312 * bio completion will call aio_complete. The only time it's safe to
1313 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1314 * This had *better* be the only place that raises -EIOCBQUEUED.
1315 */
1316 BUG_ON(retval == -EIOCBQUEUED);
1317 if (dio->is_async && retval == 0 && dio->result &&
1318 ((rw == READ) || (dio->result == sdio.size)))
1319 retval = -EIOCBQUEUED;
1320
1321 if (retval != -EIOCBQUEUED)
1322 dio_await_completion(dio);
1323
1324 if (drop_refcount(dio) == 0) {
1325 retval = dio_complete(dio, offset, retval, false);
1326 } else
1327 BUG_ON(retval != -EIOCBQUEUED);
1328
1329 out:
1330 return retval;
1331 }
1332
1333 ssize_t
__blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1334 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1335 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1336 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1337 dio_submit_t submit_io, int flags)
1338 {
1339 /*
1340 * The block device state is needed in the end to finally
1341 * submit everything. Since it's likely to be cache cold
1342 * prefetch it here as first thing to hide some of the
1343 * latency.
1344 *
1345 * Attempt to prefetch the pieces we likely need later.
1346 */
1347 prefetch(&bdev->bd_disk->part_tbl);
1348 prefetch(bdev->bd_queue);
1349 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1350
1351 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1352 nr_segs, get_block, end_io,
1353 submit_io, flags);
1354 }
1355
1356 EXPORT_SYMBOL(__blockdev_direct_IO);
1357
dio_init(void)1358 static __init int dio_init(void)
1359 {
1360 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1361 return 0;
1362 }
1363 module_init(dio_init)
1364