1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
__register_binfmt(struct linux_binfmt * fmt,int insert)74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 }
82
83 EXPORT_SYMBOL(__register_binfmt);
84
unregister_binfmt(struct linux_binfmt * fmt)85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
put_binfmt(struct linux_binfmt * fmt)94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 module_put(fmt->module);
97 }
98
99 /*
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
102 *
103 * Also note that we take the address to load from from the file itself.
104 */
SYSCALL_DEFINE1(uselib,const char __user *,library)105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 struct file *file;
108 struct filename *tmp = getname(library);
109 int error = PTR_ERR(tmp);
110 static const struct open_flags uselib_flags = {
111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 .intent = LOOKUP_OPEN
114 };
115
116 if (IS_ERR(tmp))
117 goto out;
118
119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
124
125 error = -EINVAL;
126 if (!S_ISREG(file_inode(file)->i_mode))
127 goto exit;
128
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
132
133 fsnotify_open(file);
134
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
138
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
151 }
152 read_unlock(&binfmt_lock);
153 }
154 exit:
155 fput(file);
156 out:
157 return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
166 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
171
172 if (!mm || !diff)
173 return;
174
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
181 {
182 struct page *page;
183 int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
190 }
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
196
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
200
201 acct_arg_size(bprm, size / PAGE_SIZE);
202
203 /*
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
206 */
207 if (size <= ARG_MAX)
208 return page;
209
210 /*
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
216 */
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
221 }
222 }
223
224 return page;
225 }
226
put_arg_page(struct page * page)227 static void put_arg_page(struct page *page)
228 {
229 put_page(page);
230 }
231
free_arg_page(struct linux_binprm * bprm,int i)232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
free_arg_pages(struct linux_binprm * bprm)236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242 {
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
__bprm_mm_init(struct linux_binprm * bprm)246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
255
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
275
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
285 }
286
valid_arg_len(struct linux_binprm * bprm,long len)287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
300 {
301 struct page *page;
302
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
309 }
310
311 return page;
312 }
313
put_arg_page(struct page * page)314 static void put_arg_page(struct page *page)
315 {
316 }
317
free_arg_page(struct linux_binprm * bprm,int i)318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
323 }
324 }
325
free_arg_pages(struct linux_binprm * bprm)326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 int i;
329
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
332 }
333
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
336 {
337 }
338
__bprm_mm_init(struct linux_binprm * bprm)339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
343 }
344
valid_arg_len(struct linux_binprm * bprm,long len)345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 return len <= bprm->p;
348 }
349
350 #endif /* CONFIG_MMU */
351
352 /*
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
357 */
bprm_mm_init(struct linux_binprm * bprm)358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 int err;
361 struct mm_struct *mm = NULL;
362
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
367
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
371
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
375
376 return 0;
377
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
382 }
383
384 return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
397 };
398
get_user_arg_ptr(struct user_arg_ptr argv,int nr)399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
406
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
409
410 return compat_ptr(compat);
411 }
412 #endif
413
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
416
417 return native;
418 }
419
420 /*
421 * count() counts the number of strings in array ARGV.
422 */
count(struct user_arg_ptr argv,int max)423 static int count(struct user_arg_ptr argv, int max)
424 {
425 int i = 0;
426
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
430
431 if (!p)
432 break;
433
434 if (IS_ERR(p))
435 return -EFAULT;
436
437 if (i >= max)
438 return -E2BIG;
439 ++i;
440
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
444 }
445 }
446 return i;
447 }
448
449 /*
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
453 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
456 {
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
461
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
466
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
471
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
475
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
479
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
484
485 while (len > 0) {
486 int offset, bytes_to_copy;
487
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
491 }
492 cond_resched();
493
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
497
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
501
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
506
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
509
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
514 }
515
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
520 }
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
525 }
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
529 }
530 }
531 }
532 ret = 0;
533 out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 return ret;
540 }
541
542 /*
543 * Like copy_strings, but get argv and its values from kernel memory.
544 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
547 {
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
552 };
553
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
557
558 return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
568 *
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
575 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
585
586 BUG_ON(new_start > new_end);
587
588 /*
589 * ensure there are no vmas between where we want to go
590 * and where we are
591 */
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
594
595 /*
596 * cover the whole range: [new_start, old_end)
597 */
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
600
601 /*
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
604 */
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
608
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, 0);
611 if (new_end > old_start) {
612 /*
613 * when the old and new regions overlap clear from new_end.
614 */
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 } else {
618 /*
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
623 */
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 }
627 tlb_finish_mmu(&tlb, new_end, old_end);
628
629 /*
630 * Shrink the vma to just the new range. Always succeeds.
631 */
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634 return 0;
635 }
636
637 /*
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
640 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
644 {
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size to 1GB */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > (1 << 30))
660 stack_base = 1 << 30;
661
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
664 return -ENOMEM;
665
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
671 #else
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
674
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 return -ENOMEM;
678
679 stack_shift = vma->vm_end - stack_top;
680
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
683 #endif
684
685 if (bprm->loader)
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
688
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
691
692 /*
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
696 */
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 vm_flags |= VM_EXEC;
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 vm_flags);
706 if (ret)
707 goto out_unlock;
708 BUG_ON(prev != vma);
709
710 /* Move stack pages down in memory. */
711 if (stack_shift) {
712 ret = shift_arg_pages(vma, stack_shift);
713 if (ret)
714 goto out_unlock;
715 }
716
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
722 /*
723 * Align this down to a page boundary as expand_stack
724 * will align it up.
725 */
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
730 else
731 stack_base = vma->vm_end + stack_expand;
732 #else
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
735 else
736 stack_base = vma->vm_start - stack_expand;
737 #endif
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
740 if (ret)
741 ret = -EFAULT;
742
743 out_unlock:
744 up_write(&mm->mmap_sem);
745 return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
open_exec(const char * name)751 struct file *open_exec(const char *name)
752 {
753 struct file *file;
754 int err;
755 struct filename tmp = { .name = name };
756 static const struct open_flags open_exec_flags = {
757 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
758 .acc_mode = MAY_EXEC | MAY_OPEN,
759 .intent = LOOKUP_OPEN
760 };
761
762 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW);
763 if (IS_ERR(file))
764 goto out;
765
766 err = -EACCES;
767 if (!S_ISREG(file_inode(file)->i_mode))
768 goto exit;
769
770 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
771 goto exit;
772
773 fsnotify_open(file);
774
775 err = deny_write_access(file);
776 if (err)
777 goto exit;
778
779 out:
780 return file;
781
782 exit:
783 fput(file);
784 return ERR_PTR(err);
785 }
786 EXPORT_SYMBOL(open_exec);
787
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)788 int kernel_read(struct file *file, loff_t offset,
789 char *addr, unsigned long count)
790 {
791 mm_segment_t old_fs;
792 loff_t pos = offset;
793 int result;
794
795 old_fs = get_fs();
796 set_fs(get_ds());
797 /* The cast to a user pointer is valid due to the set_fs() */
798 result = vfs_read(file, (void __user *)addr, count, &pos);
799 set_fs(old_fs);
800 return result;
801 }
802
803 EXPORT_SYMBOL(kernel_read);
804
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)805 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
806 {
807 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
808 if (res > 0)
809 flush_icache_range(addr, addr + len);
810 return res;
811 }
812 EXPORT_SYMBOL(read_code);
813
exec_mmap(struct mm_struct * mm)814 static int exec_mmap(struct mm_struct *mm)
815 {
816 struct task_struct *tsk;
817 struct mm_struct * old_mm, *active_mm;
818
819 /* Notify parent that we're no longer interested in the old VM */
820 tsk = current;
821 old_mm = current->mm;
822 mm_release(tsk, old_mm);
823
824 if (old_mm) {
825 sync_mm_rss(old_mm);
826 /*
827 * Make sure that if there is a core dump in progress
828 * for the old mm, we get out and die instead of going
829 * through with the exec. We must hold mmap_sem around
830 * checking core_state and changing tsk->mm.
831 */
832 down_read(&old_mm->mmap_sem);
833 if (unlikely(old_mm->core_state)) {
834 up_read(&old_mm->mmap_sem);
835 return -EINTR;
836 }
837 }
838 task_lock(tsk);
839 active_mm = tsk->active_mm;
840 tsk->mm = mm;
841 tsk->active_mm = mm;
842 activate_mm(active_mm, mm);
843 task_unlock(tsk);
844 arch_pick_mmap_layout(mm);
845 if (old_mm) {
846 up_read(&old_mm->mmap_sem);
847 BUG_ON(active_mm != old_mm);
848 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
849 mm_update_next_owner(old_mm);
850 mmput(old_mm);
851 return 0;
852 }
853 mmdrop(active_mm);
854 return 0;
855 }
856
857 /*
858 * This function makes sure the current process has its own signal table,
859 * so that flush_signal_handlers can later reset the handlers without
860 * disturbing other processes. (Other processes might share the signal
861 * table via the CLONE_SIGHAND option to clone().)
862 */
de_thread(struct task_struct * tsk)863 static int de_thread(struct task_struct *tsk)
864 {
865 struct signal_struct *sig = tsk->signal;
866 struct sighand_struct *oldsighand = tsk->sighand;
867 spinlock_t *lock = &oldsighand->siglock;
868
869 if (thread_group_empty(tsk))
870 goto no_thread_group;
871
872 /*
873 * Kill all other threads in the thread group.
874 */
875 spin_lock_irq(lock);
876 if (signal_group_exit(sig)) {
877 /*
878 * Another group action in progress, just
879 * return so that the signal is processed.
880 */
881 spin_unlock_irq(lock);
882 return -EAGAIN;
883 }
884
885 sig->group_exit_task = tsk;
886 sig->notify_count = zap_other_threads(tsk);
887 if (!thread_group_leader(tsk))
888 sig->notify_count--;
889
890 while (sig->notify_count) {
891 __set_current_state(TASK_KILLABLE);
892 spin_unlock_irq(lock);
893 schedule();
894 if (unlikely(__fatal_signal_pending(tsk)))
895 goto killed;
896 spin_lock_irq(lock);
897 }
898 spin_unlock_irq(lock);
899
900 /*
901 * At this point all other threads have exited, all we have to
902 * do is to wait for the thread group leader to become inactive,
903 * and to assume its PID:
904 */
905 if (!thread_group_leader(tsk)) {
906 struct task_struct *leader = tsk->group_leader;
907
908 sig->notify_count = -1; /* for exit_notify() */
909 for (;;) {
910 threadgroup_change_begin(tsk);
911 write_lock_irq(&tasklist_lock);
912 if (likely(leader->exit_state))
913 break;
914 __set_current_state(TASK_KILLABLE);
915 write_unlock_irq(&tasklist_lock);
916 threadgroup_change_end(tsk);
917 schedule();
918 if (unlikely(__fatal_signal_pending(tsk)))
919 goto killed;
920 }
921
922 /*
923 * The only record we have of the real-time age of a
924 * process, regardless of execs it's done, is start_time.
925 * All the past CPU time is accumulated in signal_struct
926 * from sister threads now dead. But in this non-leader
927 * exec, nothing survives from the original leader thread,
928 * whose birth marks the true age of this process now.
929 * When we take on its identity by switching to its PID, we
930 * also take its birthdate (always earlier than our own).
931 */
932 tsk->start_time = leader->start_time;
933
934 BUG_ON(!same_thread_group(leader, tsk));
935 BUG_ON(has_group_leader_pid(tsk));
936 /*
937 * An exec() starts a new thread group with the
938 * TGID of the previous thread group. Rehash the
939 * two threads with a switched PID, and release
940 * the former thread group leader:
941 */
942
943 /* Become a process group leader with the old leader's pid.
944 * The old leader becomes a thread of the this thread group.
945 * Note: The old leader also uses this pid until release_task
946 * is called. Odd but simple and correct.
947 */
948 detach_pid(tsk, PIDTYPE_PID);
949 tsk->pid = leader->pid;
950 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
951 transfer_pid(leader, tsk, PIDTYPE_PGID);
952 transfer_pid(leader, tsk, PIDTYPE_SID);
953
954 list_replace_rcu(&leader->tasks, &tsk->tasks);
955 list_replace_init(&leader->sibling, &tsk->sibling);
956
957 tsk->group_leader = tsk;
958 leader->group_leader = tsk;
959
960 tsk->exit_signal = SIGCHLD;
961 leader->exit_signal = -1;
962
963 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
964 leader->exit_state = EXIT_DEAD;
965
966 /*
967 * We are going to release_task()->ptrace_unlink() silently,
968 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
969 * the tracer wont't block again waiting for this thread.
970 */
971 if (unlikely(leader->ptrace))
972 __wake_up_parent(leader, leader->parent);
973 write_unlock_irq(&tasklist_lock);
974 threadgroup_change_end(tsk);
975
976 release_task(leader);
977 }
978
979 sig->group_exit_task = NULL;
980 sig->notify_count = 0;
981
982 no_thread_group:
983 /* we have changed execution domain */
984 tsk->exit_signal = SIGCHLD;
985
986 exit_itimers(sig);
987 flush_itimer_signals();
988
989 if (atomic_read(&oldsighand->count) != 1) {
990 struct sighand_struct *newsighand;
991 /*
992 * This ->sighand is shared with the CLONE_SIGHAND
993 * but not CLONE_THREAD task, switch to the new one.
994 */
995 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 if (!newsighand)
997 return -ENOMEM;
998
999 atomic_set(&newsighand->count, 1);
1000 memcpy(newsighand->action, oldsighand->action,
1001 sizeof(newsighand->action));
1002
1003 write_lock_irq(&tasklist_lock);
1004 spin_lock(&oldsighand->siglock);
1005 rcu_assign_pointer(tsk->sighand, newsighand);
1006 spin_unlock(&oldsighand->siglock);
1007 write_unlock_irq(&tasklist_lock);
1008
1009 __cleanup_sighand(oldsighand);
1010 }
1011
1012 BUG_ON(!thread_group_leader(tsk));
1013 return 0;
1014
1015 killed:
1016 /* protects against exit_notify() and __exit_signal() */
1017 read_lock(&tasklist_lock);
1018 sig->group_exit_task = NULL;
1019 sig->notify_count = 0;
1020 read_unlock(&tasklist_lock);
1021 return -EAGAIN;
1022 }
1023
get_task_comm(char * buf,struct task_struct * tsk)1024 char *get_task_comm(char *buf, struct task_struct *tsk)
1025 {
1026 /* buf must be at least sizeof(tsk->comm) in size */
1027 task_lock(tsk);
1028 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1029 task_unlock(tsk);
1030 return buf;
1031 }
1032 EXPORT_SYMBOL_GPL(get_task_comm);
1033
1034 /*
1035 * These functions flushes out all traces of the currently running executable
1036 * so that a new one can be started
1037 */
1038
set_task_comm(struct task_struct * tsk,char * buf)1039 void set_task_comm(struct task_struct *tsk, char *buf)
1040 {
1041 task_lock(tsk);
1042 trace_task_rename(tsk, buf);
1043 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1044 task_unlock(tsk);
1045 perf_event_comm(tsk);
1046 }
1047
filename_to_taskname(char * tcomm,const char * fn,unsigned int len)1048 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1049 {
1050 int i, ch;
1051
1052 /* Copies the binary name from after last slash */
1053 for (i = 0; (ch = *(fn++)) != '\0';) {
1054 if (ch == '/')
1055 i = 0; /* overwrite what we wrote */
1056 else
1057 if (i < len - 1)
1058 tcomm[i++] = ch;
1059 }
1060 tcomm[i] = '\0';
1061 }
1062
flush_old_exec(struct linux_binprm * bprm)1063 int flush_old_exec(struct linux_binprm * bprm)
1064 {
1065 int retval;
1066
1067 /*
1068 * Make sure we have a private signal table and that
1069 * we are unassociated from the previous thread group.
1070 */
1071 retval = de_thread(current);
1072 if (retval)
1073 goto out;
1074
1075 set_mm_exe_file(bprm->mm, bprm->file);
1076
1077 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1078 /*
1079 * Release all of the old mmap stuff
1080 */
1081 acct_arg_size(bprm, 0);
1082 retval = exec_mmap(bprm->mm);
1083 if (retval)
1084 goto out;
1085
1086 bprm->mm = NULL; /* We're using it now */
1087
1088 set_fs(USER_DS);
1089 current->flags &=
1090 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1091 flush_thread();
1092 current->personality &= ~bprm->per_clear;
1093
1094 return 0;
1095
1096 out:
1097 return retval;
1098 }
1099 EXPORT_SYMBOL(flush_old_exec);
1100
would_dump(struct linux_binprm * bprm,struct file * file)1101 void would_dump(struct linux_binprm *bprm, struct file *file)
1102 {
1103 if (inode_permission2(file->f_path.mnt, file_inode(file), MAY_READ) < 0)
1104 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1105 }
1106 EXPORT_SYMBOL(would_dump);
1107
setup_new_exec(struct linux_binprm * bprm)1108 void setup_new_exec(struct linux_binprm * bprm)
1109 {
1110 arch_pick_mmap_layout(current->mm);
1111
1112 /* This is the point of no return */
1113 current->sas_ss_sp = current->sas_ss_size = 0;
1114
1115 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1116 set_dumpable(current->mm, SUID_DUMP_USER);
1117 else
1118 set_dumpable(current->mm, suid_dumpable);
1119
1120 set_task_comm(current, bprm->tcomm);
1121
1122 /* Set the new mm task size. We have to do that late because it may
1123 * depend on TIF_32BIT which is only updated in flush_thread() on
1124 * some architectures like powerpc
1125 */
1126 current->mm->task_size = TASK_SIZE;
1127
1128 /* install the new credentials */
1129 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1130 !gid_eq(bprm->cred->gid, current_egid())) {
1131 current->pdeath_signal = 0;
1132 } else {
1133 would_dump(bprm, bprm->file);
1134 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1135 set_dumpable(current->mm, suid_dumpable);
1136 }
1137
1138 /* An exec changes our domain. We are no longer part of the thread
1139 group */
1140
1141 current->self_exec_id++;
1142
1143 flush_signal_handlers(current, 0);
1144 do_close_on_exec(current->files);
1145 }
1146 EXPORT_SYMBOL(setup_new_exec);
1147
1148 /*
1149 * Prepare credentials and lock ->cred_guard_mutex.
1150 * install_exec_creds() commits the new creds and drops the lock.
1151 * Or, if exec fails before, free_bprm() should release ->cred and
1152 * and unlock.
1153 */
prepare_bprm_creds(struct linux_binprm * bprm)1154 int prepare_bprm_creds(struct linux_binprm *bprm)
1155 {
1156 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1157 return -ERESTARTNOINTR;
1158
1159 bprm->cred = prepare_exec_creds();
1160 if (likely(bprm->cred))
1161 return 0;
1162
1163 mutex_unlock(¤t->signal->cred_guard_mutex);
1164 return -ENOMEM;
1165 }
1166
free_bprm(struct linux_binprm * bprm)1167 void free_bprm(struct linux_binprm *bprm)
1168 {
1169 free_arg_pages(bprm);
1170 if (bprm->cred) {
1171 mutex_unlock(¤t->signal->cred_guard_mutex);
1172 abort_creds(bprm->cred);
1173 }
1174 /* If a binfmt changed the interp, free it. */
1175 if (bprm->interp != bprm->filename)
1176 kfree(bprm->interp);
1177 kfree(bprm);
1178 }
1179
bprm_change_interp(char * interp,struct linux_binprm * bprm)1180 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1181 {
1182 /* If a binfmt changed the interp, free it first. */
1183 if (bprm->interp != bprm->filename)
1184 kfree(bprm->interp);
1185 bprm->interp = kstrdup(interp, GFP_KERNEL);
1186 if (!bprm->interp)
1187 return -ENOMEM;
1188 return 0;
1189 }
1190 EXPORT_SYMBOL(bprm_change_interp);
1191
1192 /*
1193 * install the new credentials for this executable
1194 */
install_exec_creds(struct linux_binprm * bprm)1195 void install_exec_creds(struct linux_binprm *bprm)
1196 {
1197 security_bprm_committing_creds(bprm);
1198
1199 commit_creds(bprm->cred);
1200 bprm->cred = NULL;
1201
1202 /*
1203 * Disable monitoring for regular users
1204 * when executing setuid binaries. Must
1205 * wait until new credentials are committed
1206 * by commit_creds() above
1207 */
1208 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1209 perf_event_exit_task(current);
1210 /*
1211 * cred_guard_mutex must be held at least to this point to prevent
1212 * ptrace_attach() from altering our determination of the task's
1213 * credentials; any time after this it may be unlocked.
1214 */
1215 security_bprm_committed_creds(bprm);
1216 mutex_unlock(¤t->signal->cred_guard_mutex);
1217 }
1218 EXPORT_SYMBOL(install_exec_creds);
1219
1220 /*
1221 * determine how safe it is to execute the proposed program
1222 * - the caller must hold ->cred_guard_mutex to protect against
1223 * PTRACE_ATTACH or seccomp thread-sync
1224 */
check_unsafe_exec(struct linux_binprm * bprm)1225 static int check_unsafe_exec(struct linux_binprm *bprm)
1226 {
1227 struct task_struct *p = current, *t;
1228 unsigned n_fs;
1229 int res = 0;
1230
1231 if (p->ptrace) {
1232 if (p->ptrace & PT_PTRACE_CAP)
1233 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1234 else
1235 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1236 }
1237
1238 /*
1239 * This isn't strictly necessary, but it makes it harder for LSMs to
1240 * mess up.
1241 */
1242 if (task_no_new_privs(current))
1243 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1244
1245 n_fs = 1;
1246 spin_lock(&p->fs->lock);
1247 rcu_read_lock();
1248 for (t = next_thread(p); t != p; t = next_thread(t)) {
1249 if (t->fs == p->fs)
1250 n_fs++;
1251 }
1252 rcu_read_unlock();
1253
1254 if (p->fs->users > n_fs) {
1255 bprm->unsafe |= LSM_UNSAFE_SHARE;
1256 } else {
1257 res = -EAGAIN;
1258 if (!p->fs->in_exec) {
1259 p->fs->in_exec = 1;
1260 res = 1;
1261 }
1262 }
1263 spin_unlock(&p->fs->lock);
1264
1265 return res;
1266 }
1267
1268 /*
1269 * Fill the binprm structure from the inode.
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271 *
1272 * This may be called multiple times for binary chains (scripts for example).
1273 */
prepare_binprm(struct linux_binprm * bprm)1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276 umode_t mode;
1277 struct inode * inode = file_inode(bprm->file);
1278 int retval;
1279
1280 mode = inode->i_mode;
1281 if (bprm->file->f_op == NULL)
1282 return -EACCES;
1283
1284 /* clear any previous set[ug]id data from a previous binary */
1285 bprm->cred->euid = current_euid();
1286 bprm->cred->egid = current_egid();
1287
1288 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1289 !task_no_new_privs(current) &&
1290 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1291 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1292 /* Set-uid? */
1293 if (mode & S_ISUID) {
1294 bprm->per_clear |= PER_CLEAR_ON_SETID;
1295 bprm->cred->euid = inode->i_uid;
1296 }
1297
1298 /* Set-gid? */
1299 /*
1300 * If setgid is set but no group execute bit then this
1301 * is a candidate for mandatory locking, not a setgid
1302 * executable.
1303 */
1304 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1305 bprm->per_clear |= PER_CLEAR_ON_SETID;
1306 bprm->cred->egid = inode->i_gid;
1307 }
1308 }
1309
1310 /* fill in binprm security blob */
1311 retval = security_bprm_set_creds(bprm);
1312 if (retval)
1313 return retval;
1314 bprm->cred_prepared = 1;
1315
1316 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1317 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1318 }
1319
1320 EXPORT_SYMBOL(prepare_binprm);
1321
1322 /*
1323 * Arguments are '\0' separated strings found at the location bprm->p
1324 * points to; chop off the first by relocating brpm->p to right after
1325 * the first '\0' encountered.
1326 */
remove_arg_zero(struct linux_binprm * bprm)1327 int remove_arg_zero(struct linux_binprm *bprm)
1328 {
1329 int ret = 0;
1330 unsigned long offset;
1331 char *kaddr;
1332 struct page *page;
1333
1334 if (!bprm->argc)
1335 return 0;
1336
1337 do {
1338 offset = bprm->p & ~PAGE_MASK;
1339 page = get_arg_page(bprm, bprm->p, 0);
1340 if (!page) {
1341 ret = -EFAULT;
1342 goto out;
1343 }
1344 kaddr = kmap_atomic(page);
1345
1346 for (; offset < PAGE_SIZE && kaddr[offset];
1347 offset++, bprm->p++)
1348 ;
1349
1350 kunmap_atomic(kaddr);
1351 put_arg_page(page);
1352
1353 if (offset == PAGE_SIZE)
1354 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1355 } while (offset == PAGE_SIZE);
1356
1357 bprm->p++;
1358 bprm->argc--;
1359 ret = 0;
1360
1361 out:
1362 return ret;
1363 }
1364 EXPORT_SYMBOL(remove_arg_zero);
1365
1366 /*
1367 * cycle the list of binary formats handler, until one recognizes the image
1368 */
search_binary_handler(struct linux_binprm * bprm)1369 int search_binary_handler(struct linux_binprm *bprm)
1370 {
1371 unsigned int depth = bprm->recursion_depth;
1372 int try,retval;
1373 struct linux_binfmt *fmt;
1374 pid_t old_pid, old_vpid;
1375
1376 /* This allows 4 levels of binfmt rewrites before failing hard. */
1377 if (depth > 5)
1378 return -ELOOP;
1379
1380 retval = security_bprm_check(bprm);
1381 if (retval)
1382 return retval;
1383
1384 retval = audit_bprm(bprm);
1385 if (retval)
1386 return retval;
1387
1388 /* Need to fetch pid before load_binary changes it */
1389 old_pid = current->pid;
1390 rcu_read_lock();
1391 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1392 rcu_read_unlock();
1393
1394 retval = -ENOENT;
1395 for (try=0; try<2; try++) {
1396 read_lock(&binfmt_lock);
1397 list_for_each_entry(fmt, &formats, lh) {
1398 int (*fn)(struct linux_binprm *) = fmt->load_binary;
1399 if (!fn)
1400 continue;
1401 if (!try_module_get(fmt->module))
1402 continue;
1403 read_unlock(&binfmt_lock);
1404 bprm->recursion_depth = depth + 1;
1405 retval = fn(bprm);
1406 bprm->recursion_depth = depth;
1407 if (retval >= 0) {
1408 if (depth == 0) {
1409 trace_sched_process_exec(current, old_pid, bprm);
1410 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1411 }
1412 put_binfmt(fmt);
1413 allow_write_access(bprm->file);
1414 if (bprm->file)
1415 fput(bprm->file);
1416 bprm->file = NULL;
1417 current->did_exec = 1;
1418 proc_exec_connector(current);
1419 return retval;
1420 }
1421 read_lock(&binfmt_lock);
1422 put_binfmt(fmt);
1423 if (retval != -ENOEXEC || bprm->mm == NULL)
1424 break;
1425 if (!bprm->file) {
1426 read_unlock(&binfmt_lock);
1427 return retval;
1428 }
1429 }
1430 read_unlock(&binfmt_lock);
1431 #ifdef CONFIG_MODULES
1432 if (retval != -ENOEXEC || bprm->mm == NULL) {
1433 break;
1434 } else {
1435 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1436 if (printable(bprm->buf[0]) &&
1437 printable(bprm->buf[1]) &&
1438 printable(bprm->buf[2]) &&
1439 printable(bprm->buf[3]))
1440 break; /* -ENOEXEC */
1441 if (try)
1442 break; /* -ENOEXEC */
1443 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1444 }
1445 #else
1446 break;
1447 #endif
1448 }
1449 return retval;
1450 }
1451
1452 EXPORT_SYMBOL(search_binary_handler);
1453
1454 /*
1455 * sys_execve() executes a new program.
1456 */
do_execve_common(const char * filename,struct user_arg_ptr argv,struct user_arg_ptr envp)1457 static int do_execve_common(const char *filename,
1458 struct user_arg_ptr argv,
1459 struct user_arg_ptr envp)
1460 {
1461 struct linux_binprm *bprm;
1462 struct file *file;
1463 struct files_struct *displaced;
1464 bool clear_in_exec;
1465 int retval;
1466 const struct cred *cred = current_cred();
1467
1468 /*
1469 * We move the actual failure in case of RLIMIT_NPROC excess from
1470 * set*uid() to execve() because too many poorly written programs
1471 * don't check setuid() return code. Here we additionally recheck
1472 * whether NPROC limit is still exceeded.
1473 */
1474 if ((current->flags & PF_NPROC_EXCEEDED) &&
1475 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1476 retval = -EAGAIN;
1477 goto out_ret;
1478 }
1479
1480 /* We're below the limit (still or again), so we don't want to make
1481 * further execve() calls fail. */
1482 current->flags &= ~PF_NPROC_EXCEEDED;
1483
1484 retval = unshare_files(&displaced);
1485 if (retval)
1486 goto out_ret;
1487
1488 retval = -ENOMEM;
1489 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1490 if (!bprm)
1491 goto out_files;
1492
1493 retval = prepare_bprm_creds(bprm);
1494 if (retval)
1495 goto out_free;
1496
1497 retval = check_unsafe_exec(bprm);
1498 if (retval < 0)
1499 goto out_free;
1500 clear_in_exec = retval;
1501 current->in_execve = 1;
1502
1503 file = open_exec(filename);
1504 retval = PTR_ERR(file);
1505 if (IS_ERR(file))
1506 goto out_unmark;
1507
1508 sched_exec();
1509
1510 bprm->file = file;
1511 bprm->filename = filename;
1512 bprm->interp = filename;
1513
1514 retval = bprm_mm_init(bprm);
1515 if (retval)
1516 goto out_file;
1517
1518 bprm->argc = count(argv, MAX_ARG_STRINGS);
1519 if ((retval = bprm->argc) < 0)
1520 goto out;
1521
1522 bprm->envc = count(envp, MAX_ARG_STRINGS);
1523 if ((retval = bprm->envc) < 0)
1524 goto out;
1525
1526 retval = prepare_binprm(bprm);
1527 if (retval < 0)
1528 goto out;
1529
1530 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1531 if (retval < 0)
1532 goto out;
1533
1534 bprm->exec = bprm->p;
1535 retval = copy_strings(bprm->envc, envp, bprm);
1536 if (retval < 0)
1537 goto out;
1538
1539 retval = copy_strings(bprm->argc, argv, bprm);
1540 if (retval < 0)
1541 goto out;
1542
1543 retval = search_binary_handler(bprm);
1544 if (retval < 0)
1545 goto out;
1546
1547 /* execve succeeded */
1548 current->fs->in_exec = 0;
1549 current->in_execve = 0;
1550 acct_update_integrals(current);
1551 free_bprm(bprm);
1552 if (displaced)
1553 put_files_struct(displaced);
1554 return retval;
1555
1556 out:
1557 if (bprm->mm) {
1558 acct_arg_size(bprm, 0);
1559 mmput(bprm->mm);
1560 }
1561
1562 out_file:
1563 if (bprm->file) {
1564 allow_write_access(bprm->file);
1565 fput(bprm->file);
1566 }
1567
1568 out_unmark:
1569 if (clear_in_exec)
1570 current->fs->in_exec = 0;
1571 current->in_execve = 0;
1572
1573 out_free:
1574 free_bprm(bprm);
1575
1576 out_files:
1577 if (displaced)
1578 reset_files_struct(displaced);
1579 out_ret:
1580 return retval;
1581 }
1582
do_execve(const char * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1583 int do_execve(const char *filename,
1584 const char __user *const __user *__argv,
1585 const char __user *const __user *__envp)
1586 {
1587 struct user_arg_ptr argv = { .ptr.native = __argv };
1588 struct user_arg_ptr envp = { .ptr.native = __envp };
1589 return do_execve_common(filename, argv, envp);
1590 }
1591
1592 #ifdef CONFIG_COMPAT
compat_do_execve(const char * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1593 static int compat_do_execve(const char *filename,
1594 const compat_uptr_t __user *__argv,
1595 const compat_uptr_t __user *__envp)
1596 {
1597 struct user_arg_ptr argv = {
1598 .is_compat = true,
1599 .ptr.compat = __argv,
1600 };
1601 struct user_arg_ptr envp = {
1602 .is_compat = true,
1603 .ptr.compat = __envp,
1604 };
1605 return do_execve_common(filename, argv, envp);
1606 }
1607 #endif
1608
set_binfmt(struct linux_binfmt * new)1609 void set_binfmt(struct linux_binfmt *new)
1610 {
1611 struct mm_struct *mm = current->mm;
1612
1613 if (mm->binfmt)
1614 module_put(mm->binfmt->module);
1615
1616 mm->binfmt = new;
1617 if (new)
1618 __module_get(new->module);
1619 }
1620
1621 EXPORT_SYMBOL(set_binfmt);
1622
1623 /*
1624 * set_dumpable converts traditional three-value dumpable to two flags and
1625 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1626 * these bits are not changed atomically. So get_dumpable can observe the
1627 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1628 * return either old dumpable or new one by paying attention to the order of
1629 * modifying the bits.
1630 *
1631 * dumpable | mm->flags (binary)
1632 * old new | initial interim final
1633 * ---------+-----------------------
1634 * 0 1 | 00 01 01
1635 * 0 2 | 00 10(*) 11
1636 * 1 0 | 01 00 00
1637 * 1 2 | 01 11 11
1638 * 2 0 | 11 10(*) 00
1639 * 2 1 | 11 11 01
1640 *
1641 * (*) get_dumpable regards interim value of 10 as 11.
1642 */
set_dumpable(struct mm_struct * mm,int value)1643 void set_dumpable(struct mm_struct *mm, int value)
1644 {
1645 switch (value) {
1646 case SUID_DUMP_DISABLE:
1647 clear_bit(MMF_DUMPABLE, &mm->flags);
1648 smp_wmb();
1649 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1650 break;
1651 case SUID_DUMP_USER:
1652 set_bit(MMF_DUMPABLE, &mm->flags);
1653 smp_wmb();
1654 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1655 break;
1656 case SUID_DUMP_ROOT:
1657 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1658 smp_wmb();
1659 set_bit(MMF_DUMPABLE, &mm->flags);
1660 break;
1661 }
1662 }
1663
__get_dumpable(unsigned long mm_flags)1664 int __get_dumpable(unsigned long mm_flags)
1665 {
1666 int ret;
1667
1668 ret = mm_flags & MMF_DUMPABLE_MASK;
1669 return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1670 }
1671
get_dumpable(struct mm_struct * mm)1672 int get_dumpable(struct mm_struct *mm)
1673 {
1674 return __get_dumpable(mm->flags);
1675 }
1676
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1677 SYSCALL_DEFINE3(execve,
1678 const char __user *, filename,
1679 const char __user *const __user *, argv,
1680 const char __user *const __user *, envp)
1681 {
1682 struct filename *path = getname(filename);
1683 int error = PTR_ERR(path);
1684 if (!IS_ERR(path)) {
1685 error = do_execve(path->name, argv, envp);
1686 putname(path);
1687 }
1688 return error;
1689 }
1690 #ifdef CONFIG_COMPAT
compat_sys_execve(const char __user * filename,const compat_uptr_t __user * argv,const compat_uptr_t __user * envp)1691 asmlinkage long compat_sys_execve(const char __user * filename,
1692 const compat_uptr_t __user * argv,
1693 const compat_uptr_t __user * envp)
1694 {
1695 struct filename *path = getname(filename);
1696 int error = PTR_ERR(path);
1697 if (!IS_ERR(path)) {
1698 error = compat_do_execve(path->name, argv, envp);
1699 putname(path);
1700 }
1701 return error;
1702 }
1703 #endif
1704