1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
16
17 /* L: Logical segment # in volume, R: Relative segment # in main area */
18 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
19 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
20
21 #define IS_DATASEG(t) \
22 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
23 (t == CURSEG_WARM_DATA))
24
25 #define IS_NODESEG(t) \
26 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
27 (t == CURSEG_WARM_NODE))
28
29 #define IS_CURSEG(sbi, seg) \
30 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
36
37 #define IS_CURSEC(sbi, secno) \
38 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
47 sbi->segs_per_sec) || \
48 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
49 sbi->segs_per_sec)) \
50
51 #define START_BLOCK(sbi, segno) \
52 (SM_I(sbi)->seg0_blkaddr + \
53 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
54 #define NEXT_FREE_BLKADDR(sbi, curseg) \
55 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
56
57 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
58
59 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
60 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
61 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
62 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
63 #define GET_SEGNO(sbi, blk_addr) \
64 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
65 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
66 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno) \
68 ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
70 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno) \
73 ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno) \
79 (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno) \
81 (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(sit_i, segno) \
83 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define f2fs_bitmap_size(nr) \
85 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
86 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
87 #define TOTAL_SECS(sbi) (sbi->total_sections)
88
89 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
90 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
91 #define SECTOR_TO_BLOCK(sbi, sectors) \
92 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93
94 /* during checkpoint, bio_private is used to synchronize the last bio */
95 struct bio_private {
96 struct f2fs_sb_info *sbi;
97 bool is_sync;
98 void *wait;
99 };
100
101 /*
102 * indicate a block allocation direction: RIGHT and LEFT.
103 * RIGHT means allocating new sections towards the end of volume.
104 * LEFT means the opposite direction.
105 */
106 enum {
107 ALLOC_RIGHT = 0,
108 ALLOC_LEFT
109 };
110
111 /*
112 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
113 * LFS writes data sequentially with cleaning operations.
114 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
115 */
116 enum {
117 LFS = 0,
118 SSR
119 };
120
121 /*
122 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
123 * GC_CB is based on cost-benefit algorithm.
124 * GC_GREEDY is based on greedy algorithm.
125 */
126 enum {
127 GC_CB = 0,
128 GC_GREEDY
129 };
130
131 /*
132 * BG_GC means the background cleaning job.
133 * FG_GC means the on-demand cleaning job.
134 */
135 enum {
136 BG_GC = 0,
137 FG_GC
138 };
139
140 /* for a function parameter to select a victim segment */
141 struct victim_sel_policy {
142 int alloc_mode; /* LFS or SSR */
143 int gc_mode; /* GC_CB or GC_GREEDY */
144 unsigned long *dirty_segmap; /* dirty segment bitmap */
145 unsigned int offset; /* last scanned bitmap offset */
146 unsigned int ofs_unit; /* bitmap search unit */
147 unsigned int min_cost; /* minimum cost */
148 unsigned int min_segno; /* segment # having min. cost */
149 };
150
151 struct seg_entry {
152 unsigned short valid_blocks; /* # of valid blocks */
153 unsigned char *cur_valid_map; /* validity bitmap of blocks */
154 /*
155 * # of valid blocks and the validity bitmap stored in the the last
156 * checkpoint pack. This information is used by the SSR mode.
157 */
158 unsigned short ckpt_valid_blocks;
159 unsigned char *ckpt_valid_map;
160 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
161 unsigned long long mtime; /* modification time of the segment */
162 };
163
164 struct sec_entry {
165 unsigned int valid_blocks; /* # of valid blocks in a section */
166 };
167
168 struct segment_allocation {
169 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
170 };
171
172 struct sit_info {
173 const struct segment_allocation *s_ops;
174
175 block_t sit_base_addr; /* start block address of SIT area */
176 block_t sit_blocks; /* # of blocks used by SIT area */
177 block_t written_valid_blocks; /* # of valid blocks in main area */
178 char *sit_bitmap; /* SIT bitmap pointer */
179 unsigned int bitmap_size; /* SIT bitmap size */
180
181 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
182 unsigned int dirty_sentries; /* # of dirty sentries */
183 unsigned int sents_per_block; /* # of SIT entries per block */
184 struct mutex sentry_lock; /* to protect SIT cache */
185 struct seg_entry *sentries; /* SIT segment-level cache */
186 struct sec_entry *sec_entries; /* SIT section-level cache */
187
188 /* for cost-benefit algorithm in cleaning procedure */
189 unsigned long long elapsed_time; /* elapsed time after mount */
190 unsigned long long mounted_time; /* mount time */
191 unsigned long long min_mtime; /* min. modification time */
192 unsigned long long max_mtime; /* max. modification time */
193 };
194
195 struct free_segmap_info {
196 unsigned int start_segno; /* start segment number logically */
197 unsigned int free_segments; /* # of free segments */
198 unsigned int free_sections; /* # of free sections */
199 rwlock_t segmap_lock; /* free segmap lock */
200 unsigned long *free_segmap; /* free segment bitmap */
201 unsigned long *free_secmap; /* free section bitmap */
202 };
203
204 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
205 enum dirty_type {
206 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
207 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
208 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
209 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
210 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
211 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
212 DIRTY, /* to count # of dirty segments */
213 PRE, /* to count # of entirely obsolete segments */
214 NR_DIRTY_TYPE
215 };
216
217 struct dirty_seglist_info {
218 const struct victim_selection *v_ops; /* victim selction operation */
219 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
220 struct mutex seglist_lock; /* lock for segment bitmaps */
221 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
222 unsigned long *victim_secmap; /* background GC victims */
223 };
224
225 /* victim selection function for cleaning and SSR */
226 struct victim_selection {
227 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
228 int, int, char);
229 };
230
231 /* for active log information */
232 struct curseg_info {
233 struct mutex curseg_mutex; /* lock for consistency */
234 struct f2fs_summary_block *sum_blk; /* cached summary block */
235 unsigned char alloc_type; /* current allocation type */
236 unsigned int segno; /* current segment number */
237 unsigned short next_blkoff; /* next block offset to write */
238 unsigned int zone; /* current zone number */
239 unsigned int next_segno; /* preallocated segment */
240 };
241
242 /*
243 * inline functions
244 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)245 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
246 {
247 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
248 }
249
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)250 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
251 unsigned int segno)
252 {
253 struct sit_info *sit_i = SIT_I(sbi);
254 return &sit_i->sentries[segno];
255 }
256
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)257 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
258 unsigned int segno)
259 {
260 struct sit_info *sit_i = SIT_I(sbi);
261 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
262 }
263
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,int section)264 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
265 unsigned int segno, int section)
266 {
267 /*
268 * In order to get # of valid blocks in a section instantly from many
269 * segments, f2fs manages two counting structures separately.
270 */
271 if (section > 1)
272 return get_sec_entry(sbi, segno)->valid_blocks;
273 else
274 return get_seg_entry(sbi, segno)->valid_blocks;
275 }
276
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)277 static inline void seg_info_from_raw_sit(struct seg_entry *se,
278 struct f2fs_sit_entry *rs)
279 {
280 se->valid_blocks = GET_SIT_VBLOCKS(rs);
281 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
282 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
283 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
284 se->type = GET_SIT_TYPE(rs);
285 se->mtime = le64_to_cpu(rs->mtime);
286 }
287
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)288 static inline void seg_info_to_raw_sit(struct seg_entry *se,
289 struct f2fs_sit_entry *rs)
290 {
291 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
292 se->valid_blocks;
293 rs->vblocks = cpu_to_le16(raw_vblocks);
294 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
295 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
296 se->ckpt_valid_blocks = se->valid_blocks;
297 rs->mtime = cpu_to_le64(se->mtime);
298 }
299
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)300 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
301 unsigned int max, unsigned int segno)
302 {
303 unsigned int ret;
304 read_lock(&free_i->segmap_lock);
305 ret = find_next_bit(free_i->free_segmap, max, segno);
306 read_unlock(&free_i->segmap_lock);
307 return ret;
308 }
309
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)310 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
311 {
312 struct free_segmap_info *free_i = FREE_I(sbi);
313 unsigned int secno = segno / sbi->segs_per_sec;
314 unsigned int start_segno = secno * sbi->segs_per_sec;
315 unsigned int next;
316
317 write_lock(&free_i->segmap_lock);
318 clear_bit(segno, free_i->free_segmap);
319 free_i->free_segments++;
320
321 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
322 if (next >= start_segno + sbi->segs_per_sec) {
323 clear_bit(secno, free_i->free_secmap);
324 free_i->free_sections++;
325 }
326 write_unlock(&free_i->segmap_lock);
327 }
328
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)329 static inline void __set_inuse(struct f2fs_sb_info *sbi,
330 unsigned int segno)
331 {
332 struct free_segmap_info *free_i = FREE_I(sbi);
333 unsigned int secno = segno / sbi->segs_per_sec;
334 set_bit(segno, free_i->free_segmap);
335 free_i->free_segments--;
336 if (!test_and_set_bit(secno, free_i->free_secmap))
337 free_i->free_sections--;
338 }
339
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno)340 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
341 unsigned int segno)
342 {
343 struct free_segmap_info *free_i = FREE_I(sbi);
344 unsigned int secno = segno / sbi->segs_per_sec;
345 unsigned int start_segno = secno * sbi->segs_per_sec;
346 unsigned int next;
347
348 write_lock(&free_i->segmap_lock);
349 if (test_and_clear_bit(segno, free_i->free_segmap)) {
350 free_i->free_segments++;
351
352 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
353 start_segno);
354 if (next >= start_segno + sbi->segs_per_sec) {
355 if (test_and_clear_bit(secno, free_i->free_secmap))
356 free_i->free_sections++;
357 }
358 }
359 write_unlock(&free_i->segmap_lock);
360 }
361
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)362 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
363 unsigned int segno)
364 {
365 struct free_segmap_info *free_i = FREE_I(sbi);
366 unsigned int secno = segno / sbi->segs_per_sec;
367 write_lock(&free_i->segmap_lock);
368 if (!test_and_set_bit(segno, free_i->free_segmap)) {
369 free_i->free_segments--;
370 if (!test_and_set_bit(secno, free_i->free_secmap))
371 free_i->free_sections--;
372 }
373 write_unlock(&free_i->segmap_lock);
374 }
375
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)376 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
377 void *dst_addr)
378 {
379 struct sit_info *sit_i = SIT_I(sbi);
380 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
381 }
382
written_block_count(struct f2fs_sb_info * sbi)383 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
384 {
385 struct sit_info *sit_i = SIT_I(sbi);
386 block_t vblocks;
387
388 mutex_lock(&sit_i->sentry_lock);
389 vblocks = sit_i->written_valid_blocks;
390 mutex_unlock(&sit_i->sentry_lock);
391
392 return vblocks;
393 }
394
free_segments(struct f2fs_sb_info * sbi)395 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
396 {
397 struct free_segmap_info *free_i = FREE_I(sbi);
398 unsigned int free_segs;
399
400 read_lock(&free_i->segmap_lock);
401 free_segs = free_i->free_segments;
402 read_unlock(&free_i->segmap_lock);
403
404 return free_segs;
405 }
406
reserved_segments(struct f2fs_sb_info * sbi)407 static inline int reserved_segments(struct f2fs_sb_info *sbi)
408 {
409 return SM_I(sbi)->reserved_segments;
410 }
411
free_sections(struct f2fs_sb_info * sbi)412 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
413 {
414 struct free_segmap_info *free_i = FREE_I(sbi);
415 unsigned int free_secs;
416
417 read_lock(&free_i->segmap_lock);
418 free_secs = free_i->free_sections;
419 read_unlock(&free_i->segmap_lock);
420
421 return free_secs;
422 }
423
prefree_segments(struct f2fs_sb_info * sbi)424 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
425 {
426 return DIRTY_I(sbi)->nr_dirty[PRE];
427 }
428
dirty_segments(struct f2fs_sb_info * sbi)429 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
430 {
431 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
435 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
436 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
437 }
438
overprovision_segments(struct f2fs_sb_info * sbi)439 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
440 {
441 return SM_I(sbi)->ovp_segments;
442 }
443
overprovision_sections(struct f2fs_sb_info * sbi)444 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
445 {
446 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
447 }
448
reserved_sections(struct f2fs_sb_info * sbi)449 static inline int reserved_sections(struct f2fs_sb_info *sbi)
450 {
451 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
452 }
453
need_SSR(struct f2fs_sb_info * sbi)454 static inline bool need_SSR(struct f2fs_sb_info *sbi)
455 {
456 return (free_sections(sbi) < overprovision_sections(sbi));
457 }
458
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed)459 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
460 {
461 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
462 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
463
464 if (sbi->por_doing)
465 return false;
466
467 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
468 reserved_sections(sbi)));
469 }
470
utilization(struct f2fs_sb_info * sbi)471 static inline int utilization(struct f2fs_sb_info *sbi)
472 {
473 return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
474 }
475
476 /*
477 * Sometimes f2fs may be better to drop out-of-place update policy.
478 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
479 * data in the original place likewise other traditional file systems.
480 * But, currently set 100 in percentage, which means it is disabled.
481 * See below need_inplace_update().
482 */
483 #define MIN_IPU_UTIL 100
need_inplace_update(struct inode * inode)484 static inline bool need_inplace_update(struct inode *inode)
485 {
486 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
487 if (S_ISDIR(inode->i_mode))
488 return false;
489 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
490 return true;
491 return false;
492 }
493
curseg_segno(struct f2fs_sb_info * sbi,int type)494 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
495 int type)
496 {
497 struct curseg_info *curseg = CURSEG_I(sbi, type);
498 return curseg->segno;
499 }
500
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)501 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
502 int type)
503 {
504 struct curseg_info *curseg = CURSEG_I(sbi, type);
505 return curseg->alloc_type;
506 }
507
curseg_blkoff(struct f2fs_sb_info * sbi,int type)508 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
509 {
510 struct curseg_info *curseg = CURSEG_I(sbi, type);
511 return curseg->next_blkoff;
512 }
513
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)514 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
515 {
516 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
517 BUG_ON(segno > end_segno);
518 }
519
520 /*
521 * This function is used for only debugging.
522 * NOTE: In future, we have to remove this function.
523 */
verify_block_addr(struct f2fs_sb_info * sbi,block_t blk_addr)524 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
525 {
526 struct f2fs_sm_info *sm_info = SM_I(sbi);
527 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
528 block_t start_addr = sm_info->seg0_blkaddr;
529 block_t end_addr = start_addr + total_blks - 1;
530 BUG_ON(blk_addr < start_addr);
531 BUG_ON(blk_addr > end_addr);
532 }
533
534 /*
535 * Summary block is always treated as invalid block
536 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)537 static inline void check_block_count(struct f2fs_sb_info *sbi,
538 int segno, struct f2fs_sit_entry *raw_sit)
539 {
540 struct f2fs_sm_info *sm_info = SM_I(sbi);
541 unsigned int end_segno = sm_info->segment_count - 1;
542 int valid_blocks = 0;
543 int i;
544
545 /* check segment usage */
546 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
547
548 /* check boundary of a given segment number */
549 BUG_ON(segno > end_segno);
550
551 /* check bitmap with valid block count */
552 for (i = 0; i < sbi->blocks_per_seg; i++)
553 if (f2fs_test_bit(i, raw_sit->valid_map))
554 valid_blocks++;
555 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
556 }
557
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)558 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
559 unsigned int start)
560 {
561 struct sit_info *sit_i = SIT_I(sbi);
562 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
563 block_t blk_addr = sit_i->sit_base_addr + offset;
564
565 check_seg_range(sbi, start);
566
567 /* calculate sit block address */
568 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
569 blk_addr += sit_i->sit_blocks;
570
571 return blk_addr;
572 }
573
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)574 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
575 pgoff_t block_addr)
576 {
577 struct sit_info *sit_i = SIT_I(sbi);
578 block_addr -= sit_i->sit_base_addr;
579 if (block_addr < sit_i->sit_blocks)
580 block_addr += sit_i->sit_blocks;
581 else
582 block_addr -= sit_i->sit_blocks;
583
584 return block_addr + sit_i->sit_base_addr;
585 }
586
set_to_next_sit(struct sit_info * sit_i,unsigned int start)587 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
588 {
589 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
590
591 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
592 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
593 else
594 f2fs_set_bit(block_off, sit_i->sit_bitmap);
595 }
596
get_mtime(struct f2fs_sb_info * sbi)597 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
598 {
599 struct sit_info *sit_i = SIT_I(sbi);
600 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
601 sit_i->mounted_time;
602 }
603
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)604 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
605 unsigned int ofs_in_node, unsigned char version)
606 {
607 sum->nid = cpu_to_le32(nid);
608 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
609 sum->version = version;
610 }
611
start_sum_block(struct f2fs_sb_info * sbi)612 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
613 {
614 return __start_cp_addr(sbi) +
615 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
616 }
617
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)618 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
619 {
620 return __start_cp_addr(sbi) +
621 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
622 - (base + 1) + type;
623 }
624
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)625 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
626 {
627 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
628 return true;
629 return false;
630 }
631
max_hw_blocks(struct f2fs_sb_info * sbi)632 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
633 {
634 struct block_device *bdev = sbi->sb->s_bdev;
635 struct request_queue *q = bdev_get_queue(bdev);
636 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
637 }
638