1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21
22 /*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
get_nr_inodes(void)78 static int get_nr_inodes(void)
79 {
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
get_nr_inodes_unused(void)87 static inline int get_nr_inodes_unused(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
get_nr_dirty_inodes(void)96 int get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
proc_nr_inodes(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 /**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
inode_init_always(struct super_block * sb,struct inode * inode)124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 mapping->private_data = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
171
172 /*
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
175 * backing_dev_info.
176 */
177 if (sb->s_bdev) {
178 struct backing_dev_info *bdi;
179
180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 mapping->backing_dev_info = bdi;
182 }
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
alloc_inode(struct super_block * sb)202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
free_inode_nonrcu(struct inode * inode)225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
__destroy_inode(struct inode * inode)231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
239 }
240
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
247 this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250
i_callback(struct rcu_head * head)251 static void i_callback(struct rcu_head *head)
252 {
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
255 }
256
destroy_inode(struct inode * inode)257 static void destroy_inode(struct inode *inode)
258 {
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
265 }
266
267 /**
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
270 *
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
277 */
drop_nlink(struct inode * inode)278 void drop_nlink(struct inode *inode)
279 {
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286
287 /**
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
290 *
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
294 */
clear_nlink(struct inode * inode)295 void clear_nlink(struct inode *inode)
296 {
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
300 }
301 }
302 EXPORT_SYMBOL(clear_nlink);
303
304 /**
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
311 */
set_nlink(struct inode * inode,unsigned int nlink)312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
320
321 inode->__i_nlink = nlink;
322 }
323 }
324 EXPORT_SYMBOL(set_nlink);
325
326 /**
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
333 */
inc_nlink(struct inode * inode)334 void inc_nlink(struct inode *inode)
335 {
336 if (WARN_ON(inode->i_nlink == 0))
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338
339 inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342
address_space_init_once(struct address_space * mapping)343 void address_space_init_once(struct address_space *mapping)
344 {
345 memset(mapping, 0, sizeof(*mapping));
346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 spin_lock_init(&mapping->tree_lock);
348 mutex_init(&mapping->i_mmap_mutex);
349 INIT_LIST_HEAD(&mapping->private_list);
350 spin_lock_init(&mapping->private_lock);
351 mapping->i_mmap = RB_ROOT;
352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355
356 /*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
inode_init_once(struct inode * inode)361 void inode_init_once(struct inode *inode)
362 {
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_wb_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375
init_once(void * foo)376 static void init_once(void *foo)
377 {
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381 }
382
383 /*
384 * inode->i_lock must be held
385 */
__iget(struct inode * inode)386 void __iget(struct inode *inode)
387 {
388 atomic_inc(&inode->i_count);
389 }
390
391 /*
392 * get additional reference to inode; caller must already hold one.
393 */
ihold(struct inode * inode)394 void ihold(struct inode *inode)
395 {
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399
inode_lru_list_add(struct inode * inode)400 static void inode_lru_list_add(struct inode *inode)
401 {
402 spin_lock(&inode->i_sb->s_inode_lru_lock);
403 if (list_empty(&inode->i_lru)) {
404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 inode->i_sb->s_nr_inodes_unused++;
406 this_cpu_inc(nr_unused);
407 }
408 spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410
411 /*
412 * Add inode to LRU if needed (inode is unused and clean).
413 *
414 * Needs inode->i_lock held.
415 */
inode_add_lru(struct inode * inode)416 void inode_add_lru(struct inode *inode)
417 {
418 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
421 }
422
423
inode_lru_list_del(struct inode * inode)424 static void inode_lru_list_del(struct inode *inode)
425 {
426 spin_lock(&inode->i_sb->s_inode_lru_lock);
427 if (!list_empty(&inode->i_lru)) {
428 list_del_init(&inode->i_lru);
429 inode->i_sb->s_nr_inodes_unused--;
430 this_cpu_dec(nr_unused);
431 }
432 spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434
435 /**
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
438 */
inode_sb_list_add(struct inode * inode)439 void inode_sb_list_add(struct inode *inode)
440 {
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446
inode_sb_list_del(struct inode * inode)447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
453 }
454 }
455
hash(struct super_block * sb,unsigned long hashval)456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 unsigned long tmp;
459
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
464 }
465
466 /**
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
471 *
472 * Add an inode to the inode hash for this superblock.
473 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485
486 /**
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
489 *
490 * Remove an inode from the superblock.
491 */
__remove_inode_hash(struct inode * inode)492 void __remove_inode_hash(struct inode *inode)
493 {
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501
clear_inode(struct inode * inode)502 void clear_inode(struct inode *inode)
503 {
504 might_sleep();
505 /*
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
509 */
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 spin_unlock_irq(&inode->i_data.tree_lock);
513 BUG_ON(!list_empty(&inode->i_data.private_list));
514 BUG_ON(!(inode->i_state & I_FREEING));
515 BUG_ON(inode->i_state & I_CLEAR);
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode->i_state = I_FREEING | I_CLEAR;
518 }
519 EXPORT_SYMBOL(clear_inode);
520
521 /*
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
525 *
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
529 *
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
533 */
evict(struct inode * inode)534 static void evict(struct inode *inode)
535 {
536 const struct super_operations *op = inode->i_sb->s_op;
537
538 BUG_ON(!(inode->i_state & I_FREEING));
539 BUG_ON(!list_empty(&inode->i_lru));
540
541 if (!list_empty(&inode->i_wb_list))
542 inode_wb_list_del(inode);
543
544 inode_sb_list_del(inode);
545
546 /*
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
551 */
552 inode_wait_for_writeback(inode);
553
554 if (op->evict_inode) {
555 op->evict_inode(inode);
556 } else {
557 if (inode->i_data.nrpages)
558 truncate_inode_pages(&inode->i_data, 0);
559 clear_inode(inode);
560 }
561 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
562 bd_forget(inode);
563 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
564 cd_forget(inode);
565
566 remove_inode_hash(inode);
567
568 spin_lock(&inode->i_lock);
569 wake_up_bit(&inode->i_state, __I_NEW);
570 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
571 spin_unlock(&inode->i_lock);
572
573 destroy_inode(inode);
574 }
575
576 /*
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
579 *
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
582 */
dispose_list(struct list_head * head)583 static void dispose_list(struct list_head *head)
584 {
585 while (!list_empty(head)) {
586 struct inode *inode;
587
588 inode = list_first_entry(head, struct inode, i_lru);
589 list_del_init(&inode->i_lru);
590
591 evict(inode);
592 }
593 }
594
595 /**
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
598 *
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
603 */
evict_inodes(struct super_block * sb)604 void evict_inodes(struct super_block *sb)
605 {
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
608
609 spin_lock(&inode_sb_list_lock);
610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 if (atomic_read(&inode->i_count))
612 continue;
613
614 spin_lock(&inode->i_lock);
615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 spin_unlock(&inode->i_lock);
617 continue;
618 }
619
620 inode->i_state |= I_FREEING;
621 inode_lru_list_del(inode);
622 spin_unlock(&inode->i_lock);
623 list_add(&inode->i_lru, &dispose);
624 }
625 spin_unlock(&inode_sb_list_lock);
626
627 dispose_list(&dispose);
628 }
629
630 /**
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
634 *
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638 * them as busy.
639 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
641 {
642 int busy = 0;
643 struct inode *inode, *next;
644 LIST_HEAD(dispose);
645
646 spin_lock(&inode_sb_list_lock);
647 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 spin_lock(&inode->i_lock);
649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 spin_unlock(&inode->i_lock);
651 continue;
652 }
653 if (inode->i_state & I_DIRTY && !kill_dirty) {
654 spin_unlock(&inode->i_lock);
655 busy = 1;
656 continue;
657 }
658 if (atomic_read(&inode->i_count)) {
659 spin_unlock(&inode->i_lock);
660 busy = 1;
661 continue;
662 }
663
664 inode->i_state |= I_FREEING;
665 inode_lru_list_del(inode);
666 spin_unlock(&inode->i_lock);
667 list_add(&inode->i_lru, &dispose);
668 }
669 spin_unlock(&inode_sb_list_lock);
670
671 dispose_list(&dispose);
672
673 return busy;
674 }
675
can_unuse(struct inode * inode)676 static int can_unuse(struct inode *inode)
677 {
678 if (inode->i_state & ~I_REFERENCED)
679 return 0;
680 if (inode_has_buffers(inode))
681 return 0;
682 if (atomic_read(&inode->i_count))
683 return 0;
684 if (inode->i_data.nrpages)
685 return 0;
686 return 1;
687 }
688
689 /*
690 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691 * This is called from the superblock shrinker function with a number of inodes
692 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693 * then are freed outside inode_lock by dispose_list().
694 *
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
698 *
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
706 */
prune_icache_sb(struct super_block * sb,int nr_to_scan)707 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
708 {
709 LIST_HEAD(freeable);
710 int nr_scanned;
711 unsigned long reap = 0;
712
713 spin_lock(&sb->s_inode_lru_lock);
714 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
715 struct inode *inode;
716
717 if (list_empty(&sb->s_inode_lru))
718 break;
719
720 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
721
722 /*
723 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 * so use a trylock. If we fail to get the lock, just move the
725 * inode to the back of the list so we don't spin on it.
726 */
727 if (!spin_trylock(&inode->i_lock)) {
728 list_move(&inode->i_lru, &sb->s_inode_lru);
729 continue;
730 }
731
732 /*
733 * Referenced or dirty inodes are still in use. Give them
734 * another pass through the LRU as we canot reclaim them now.
735 */
736 if (atomic_read(&inode->i_count) ||
737 (inode->i_state & ~I_REFERENCED)) {
738 list_del_init(&inode->i_lru);
739 spin_unlock(&inode->i_lock);
740 sb->s_nr_inodes_unused--;
741 this_cpu_dec(nr_unused);
742 continue;
743 }
744
745 /* recently referenced inodes get one more pass */
746 if (inode->i_state & I_REFERENCED) {
747 inode->i_state &= ~I_REFERENCED;
748 list_move(&inode->i_lru, &sb->s_inode_lru);
749 spin_unlock(&inode->i_lock);
750 continue;
751 }
752 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
753 __iget(inode);
754 spin_unlock(&inode->i_lock);
755 spin_unlock(&sb->s_inode_lru_lock);
756 if (remove_inode_buffers(inode))
757 reap += invalidate_mapping_pages(&inode->i_data,
758 0, -1);
759 iput(inode);
760 spin_lock(&sb->s_inode_lru_lock);
761
762 if (inode != list_entry(sb->s_inode_lru.next,
763 struct inode, i_lru))
764 continue; /* wrong inode or list_empty */
765 /* avoid lock inversions with trylock */
766 if (!spin_trylock(&inode->i_lock))
767 continue;
768 if (!can_unuse(inode)) {
769 spin_unlock(&inode->i_lock);
770 continue;
771 }
772 }
773 WARN_ON(inode->i_state & I_NEW);
774 inode->i_state |= I_FREEING;
775 spin_unlock(&inode->i_lock);
776
777 list_move(&inode->i_lru, &freeable);
778 sb->s_nr_inodes_unused--;
779 this_cpu_dec(nr_unused);
780 }
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL, reap);
783 else
784 __count_vm_events(PGINODESTEAL, reap);
785 spin_unlock(&sb->s_inode_lru_lock);
786 if (current->reclaim_state)
787 current->reclaim_state->reclaimed_slab += reap;
788
789 dispose_list(&freeable);
790 }
791
792 static void __wait_on_freeing_inode(struct inode *inode);
793 /*
794 * Called with the inode lock held.
795 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)796 static struct inode *find_inode(struct super_block *sb,
797 struct hlist_head *head,
798 int (*test)(struct inode *, void *),
799 void *data)
800 {
801 struct inode *inode = NULL;
802
803 repeat:
804 hlist_for_each_entry(inode, head, i_hash) {
805 spin_lock(&inode->i_lock);
806 if (inode->i_sb != sb) {
807 spin_unlock(&inode->i_lock);
808 continue;
809 }
810 if (!test(inode, data)) {
811 spin_unlock(&inode->i_lock);
812 continue;
813 }
814 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
815 __wait_on_freeing_inode(inode);
816 goto repeat;
817 }
818 __iget(inode);
819 spin_unlock(&inode->i_lock);
820 return inode;
821 }
822 return NULL;
823 }
824
825 /*
826 * find_inode_fast is the fast path version of find_inode, see the comment at
827 * iget_locked for details.
828 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)829 static struct inode *find_inode_fast(struct super_block *sb,
830 struct hlist_head *head, unsigned long ino)
831 {
832 struct inode *inode = NULL;
833
834 repeat:
835 hlist_for_each_entry(inode, head, i_hash) {
836 spin_lock(&inode->i_lock);
837 if (inode->i_ino != ino) {
838 spin_unlock(&inode->i_lock);
839 continue;
840 }
841 if (inode->i_sb != sb) {
842 spin_unlock(&inode->i_lock);
843 continue;
844 }
845 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
846 __wait_on_freeing_inode(inode);
847 goto repeat;
848 }
849 __iget(inode);
850 spin_unlock(&inode->i_lock);
851 return inode;
852 }
853 return NULL;
854 }
855
856 /*
857 * Each cpu owns a range of LAST_INO_BATCH numbers.
858 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
859 * to renew the exhausted range.
860 *
861 * This does not significantly increase overflow rate because every CPU can
862 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
863 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
864 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
865 * overflow rate by 2x, which does not seem too significant.
866 *
867 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
868 * error if st_ino won't fit in target struct field. Use 32bit counter
869 * here to attempt to avoid that.
870 */
871 #define LAST_INO_BATCH 1024
872 static DEFINE_PER_CPU(unsigned int, last_ino);
873
get_next_ino(void)874 unsigned int get_next_ino(void)
875 {
876 unsigned int *p = &get_cpu_var(last_ino);
877 unsigned int res = *p;
878
879 #ifdef CONFIG_SMP
880 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
881 static atomic_t shared_last_ino;
882 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
883
884 res = next - LAST_INO_BATCH;
885 }
886 #endif
887
888 *p = ++res;
889 put_cpu_var(last_ino);
890 return res;
891 }
892 EXPORT_SYMBOL(get_next_ino);
893
894 /**
895 * new_inode_pseudo - obtain an inode
896 * @sb: superblock
897 *
898 * Allocates a new inode for given superblock.
899 * Inode wont be chained in superblock s_inodes list
900 * This means :
901 * - fs can't be unmount
902 * - quotas, fsnotify, writeback can't work
903 */
new_inode_pseudo(struct super_block * sb)904 struct inode *new_inode_pseudo(struct super_block *sb)
905 {
906 struct inode *inode = alloc_inode(sb);
907
908 if (inode) {
909 spin_lock(&inode->i_lock);
910 inode->i_state = 0;
911 spin_unlock(&inode->i_lock);
912 INIT_LIST_HEAD(&inode->i_sb_list);
913 }
914 return inode;
915 }
916
917 /**
918 * new_inode - obtain an inode
919 * @sb: superblock
920 *
921 * Allocates a new inode for given superblock. The default gfp_mask
922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
923 * If HIGHMEM pages are unsuitable or it is known that pages allocated
924 * for the page cache are not reclaimable or migratable,
925 * mapping_set_gfp_mask() must be called with suitable flags on the
926 * newly created inode's mapping
927 *
928 */
new_inode(struct super_block * sb)929 struct inode *new_inode(struct super_block *sb)
930 {
931 struct inode *inode;
932
933 spin_lock_prefetch(&inode_sb_list_lock);
934
935 inode = new_inode_pseudo(sb);
936 if (inode)
937 inode_sb_list_add(inode);
938 return inode;
939 }
940 EXPORT_SYMBOL(new_inode);
941
942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)943 void lockdep_annotate_inode_mutex_key(struct inode *inode)
944 {
945 if (S_ISDIR(inode->i_mode)) {
946 struct file_system_type *type = inode->i_sb->s_type;
947
948 /* Set new key only if filesystem hasn't already changed it */
949 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
950 /*
951 * ensure nobody is actually holding i_mutex
952 */
953 mutex_destroy(&inode->i_mutex);
954 mutex_init(&inode->i_mutex);
955 lockdep_set_class(&inode->i_mutex,
956 &type->i_mutex_dir_key);
957 }
958 }
959 }
960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
961 #endif
962
963 /**
964 * unlock_new_inode - clear the I_NEW state and wake up any waiters
965 * @inode: new inode to unlock
966 *
967 * Called when the inode is fully initialised to clear the new state of the
968 * inode and wake up anyone waiting for the inode to finish initialisation.
969 */
unlock_new_inode(struct inode * inode)970 void unlock_new_inode(struct inode *inode)
971 {
972 lockdep_annotate_inode_mutex_key(inode);
973 spin_lock(&inode->i_lock);
974 WARN_ON(!(inode->i_state & I_NEW));
975 inode->i_state &= ~I_NEW;
976 smp_mb();
977 wake_up_bit(&inode->i_state, __I_NEW);
978 spin_unlock(&inode->i_lock);
979 }
980 EXPORT_SYMBOL(unlock_new_inode);
981
982 /**
983 * lock_two_nondirectories - take two i_mutexes on non-directory objects
984 *
985 * Lock any non-NULL argument that is not a directory.
986 * Zero, one or two objects may be locked by this function.
987 *
988 * @inode1: first inode to lock
989 * @inode2: second inode to lock
990 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)991 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
992 {
993 if (inode1 > inode2)
994 swap(inode1, inode2);
995
996 if (inode1 && !S_ISDIR(inode1->i_mode))
997 mutex_lock(&inode1->i_mutex);
998 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
999 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
1000 }
1001 EXPORT_SYMBOL(lock_two_nondirectories);
1002
1003 /**
1004 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1005 * @inode1: first inode to unlock
1006 * @inode2: second inode to unlock
1007 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1008 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1009 {
1010 if (inode1 && !S_ISDIR(inode1->i_mode))
1011 mutex_unlock(&inode1->i_mutex);
1012 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1013 mutex_unlock(&inode2->i_mutex);
1014 }
1015 EXPORT_SYMBOL(unlock_two_nondirectories);
1016
1017 /**
1018 * iget5_locked - obtain an inode from a mounted file system
1019 * @sb: super block of file system
1020 * @hashval: hash value (usually inode number) to get
1021 * @test: callback used for comparisons between inodes
1022 * @set: callback used to initialize a new struct inode
1023 * @data: opaque data pointer to pass to @test and @set
1024 *
1025 * Search for the inode specified by @hashval and @data in the inode cache,
1026 * and if present it is return it with an increased reference count. This is
1027 * a generalized version of iget_locked() for file systems where the inode
1028 * number is not sufficient for unique identification of an inode.
1029 *
1030 * If the inode is not in cache, allocate a new inode and return it locked,
1031 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1032 * before unlocking it via unlock_new_inode().
1033 *
1034 * Note both @test and @set are called with the inode_hash_lock held, so can't
1035 * sleep.
1036 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1037 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1038 int (*test)(struct inode *, void *),
1039 int (*set)(struct inode *, void *), void *data)
1040 {
1041 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1042 struct inode *inode;
1043
1044 spin_lock(&inode_hash_lock);
1045 inode = find_inode(sb, head, test, data);
1046 spin_unlock(&inode_hash_lock);
1047
1048 if (inode) {
1049 wait_on_inode(inode);
1050 return inode;
1051 }
1052
1053 inode = alloc_inode(sb);
1054 if (inode) {
1055 struct inode *old;
1056
1057 spin_lock(&inode_hash_lock);
1058 /* We released the lock, so.. */
1059 old = find_inode(sb, head, test, data);
1060 if (!old) {
1061 if (set(inode, data))
1062 goto set_failed;
1063
1064 spin_lock(&inode->i_lock);
1065 inode->i_state = I_NEW;
1066 hlist_add_head(&inode->i_hash, head);
1067 spin_unlock(&inode->i_lock);
1068 inode_sb_list_add(inode);
1069 spin_unlock(&inode_hash_lock);
1070
1071 /* Return the locked inode with I_NEW set, the
1072 * caller is responsible for filling in the contents
1073 */
1074 return inode;
1075 }
1076
1077 /*
1078 * Uhhuh, somebody else created the same inode under
1079 * us. Use the old inode instead of the one we just
1080 * allocated.
1081 */
1082 spin_unlock(&inode_hash_lock);
1083 destroy_inode(inode);
1084 inode = old;
1085 wait_on_inode(inode);
1086 }
1087 return inode;
1088
1089 set_failed:
1090 spin_unlock(&inode_hash_lock);
1091 destroy_inode(inode);
1092 return NULL;
1093 }
1094 EXPORT_SYMBOL(iget5_locked);
1095
1096 /**
1097 * iget_locked - obtain an inode from a mounted file system
1098 * @sb: super block of file system
1099 * @ino: inode number to get
1100 *
1101 * Search for the inode specified by @ino in the inode cache and if present
1102 * return it with an increased reference count. This is for file systems
1103 * where the inode number is sufficient for unique identification of an inode.
1104 *
1105 * If the inode is not in cache, allocate a new inode and return it locked,
1106 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1107 * before unlocking it via unlock_new_inode().
1108 */
iget_locked(struct super_block * sb,unsigned long ino)1109 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1110 {
1111 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1112 struct inode *inode;
1113
1114 spin_lock(&inode_hash_lock);
1115 inode = find_inode_fast(sb, head, ino);
1116 spin_unlock(&inode_hash_lock);
1117 if (inode) {
1118 wait_on_inode(inode);
1119 return inode;
1120 }
1121
1122 inode = alloc_inode(sb);
1123 if (inode) {
1124 struct inode *old;
1125
1126 spin_lock(&inode_hash_lock);
1127 /* We released the lock, so.. */
1128 old = find_inode_fast(sb, head, ino);
1129 if (!old) {
1130 inode->i_ino = ino;
1131 spin_lock(&inode->i_lock);
1132 inode->i_state = I_NEW;
1133 hlist_add_head(&inode->i_hash, head);
1134 spin_unlock(&inode->i_lock);
1135 inode_sb_list_add(inode);
1136 spin_unlock(&inode_hash_lock);
1137
1138 /* Return the locked inode with I_NEW set, the
1139 * caller is responsible for filling in the contents
1140 */
1141 return inode;
1142 }
1143
1144 /*
1145 * Uhhuh, somebody else created the same inode under
1146 * us. Use the old inode instead of the one we just
1147 * allocated.
1148 */
1149 spin_unlock(&inode_hash_lock);
1150 destroy_inode(inode);
1151 inode = old;
1152 wait_on_inode(inode);
1153 }
1154 return inode;
1155 }
1156 EXPORT_SYMBOL(iget_locked);
1157
1158 /*
1159 * search the inode cache for a matching inode number.
1160 * If we find one, then the inode number we are trying to
1161 * allocate is not unique and so we should not use it.
1162 *
1163 * Returns 1 if the inode number is unique, 0 if it is not.
1164 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1165 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1166 {
1167 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1168 struct inode *inode;
1169
1170 spin_lock(&inode_hash_lock);
1171 hlist_for_each_entry(inode, b, i_hash) {
1172 if (inode->i_ino == ino && inode->i_sb == sb) {
1173 spin_unlock(&inode_hash_lock);
1174 return 0;
1175 }
1176 }
1177 spin_unlock(&inode_hash_lock);
1178
1179 return 1;
1180 }
1181
1182 /**
1183 * iunique - get a unique inode number
1184 * @sb: superblock
1185 * @max_reserved: highest reserved inode number
1186 *
1187 * Obtain an inode number that is unique on the system for a given
1188 * superblock. This is used by file systems that have no natural
1189 * permanent inode numbering system. An inode number is returned that
1190 * is higher than the reserved limit but unique.
1191 *
1192 * BUGS:
1193 * With a large number of inodes live on the file system this function
1194 * currently becomes quite slow.
1195 */
iunique(struct super_block * sb,ino_t max_reserved)1196 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1197 {
1198 /*
1199 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1200 * error if st_ino won't fit in target struct field. Use 32bit counter
1201 * here to attempt to avoid that.
1202 */
1203 static DEFINE_SPINLOCK(iunique_lock);
1204 static unsigned int counter;
1205 ino_t res;
1206
1207 spin_lock(&iunique_lock);
1208 do {
1209 if (counter <= max_reserved)
1210 counter = max_reserved + 1;
1211 res = counter++;
1212 } while (!test_inode_iunique(sb, res));
1213 spin_unlock(&iunique_lock);
1214
1215 return res;
1216 }
1217 EXPORT_SYMBOL(iunique);
1218
igrab(struct inode * inode)1219 struct inode *igrab(struct inode *inode)
1220 {
1221 spin_lock(&inode->i_lock);
1222 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1223 __iget(inode);
1224 spin_unlock(&inode->i_lock);
1225 } else {
1226 spin_unlock(&inode->i_lock);
1227 /*
1228 * Handle the case where s_op->clear_inode is not been
1229 * called yet, and somebody is calling igrab
1230 * while the inode is getting freed.
1231 */
1232 inode = NULL;
1233 }
1234 return inode;
1235 }
1236 EXPORT_SYMBOL(igrab);
1237
1238 /**
1239 * ilookup5_nowait - search for an inode in the inode cache
1240 * @sb: super block of file system to search
1241 * @hashval: hash value (usually inode number) to search for
1242 * @test: callback used for comparisons between inodes
1243 * @data: opaque data pointer to pass to @test
1244 *
1245 * Search for the inode specified by @hashval and @data in the inode cache.
1246 * If the inode is in the cache, the inode is returned with an incremented
1247 * reference count.
1248 *
1249 * Note: I_NEW is not waited upon so you have to be very careful what you do
1250 * with the returned inode. You probably should be using ilookup5() instead.
1251 *
1252 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1253 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1254 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1255 int (*test)(struct inode *, void *), void *data)
1256 {
1257 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1258 struct inode *inode;
1259
1260 spin_lock(&inode_hash_lock);
1261 inode = find_inode(sb, head, test, data);
1262 spin_unlock(&inode_hash_lock);
1263
1264 return inode;
1265 }
1266 EXPORT_SYMBOL(ilookup5_nowait);
1267
1268 /**
1269 * ilookup5 - search for an inode in the inode cache
1270 * @sb: super block of file system to search
1271 * @hashval: hash value (usually inode number) to search for
1272 * @test: callback used for comparisons between inodes
1273 * @data: opaque data pointer to pass to @test
1274 *
1275 * Search for the inode specified by @hashval and @data in the inode cache,
1276 * and if the inode is in the cache, return the inode with an incremented
1277 * reference count. Waits on I_NEW before returning the inode.
1278 * returned with an incremented reference count.
1279 *
1280 * This is a generalized version of ilookup() for file systems where the
1281 * inode number is not sufficient for unique identification of an inode.
1282 *
1283 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1284 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1285 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1286 int (*test)(struct inode *, void *), void *data)
1287 {
1288 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1289
1290 if (inode)
1291 wait_on_inode(inode);
1292 return inode;
1293 }
1294 EXPORT_SYMBOL(ilookup5);
1295
1296 /**
1297 * ilookup - search for an inode in the inode cache
1298 * @sb: super block of file system to search
1299 * @ino: inode number to search for
1300 *
1301 * Search for the inode @ino in the inode cache, and if the inode is in the
1302 * cache, the inode is returned with an incremented reference count.
1303 */
ilookup(struct super_block * sb,unsigned long ino)1304 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1305 {
1306 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1307 struct inode *inode;
1308
1309 spin_lock(&inode_hash_lock);
1310 inode = find_inode_fast(sb, head, ino);
1311 spin_unlock(&inode_hash_lock);
1312
1313 if (inode)
1314 wait_on_inode(inode);
1315 return inode;
1316 }
1317 EXPORT_SYMBOL(ilookup);
1318
insert_inode_locked(struct inode * inode)1319 int insert_inode_locked(struct inode *inode)
1320 {
1321 struct super_block *sb = inode->i_sb;
1322 ino_t ino = inode->i_ino;
1323 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1324
1325 while (1) {
1326 struct inode *old = NULL;
1327 spin_lock(&inode_hash_lock);
1328 hlist_for_each_entry(old, head, i_hash) {
1329 if (old->i_ino != ino)
1330 continue;
1331 if (old->i_sb != sb)
1332 continue;
1333 spin_lock(&old->i_lock);
1334 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335 spin_unlock(&old->i_lock);
1336 continue;
1337 }
1338 break;
1339 }
1340 if (likely(!old)) {
1341 spin_lock(&inode->i_lock);
1342 inode->i_state |= I_NEW;
1343 hlist_add_head(&inode->i_hash, head);
1344 spin_unlock(&inode->i_lock);
1345 spin_unlock(&inode_hash_lock);
1346 return 0;
1347 }
1348 __iget(old);
1349 spin_unlock(&old->i_lock);
1350 spin_unlock(&inode_hash_lock);
1351 wait_on_inode(old);
1352 if (unlikely(!inode_unhashed(old))) {
1353 iput(old);
1354 return -EBUSY;
1355 }
1356 iput(old);
1357 }
1358 }
1359 EXPORT_SYMBOL(insert_inode_locked);
1360
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1361 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1362 int (*test)(struct inode *, void *), void *data)
1363 {
1364 struct super_block *sb = inode->i_sb;
1365 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1366
1367 while (1) {
1368 struct inode *old = NULL;
1369
1370 spin_lock(&inode_hash_lock);
1371 hlist_for_each_entry(old, head, i_hash) {
1372 if (old->i_sb != sb)
1373 continue;
1374 if (!test(old, data))
1375 continue;
1376 spin_lock(&old->i_lock);
1377 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1378 spin_unlock(&old->i_lock);
1379 continue;
1380 }
1381 break;
1382 }
1383 if (likely(!old)) {
1384 spin_lock(&inode->i_lock);
1385 inode->i_state |= I_NEW;
1386 hlist_add_head(&inode->i_hash, head);
1387 spin_unlock(&inode->i_lock);
1388 spin_unlock(&inode_hash_lock);
1389 return 0;
1390 }
1391 __iget(old);
1392 spin_unlock(&old->i_lock);
1393 spin_unlock(&inode_hash_lock);
1394 wait_on_inode(old);
1395 if (unlikely(!inode_unhashed(old))) {
1396 iput(old);
1397 return -EBUSY;
1398 }
1399 iput(old);
1400 }
1401 }
1402 EXPORT_SYMBOL(insert_inode_locked4);
1403
1404
generic_delete_inode(struct inode * inode)1405 int generic_delete_inode(struct inode *inode)
1406 {
1407 return 1;
1408 }
1409 EXPORT_SYMBOL(generic_delete_inode);
1410
1411 /*
1412 * Called when we're dropping the last reference
1413 * to an inode.
1414 *
1415 * Call the FS "drop_inode()" function, defaulting to
1416 * the legacy UNIX filesystem behaviour. If it tells
1417 * us to evict inode, do so. Otherwise, retain inode
1418 * in cache if fs is alive, sync and evict if fs is
1419 * shutting down.
1420 */
iput_final(struct inode * inode)1421 static void iput_final(struct inode *inode)
1422 {
1423 struct super_block *sb = inode->i_sb;
1424 const struct super_operations *op = inode->i_sb->s_op;
1425 int drop;
1426
1427 WARN_ON(inode->i_state & I_NEW);
1428
1429 if (op->drop_inode)
1430 drop = op->drop_inode(inode);
1431 else
1432 drop = generic_drop_inode(inode);
1433
1434 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1435 inode->i_state |= I_REFERENCED;
1436 inode_add_lru(inode);
1437 spin_unlock(&inode->i_lock);
1438 return;
1439 }
1440
1441 if (!drop) {
1442 inode->i_state |= I_WILL_FREE;
1443 spin_unlock(&inode->i_lock);
1444 write_inode_now(inode, 1);
1445 spin_lock(&inode->i_lock);
1446 WARN_ON(inode->i_state & I_NEW);
1447 inode->i_state &= ~I_WILL_FREE;
1448 }
1449
1450 inode->i_state |= I_FREEING;
1451 if (!list_empty(&inode->i_lru))
1452 inode_lru_list_del(inode);
1453 spin_unlock(&inode->i_lock);
1454
1455 evict(inode);
1456 }
1457
1458 /**
1459 * iput - put an inode
1460 * @inode: inode to put
1461 *
1462 * Puts an inode, dropping its usage count. If the inode use count hits
1463 * zero, the inode is then freed and may also be destroyed.
1464 *
1465 * Consequently, iput() can sleep.
1466 */
iput(struct inode * inode)1467 void iput(struct inode *inode)
1468 {
1469 if (inode) {
1470 BUG_ON(inode->i_state & I_CLEAR);
1471
1472 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1473 iput_final(inode);
1474 }
1475 }
1476 EXPORT_SYMBOL(iput);
1477
1478 /**
1479 * bmap - find a block number in a file
1480 * @inode: inode of file
1481 * @block: block to find
1482 *
1483 * Returns the block number on the device holding the inode that
1484 * is the disk block number for the block of the file requested.
1485 * That is, asked for block 4 of inode 1 the function will return the
1486 * disk block relative to the disk start that holds that block of the
1487 * file.
1488 */
bmap(struct inode * inode,sector_t block)1489 sector_t bmap(struct inode *inode, sector_t block)
1490 {
1491 sector_t res = 0;
1492 if (inode->i_mapping->a_ops->bmap)
1493 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1494 return res;
1495 }
1496 EXPORT_SYMBOL(bmap);
1497
1498 /*
1499 * With relative atime, only update atime if the previous atime is
1500 * earlier than either the ctime or mtime or if at least a day has
1501 * passed since the last atime update.
1502 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1503 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1504 struct timespec now)
1505 {
1506
1507 if (!(mnt->mnt_flags & MNT_RELATIME))
1508 return 1;
1509 /*
1510 * Is mtime younger than atime? If yes, update atime:
1511 */
1512 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1513 return 1;
1514 /*
1515 * Is ctime younger than atime? If yes, update atime:
1516 */
1517 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1518 return 1;
1519
1520 /*
1521 * Is the previous atime value older than a day? If yes,
1522 * update atime:
1523 */
1524 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1525 return 1;
1526 /*
1527 * Good, we can skip the atime update:
1528 */
1529 return 0;
1530 }
1531
1532 /*
1533 * This does the actual work of updating an inodes time or version. Must have
1534 * had called mnt_want_write() before calling this.
1535 */
update_time(struct inode * inode,struct timespec * time,int flags)1536 static int update_time(struct inode *inode, struct timespec *time, int flags)
1537 {
1538 if (inode->i_op->update_time)
1539 return inode->i_op->update_time(inode, time, flags);
1540
1541 if (flags & S_ATIME)
1542 inode->i_atime = *time;
1543 if (flags & S_VERSION)
1544 inode_inc_iversion(inode);
1545 if (flags & S_CTIME)
1546 inode->i_ctime = *time;
1547 if (flags & S_MTIME)
1548 inode->i_mtime = *time;
1549 mark_inode_dirty_sync(inode);
1550 return 0;
1551 }
1552
1553 /**
1554 * touch_atime - update the access time
1555 * @path: the &struct path to update
1556 *
1557 * Update the accessed time on an inode and mark it for writeback.
1558 * This function automatically handles read only file systems and media,
1559 * as well as the "noatime" flag and inode specific "noatime" markers.
1560 */
touch_atime(struct path * path)1561 void touch_atime(struct path *path)
1562 {
1563 struct vfsmount *mnt = path->mnt;
1564 struct inode *inode = path->dentry->d_inode;
1565 struct timespec now;
1566
1567 if (inode->i_flags & S_NOATIME)
1568 return;
1569 if (IS_NOATIME(inode))
1570 return;
1571 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1572 return;
1573
1574 if (mnt->mnt_flags & MNT_NOATIME)
1575 return;
1576 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1577 return;
1578
1579 now = current_fs_time(inode->i_sb);
1580
1581 if (!relatime_need_update(mnt, inode, now))
1582 return;
1583
1584 if (timespec_equal(&inode->i_atime, &now))
1585 return;
1586
1587 if (!sb_start_write_trylock(inode->i_sb))
1588 return;
1589
1590 if (__mnt_want_write(mnt))
1591 goto skip_update;
1592 /*
1593 * File systems can error out when updating inodes if they need to
1594 * allocate new space to modify an inode (such is the case for
1595 * Btrfs), but since we touch atime while walking down the path we
1596 * really don't care if we failed to update the atime of the file,
1597 * so just ignore the return value.
1598 * We may also fail on filesystems that have the ability to make parts
1599 * of the fs read only, e.g. subvolumes in Btrfs.
1600 */
1601 update_time(inode, &now, S_ATIME);
1602 __mnt_drop_write(mnt);
1603 skip_update:
1604 sb_end_write(inode->i_sb);
1605 }
1606 EXPORT_SYMBOL(touch_atime);
1607
1608 /*
1609 * The logic we want is
1610 *
1611 * if suid or (sgid and xgrp)
1612 * remove privs
1613 */
should_remove_suid(struct dentry * dentry)1614 int should_remove_suid(struct dentry *dentry)
1615 {
1616 umode_t mode = dentry->d_inode->i_mode;
1617 int kill = 0;
1618
1619 /* suid always must be killed */
1620 if (unlikely(mode & S_ISUID))
1621 kill = ATTR_KILL_SUID;
1622
1623 /*
1624 * sgid without any exec bits is just a mandatory locking mark; leave
1625 * it alone. If some exec bits are set, it's a real sgid; kill it.
1626 */
1627 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1628 kill |= ATTR_KILL_SGID;
1629
1630 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1631 return kill;
1632
1633 return 0;
1634 }
1635 EXPORT_SYMBOL(should_remove_suid);
1636
__remove_suid(struct vfsmount * mnt,struct dentry * dentry,int kill)1637 static int __remove_suid(struct vfsmount *mnt, struct dentry *dentry, int kill)
1638 {
1639 struct iattr newattrs;
1640
1641 newattrs.ia_valid = ATTR_FORCE | kill;
1642 return notify_change2(mnt, dentry, &newattrs);
1643 }
1644
file_remove_suid(struct file * file)1645 int file_remove_suid(struct file *file)
1646 {
1647 struct dentry *dentry = file->f_path.dentry;
1648 struct inode *inode = dentry->d_inode;
1649 int killsuid;
1650 int killpriv;
1651 int error = 0;
1652
1653 /* Fast path for nothing security related */
1654 if (IS_NOSEC(inode))
1655 return 0;
1656
1657 killsuid = should_remove_suid(dentry);
1658 killpriv = security_inode_need_killpriv(dentry);
1659
1660 if (killpriv < 0)
1661 return killpriv;
1662 if (killpriv)
1663 error = security_inode_killpriv(dentry);
1664 if (!error && killsuid)
1665 error = __remove_suid(file->f_path.mnt, dentry, killsuid);
1666 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1667 inode->i_flags |= S_NOSEC;
1668
1669 return error;
1670 }
1671 EXPORT_SYMBOL(file_remove_suid);
1672
1673 /**
1674 * file_update_time - update mtime and ctime time
1675 * @file: file accessed
1676 *
1677 * Update the mtime and ctime members of an inode and mark the inode
1678 * for writeback. Note that this function is meant exclusively for
1679 * usage in the file write path of filesystems, and filesystems may
1680 * choose to explicitly ignore update via this function with the
1681 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1682 * timestamps are handled by the server. This can return an error for
1683 * file systems who need to allocate space in order to update an inode.
1684 */
1685
file_update_time(struct file * file)1686 int file_update_time(struct file *file)
1687 {
1688 struct inode *inode = file_inode(file);
1689 struct timespec now;
1690 int sync_it = 0;
1691 int ret;
1692
1693 /* First try to exhaust all avenues to not sync */
1694 if (IS_NOCMTIME(inode))
1695 return 0;
1696
1697 now = current_fs_time(inode->i_sb);
1698 if (!timespec_equal(&inode->i_mtime, &now))
1699 sync_it = S_MTIME;
1700
1701 if (!timespec_equal(&inode->i_ctime, &now))
1702 sync_it |= S_CTIME;
1703
1704 if (IS_I_VERSION(inode))
1705 sync_it |= S_VERSION;
1706
1707 if (!sync_it)
1708 return 0;
1709
1710 /* Finally allowed to write? Takes lock. */
1711 if (__mnt_want_write_file(file))
1712 return 0;
1713
1714 ret = update_time(inode, &now, sync_it);
1715 __mnt_drop_write_file(file);
1716
1717 return ret;
1718 }
1719 EXPORT_SYMBOL(file_update_time);
1720
inode_needs_sync(struct inode * inode)1721 int inode_needs_sync(struct inode *inode)
1722 {
1723 if (IS_SYNC(inode))
1724 return 1;
1725 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1726 return 1;
1727 return 0;
1728 }
1729 EXPORT_SYMBOL(inode_needs_sync);
1730
inode_wait(void * word)1731 int inode_wait(void *word)
1732 {
1733 schedule();
1734 return 0;
1735 }
1736 EXPORT_SYMBOL(inode_wait);
1737
1738 /*
1739 * If we try to find an inode in the inode hash while it is being
1740 * deleted, we have to wait until the filesystem completes its
1741 * deletion before reporting that it isn't found. This function waits
1742 * until the deletion _might_ have completed. Callers are responsible
1743 * to recheck inode state.
1744 *
1745 * It doesn't matter if I_NEW is not set initially, a call to
1746 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1747 * will DTRT.
1748 */
__wait_on_freeing_inode(struct inode * inode)1749 static void __wait_on_freeing_inode(struct inode *inode)
1750 {
1751 wait_queue_head_t *wq;
1752 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1753 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1754 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1755 spin_unlock(&inode->i_lock);
1756 spin_unlock(&inode_hash_lock);
1757 schedule();
1758 finish_wait(wq, &wait.wait);
1759 spin_lock(&inode_hash_lock);
1760 }
1761
1762 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1763 static int __init set_ihash_entries(char *str)
1764 {
1765 if (!str)
1766 return 0;
1767 ihash_entries = simple_strtoul(str, &str, 0);
1768 return 1;
1769 }
1770 __setup("ihash_entries=", set_ihash_entries);
1771
1772 /*
1773 * Initialize the waitqueues and inode hash table.
1774 */
inode_init_early(void)1775 void __init inode_init_early(void)
1776 {
1777 unsigned int loop;
1778
1779 /* If hashes are distributed across NUMA nodes, defer
1780 * hash allocation until vmalloc space is available.
1781 */
1782 if (hashdist)
1783 return;
1784
1785 inode_hashtable =
1786 alloc_large_system_hash("Inode-cache",
1787 sizeof(struct hlist_head),
1788 ihash_entries,
1789 14,
1790 HASH_EARLY,
1791 &i_hash_shift,
1792 &i_hash_mask,
1793 0,
1794 0);
1795
1796 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1797 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1798 }
1799
inode_init(void)1800 void __init inode_init(void)
1801 {
1802 unsigned int loop;
1803
1804 /* inode slab cache */
1805 inode_cachep = kmem_cache_create("inode_cache",
1806 sizeof(struct inode),
1807 0,
1808 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1809 SLAB_MEM_SPREAD),
1810 init_once);
1811
1812 /* Hash may have been set up in inode_init_early */
1813 if (!hashdist)
1814 return;
1815
1816 inode_hashtable =
1817 alloc_large_system_hash("Inode-cache",
1818 sizeof(struct hlist_head),
1819 ihash_entries,
1820 14,
1821 0,
1822 &i_hash_shift,
1823 &i_hash_mask,
1824 0,
1825 0);
1826
1827 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1828 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1829 }
1830
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1831 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1832 {
1833 inode->i_mode = mode;
1834 if (S_ISCHR(mode)) {
1835 inode->i_fop = &def_chr_fops;
1836 inode->i_rdev = rdev;
1837 } else if (S_ISBLK(mode)) {
1838 inode->i_fop = &def_blk_fops;
1839 inode->i_rdev = rdev;
1840 } else if (S_ISFIFO(mode))
1841 inode->i_fop = &pipefifo_fops;
1842 else if (S_ISSOCK(mode))
1843 inode->i_fop = &bad_sock_fops;
1844 else
1845 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1846 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1847 inode->i_ino);
1848 }
1849 EXPORT_SYMBOL(init_special_inode);
1850
1851 /**
1852 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1853 * @inode: New inode
1854 * @dir: Directory inode
1855 * @mode: mode of the new inode
1856 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1857 void inode_init_owner(struct inode *inode, const struct inode *dir,
1858 umode_t mode)
1859 {
1860 inode->i_uid = current_fsuid();
1861 if (dir && dir->i_mode & S_ISGID) {
1862 inode->i_gid = dir->i_gid;
1863 if (S_ISDIR(mode))
1864 mode |= S_ISGID;
1865 } else
1866 inode->i_gid = current_fsgid();
1867 inode->i_mode = mode;
1868 }
1869 EXPORT_SYMBOL(inode_init_owner);
1870
1871 /**
1872 * inode_owner_or_capable - check current task permissions to inode
1873 * @inode: inode being checked
1874 *
1875 * Return true if current either has CAP_FOWNER in a namespace with the
1876 * inode owner uid mapped, or owns the file.
1877 */
inode_owner_or_capable(const struct inode * inode)1878 bool inode_owner_or_capable(const struct inode *inode)
1879 {
1880 struct user_namespace *ns;
1881
1882 if (uid_eq(current_fsuid(), inode->i_uid))
1883 return true;
1884
1885 ns = current_user_ns();
1886 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1887 return true;
1888 return false;
1889 }
1890 EXPORT_SYMBOL(inode_owner_or_capable);
1891
1892 /*
1893 * Direct i/o helper functions
1894 */
__inode_dio_wait(struct inode * inode)1895 static void __inode_dio_wait(struct inode *inode)
1896 {
1897 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1898 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1899
1900 do {
1901 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1902 if (atomic_read(&inode->i_dio_count))
1903 schedule();
1904 } while (atomic_read(&inode->i_dio_count));
1905 finish_wait(wq, &q.wait);
1906 }
1907
1908 /**
1909 * inode_dio_wait - wait for outstanding DIO requests to finish
1910 * @inode: inode to wait for
1911 *
1912 * Waits for all pending direct I/O requests to finish so that we can
1913 * proceed with a truncate or equivalent operation.
1914 *
1915 * Must be called under a lock that serializes taking new references
1916 * to i_dio_count, usually by inode->i_mutex.
1917 */
inode_dio_wait(struct inode * inode)1918 void inode_dio_wait(struct inode *inode)
1919 {
1920 if (atomic_read(&inode->i_dio_count))
1921 __inode_dio_wait(inode);
1922 }
1923 EXPORT_SYMBOL(inode_dio_wait);
1924
1925 /*
1926 * inode_dio_done - signal finish of a direct I/O requests
1927 * @inode: inode the direct I/O happens on
1928 *
1929 * This is called once we've finished processing a direct I/O request,
1930 * and is used to wake up callers waiting for direct I/O to be quiesced.
1931 */
inode_dio_done(struct inode * inode)1932 void inode_dio_done(struct inode *inode)
1933 {
1934 if (atomic_dec_and_test(&inode->i_dio_count))
1935 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1936 }
1937 EXPORT_SYMBOL(inode_dio_done);
1938
1939 /*
1940 * inode_set_flags - atomically set some inode flags
1941 *
1942 * Note: the caller should be holding i_mutex, or else be sure that
1943 * they have exclusive access to the inode structure (i.e., while the
1944 * inode is being instantiated). The reason for the cmpxchg() loop
1945 * --- which wouldn't be necessary if all code paths which modify
1946 * i_flags actually followed this rule, is that there is at least one
1947 * code path which doesn't today --- for example,
1948 * __generic_file_aio_write() calls file_remove_suid() without holding
1949 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1950 *
1951 * In the long run, i_mutex is overkill, and we should probably look
1952 * at using the i_lock spinlock to protect i_flags, and then make sure
1953 * it is so documented in include/linux/fs.h and that all code follows
1954 * the locking convention!!
1955 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)1956 void inode_set_flags(struct inode *inode, unsigned int flags,
1957 unsigned int mask)
1958 {
1959 unsigned int old_flags, new_flags;
1960
1961 WARN_ON_ONCE(flags & ~mask);
1962 do {
1963 old_flags = ACCESS_ONCE(inode->i_flags);
1964 new_flags = (old_flags & ~mask) | flags;
1965 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1966 new_flags) != old_flags));
1967 }
1968 EXPORT_SYMBOL(inode_set_flags);
1969