1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
final_putname(struct filename * name)120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
getname_flags(const char __user * filename,int flags,int * empty)133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
getname(const char __user * filename)208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
putname(struct filename * name)215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
check_acl(struct inode * inode,int mask)223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
acl_permission_check(struct inode * inode,int mask)272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
generic_permission(struct inode * inode,int mask)311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (capable_wrt_inode_uidgid(inode,
328 CAP_DAC_READ_SEARCH))
329 return 0;
330 return -EACCES;
331 }
332 /*
333 * Read/write DACs are always overridable.
334 * Executable DACs are overridable when there is
335 * at least one exec bit set.
336 */
337 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
338 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
339 return 0;
340
341 /*
342 * Searching includes executable on directories, else just read.
343 */
344 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
345 if (mask == MAY_READ)
346 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
347 return 0;
348
349 return -EACCES;
350 }
351
352 /*
353 * We _really_ want to just do "generic_permission()" without
354 * even looking at the inode->i_op values. So we keep a cache
355 * flag in inode->i_opflags, that says "this has not special
356 * permission function, use the fast case".
357 */
do_inode_permission(struct vfsmount * mnt,struct inode * inode,int mask)358 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
359 {
360 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
361 if (likely(mnt && inode->i_op->permission2))
362 return inode->i_op->permission2(mnt, inode, mask);
363 if (likely(inode->i_op->permission))
364 return inode->i_op->permission(inode, mask);
365
366 /* This gets set once for the inode lifetime */
367 spin_lock(&inode->i_lock);
368 inode->i_opflags |= IOP_FASTPERM;
369 spin_unlock(&inode->i_lock);
370 }
371 return generic_permission(inode, mask);
372 }
373
374 /**
375 * __inode_permission - Check for access rights to a given inode
376 * @inode: Inode to check permission on
377 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
378 *
379 * Check for read/write/execute permissions on an inode.
380 *
381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382 *
383 * This does not check for a read-only file system. You probably want
384 * inode_permission().
385 */
__inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)386 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
387 {
388 int retval;
389
390 if (unlikely(mask & MAY_WRITE)) {
391 /*
392 * Nobody gets write access to an immutable file.
393 */
394 if (IS_IMMUTABLE(inode))
395 return -EACCES;
396 }
397
398 retval = do_inode_permission(mnt, inode, mask);
399 if (retval)
400 return retval;
401
402 retval = devcgroup_inode_permission(inode, mask);
403 if (retval)
404 return retval;
405
406 return security_inode_permission(inode, mask);
407 }
408 EXPORT_SYMBOL(__inode_permission2);
409
__inode_permission(struct inode * inode,int mask)410 int __inode_permission(struct inode *inode, int mask)
411 {
412 return __inode_permission2(NULL, inode, mask);
413 }
414 EXPORT_SYMBOL(__inode_permission);
415
416 /**
417 * sb_permission - Check superblock-level permissions
418 * @sb: Superblock of inode to check permission on
419 * @inode: Inode to check permission on
420 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
421 *
422 * Separate out file-system wide checks from inode-specific permission checks.
423 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)424 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
425 {
426 if (unlikely(mask & MAY_WRITE)) {
427 umode_t mode = inode->i_mode;
428
429 /* Nobody gets write access to a read-only fs. */
430 if ((sb->s_flags & MS_RDONLY) &&
431 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
432 return -EROFS;
433 }
434 return 0;
435 }
436
437 /**
438 * inode_permission - Check for access rights to a given inode
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
443 * this, letting us set arbitrary permissions for filesystem access without
444 * changing the "normal" UIDs which are used for other things.
445 *
446 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
447 */
inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)448 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
449 {
450 int retval;
451
452 retval = sb_permission(inode->i_sb, inode, mask);
453 if (retval)
454 return retval;
455 return __inode_permission2(mnt, inode, mask);
456 }
457 EXPORT_SYMBOL(inode_permission2);
458
inode_permission(struct inode * inode,int mask)459 int inode_permission(struct inode *inode, int mask)
460 {
461 return inode_permission2(NULL, inode, mask);
462 }
463 EXPORT_SYMBOL(inode_permission);
464
465 /**
466 * path_get - get a reference to a path
467 * @path: path to get the reference to
468 *
469 * Given a path increment the reference count to the dentry and the vfsmount.
470 */
path_get(const struct path * path)471 void path_get(const struct path *path)
472 {
473 mntget(path->mnt);
474 dget(path->dentry);
475 }
476 EXPORT_SYMBOL(path_get);
477
478 /**
479 * path_put - put a reference to a path
480 * @path: path to put the reference to
481 *
482 * Given a path decrement the reference count to the dentry and the vfsmount.
483 */
path_put(const struct path * path)484 void path_put(const struct path *path)
485 {
486 dput(path->dentry);
487 mntput(path->mnt);
488 }
489 EXPORT_SYMBOL(path_put);
490
491 /*
492 * Path walking has 2 modes, rcu-walk and ref-walk (see
493 * Documentation/filesystems/path-lookup.txt). In situations when we can't
494 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
495 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
496 * mode. Refcounts are grabbed at the last known good point before rcu-walk
497 * got stuck, so ref-walk may continue from there. If this is not successful
498 * (eg. a seqcount has changed), then failure is returned and it's up to caller
499 * to restart the path walk from the beginning in ref-walk mode.
500 */
501
lock_rcu_walk(void)502 static inline void lock_rcu_walk(void)
503 {
504 br_read_lock(&vfsmount_lock);
505 rcu_read_lock();
506 }
507
unlock_rcu_walk(void)508 static inline void unlock_rcu_walk(void)
509 {
510 rcu_read_unlock();
511 br_read_unlock(&vfsmount_lock);
512 }
513
514 /**
515 * unlazy_walk - try to switch to ref-walk mode.
516 * @nd: nameidata pathwalk data
517 * @dentry: child of nd->path.dentry or NULL
518 * Returns: 0 on success, -ECHILD on failure
519 *
520 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
521 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
522 * @nd or NULL. Must be called from rcu-walk context.
523 */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)524 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
525 {
526 struct fs_struct *fs = current->fs;
527 struct dentry *parent = nd->path.dentry;
528 int want_root = 0;
529
530 BUG_ON(!(nd->flags & LOOKUP_RCU));
531 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
532 want_root = 1;
533 spin_lock(&fs->lock);
534 if (nd->root.mnt != fs->root.mnt ||
535 nd->root.dentry != fs->root.dentry)
536 goto err_root;
537 }
538 spin_lock(&parent->d_lock);
539 if (!dentry) {
540 if (!__d_rcu_to_refcount(parent, nd->seq))
541 goto err_parent;
542 BUG_ON(nd->inode != parent->d_inode);
543 } else {
544 if (dentry->d_parent != parent)
545 goto err_parent;
546 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
547 if (!__d_rcu_to_refcount(dentry, nd->seq))
548 goto err_child;
549 /*
550 * If the sequence check on the child dentry passed, then
551 * the child has not been removed from its parent. This
552 * means the parent dentry must be valid and able to take
553 * a reference at this point.
554 */
555 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
556 BUG_ON(!parent->d_count);
557 parent->d_count++;
558 spin_unlock(&dentry->d_lock);
559 }
560 spin_unlock(&parent->d_lock);
561 if (want_root) {
562 path_get(&nd->root);
563 spin_unlock(&fs->lock);
564 }
565 mntget(nd->path.mnt);
566
567 unlock_rcu_walk();
568 nd->flags &= ~LOOKUP_RCU;
569 return 0;
570
571 err_child:
572 spin_unlock(&dentry->d_lock);
573 err_parent:
574 spin_unlock(&parent->d_lock);
575 err_root:
576 if (want_root)
577 spin_unlock(&fs->lock);
578 return -ECHILD;
579 }
580
d_revalidate(struct dentry * dentry,unsigned int flags)581 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
582 {
583 return dentry->d_op->d_revalidate(dentry, flags);
584 }
585
586 /**
587 * complete_walk - successful completion of path walk
588 * @nd: pointer nameidata
589 *
590 * If we had been in RCU mode, drop out of it and legitimize nd->path.
591 * Revalidate the final result, unless we'd already done that during
592 * the path walk or the filesystem doesn't ask for it. Return 0 on
593 * success, -error on failure. In case of failure caller does not
594 * need to drop nd->path.
595 */
complete_walk(struct nameidata * nd)596 static int complete_walk(struct nameidata *nd)
597 {
598 struct dentry *dentry = nd->path.dentry;
599 int status;
600
601 if (nd->flags & LOOKUP_RCU) {
602 nd->flags &= ~LOOKUP_RCU;
603 if (!(nd->flags & LOOKUP_ROOT))
604 nd->root.mnt = NULL;
605 spin_lock(&dentry->d_lock);
606 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
607 spin_unlock(&dentry->d_lock);
608 unlock_rcu_walk();
609 return -ECHILD;
610 }
611 BUG_ON(nd->inode != dentry->d_inode);
612 spin_unlock(&dentry->d_lock);
613 mntget(nd->path.mnt);
614 unlock_rcu_walk();
615 }
616
617 if (likely(!(nd->flags & LOOKUP_JUMPED)))
618 return 0;
619
620 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
621 return 0;
622
623 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
624 if (status > 0)
625 return 0;
626
627 if (!status)
628 status = -ESTALE;
629
630 path_put(&nd->path);
631 return status;
632 }
633
set_root(struct nameidata * nd)634 static __always_inline void set_root(struct nameidata *nd)
635 {
636 if (!nd->root.mnt)
637 get_fs_root(current->fs, &nd->root);
638 }
639
640 static int link_path_walk(const char *, struct nameidata *);
641
set_root_rcu(struct nameidata * nd)642 static __always_inline void set_root_rcu(struct nameidata *nd)
643 {
644 if (!nd->root.mnt) {
645 struct fs_struct *fs = current->fs;
646 unsigned seq;
647
648 do {
649 seq = read_seqcount_begin(&fs->seq);
650 nd->root = fs->root;
651 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
652 } while (read_seqcount_retry(&fs->seq, seq));
653 }
654 }
655
__vfs_follow_link(struct nameidata * nd,const char * link)656 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
657 {
658 int ret;
659
660 if (IS_ERR(link))
661 goto fail;
662
663 if (*link == '/') {
664 set_root(nd);
665 path_put(&nd->path);
666 nd->path = nd->root;
667 path_get(&nd->root);
668 nd->flags |= LOOKUP_JUMPED;
669 }
670 nd->inode = nd->path.dentry->d_inode;
671
672 ret = link_path_walk(link, nd);
673 return ret;
674 fail:
675 path_put(&nd->path);
676 return PTR_ERR(link);
677 }
678
path_put_conditional(struct path * path,struct nameidata * nd)679 static void path_put_conditional(struct path *path, struct nameidata *nd)
680 {
681 dput(path->dentry);
682 if (path->mnt != nd->path.mnt)
683 mntput(path->mnt);
684 }
685
path_to_nameidata(const struct path * path,struct nameidata * nd)686 static inline void path_to_nameidata(const struct path *path,
687 struct nameidata *nd)
688 {
689 if (!(nd->flags & LOOKUP_RCU)) {
690 dput(nd->path.dentry);
691 if (nd->path.mnt != path->mnt)
692 mntput(nd->path.mnt);
693 }
694 nd->path.mnt = path->mnt;
695 nd->path.dentry = path->dentry;
696 }
697
698 /*
699 * Helper to directly jump to a known parsed path from ->follow_link,
700 * caller must have taken a reference to path beforehand.
701 */
nd_jump_link(struct nameidata * nd,struct path * path)702 void nd_jump_link(struct nameidata *nd, struct path *path)
703 {
704 path_put(&nd->path);
705
706 nd->path = *path;
707 nd->inode = nd->path.dentry->d_inode;
708 nd->flags |= LOOKUP_JUMPED;
709 }
710
put_link(struct nameidata * nd,struct path * link,void * cookie)711 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
712 {
713 struct inode *inode = link->dentry->d_inode;
714 if (inode->i_op->put_link)
715 inode->i_op->put_link(link->dentry, nd, cookie);
716 path_put(link);
717 }
718
719 int sysctl_protected_symlinks __read_mostly = 0;
720 int sysctl_protected_hardlinks __read_mostly = 0;
721
722 /**
723 * may_follow_link - Check symlink following for unsafe situations
724 * @link: The path of the symlink
725 * @nd: nameidata pathwalk data
726 *
727 * In the case of the sysctl_protected_symlinks sysctl being enabled,
728 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
729 * in a sticky world-writable directory. This is to protect privileged
730 * processes from failing races against path names that may change out
731 * from under them by way of other users creating malicious symlinks.
732 * It will permit symlinks to be followed only when outside a sticky
733 * world-writable directory, or when the uid of the symlink and follower
734 * match, or when the directory owner matches the symlink's owner.
735 *
736 * Returns 0 if following the symlink is allowed, -ve on error.
737 */
may_follow_link(struct path * link,struct nameidata * nd)738 static inline int may_follow_link(struct path *link, struct nameidata *nd)
739 {
740 const struct inode *inode;
741 const struct inode *parent;
742
743 if (!sysctl_protected_symlinks)
744 return 0;
745
746 /* Allowed if owner and follower match. */
747 inode = link->dentry->d_inode;
748 if (uid_eq(current_cred()->fsuid, inode->i_uid))
749 return 0;
750
751 /* Allowed if parent directory not sticky and world-writable. */
752 parent = nd->path.dentry->d_inode;
753 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
754 return 0;
755
756 /* Allowed if parent directory and link owner match. */
757 if (uid_eq(parent->i_uid, inode->i_uid))
758 return 0;
759
760 audit_log_link_denied("follow_link", link);
761 path_put_conditional(link, nd);
762 path_put(&nd->path);
763 return -EACCES;
764 }
765
766 /**
767 * safe_hardlink_source - Check for safe hardlink conditions
768 * @inode: the source inode to hardlink from
769 *
770 * Return false if at least one of the following conditions:
771 * - inode is not a regular file
772 * - inode is setuid
773 * - inode is setgid and group-exec
774 * - access failure for read and write
775 *
776 * Otherwise returns true.
777 */
safe_hardlink_source(struct inode * inode)778 static bool safe_hardlink_source(struct inode *inode)
779 {
780 umode_t mode = inode->i_mode;
781
782 /* Special files should not get pinned to the filesystem. */
783 if (!S_ISREG(mode))
784 return false;
785
786 /* Setuid files should not get pinned to the filesystem. */
787 if (mode & S_ISUID)
788 return false;
789
790 /* Executable setgid files should not get pinned to the filesystem. */
791 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
792 return false;
793
794 /* Hardlinking to unreadable or unwritable sources is dangerous. */
795 if (inode_permission(inode, MAY_READ | MAY_WRITE))
796 return false;
797
798 return true;
799 }
800
801 /**
802 * may_linkat - Check permissions for creating a hardlink
803 * @link: the source to hardlink from
804 *
805 * Block hardlink when all of:
806 * - sysctl_protected_hardlinks enabled
807 * - fsuid does not match inode
808 * - hardlink source is unsafe (see safe_hardlink_source() above)
809 * - not CAP_FOWNER
810 *
811 * Returns 0 if successful, -ve on error.
812 */
may_linkat(struct path * link)813 static int may_linkat(struct path *link)
814 {
815 const struct cred *cred;
816 struct inode *inode;
817
818 if (!sysctl_protected_hardlinks)
819 return 0;
820
821 cred = current_cred();
822 inode = link->dentry->d_inode;
823
824 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
825 * otherwise, it must be a safe source.
826 */
827 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
828 capable(CAP_FOWNER))
829 return 0;
830
831 audit_log_link_denied("linkat", link);
832 return -EPERM;
833 }
834
835 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)836 follow_link(struct path *link, struct nameidata *nd, void **p)
837 {
838 struct dentry *dentry = link->dentry;
839 int error;
840 char *s;
841
842 BUG_ON(nd->flags & LOOKUP_RCU);
843
844 if (link->mnt == nd->path.mnt)
845 mntget(link->mnt);
846
847 error = -ELOOP;
848 if (unlikely(current->total_link_count >= 40))
849 goto out_put_nd_path;
850
851 cond_resched();
852 current->total_link_count++;
853
854 touch_atime(link);
855 nd_set_link(nd, NULL);
856
857 error = security_inode_follow_link(link->dentry, nd);
858 if (error)
859 goto out_put_nd_path;
860
861 nd->last_type = LAST_BIND;
862 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
863 error = PTR_ERR(*p);
864 if (IS_ERR(*p))
865 goto out_put_nd_path;
866
867 error = 0;
868 s = nd_get_link(nd);
869 if (s) {
870 error = __vfs_follow_link(nd, s);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
follow_up_rcu(struct path * path)884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
follow_up(struct path * path)909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 br_read_lock(&vfsmount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 br_read_unlock(&vfsmount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 br_read_unlock(&vfsmount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930
931 /*
932 * Perform an automount
933 * - return -EISDIR to tell follow_managed() to stop and return the path we
934 * were called with.
935 */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)936 static int follow_automount(struct path *path, unsigned flags,
937 bool *need_mntput)
938 {
939 struct vfsmount *mnt;
940 int err;
941
942 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
943 return -EREMOTE;
944
945 /* We don't want to mount if someone's just doing a stat -
946 * unless they're stat'ing a directory and appended a '/' to
947 * the name.
948 *
949 * We do, however, want to mount if someone wants to open or
950 * create a file of any type under the mountpoint, wants to
951 * traverse through the mountpoint or wants to open the
952 * mounted directory. Also, autofs may mark negative dentries
953 * as being automount points. These will need the attentions
954 * of the daemon to instantiate them before they can be used.
955 */
956 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
957 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
958 path->dentry->d_inode)
959 return -EISDIR;
960
961 current->total_link_count++;
962 if (current->total_link_count >= 40)
963 return -ELOOP;
964
965 mnt = path->dentry->d_op->d_automount(path);
966 if (IS_ERR(mnt)) {
967 /*
968 * The filesystem is allowed to return -EISDIR here to indicate
969 * it doesn't want to automount. For instance, autofs would do
970 * this so that its userspace daemon can mount on this dentry.
971 *
972 * However, we can only permit this if it's a terminal point in
973 * the path being looked up; if it wasn't then the remainder of
974 * the path is inaccessible and we should say so.
975 */
976 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
977 return -EREMOTE;
978 return PTR_ERR(mnt);
979 }
980
981 if (!mnt) /* mount collision */
982 return 0;
983
984 if (!*need_mntput) {
985 /* lock_mount() may release path->mnt on error */
986 mntget(path->mnt);
987 *need_mntput = true;
988 }
989 err = finish_automount(mnt, path);
990
991 switch (err) {
992 case -EBUSY:
993 /* Someone else made a mount here whilst we were busy */
994 return 0;
995 case 0:
996 path_put(path);
997 path->mnt = mnt;
998 path->dentry = dget(mnt->mnt_root);
999 return 0;
1000 default:
1001 return err;
1002 }
1003
1004 }
1005
1006 /*
1007 * Handle a dentry that is managed in some way.
1008 * - Flagged for transit management (autofs)
1009 * - Flagged as mountpoint
1010 * - Flagged as automount point
1011 *
1012 * This may only be called in refwalk mode.
1013 *
1014 * Serialization is taken care of in namespace.c
1015 */
follow_managed(struct path * path,unsigned flags)1016 static int follow_managed(struct path *path, unsigned flags)
1017 {
1018 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1019 unsigned managed;
1020 bool need_mntput = false;
1021 int ret = 0;
1022
1023 /* Given that we're not holding a lock here, we retain the value in a
1024 * local variable for each dentry as we look at it so that we don't see
1025 * the components of that value change under us */
1026 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1027 managed &= DCACHE_MANAGED_DENTRY,
1028 unlikely(managed != 0)) {
1029 /* Allow the filesystem to manage the transit without i_mutex
1030 * being held. */
1031 if (managed & DCACHE_MANAGE_TRANSIT) {
1032 BUG_ON(!path->dentry->d_op);
1033 BUG_ON(!path->dentry->d_op->d_manage);
1034 ret = path->dentry->d_op->d_manage(path->dentry, false);
1035 if (ret < 0)
1036 break;
1037 }
1038
1039 /* Transit to a mounted filesystem. */
1040 if (managed & DCACHE_MOUNTED) {
1041 struct vfsmount *mounted = lookup_mnt(path);
1042 if (mounted) {
1043 dput(path->dentry);
1044 if (need_mntput)
1045 mntput(path->mnt);
1046 path->mnt = mounted;
1047 path->dentry = dget(mounted->mnt_root);
1048 need_mntput = true;
1049 continue;
1050 }
1051
1052 /* Something is mounted on this dentry in another
1053 * namespace and/or whatever was mounted there in this
1054 * namespace got unmounted before we managed to get the
1055 * vfsmount_lock */
1056 }
1057
1058 /* Handle an automount point */
1059 if (managed & DCACHE_NEED_AUTOMOUNT) {
1060 ret = follow_automount(path, flags, &need_mntput);
1061 if (ret < 0)
1062 break;
1063 continue;
1064 }
1065
1066 /* We didn't change the current path point */
1067 break;
1068 }
1069
1070 if (need_mntput && path->mnt == mnt)
1071 mntput(path->mnt);
1072 if (ret == -EISDIR)
1073 ret = 0;
1074 return ret < 0 ? ret : need_mntput;
1075 }
1076
follow_down_one(struct path * path)1077 int follow_down_one(struct path *path)
1078 {
1079 struct vfsmount *mounted;
1080
1081 mounted = lookup_mnt(path);
1082 if (mounted) {
1083 dput(path->dentry);
1084 mntput(path->mnt);
1085 path->mnt = mounted;
1086 path->dentry = dget(mounted->mnt_root);
1087 return 1;
1088 }
1089 return 0;
1090 }
1091
managed_dentry_might_block(struct dentry * dentry)1092 static inline bool managed_dentry_might_block(struct dentry *dentry)
1093 {
1094 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1095 dentry->d_op->d_manage(dentry, true) < 0);
1096 }
1097
1098 /*
1099 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1100 * we meet a managed dentry that would need blocking.
1101 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)1102 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1103 struct inode **inode)
1104 {
1105 for (;;) {
1106 struct mount *mounted;
1107 /*
1108 * Don't forget we might have a non-mountpoint managed dentry
1109 * that wants to block transit.
1110 */
1111 if (unlikely(managed_dentry_might_block(path->dentry)))
1112 return false;
1113
1114 if (!d_mountpoint(path->dentry))
1115 break;
1116
1117 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1118 if (!mounted)
1119 break;
1120 path->mnt = &mounted->mnt;
1121 path->dentry = mounted->mnt.mnt_root;
1122 nd->flags |= LOOKUP_JUMPED;
1123 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1124 /*
1125 * Update the inode too. We don't need to re-check the
1126 * dentry sequence number here after this d_inode read,
1127 * because a mount-point is always pinned.
1128 */
1129 *inode = path->dentry->d_inode;
1130 }
1131 return true;
1132 }
1133
follow_mount_rcu(struct nameidata * nd)1134 static void follow_mount_rcu(struct nameidata *nd)
1135 {
1136 while (d_mountpoint(nd->path.dentry)) {
1137 struct mount *mounted;
1138 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1139 if (!mounted)
1140 break;
1141 nd->path.mnt = &mounted->mnt;
1142 nd->path.dentry = mounted->mnt.mnt_root;
1143 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1144 }
1145 }
1146
follow_dotdot_rcu(struct nameidata * nd)1147 static int follow_dotdot_rcu(struct nameidata *nd)
1148 {
1149 set_root_rcu(nd);
1150
1151 while (1) {
1152 if (nd->path.dentry == nd->root.dentry &&
1153 nd->path.mnt == nd->root.mnt) {
1154 break;
1155 }
1156 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1157 struct dentry *old = nd->path.dentry;
1158 struct dentry *parent = old->d_parent;
1159 unsigned seq;
1160
1161 seq = read_seqcount_begin(&parent->d_seq);
1162 if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 goto failed;
1164 nd->path.dentry = parent;
1165 nd->seq = seq;
1166 break;
1167 }
1168 if (!follow_up_rcu(&nd->path))
1169 break;
1170 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1171 }
1172 follow_mount_rcu(nd);
1173 nd->inode = nd->path.dentry->d_inode;
1174 return 0;
1175
1176 failed:
1177 nd->flags &= ~LOOKUP_RCU;
1178 if (!(nd->flags & LOOKUP_ROOT))
1179 nd->root.mnt = NULL;
1180 unlock_rcu_walk();
1181 return -ECHILD;
1182 }
1183
1184 /*
1185 * Follow down to the covering mount currently visible to userspace. At each
1186 * point, the filesystem owning that dentry may be queried as to whether the
1187 * caller is permitted to proceed or not.
1188 */
follow_down(struct path * path)1189 int follow_down(struct path *path)
1190 {
1191 unsigned managed;
1192 int ret;
1193
1194 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1195 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1196 /* Allow the filesystem to manage the transit without i_mutex
1197 * being held.
1198 *
1199 * We indicate to the filesystem if someone is trying to mount
1200 * something here. This gives autofs the chance to deny anyone
1201 * other than its daemon the right to mount on its
1202 * superstructure.
1203 *
1204 * The filesystem may sleep at this point.
1205 */
1206 if (managed & DCACHE_MANAGE_TRANSIT) {
1207 BUG_ON(!path->dentry->d_op);
1208 BUG_ON(!path->dentry->d_op->d_manage);
1209 ret = path->dentry->d_op->d_manage(
1210 path->dentry, false);
1211 if (ret < 0)
1212 return ret == -EISDIR ? 0 : ret;
1213 }
1214
1215 /* Transit to a mounted filesystem. */
1216 if (managed & DCACHE_MOUNTED) {
1217 struct vfsmount *mounted = lookup_mnt(path);
1218 if (!mounted)
1219 break;
1220 dput(path->dentry);
1221 mntput(path->mnt);
1222 path->mnt = mounted;
1223 path->dentry = dget(mounted->mnt_root);
1224 continue;
1225 }
1226
1227 /* Don't handle automount points here */
1228 break;
1229 }
1230 return 0;
1231 }
1232
1233 /*
1234 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1235 */
follow_mount(struct path * path)1236 static void follow_mount(struct path *path)
1237 {
1238 while (d_mountpoint(path->dentry)) {
1239 struct vfsmount *mounted = lookup_mnt(path);
1240 if (!mounted)
1241 break;
1242 dput(path->dentry);
1243 mntput(path->mnt);
1244 path->mnt = mounted;
1245 path->dentry = dget(mounted->mnt_root);
1246 }
1247 }
1248
follow_dotdot(struct nameidata * nd)1249 static void follow_dotdot(struct nameidata *nd)
1250 {
1251 set_root(nd);
1252
1253 while(1) {
1254 struct dentry *old = nd->path.dentry;
1255
1256 if (nd->path.dentry == nd->root.dentry &&
1257 nd->path.mnt == nd->root.mnt) {
1258 break;
1259 }
1260 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1261 /* rare case of legitimate dget_parent()... */
1262 nd->path.dentry = dget_parent(nd->path.dentry);
1263 dput(old);
1264 break;
1265 }
1266 if (!follow_up(&nd->path))
1267 break;
1268 }
1269 follow_mount(&nd->path);
1270 nd->inode = nd->path.dentry->d_inode;
1271 }
1272
1273 /*
1274 * This looks up the name in dcache, possibly revalidates the old dentry and
1275 * allocates a new one if not found or not valid. In the need_lookup argument
1276 * returns whether i_op->lookup is necessary.
1277 *
1278 * dir->d_inode->i_mutex must be held
1279 */
lookup_dcache(struct qstr * name,struct dentry * dir,unsigned int flags,bool * need_lookup)1280 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1281 unsigned int flags, bool *need_lookup)
1282 {
1283 struct dentry *dentry;
1284 int error;
1285
1286 *need_lookup = false;
1287 dentry = d_lookup(dir, name);
1288 if (dentry) {
1289 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1290 error = d_revalidate(dentry, flags);
1291 if (unlikely(error <= 0)) {
1292 if (error < 0) {
1293 dput(dentry);
1294 return ERR_PTR(error);
1295 } else if (!d_invalidate(dentry)) {
1296 dput(dentry);
1297 dentry = NULL;
1298 }
1299 }
1300 }
1301 }
1302
1303 if (!dentry) {
1304 dentry = d_alloc(dir, name);
1305 if (unlikely(!dentry))
1306 return ERR_PTR(-ENOMEM);
1307
1308 *need_lookup = true;
1309 }
1310 return dentry;
1311 }
1312
1313 /*
1314 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1315 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1316 *
1317 * dir->d_inode->i_mutex must be held
1318 */
lookup_real(struct inode * dir,struct dentry * dentry,unsigned int flags)1319 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1320 unsigned int flags)
1321 {
1322 struct dentry *old;
1323
1324 /* Don't create child dentry for a dead directory. */
1325 if (unlikely(IS_DEADDIR(dir))) {
1326 dput(dentry);
1327 return ERR_PTR(-ENOENT);
1328 }
1329
1330 old = dir->i_op->lookup(dir, dentry, flags);
1331 if (unlikely(old)) {
1332 dput(dentry);
1333 dentry = old;
1334 }
1335 return dentry;
1336 }
1337
__lookup_hash(struct qstr * name,struct dentry * base,unsigned int flags)1338 static struct dentry *__lookup_hash(struct qstr *name,
1339 struct dentry *base, unsigned int flags)
1340 {
1341 bool need_lookup;
1342 struct dentry *dentry;
1343
1344 dentry = lookup_dcache(name, base, flags, &need_lookup);
1345 if (!need_lookup)
1346 return dentry;
1347
1348 return lookup_real(base->d_inode, dentry, flags);
1349 }
1350
1351 /*
1352 * It's more convoluted than I'd like it to be, but... it's still fairly
1353 * small and for now I'd prefer to have fast path as straight as possible.
1354 * It _is_ time-critical.
1355 */
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode)1356 static int lookup_fast(struct nameidata *nd,
1357 struct path *path, struct inode **inode)
1358 {
1359 struct vfsmount *mnt = nd->path.mnt;
1360 struct dentry *dentry, *parent = nd->path.dentry;
1361 int need_reval = 1;
1362 int status = 1;
1363 int err;
1364
1365 /*
1366 * Rename seqlock is not required here because in the off chance
1367 * of a false negative due to a concurrent rename, we're going to
1368 * do the non-racy lookup, below.
1369 */
1370 if (nd->flags & LOOKUP_RCU) {
1371 unsigned seq;
1372 dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1373 if (!dentry)
1374 goto unlazy;
1375
1376 /*
1377 * This sequence count validates that the inode matches
1378 * the dentry name information from lookup.
1379 */
1380 *inode = dentry->d_inode;
1381 if (read_seqcount_retry(&dentry->d_seq, seq))
1382 return -ECHILD;
1383
1384 /*
1385 * This sequence count validates that the parent had no
1386 * changes while we did the lookup of the dentry above.
1387 *
1388 * The memory barrier in read_seqcount_begin of child is
1389 * enough, we can use __read_seqcount_retry here.
1390 */
1391 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1392 return -ECHILD;
1393 nd->seq = seq;
1394
1395 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1396 status = d_revalidate(dentry, nd->flags);
1397 if (unlikely(status <= 0)) {
1398 if (status != -ECHILD)
1399 need_reval = 0;
1400 goto unlazy;
1401 }
1402 }
1403 path->mnt = mnt;
1404 path->dentry = dentry;
1405 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1406 goto unlazy;
1407 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1408 goto unlazy;
1409 return 0;
1410 unlazy:
1411 if (unlazy_walk(nd, dentry))
1412 return -ECHILD;
1413 } else {
1414 dentry = __d_lookup(parent, &nd->last);
1415 }
1416
1417 if (unlikely(!dentry))
1418 goto need_lookup;
1419
1420 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1421 status = d_revalidate(dentry, nd->flags);
1422 if (unlikely(status <= 0)) {
1423 if (status < 0) {
1424 dput(dentry);
1425 return status;
1426 }
1427 if (!d_invalidate(dentry)) {
1428 dput(dentry);
1429 goto need_lookup;
1430 }
1431 }
1432
1433 path->mnt = mnt;
1434 path->dentry = dentry;
1435 err = follow_managed(path, nd->flags);
1436 if (unlikely(err < 0)) {
1437 path_put_conditional(path, nd);
1438 return err;
1439 }
1440 if (err)
1441 nd->flags |= LOOKUP_JUMPED;
1442 *inode = path->dentry->d_inode;
1443 return 0;
1444
1445 need_lookup:
1446 return 1;
1447 }
1448
1449 /* Fast lookup failed, do it the slow way */
lookup_slow(struct nameidata * nd,struct path * path)1450 static int lookup_slow(struct nameidata *nd, struct path *path)
1451 {
1452 struct dentry *dentry, *parent;
1453 int err;
1454
1455 parent = nd->path.dentry;
1456 BUG_ON(nd->inode != parent->d_inode);
1457
1458 mutex_lock(&parent->d_inode->i_mutex);
1459 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1460 mutex_unlock(&parent->d_inode->i_mutex);
1461 if (IS_ERR(dentry))
1462 return PTR_ERR(dentry);
1463 path->mnt = nd->path.mnt;
1464 path->dentry = dentry;
1465 err = follow_managed(path, nd->flags);
1466 if (unlikely(err < 0)) {
1467 path_put_conditional(path, nd);
1468 return err;
1469 }
1470 if (err)
1471 nd->flags |= LOOKUP_JUMPED;
1472 return 0;
1473 }
1474
may_lookup(struct nameidata * nd)1475 static inline int may_lookup(struct nameidata *nd)
1476 {
1477 if (nd->flags & LOOKUP_RCU) {
1478 int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1479 if (err != -ECHILD)
1480 return err;
1481 if (unlazy_walk(nd, NULL))
1482 return -ECHILD;
1483 }
1484 return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1485 }
1486
handle_dots(struct nameidata * nd,int type)1487 static inline int handle_dots(struct nameidata *nd, int type)
1488 {
1489 if (type == LAST_DOTDOT) {
1490 if (nd->flags & LOOKUP_RCU) {
1491 if (follow_dotdot_rcu(nd))
1492 return -ECHILD;
1493 } else
1494 follow_dotdot(nd);
1495 }
1496 return 0;
1497 }
1498
terminate_walk(struct nameidata * nd)1499 static void terminate_walk(struct nameidata *nd)
1500 {
1501 if (!(nd->flags & LOOKUP_RCU)) {
1502 path_put(&nd->path);
1503 } else {
1504 nd->flags &= ~LOOKUP_RCU;
1505 if (!(nd->flags & LOOKUP_ROOT))
1506 nd->root.mnt = NULL;
1507 unlock_rcu_walk();
1508 }
1509 }
1510
1511 /*
1512 * Do we need to follow links? We _really_ want to be able
1513 * to do this check without having to look at inode->i_op,
1514 * so we keep a cache of "no, this doesn't need follow_link"
1515 * for the common case.
1516 */
should_follow_link(struct inode * inode,int follow)1517 static inline int should_follow_link(struct inode *inode, int follow)
1518 {
1519 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1520 if (likely(inode->i_op->follow_link))
1521 return follow;
1522
1523 /* This gets set once for the inode lifetime */
1524 spin_lock(&inode->i_lock);
1525 inode->i_opflags |= IOP_NOFOLLOW;
1526 spin_unlock(&inode->i_lock);
1527 }
1528 return 0;
1529 }
1530
walk_component(struct nameidata * nd,struct path * path,int follow)1531 static inline int walk_component(struct nameidata *nd, struct path *path,
1532 int follow)
1533 {
1534 struct inode *inode;
1535 int err;
1536 /*
1537 * "." and ".." are special - ".." especially so because it has
1538 * to be able to know about the current root directory and
1539 * parent relationships.
1540 */
1541 if (unlikely(nd->last_type != LAST_NORM))
1542 return handle_dots(nd, nd->last_type);
1543 err = lookup_fast(nd, path, &inode);
1544 if (unlikely(err)) {
1545 if (err < 0)
1546 goto out_err;
1547
1548 err = lookup_slow(nd, path);
1549 if (err < 0)
1550 goto out_err;
1551
1552 inode = path->dentry->d_inode;
1553 }
1554 err = -ENOENT;
1555 if (!inode)
1556 goto out_path_put;
1557
1558 if (should_follow_link(inode, follow)) {
1559 if (nd->flags & LOOKUP_RCU) {
1560 if (unlikely(unlazy_walk(nd, path->dentry))) {
1561 err = -ECHILD;
1562 goto out_err;
1563 }
1564 }
1565 BUG_ON(inode != path->dentry->d_inode);
1566 return 1;
1567 }
1568 path_to_nameidata(path, nd);
1569 nd->inode = inode;
1570 return 0;
1571
1572 out_path_put:
1573 path_to_nameidata(path, nd);
1574 out_err:
1575 terminate_walk(nd);
1576 return err;
1577 }
1578
1579 /*
1580 * This limits recursive symlink follows to 8, while
1581 * limiting consecutive symlinks to 40.
1582 *
1583 * Without that kind of total limit, nasty chains of consecutive
1584 * symlinks can cause almost arbitrarily long lookups.
1585 */
nested_symlink(struct path * path,struct nameidata * nd)1586 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1587 {
1588 int res;
1589
1590 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1591 path_put_conditional(path, nd);
1592 path_put(&nd->path);
1593 return -ELOOP;
1594 }
1595 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1596
1597 nd->depth++;
1598 current->link_count++;
1599
1600 do {
1601 struct path link = *path;
1602 void *cookie;
1603
1604 res = follow_link(&link, nd, &cookie);
1605 if (res)
1606 break;
1607 res = walk_component(nd, path, LOOKUP_FOLLOW);
1608 put_link(nd, &link, cookie);
1609 } while (res > 0);
1610
1611 current->link_count--;
1612 nd->depth--;
1613 return res;
1614 }
1615
1616 /*
1617 * We really don't want to look at inode->i_op->lookup
1618 * when we don't have to. So we keep a cache bit in
1619 * the inode ->i_opflags field that says "yes, we can
1620 * do lookup on this inode".
1621 */
can_lookup(struct inode * inode)1622 static inline int can_lookup(struct inode *inode)
1623 {
1624 if (likely(inode->i_opflags & IOP_LOOKUP))
1625 return 1;
1626 if (likely(!inode->i_op->lookup))
1627 return 0;
1628
1629 /* We do this once for the lifetime of the inode */
1630 spin_lock(&inode->i_lock);
1631 inode->i_opflags |= IOP_LOOKUP;
1632 spin_unlock(&inode->i_lock);
1633 return 1;
1634 }
1635
1636 /*
1637 * We can do the critical dentry name comparison and hashing
1638 * operations one word at a time, but we are limited to:
1639 *
1640 * - Architectures with fast unaligned word accesses. We could
1641 * do a "get_unaligned()" if this helps and is sufficiently
1642 * fast.
1643 *
1644 * - Little-endian machines (so that we can generate the mask
1645 * of low bytes efficiently). Again, we *could* do a byte
1646 * swapping load on big-endian architectures if that is not
1647 * expensive enough to make the optimization worthless.
1648 *
1649 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1650 * do not trap on the (extremely unlikely) case of a page
1651 * crossing operation.
1652 *
1653 * - Furthermore, we need an efficient 64-bit compile for the
1654 * 64-bit case in order to generate the "number of bytes in
1655 * the final mask". Again, that could be replaced with a
1656 * efficient population count instruction or similar.
1657 */
1658 #ifdef CONFIG_DCACHE_WORD_ACCESS
1659
1660 #include <asm/word-at-a-time.h>
1661
1662 #ifdef CONFIG_64BIT
1663
fold_hash(unsigned long hash)1664 static inline unsigned int fold_hash(unsigned long hash)
1665 {
1666 hash += hash >> (8*sizeof(int));
1667 return hash;
1668 }
1669
1670 #else /* 32-bit case */
1671
1672 #define fold_hash(x) (x)
1673
1674 #endif
1675
full_name_hash(const unsigned char * name,unsigned int len)1676 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1677 {
1678 unsigned long a, mask;
1679 unsigned long hash = 0;
1680
1681 for (;;) {
1682 a = load_unaligned_zeropad(name);
1683 if (len < sizeof(unsigned long))
1684 break;
1685 hash += a;
1686 hash *= 9;
1687 name += sizeof(unsigned long);
1688 len -= sizeof(unsigned long);
1689 if (!len)
1690 goto done;
1691 }
1692 mask = ~(~0ul << len*8);
1693 hash += mask & a;
1694 done:
1695 return fold_hash(hash);
1696 }
1697 EXPORT_SYMBOL(full_name_hash);
1698
1699 /*
1700 * Calculate the length and hash of the path component, and
1701 * return the length of the component;
1702 */
hash_name(const char * name,unsigned int * hashp)1703 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1704 {
1705 unsigned long a, b, adata, bdata, mask, hash, len;
1706 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1707
1708 hash = a = 0;
1709 len = -sizeof(unsigned long);
1710 do {
1711 hash = (hash + a) * 9;
1712 len += sizeof(unsigned long);
1713 a = load_unaligned_zeropad(name+len);
1714 b = a ^ REPEAT_BYTE('/');
1715 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1716
1717 adata = prep_zero_mask(a, adata, &constants);
1718 bdata = prep_zero_mask(b, bdata, &constants);
1719
1720 mask = create_zero_mask(adata | bdata);
1721
1722 hash += a & zero_bytemask(mask);
1723 *hashp = fold_hash(hash);
1724
1725 return len + find_zero(mask);
1726 }
1727
1728 #else
1729
full_name_hash(const unsigned char * name,unsigned int len)1730 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1731 {
1732 unsigned long hash = init_name_hash();
1733 while (len--)
1734 hash = partial_name_hash(*name++, hash);
1735 return end_name_hash(hash);
1736 }
1737 EXPORT_SYMBOL(full_name_hash);
1738
1739 /*
1740 * We know there's a real path component here of at least
1741 * one character.
1742 */
hash_name(const char * name,unsigned int * hashp)1743 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1744 {
1745 unsigned long hash = init_name_hash();
1746 unsigned long len = 0, c;
1747
1748 c = (unsigned char)*name;
1749 do {
1750 len++;
1751 hash = partial_name_hash(c, hash);
1752 c = (unsigned char)name[len];
1753 } while (c && c != '/');
1754 *hashp = end_name_hash(hash);
1755 return len;
1756 }
1757
1758 #endif
1759
1760 /*
1761 * Name resolution.
1762 * This is the basic name resolution function, turning a pathname into
1763 * the final dentry. We expect 'base' to be positive and a directory.
1764 *
1765 * Returns 0 and nd will have valid dentry and mnt on success.
1766 * Returns error and drops reference to input namei data on failure.
1767 */
link_path_walk(const char * name,struct nameidata * nd)1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 struct path next;
1771 int err;
1772
1773 while (*name=='/')
1774 name++;
1775 if (!*name)
1776 return 0;
1777
1778 /* At this point we know we have a real path component. */
1779 for(;;) {
1780 struct qstr this;
1781 long len;
1782 int type;
1783
1784 err = may_lookup(nd);
1785 if (err)
1786 break;
1787
1788 len = hash_name(name, &this.hash);
1789 this.name = name;
1790 this.len = len;
1791
1792 type = LAST_NORM;
1793 if (name[0] == '.') switch (len) {
1794 case 2:
1795 if (name[1] == '.') {
1796 type = LAST_DOTDOT;
1797 nd->flags |= LOOKUP_JUMPED;
1798 }
1799 break;
1800 case 1:
1801 type = LAST_DOT;
1802 }
1803 if (likely(type == LAST_NORM)) {
1804 struct dentry *parent = nd->path.dentry;
1805 nd->flags &= ~LOOKUP_JUMPED;
1806 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1807 err = parent->d_op->d_hash(parent, nd->inode,
1808 &this);
1809 if (err < 0)
1810 break;
1811 }
1812 }
1813
1814 nd->last = this;
1815 nd->last_type = type;
1816
1817 if (!name[len])
1818 return 0;
1819 /*
1820 * If it wasn't NUL, we know it was '/'. Skip that
1821 * slash, and continue until no more slashes.
1822 */
1823 do {
1824 len++;
1825 } while (unlikely(name[len] == '/'));
1826 if (!name[len])
1827 return 0;
1828
1829 name += len;
1830
1831 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1832 if (err < 0)
1833 return err;
1834
1835 if (err) {
1836 err = nested_symlink(&next, nd);
1837 if (err)
1838 return err;
1839 }
1840 if (!can_lookup(nd->inode)) {
1841 err = -ENOTDIR;
1842 break;
1843 }
1844 }
1845 terminate_walk(nd);
1846 return err;
1847 }
1848
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1849 static int path_init(int dfd, const char *name, unsigned int flags,
1850 struct nameidata *nd, struct file **fp)
1851 {
1852 int retval = 0;
1853
1854 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1855 nd->flags = flags | LOOKUP_JUMPED;
1856 nd->depth = 0;
1857 if (flags & LOOKUP_ROOT) {
1858 struct inode *inode = nd->root.dentry->d_inode;
1859 struct vfsmount *mnt = nd->root.mnt;
1860 if (*name) {
1861 if (!can_lookup(inode))
1862 return -ENOTDIR;
1863 retval = inode_permission2(mnt, inode, MAY_EXEC);
1864 if (retval)
1865 return retval;
1866 }
1867 nd->path = nd->root;
1868 nd->inode = inode;
1869 if (flags & LOOKUP_RCU) {
1870 lock_rcu_walk();
1871 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 } else {
1873 path_get(&nd->path);
1874 }
1875 return 0;
1876 }
1877
1878 nd->root.mnt = NULL;
1879
1880 if (*name=='/') {
1881 if (flags & LOOKUP_RCU) {
1882 lock_rcu_walk();
1883 set_root_rcu(nd);
1884 } else {
1885 set_root(nd);
1886 path_get(&nd->root);
1887 }
1888 nd->path = nd->root;
1889 } else if (dfd == AT_FDCWD) {
1890 if (flags & LOOKUP_RCU) {
1891 struct fs_struct *fs = current->fs;
1892 unsigned seq;
1893
1894 lock_rcu_walk();
1895
1896 do {
1897 seq = read_seqcount_begin(&fs->seq);
1898 nd->path = fs->pwd;
1899 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1900 } while (read_seqcount_retry(&fs->seq, seq));
1901 } else {
1902 get_fs_pwd(current->fs, &nd->path);
1903 }
1904 } else {
1905 /* Caller must check execute permissions on the starting path component */
1906 struct fd f = fdget_raw(dfd);
1907 struct dentry *dentry;
1908
1909 if (!f.file)
1910 return -EBADF;
1911
1912 dentry = f.file->f_path.dentry;
1913
1914 if (*name) {
1915 if (!can_lookup(dentry->d_inode)) {
1916 fdput(f);
1917 return -ENOTDIR;
1918 }
1919 }
1920
1921 nd->path = f.file->f_path;
1922 if (flags & LOOKUP_RCU) {
1923 if (f.need_put)
1924 *fp = f.file;
1925 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1926 lock_rcu_walk();
1927 } else {
1928 path_get(&nd->path);
1929 fdput(f);
1930 }
1931 }
1932
1933 nd->inode = nd->path.dentry->d_inode;
1934 return 0;
1935 }
1936
lookup_last(struct nameidata * nd,struct path * path)1937 static inline int lookup_last(struct nameidata *nd, struct path *path)
1938 {
1939 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1940 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1941
1942 nd->flags &= ~LOOKUP_PARENT;
1943 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1944 }
1945
1946 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1947 static int path_lookupat(int dfd, const char *name,
1948 unsigned int flags, struct nameidata *nd)
1949 {
1950 struct file *base = NULL;
1951 struct path path;
1952 int err;
1953
1954 /*
1955 * Path walking is largely split up into 2 different synchronisation
1956 * schemes, rcu-walk and ref-walk (explained in
1957 * Documentation/filesystems/path-lookup.txt). These share much of the
1958 * path walk code, but some things particularly setup, cleanup, and
1959 * following mounts are sufficiently divergent that functions are
1960 * duplicated. Typically there is a function foo(), and its RCU
1961 * analogue, foo_rcu().
1962 *
1963 * -ECHILD is the error number of choice (just to avoid clashes) that
1964 * is returned if some aspect of an rcu-walk fails. Such an error must
1965 * be handled by restarting a traditional ref-walk (which will always
1966 * be able to complete).
1967 */
1968 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1969
1970 if (unlikely(err))
1971 return err;
1972
1973 current->total_link_count = 0;
1974 err = link_path_walk(name, nd);
1975
1976 if (!err && !(flags & LOOKUP_PARENT)) {
1977 err = lookup_last(nd, &path);
1978 while (err > 0) {
1979 void *cookie;
1980 struct path link = path;
1981 err = may_follow_link(&link, nd);
1982 if (unlikely(err))
1983 break;
1984 nd->flags |= LOOKUP_PARENT;
1985 err = follow_link(&link, nd, &cookie);
1986 if (err)
1987 break;
1988 err = lookup_last(nd, &path);
1989 put_link(nd, &link, cookie);
1990 }
1991 }
1992
1993 if (!err)
1994 err = complete_walk(nd);
1995
1996 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1997 if (!can_lookup(nd->inode)) {
1998 path_put(&nd->path);
1999 err = -ENOTDIR;
2000 }
2001 }
2002
2003 if (base)
2004 fput(base);
2005
2006 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2007 path_put(&nd->root);
2008 nd->root.mnt = NULL;
2009 }
2010 return err;
2011 }
2012
filename_lookup(int dfd,struct filename * name,unsigned int flags,struct nameidata * nd)2013 static int filename_lookup(int dfd, struct filename *name,
2014 unsigned int flags, struct nameidata *nd)
2015 {
2016 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2017 if (unlikely(retval == -ECHILD))
2018 retval = path_lookupat(dfd, name->name, flags, nd);
2019 if (unlikely(retval == -ESTALE))
2020 retval = path_lookupat(dfd, name->name,
2021 flags | LOOKUP_REVAL, nd);
2022
2023 if (likely(!retval))
2024 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2025 return retval;
2026 }
2027
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)2028 static int do_path_lookup(int dfd, const char *name,
2029 unsigned int flags, struct nameidata *nd)
2030 {
2031 struct filename filename = { .name = name };
2032
2033 return filename_lookup(dfd, &filename, flags, nd);
2034 }
2035
2036 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2037 struct dentry *kern_path_locked(const char *name, struct path *path)
2038 {
2039 struct nameidata nd;
2040 struct dentry *d;
2041 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2042 if (err)
2043 return ERR_PTR(err);
2044 if (nd.last_type != LAST_NORM) {
2045 path_put(&nd.path);
2046 return ERR_PTR(-EINVAL);
2047 }
2048 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2049 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2050 if (IS_ERR(d)) {
2051 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2052 path_put(&nd.path);
2053 return d;
2054 }
2055 *path = nd.path;
2056 return d;
2057 }
2058
kern_path(const char * name,unsigned int flags,struct path * path)2059 int kern_path(const char *name, unsigned int flags, struct path *path)
2060 {
2061 struct nameidata nd;
2062 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2063 if (!res)
2064 *path = nd.path;
2065 return res;
2066 }
2067
2068 /**
2069 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2070 * @dentry: pointer to dentry of the base directory
2071 * @mnt: pointer to vfs mount of the base directory
2072 * @name: pointer to file name
2073 * @flags: lookup flags
2074 * @path: pointer to struct path to fill
2075 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2076 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2077 const char *name, unsigned int flags,
2078 struct path *path)
2079 {
2080 struct nameidata nd;
2081 int err;
2082 nd.root.dentry = dentry;
2083 nd.root.mnt = mnt;
2084 BUG_ON(flags & LOOKUP_PARENT);
2085 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2086 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2087 if (!err)
2088 *path = nd.path;
2089 return err;
2090 }
2091
2092 /*
2093 * Restricted form of lookup. Doesn't follow links, single-component only,
2094 * needs parent already locked. Doesn't follow mounts.
2095 * SMP-safe.
2096 */
lookup_hash(struct nameidata * nd)2097 static struct dentry *lookup_hash(struct nameidata *nd)
2098 {
2099 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2100 }
2101
2102 /**
2103 * lookup_one_len - filesystem helper to lookup single pathname component
2104 * @name: pathname component to lookup
2105 * @mnt: mount we are looking up on
2106 * @base: base directory to lookup from
2107 * @len: maximum length @len should be interpreted to
2108 *
2109 * Note that this routine is purely a helper for filesystem usage and should
2110 * not be called by generic code. Also note that by using this function the
2111 * nameidata argument is passed to the filesystem methods and a filesystem
2112 * using this helper needs to be prepared for that.
2113 */
lookup_one_len2(const char * name,struct vfsmount * mnt,struct dentry * base,int len)2114 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2115 {
2116 struct qstr this;
2117 unsigned int c;
2118 int err;
2119
2120 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2121
2122 this.name = name;
2123 this.len = len;
2124 this.hash = full_name_hash(name, len);
2125 if (!len)
2126 return ERR_PTR(-EACCES);
2127
2128 if (unlikely(name[0] == '.')) {
2129 if (len < 2 || (len == 2 && name[1] == '.'))
2130 return ERR_PTR(-EACCES);
2131 }
2132
2133 while (len--) {
2134 c = *(const unsigned char *)name++;
2135 if (c == '/' || c == '\0')
2136 return ERR_PTR(-EACCES);
2137 }
2138 /*
2139 * See if the low-level filesystem might want
2140 * to use its own hash..
2141 */
2142 if (base->d_flags & DCACHE_OP_HASH) {
2143 int err = base->d_op->d_hash(base, base->d_inode, &this);
2144 if (err < 0)
2145 return ERR_PTR(err);
2146 }
2147
2148 err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2149 if (err)
2150 return ERR_PTR(err);
2151
2152 return __lookup_hash(&this, base, 0);
2153 }
2154 EXPORT_SYMBOL(lookup_one_len2);
2155
lookup_one_len(const char * name,struct dentry * base,int len)2156 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2157 {
2158 return lookup_one_len2(name, NULL, base, len);
2159 }
2160 EXPORT_SYMBOL(lookup_one_len);
2161
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2162 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2163 struct path *path, int *empty)
2164 {
2165 struct nameidata nd;
2166 struct filename *tmp = getname_flags(name, flags, empty);
2167 int err = PTR_ERR(tmp);
2168 if (!IS_ERR(tmp)) {
2169
2170 BUG_ON(flags & LOOKUP_PARENT);
2171
2172 err = filename_lookup(dfd, tmp, flags, &nd);
2173 putname(tmp);
2174 if (!err)
2175 *path = nd.path;
2176 }
2177 return err;
2178 }
2179
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)2180 int user_path_at(int dfd, const char __user *name, unsigned flags,
2181 struct path *path)
2182 {
2183 return user_path_at_empty(dfd, name, flags, path, NULL);
2184 }
2185
2186 /*
2187 * NB: most callers don't do anything directly with the reference to the
2188 * to struct filename, but the nd->last pointer points into the name string
2189 * allocated by getname. So we must hold the reference to it until all
2190 * path-walking is complete.
2191 */
2192 static struct filename *
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,unsigned int flags)2193 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2194 unsigned int flags)
2195 {
2196 struct filename *s = getname(path);
2197 int error;
2198
2199 /* only LOOKUP_REVAL is allowed in extra flags */
2200 flags &= LOOKUP_REVAL;
2201
2202 if (IS_ERR(s))
2203 return s;
2204
2205 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2206 if (error) {
2207 putname(s);
2208 return ERR_PTR(error);
2209 }
2210
2211 return s;
2212 }
2213
2214 /*
2215 * It's inline, so penalty for filesystems that don't use sticky bit is
2216 * minimal.
2217 */
check_sticky(struct inode * dir,struct inode * inode)2218 static inline int check_sticky(struct inode *dir, struct inode *inode)
2219 {
2220 kuid_t fsuid = current_fsuid();
2221
2222 if (!(dir->i_mode & S_ISVTX))
2223 return 0;
2224 if (uid_eq(inode->i_uid, fsuid))
2225 return 0;
2226 if (uid_eq(dir->i_uid, fsuid))
2227 return 0;
2228 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2229 }
2230
2231 /*
2232 * Check whether we can remove a link victim from directory dir, check
2233 * whether the type of victim is right.
2234 * 1. We can't do it if dir is read-only (done in permission())
2235 * 2. We should have write and exec permissions on dir
2236 * 3. We can't remove anything from append-only dir
2237 * 4. We can't do anything with immutable dir (done in permission())
2238 * 5. If the sticky bit on dir is set we should either
2239 * a. be owner of dir, or
2240 * b. be owner of victim, or
2241 * c. have CAP_FOWNER capability
2242 * 6. If the victim is append-only or immutable we can't do antyhing with
2243 * links pointing to it.
2244 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2245 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2246 * 9. We can't remove a root or mountpoint.
2247 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2248 * nfs_async_unlink().
2249 */
may_delete(struct vfsmount * mnt,struct inode * dir,struct dentry * victim,int isdir)2250 static int may_delete(struct vfsmount *mnt, struct inode *dir,struct dentry *victim,int isdir)
2251 {
2252 int error;
2253
2254 if (!victim->d_inode)
2255 return -ENOENT;
2256
2257 BUG_ON(victim->d_parent->d_inode != dir);
2258 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2259
2260 error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2261 if (error)
2262 return error;
2263 if (IS_APPEND(dir))
2264 return -EPERM;
2265 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2266 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2267 return -EPERM;
2268 if (isdir) {
2269 if (!S_ISDIR(victim->d_inode->i_mode))
2270 return -ENOTDIR;
2271 if (IS_ROOT(victim))
2272 return -EBUSY;
2273 } else if (S_ISDIR(victim->d_inode->i_mode))
2274 return -EISDIR;
2275 if (IS_DEADDIR(dir))
2276 return -ENOENT;
2277 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2278 return -EBUSY;
2279 return 0;
2280 }
2281
2282 /* Check whether we can create an object with dentry child in directory
2283 * dir.
2284 * 1. We can't do it if child already exists (open has special treatment for
2285 * this case, but since we are inlined it's OK)
2286 * 2. We can't do it if dir is read-only (done in permission())
2287 * 3. We should have write and exec permissions on dir
2288 * 4. We can't do it if dir is immutable (done in permission())
2289 */
may_create(struct vfsmount * mnt,struct inode * dir,struct dentry * child)2290 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2291 {
2292 if (child->d_inode)
2293 return -EEXIST;
2294 if (IS_DEADDIR(dir))
2295 return -ENOENT;
2296 return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2297 }
2298
2299 /*
2300 * p1 and p2 should be directories on the same fs.
2301 */
lock_rename(struct dentry * p1,struct dentry * p2)2302 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2303 {
2304 struct dentry *p;
2305
2306 if (p1 == p2) {
2307 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2308 return NULL;
2309 }
2310
2311 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2312
2313 p = d_ancestor(p2, p1);
2314 if (p) {
2315 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2316 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2317 return p;
2318 }
2319
2320 p = d_ancestor(p1, p2);
2321 if (p) {
2322 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2323 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2324 return p;
2325 }
2326
2327 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2328 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2329 return NULL;
2330 }
2331
unlock_rename(struct dentry * p1,struct dentry * p2)2332 void unlock_rename(struct dentry *p1, struct dentry *p2)
2333 {
2334 mutex_unlock(&p1->d_inode->i_mutex);
2335 if (p1 != p2) {
2336 mutex_unlock(&p2->d_inode->i_mutex);
2337 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2338 }
2339 }
2340
vfs_create2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2341 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2342 umode_t mode, bool want_excl)
2343 {
2344 int error = may_create(mnt, dir, dentry);
2345 if (error)
2346 return error;
2347
2348 if (!dir->i_op->create)
2349 return -EACCES; /* shouldn't it be ENOSYS? */
2350 mode &= S_IALLUGO;
2351 mode |= S_IFREG;
2352 error = security_inode_create(dir, dentry, mode);
2353 if (error)
2354 return error;
2355 error = dir->i_op->create(dir, dentry, mode, want_excl);
2356 if (!error)
2357 fsnotify_create(dir, dentry);
2358 return error;
2359 }
2360 EXPORT_SYMBOL(vfs_create2);
2361
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2362 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2363 bool want_excl)
2364 {
2365 return vfs_create2(NULL, dir, dentry, mode, want_excl);
2366 }
2367 EXPORT_SYMBOL(vfs_create);
2368
may_open(struct path * path,int acc_mode,int flag)2369 static int may_open(struct path *path, int acc_mode, int flag)
2370 {
2371 struct dentry *dentry = path->dentry;
2372 struct vfsmount *mnt = path->mnt;
2373 struct inode *inode = dentry->d_inode;
2374 int error;
2375
2376 /* O_PATH? */
2377 if (!acc_mode)
2378 return 0;
2379
2380 if (!inode)
2381 return -ENOENT;
2382
2383 switch (inode->i_mode & S_IFMT) {
2384 case S_IFLNK:
2385 return -ELOOP;
2386 case S_IFDIR:
2387 if (acc_mode & MAY_WRITE)
2388 return -EISDIR;
2389 break;
2390 case S_IFBLK:
2391 case S_IFCHR:
2392 if (path->mnt->mnt_flags & MNT_NODEV)
2393 return -EACCES;
2394 /*FALLTHRU*/
2395 case S_IFIFO:
2396 case S_IFSOCK:
2397 flag &= ~O_TRUNC;
2398 break;
2399 }
2400
2401 error = inode_permission2(mnt, inode, acc_mode);
2402 if (error)
2403 return error;
2404
2405 /*
2406 * An append-only file must be opened in append mode for writing.
2407 */
2408 if (IS_APPEND(inode)) {
2409 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2410 return -EPERM;
2411 if (flag & O_TRUNC)
2412 return -EPERM;
2413 }
2414
2415 /* O_NOATIME can only be set by the owner or superuser */
2416 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2417 return -EPERM;
2418
2419 return 0;
2420 }
2421
handle_truncate(struct file * filp)2422 static int handle_truncate(struct file *filp)
2423 {
2424 struct path *path = &filp->f_path;
2425 struct inode *inode = path->dentry->d_inode;
2426 int error = get_write_access(inode);
2427 if (error)
2428 return error;
2429 /*
2430 * Refuse to truncate files with mandatory locks held on them.
2431 */
2432 error = locks_verify_locked(inode);
2433 if (!error)
2434 error = security_path_truncate(path);
2435 if (!error) {
2436 error = do_truncate2(path->mnt, path->dentry, 0,
2437 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2438 filp);
2439 }
2440 put_write_access(inode);
2441 return error;
2442 }
2443
open_to_namei_flags(int flag)2444 static inline int open_to_namei_flags(int flag)
2445 {
2446 if ((flag & O_ACCMODE) == 3)
2447 flag--;
2448 return flag;
2449 }
2450
may_o_create(struct path * dir,struct dentry * dentry,umode_t mode)2451 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2452 {
2453 int error = security_path_mknod(dir, dentry, mode, 0);
2454 if (error)
2455 return error;
2456
2457 error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2458 if (error)
2459 return error;
2460
2461 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2462 }
2463
2464 /*
2465 * Attempt to atomically look up, create and open a file from a negative
2466 * dentry.
2467 *
2468 * Returns 0 if successful. The file will have been created and attached to
2469 * @file by the filesystem calling finish_open().
2470 *
2471 * Returns 1 if the file was looked up only or didn't need creating. The
2472 * caller will need to perform the open themselves. @path will have been
2473 * updated to point to the new dentry. This may be negative.
2474 *
2475 * Returns an error code otherwise.
2476 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,bool got_write,bool need_lookup,int * opened)2477 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2478 struct path *path, struct file *file,
2479 const struct open_flags *op,
2480 bool got_write, bool need_lookup,
2481 int *opened)
2482 {
2483 struct inode *dir = nd->path.dentry->d_inode;
2484 unsigned open_flag = open_to_namei_flags(op->open_flag);
2485 umode_t mode;
2486 int error;
2487 int acc_mode;
2488 int create_error = 0;
2489 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2490
2491 BUG_ON(dentry->d_inode);
2492
2493 /* Don't create child dentry for a dead directory. */
2494 if (unlikely(IS_DEADDIR(dir))) {
2495 error = -ENOENT;
2496 goto out;
2497 }
2498
2499 mode = op->mode;
2500 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2501 mode &= ~current_umask();
2502
2503 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2504 open_flag &= ~O_TRUNC;
2505 *opened |= FILE_CREATED;
2506 }
2507
2508 /*
2509 * Checking write permission is tricky, bacuse we don't know if we are
2510 * going to actually need it: O_CREAT opens should work as long as the
2511 * file exists. But checking existence breaks atomicity. The trick is
2512 * to check access and if not granted clear O_CREAT from the flags.
2513 *
2514 * Another problem is returing the "right" error value (e.g. for an
2515 * O_EXCL open we want to return EEXIST not EROFS).
2516 */
2517 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2518 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2519 if (!(open_flag & O_CREAT)) {
2520 /*
2521 * No O_CREATE -> atomicity not a requirement -> fall
2522 * back to lookup + open
2523 */
2524 goto no_open;
2525 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2526 /* Fall back and fail with the right error */
2527 create_error = -EROFS;
2528 goto no_open;
2529 } else {
2530 /* No side effects, safe to clear O_CREAT */
2531 create_error = -EROFS;
2532 open_flag &= ~O_CREAT;
2533 }
2534 }
2535
2536 if (open_flag & O_CREAT) {
2537 error = may_o_create(&nd->path, dentry, mode);
2538 if (error) {
2539 create_error = error;
2540 if (open_flag & O_EXCL)
2541 goto no_open;
2542 open_flag &= ~O_CREAT;
2543 }
2544 }
2545
2546 if (nd->flags & LOOKUP_DIRECTORY)
2547 open_flag |= O_DIRECTORY;
2548
2549 file->f_path.dentry = DENTRY_NOT_SET;
2550 file->f_path.mnt = nd->path.mnt;
2551 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2552 opened);
2553 if (error < 0) {
2554 if (create_error && error == -ENOENT)
2555 error = create_error;
2556 goto out;
2557 }
2558
2559 acc_mode = op->acc_mode;
2560 if (*opened & FILE_CREATED) {
2561 fsnotify_create(dir, dentry);
2562 acc_mode = MAY_OPEN;
2563 }
2564
2565 if (error) { /* returned 1, that is */
2566 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2567 error = -EIO;
2568 goto out;
2569 }
2570 if (file->f_path.dentry) {
2571 dput(dentry);
2572 dentry = file->f_path.dentry;
2573 }
2574 if (create_error && dentry->d_inode == NULL) {
2575 error = create_error;
2576 goto out;
2577 }
2578 goto looked_up;
2579 }
2580
2581 /*
2582 * We didn't have the inode before the open, so check open permission
2583 * here.
2584 */
2585 error = may_open(&file->f_path, acc_mode, open_flag);
2586 if (error)
2587 fput(file);
2588
2589 out:
2590 dput(dentry);
2591 return error;
2592
2593 no_open:
2594 if (need_lookup) {
2595 dentry = lookup_real(dir, dentry, nd->flags);
2596 if (IS_ERR(dentry))
2597 return PTR_ERR(dentry);
2598
2599 if (create_error) {
2600 int open_flag = op->open_flag;
2601
2602 error = create_error;
2603 if ((open_flag & O_EXCL)) {
2604 if (!dentry->d_inode)
2605 goto out;
2606 } else if (!dentry->d_inode) {
2607 goto out;
2608 } else if ((open_flag & O_TRUNC) &&
2609 S_ISREG(dentry->d_inode->i_mode)) {
2610 goto out;
2611 }
2612 /* will fail later, go on to get the right error */
2613 }
2614 }
2615 looked_up:
2616 path->dentry = dentry;
2617 path->mnt = nd->path.mnt;
2618 return 1;
2619 }
2620
2621 /*
2622 * Look up and maybe create and open the last component.
2623 *
2624 * Must be called with i_mutex held on parent.
2625 *
2626 * Returns 0 if the file was successfully atomically created (if necessary) and
2627 * opened. In this case the file will be returned attached to @file.
2628 *
2629 * Returns 1 if the file was not completely opened at this time, though lookups
2630 * and creations will have been performed and the dentry returned in @path will
2631 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2632 * specified then a negative dentry may be returned.
2633 *
2634 * An error code is returned otherwise.
2635 *
2636 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2637 * cleared otherwise prior to returning.
2638 */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write,int * opened)2639 static int lookup_open(struct nameidata *nd, struct path *path,
2640 struct file *file,
2641 const struct open_flags *op,
2642 bool got_write, int *opened)
2643 {
2644 struct dentry *dir = nd->path.dentry;
2645 struct vfsmount *mnt = nd->path.mnt;
2646 struct inode *dir_inode = dir->d_inode;
2647 struct dentry *dentry;
2648 int error;
2649 bool need_lookup;
2650
2651 *opened &= ~FILE_CREATED;
2652 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2653 if (IS_ERR(dentry))
2654 return PTR_ERR(dentry);
2655
2656 /* Cached positive dentry: will open in f_op->open */
2657 if (!need_lookup && dentry->d_inode)
2658 goto out_no_open;
2659
2660 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2661 return atomic_open(nd, dentry, path, file, op, got_write,
2662 need_lookup, opened);
2663 }
2664
2665 if (need_lookup) {
2666 BUG_ON(dentry->d_inode);
2667
2668 dentry = lookup_real(dir_inode, dentry, nd->flags);
2669 if (IS_ERR(dentry))
2670 return PTR_ERR(dentry);
2671 }
2672
2673 /* Negative dentry, just create the file */
2674 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2675 umode_t mode = op->mode;
2676 if (!IS_POSIXACL(dir->d_inode))
2677 mode &= ~current_umask();
2678 /*
2679 * This write is needed to ensure that a
2680 * rw->ro transition does not occur between
2681 * the time when the file is created and when
2682 * a permanent write count is taken through
2683 * the 'struct file' in finish_open().
2684 */
2685 if (!got_write) {
2686 error = -EROFS;
2687 goto out_dput;
2688 }
2689 *opened |= FILE_CREATED;
2690 error = security_path_mknod(&nd->path, dentry, mode, 0);
2691 if (error)
2692 goto out_dput;
2693 error = vfs_create2(mnt, dir->d_inode, dentry, mode,
2694 nd->flags & LOOKUP_EXCL);
2695 if (error)
2696 goto out_dput;
2697 }
2698 out_no_open:
2699 path->dentry = dentry;
2700 path->mnt = nd->path.mnt;
2701 return 1;
2702
2703 out_dput:
2704 dput(dentry);
2705 return error;
2706 }
2707
2708 /*
2709 * Handle the last step of open()
2710 */
do_last(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,int * opened,struct filename * name)2711 static int do_last(struct nameidata *nd, struct path *path,
2712 struct file *file, const struct open_flags *op,
2713 int *opened, struct filename *name)
2714 {
2715 struct dentry *dir = nd->path.dentry;
2716 int open_flag = op->open_flag;
2717 bool will_truncate = (open_flag & O_TRUNC) != 0;
2718 bool got_write = false;
2719 int acc_mode = op->acc_mode;
2720 struct inode *inode;
2721 bool symlink_ok = false;
2722 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2723 bool retried = false;
2724 int error;
2725
2726 nd->flags &= ~LOOKUP_PARENT;
2727 nd->flags |= op->intent;
2728
2729 switch (nd->last_type) {
2730 case LAST_DOTDOT:
2731 case LAST_DOT:
2732 error = handle_dots(nd, nd->last_type);
2733 if (error)
2734 return error;
2735 /* fallthrough */
2736 case LAST_ROOT:
2737 error = complete_walk(nd);
2738 if (error)
2739 return error;
2740 audit_inode(name, nd->path.dentry, 0);
2741 if (open_flag & O_CREAT) {
2742 error = -EISDIR;
2743 goto out;
2744 }
2745 goto finish_open;
2746 case LAST_BIND:
2747 error = complete_walk(nd);
2748 if (error)
2749 return error;
2750 audit_inode(name, dir, 0);
2751 goto finish_open;
2752 }
2753
2754 if (!(open_flag & O_CREAT)) {
2755 if (nd->last.name[nd->last.len])
2756 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2757 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2758 symlink_ok = true;
2759 /* we _can_ be in RCU mode here */
2760 error = lookup_fast(nd, path, &inode);
2761 if (likely(!error))
2762 goto finish_lookup;
2763
2764 if (error < 0)
2765 goto out;
2766
2767 BUG_ON(nd->inode != dir->d_inode);
2768 } else {
2769 /* create side of things */
2770 /*
2771 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2772 * has been cleared when we got to the last component we are
2773 * about to look up
2774 */
2775 error = complete_walk(nd);
2776 if (error)
2777 return error;
2778
2779 audit_inode(name, dir, LOOKUP_PARENT);
2780 error = -EISDIR;
2781 /* trailing slashes? */
2782 if (nd->last.name[nd->last.len])
2783 goto out;
2784 }
2785
2786 retry_lookup:
2787 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2788 error = mnt_want_write(nd->path.mnt);
2789 if (!error)
2790 got_write = true;
2791 /*
2792 * do _not_ fail yet - we might not need that or fail with
2793 * a different error; let lookup_open() decide; we'll be
2794 * dropping this one anyway.
2795 */
2796 }
2797 mutex_lock(&dir->d_inode->i_mutex);
2798 error = lookup_open(nd, path, file, op, got_write, opened);
2799 mutex_unlock(&dir->d_inode->i_mutex);
2800
2801 if (error <= 0) {
2802 if (error)
2803 goto out;
2804
2805 if ((*opened & FILE_CREATED) ||
2806 !S_ISREG(file_inode(file)->i_mode))
2807 will_truncate = false;
2808
2809 audit_inode(name, file->f_path.dentry, 0);
2810 goto opened;
2811 }
2812
2813 if (*opened & FILE_CREATED) {
2814 /* Don't check for write permission, don't truncate */
2815 open_flag &= ~O_TRUNC;
2816 will_truncate = false;
2817 acc_mode = MAY_OPEN;
2818 path_to_nameidata(path, nd);
2819 goto finish_open_created;
2820 }
2821
2822 /*
2823 * create/update audit record if it already exists.
2824 */
2825 if (path->dentry->d_inode)
2826 audit_inode(name, path->dentry, 0);
2827
2828 /*
2829 * If atomic_open() acquired write access it is dropped now due to
2830 * possible mount and symlink following (this might be optimized away if
2831 * necessary...)
2832 */
2833 if (got_write) {
2834 mnt_drop_write(nd->path.mnt);
2835 got_write = false;
2836 }
2837
2838 error = -EEXIST;
2839 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2840 goto exit_dput;
2841
2842 error = follow_managed(path, nd->flags);
2843 if (error < 0)
2844 goto exit_dput;
2845
2846 if (error)
2847 nd->flags |= LOOKUP_JUMPED;
2848
2849 BUG_ON(nd->flags & LOOKUP_RCU);
2850 inode = path->dentry->d_inode;
2851 finish_lookup:
2852 /* we _can_ be in RCU mode here */
2853 error = -ENOENT;
2854 if (!inode) {
2855 path_to_nameidata(path, nd);
2856 goto out;
2857 }
2858
2859 if (should_follow_link(inode, !symlink_ok)) {
2860 if (nd->flags & LOOKUP_RCU) {
2861 if (unlikely(unlazy_walk(nd, path->dentry))) {
2862 error = -ECHILD;
2863 goto out;
2864 }
2865 }
2866 BUG_ON(inode != path->dentry->d_inode);
2867 return 1;
2868 }
2869
2870 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2871 path_to_nameidata(path, nd);
2872 } else {
2873 save_parent.dentry = nd->path.dentry;
2874 save_parent.mnt = mntget(path->mnt);
2875 nd->path.dentry = path->dentry;
2876
2877 }
2878 nd->inode = inode;
2879 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2880 error = complete_walk(nd);
2881 if (error) {
2882 path_put(&save_parent);
2883 return error;
2884 }
2885 error = -EISDIR;
2886 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2887 goto out;
2888 error = -ENOTDIR;
2889 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
2890 goto out;
2891 audit_inode(name, nd->path.dentry, 0);
2892 finish_open:
2893 if (!S_ISREG(nd->inode->i_mode))
2894 will_truncate = false;
2895
2896 if (will_truncate) {
2897 error = mnt_want_write(nd->path.mnt);
2898 if (error)
2899 goto out;
2900 got_write = true;
2901 }
2902 finish_open_created:
2903 error = may_open(&nd->path, acc_mode, open_flag);
2904 if (error)
2905 goto out;
2906 file->f_path.mnt = nd->path.mnt;
2907 error = finish_open(file, nd->path.dentry, NULL, opened);
2908 if (error) {
2909 if (error == -EOPENSTALE)
2910 goto stale_open;
2911 goto out;
2912 }
2913 opened:
2914 error = open_check_o_direct(file);
2915 if (error)
2916 goto exit_fput;
2917 error = ima_file_check(file, op->acc_mode);
2918 if (error)
2919 goto exit_fput;
2920
2921 if (will_truncate) {
2922 error = handle_truncate(file);
2923 if (error)
2924 goto exit_fput;
2925 }
2926 out:
2927 if (got_write)
2928 mnt_drop_write(nd->path.mnt);
2929 path_put(&save_parent);
2930 terminate_walk(nd);
2931 return error;
2932
2933 exit_dput:
2934 path_put_conditional(path, nd);
2935 goto out;
2936 exit_fput:
2937 fput(file);
2938 goto out;
2939
2940 stale_open:
2941 /* If no saved parent or already retried then can't retry */
2942 if (!save_parent.dentry || retried)
2943 goto out;
2944
2945 BUG_ON(save_parent.dentry != dir);
2946 path_put(&nd->path);
2947 nd->path = save_parent;
2948 nd->inode = dir->d_inode;
2949 save_parent.mnt = NULL;
2950 save_parent.dentry = NULL;
2951 if (got_write) {
2952 mnt_drop_write(nd->path.mnt);
2953 got_write = false;
2954 }
2955 retried = true;
2956 goto retry_lookup;
2957 }
2958
path_openat(int dfd,struct filename * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2959 static struct file *path_openat(int dfd, struct filename *pathname,
2960 struct nameidata *nd, const struct open_flags *op, int flags)
2961 {
2962 struct file *base = NULL;
2963 struct file *file;
2964 struct path path;
2965 int opened = 0;
2966 int error;
2967
2968 file = get_empty_filp();
2969 if (IS_ERR(file))
2970 return file;
2971
2972 file->f_flags = op->open_flag;
2973
2974 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2975 if (unlikely(error))
2976 goto out;
2977
2978 current->total_link_count = 0;
2979 error = link_path_walk(pathname->name, nd);
2980 if (unlikely(error))
2981 goto out;
2982
2983 error = do_last(nd, &path, file, op, &opened, pathname);
2984 while (unlikely(error > 0)) { /* trailing symlink */
2985 struct path link = path;
2986 void *cookie;
2987 if (!(nd->flags & LOOKUP_FOLLOW)) {
2988 path_put_conditional(&path, nd);
2989 path_put(&nd->path);
2990 error = -ELOOP;
2991 break;
2992 }
2993 error = may_follow_link(&link, nd);
2994 if (unlikely(error))
2995 break;
2996 nd->flags |= LOOKUP_PARENT;
2997 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2998 error = follow_link(&link, nd, &cookie);
2999 if (unlikely(error))
3000 break;
3001 error = do_last(nd, &path, file, op, &opened, pathname);
3002 put_link(nd, &link, cookie);
3003 }
3004 out:
3005 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3006 path_put(&nd->root);
3007 if (base)
3008 fput(base);
3009 if (!(opened & FILE_OPENED)) {
3010 BUG_ON(!error);
3011 put_filp(file);
3012 }
3013 if (unlikely(error)) {
3014 if (error == -EOPENSTALE) {
3015 if (flags & LOOKUP_RCU)
3016 error = -ECHILD;
3017 else
3018 error = -ESTALE;
3019 }
3020 file = ERR_PTR(error);
3021 }
3022 return file;
3023 }
3024
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op,int flags)3025 struct file *do_filp_open(int dfd, struct filename *pathname,
3026 const struct open_flags *op, int flags)
3027 {
3028 struct nameidata nd;
3029 struct file *filp;
3030
3031 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3032 if (unlikely(filp == ERR_PTR(-ECHILD)))
3033 filp = path_openat(dfd, pathname, &nd, op, flags);
3034 if (unlikely(filp == ERR_PTR(-ESTALE)))
3035 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3036 return filp;
3037 }
3038
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)3039 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3040 const char *name, const struct open_flags *op, int flags)
3041 {
3042 struct nameidata nd;
3043 struct file *file;
3044 struct filename filename = { .name = name };
3045
3046 nd.root.mnt = mnt;
3047 nd.root.dentry = dentry;
3048
3049 flags |= LOOKUP_ROOT;
3050
3051 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3052 return ERR_PTR(-ELOOP);
3053
3054 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3055 if (unlikely(file == ERR_PTR(-ECHILD)))
3056 file = path_openat(-1, &filename, &nd, op, flags);
3057 if (unlikely(file == ERR_PTR(-ESTALE)))
3058 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3059 return file;
3060 }
3061
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3062 struct dentry *kern_path_create(int dfd, const char *pathname,
3063 struct path *path, unsigned int lookup_flags)
3064 {
3065 struct dentry *dentry = ERR_PTR(-EEXIST);
3066 struct nameidata nd;
3067 int err2;
3068 int error;
3069 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3070
3071 /*
3072 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3073 * other flags passed in are ignored!
3074 */
3075 lookup_flags &= LOOKUP_REVAL;
3076
3077 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3078 if (error)
3079 return ERR_PTR(error);
3080
3081 /*
3082 * Yucky last component or no last component at all?
3083 * (foo/., foo/.., /////)
3084 */
3085 if (nd.last_type != LAST_NORM)
3086 goto out;
3087 nd.flags &= ~LOOKUP_PARENT;
3088 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3089
3090 /* don't fail immediately if it's r/o, at least try to report other errors */
3091 err2 = mnt_want_write(nd.path.mnt);
3092 /*
3093 * Do the final lookup.
3094 */
3095 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3096 dentry = lookup_hash(&nd);
3097 if (IS_ERR(dentry))
3098 goto unlock;
3099
3100 error = -EEXIST;
3101 if (dentry->d_inode)
3102 goto fail;
3103 /*
3104 * Special case - lookup gave negative, but... we had foo/bar/
3105 * From the vfs_mknod() POV we just have a negative dentry -
3106 * all is fine. Let's be bastards - you had / on the end, you've
3107 * been asking for (non-existent) directory. -ENOENT for you.
3108 */
3109 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3110 error = -ENOENT;
3111 goto fail;
3112 }
3113 if (unlikely(err2)) {
3114 error = err2;
3115 goto fail;
3116 }
3117 *path = nd.path;
3118 return dentry;
3119 fail:
3120 dput(dentry);
3121 dentry = ERR_PTR(error);
3122 unlock:
3123 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3124 if (!err2)
3125 mnt_drop_write(nd.path.mnt);
3126 out:
3127 path_put(&nd.path);
3128 return dentry;
3129 }
3130 EXPORT_SYMBOL(kern_path_create);
3131
done_path_create(struct path * path,struct dentry * dentry)3132 void done_path_create(struct path *path, struct dentry *dentry)
3133 {
3134 dput(dentry);
3135 mutex_unlock(&path->dentry->d_inode->i_mutex);
3136 mnt_drop_write(path->mnt);
3137 path_put(path);
3138 }
3139 EXPORT_SYMBOL(done_path_create);
3140
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3141 struct dentry *user_path_create(int dfd, const char __user *pathname,
3142 struct path *path, unsigned int lookup_flags)
3143 {
3144 struct filename *tmp = getname(pathname);
3145 struct dentry *res;
3146 if (IS_ERR(tmp))
3147 return ERR_CAST(tmp);
3148 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3149 putname(tmp);
3150 return res;
3151 }
3152 EXPORT_SYMBOL(user_path_create);
3153
vfs_mknod2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3154 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3155 {
3156 int error = may_create(mnt, dir, dentry);
3157
3158 if (error)
3159 return error;
3160
3161 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3162 return -EPERM;
3163
3164 if (!dir->i_op->mknod)
3165 return -EPERM;
3166
3167 error = devcgroup_inode_mknod(mode, dev);
3168 if (error)
3169 return error;
3170
3171 error = security_inode_mknod(dir, dentry, mode, dev);
3172 if (error)
3173 return error;
3174
3175 error = dir->i_op->mknod(dir, dentry, mode, dev);
3176 if (!error)
3177 fsnotify_create(dir, dentry);
3178 return error;
3179 }
3180 EXPORT_SYMBOL(vfs_mknod2);
3181
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3182 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3183 {
3184 return vfs_mknod2(NULL, dir, dentry, mode, dev);
3185 }
3186 EXPORT_SYMBOL(vfs_mknod);
3187
may_mknod(umode_t mode)3188 static int may_mknod(umode_t mode)
3189 {
3190 switch (mode & S_IFMT) {
3191 case S_IFREG:
3192 case S_IFCHR:
3193 case S_IFBLK:
3194 case S_IFIFO:
3195 case S_IFSOCK:
3196 case 0: /* zero mode translates to S_IFREG */
3197 return 0;
3198 case S_IFDIR:
3199 return -EPERM;
3200 default:
3201 return -EINVAL;
3202 }
3203 }
3204
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)3205 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3206 unsigned, dev)
3207 {
3208 struct dentry *dentry;
3209 struct path path;
3210 int error;
3211 unsigned int lookup_flags = 0;
3212
3213 error = may_mknod(mode);
3214 if (error)
3215 return error;
3216 retry:
3217 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3218 if (IS_ERR(dentry))
3219 return PTR_ERR(dentry);
3220
3221 if (!IS_POSIXACL(path.dentry->d_inode))
3222 mode &= ~current_umask();
3223 error = security_path_mknod(&path, dentry, mode, dev);
3224 if (error)
3225 goto out;
3226 switch (mode & S_IFMT) {
3227 case 0: case S_IFREG:
3228 error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3229 break;
3230 case S_IFCHR: case S_IFBLK:
3231 error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3232 new_decode_dev(dev));
3233 break;
3234 case S_IFIFO: case S_IFSOCK:
3235 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3236 break;
3237 }
3238 out:
3239 done_path_create(&path, dentry);
3240 if (retry_estale(error, lookup_flags)) {
3241 lookup_flags |= LOOKUP_REVAL;
3242 goto retry;
3243 }
3244 return error;
3245 }
3246
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3247 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3248 {
3249 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3250 }
3251
vfs_mkdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode)3252 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3253 {
3254 int error = may_create(mnt, dir, dentry);
3255 unsigned max_links = dir->i_sb->s_max_links;
3256
3257 if (error)
3258 return error;
3259
3260 if (!dir->i_op->mkdir)
3261 return -EPERM;
3262
3263 mode &= (S_IRWXUGO|S_ISVTX);
3264 error = security_inode_mkdir(dir, dentry, mode);
3265 if (error)
3266 return error;
3267
3268 if (max_links && dir->i_nlink >= max_links)
3269 return -EMLINK;
3270
3271 error = dir->i_op->mkdir(dir, dentry, mode);
3272 if (!error)
3273 fsnotify_mkdir(dir, dentry);
3274 return error;
3275 }
3276 EXPORT_SYMBOL(vfs_mkdir2);
3277
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3278 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3279 {
3280 return vfs_mkdir2(NULL, dir, dentry, mode);
3281 }
3282 EXPORT_SYMBOL(vfs_mkdir);
3283
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3284 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3285 {
3286 struct dentry *dentry;
3287 struct path path;
3288 int error;
3289 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3290
3291 retry:
3292 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3293 if (IS_ERR(dentry))
3294 return PTR_ERR(dentry);
3295
3296 if (!IS_POSIXACL(path.dentry->d_inode))
3297 mode &= ~current_umask();
3298 error = security_path_mkdir(&path, dentry, mode);
3299 if (!error)
3300 error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3301 done_path_create(&path, dentry);
3302 if (retry_estale(error, lookup_flags)) {
3303 lookup_flags |= LOOKUP_REVAL;
3304 goto retry;
3305 }
3306 return error;
3307 }
3308
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3309 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3310 {
3311 return sys_mkdirat(AT_FDCWD, pathname, mode);
3312 }
3313
3314 /*
3315 * The dentry_unhash() helper will try to drop the dentry early: we
3316 * should have a usage count of 1 if we're the only user of this
3317 * dentry, and if that is true (possibly after pruning the dcache),
3318 * then we drop the dentry now.
3319 *
3320 * A low-level filesystem can, if it choses, legally
3321 * do a
3322 *
3323 * if (!d_unhashed(dentry))
3324 * return -EBUSY;
3325 *
3326 * if it cannot handle the case of removing a directory
3327 * that is still in use by something else..
3328 */
dentry_unhash(struct dentry * dentry)3329 void dentry_unhash(struct dentry *dentry)
3330 {
3331 shrink_dcache_parent(dentry);
3332 spin_lock(&dentry->d_lock);
3333 if (dentry->d_count == 1)
3334 __d_drop(dentry);
3335 spin_unlock(&dentry->d_lock);
3336 }
3337
vfs_rmdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3338 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3339 {
3340 int error = may_delete(mnt, dir, dentry, 1);
3341
3342 if (error)
3343 return error;
3344
3345 if (!dir->i_op->rmdir)
3346 return -EPERM;
3347
3348 dget(dentry);
3349 mutex_lock(&dentry->d_inode->i_mutex);
3350
3351 error = -EBUSY;
3352 if (d_mountpoint(dentry))
3353 goto out;
3354
3355 error = security_inode_rmdir(dir, dentry);
3356 if (error)
3357 goto out;
3358
3359 shrink_dcache_parent(dentry);
3360 error = dir->i_op->rmdir(dir, dentry);
3361 if (error)
3362 goto out;
3363
3364 dentry->d_inode->i_flags |= S_DEAD;
3365 dont_mount(dentry);
3366
3367 out:
3368 mutex_unlock(&dentry->d_inode->i_mutex);
3369 dput(dentry);
3370 if (!error)
3371 d_delete(dentry);
3372 return error;
3373 }
3374 EXPORT_SYMBOL(vfs_rmdir2);
3375
vfs_rmdir(struct inode * dir,struct dentry * dentry)3376 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3377 {
3378 return vfs_rmdir2(NULL, dir, dentry);
3379 }
3380 EXPORT_SYMBOL(vfs_rmdir);
3381
do_rmdir(int dfd,const char __user * pathname)3382 static long do_rmdir(int dfd, const char __user *pathname)
3383 {
3384 int error = 0;
3385 struct filename *name;
3386 struct dentry *dentry;
3387 struct nameidata nd;
3388 unsigned int lookup_flags = 0;
3389 retry:
3390 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3391 if (IS_ERR(name))
3392 return PTR_ERR(name);
3393
3394 switch(nd.last_type) {
3395 case LAST_DOTDOT:
3396 error = -ENOTEMPTY;
3397 goto exit1;
3398 case LAST_DOT:
3399 error = -EINVAL;
3400 goto exit1;
3401 case LAST_ROOT:
3402 error = -EBUSY;
3403 goto exit1;
3404 }
3405
3406 nd.flags &= ~LOOKUP_PARENT;
3407 error = mnt_want_write(nd.path.mnt);
3408 if (error)
3409 goto exit1;
3410
3411 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3412 dentry = lookup_hash(&nd);
3413 error = PTR_ERR(dentry);
3414 if (IS_ERR(dentry))
3415 goto exit2;
3416 if (!dentry->d_inode) {
3417 error = -ENOENT;
3418 goto exit3;
3419 }
3420 error = security_path_rmdir(&nd.path, dentry);
3421 if (error)
3422 goto exit3;
3423 error = vfs_rmdir2(nd.path.mnt, nd.path.dentry->d_inode, dentry);
3424 exit3:
3425 dput(dentry);
3426 exit2:
3427 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3428 mnt_drop_write(nd.path.mnt);
3429 exit1:
3430 path_put(&nd.path);
3431 putname(name);
3432 if (retry_estale(error, lookup_flags)) {
3433 lookup_flags |= LOOKUP_REVAL;
3434 goto retry;
3435 }
3436 return error;
3437 }
3438
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3439 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3440 {
3441 return do_rmdir(AT_FDCWD, pathname);
3442 }
3443
vfs_unlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3444 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3445 {
3446 int error = may_delete(mnt, dir, dentry, 0);
3447
3448 if (error)
3449 return error;
3450
3451 if (!dir->i_op->unlink)
3452 return -EPERM;
3453
3454 mutex_lock(&dentry->d_inode->i_mutex);
3455 if (d_mountpoint(dentry))
3456 error = -EBUSY;
3457 else {
3458 error = security_inode_unlink(dir, dentry);
3459 if (!error) {
3460 error = dir->i_op->unlink(dir, dentry);
3461 if (!error)
3462 dont_mount(dentry);
3463 }
3464 }
3465 mutex_unlock(&dentry->d_inode->i_mutex);
3466
3467 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3468 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3469 fsnotify_link_count(dentry->d_inode);
3470 d_delete(dentry);
3471 }
3472
3473 return error;
3474 }
3475 EXPORT_SYMBOL(vfs_unlink2);
3476
vfs_unlink(struct inode * dir,struct dentry * dentry)3477 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3478 {
3479 return vfs_unlink2(NULL, dir, dentry);
3480 }
3481 EXPORT_SYMBOL(vfs_unlink);
3482
3483 /*
3484 * Make sure that the actual truncation of the file will occur outside its
3485 * directory's i_mutex. Truncate can take a long time if there is a lot of
3486 * writeout happening, and we don't want to prevent access to the directory
3487 * while waiting on the I/O.
3488 */
do_unlinkat(int dfd,const char __user * pathname)3489 static long do_unlinkat(int dfd, const char __user *pathname)
3490 {
3491 int error;
3492 struct filename *name;
3493 struct dentry *dentry;
3494 struct nameidata nd;
3495 struct inode *inode = NULL;
3496 unsigned int lookup_flags = 0;
3497 retry:
3498 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3499 if (IS_ERR(name))
3500 return PTR_ERR(name);
3501
3502 error = -EISDIR;
3503 if (nd.last_type != LAST_NORM)
3504 goto exit1;
3505
3506 nd.flags &= ~LOOKUP_PARENT;
3507 error = mnt_want_write(nd.path.mnt);
3508 if (error)
3509 goto exit1;
3510
3511 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3512 dentry = lookup_hash(&nd);
3513 error = PTR_ERR(dentry);
3514 if (!IS_ERR(dentry)) {
3515 /* Why not before? Because we want correct error value */
3516 if (nd.last.name[nd.last.len])
3517 goto slashes;
3518 inode = dentry->d_inode;
3519 if (!inode)
3520 goto slashes;
3521 ihold(inode);
3522 error = security_path_unlink(&nd.path, dentry);
3523 if (error)
3524 goto exit2;
3525 error = vfs_unlink2(nd.path.mnt, nd.path.dentry->d_inode, dentry);
3526 exit2:
3527 dput(dentry);
3528 }
3529 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3530 if (inode)
3531 iput(inode); /* truncate the inode here */
3532 mnt_drop_write(nd.path.mnt);
3533 exit1:
3534 path_put(&nd.path);
3535 putname(name);
3536 if (retry_estale(error, lookup_flags)) {
3537 lookup_flags |= LOOKUP_REVAL;
3538 inode = NULL;
3539 goto retry;
3540 }
3541 return error;
3542
3543 slashes:
3544 error = !dentry->d_inode ? -ENOENT :
3545 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3546 goto exit2;
3547 }
3548
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)3549 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3550 {
3551 if ((flag & ~AT_REMOVEDIR) != 0)
3552 return -EINVAL;
3553
3554 if (flag & AT_REMOVEDIR)
3555 return do_rmdir(dfd, pathname);
3556
3557 return do_unlinkat(dfd, pathname);
3558 }
3559
SYSCALL_DEFINE1(unlink,const char __user *,pathname)3560 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3561 {
3562 return do_unlinkat(AT_FDCWD, pathname);
3563 }
3564
vfs_symlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,const char * oldname)3565 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
3566 {
3567 int error = may_create(mnt, dir, dentry);
3568
3569 if (error)
3570 return error;
3571
3572 if (!dir->i_op->symlink)
3573 return -EPERM;
3574
3575 error = security_inode_symlink(dir, dentry, oldname);
3576 if (error)
3577 return error;
3578
3579 error = dir->i_op->symlink(dir, dentry, oldname);
3580 if (!error)
3581 fsnotify_create(dir, dentry);
3582 return error;
3583 }
3584 EXPORT_SYMBOL(vfs_symlink2);
3585
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)3586 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3587 {
3588 return vfs_symlink2(NULL, dir, dentry, oldname);
3589 }
3590 EXPORT_SYMBOL(vfs_symlink);
3591
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)3592 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3593 int, newdfd, const char __user *, newname)
3594 {
3595 int error;
3596 struct filename *from;
3597 struct dentry *dentry;
3598 struct path path;
3599 unsigned int lookup_flags = 0;
3600
3601 from = getname(oldname);
3602 if (IS_ERR(from))
3603 return PTR_ERR(from);
3604 retry:
3605 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3606 error = PTR_ERR(dentry);
3607 if (IS_ERR(dentry))
3608 goto out_putname;
3609
3610 error = security_path_symlink(&path, dentry, from->name);
3611 if (!error)
3612 error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
3613 done_path_create(&path, dentry);
3614 if (retry_estale(error, lookup_flags)) {
3615 lookup_flags |= LOOKUP_REVAL;
3616 goto retry;
3617 }
3618 out_putname:
3619 putname(from);
3620 return error;
3621 }
3622
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)3623 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3624 {
3625 return sys_symlinkat(oldname, AT_FDCWD, newname);
3626 }
3627
vfs_link2(struct vfsmount * mnt,struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)3628 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3629 {
3630 struct inode *inode = old_dentry->d_inode;
3631 unsigned max_links = dir->i_sb->s_max_links;
3632 int error;
3633
3634 if (!inode)
3635 return -ENOENT;
3636
3637 error = may_create(mnt, dir, new_dentry);
3638 if (error)
3639 return error;
3640
3641 if (dir->i_sb != inode->i_sb)
3642 return -EXDEV;
3643
3644 /*
3645 * A link to an append-only or immutable file cannot be created.
3646 */
3647 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3648 return -EPERM;
3649 if (!dir->i_op->link)
3650 return -EPERM;
3651 if (S_ISDIR(inode->i_mode))
3652 return -EPERM;
3653
3654 error = security_inode_link(old_dentry, dir, new_dentry);
3655 if (error)
3656 return error;
3657
3658 mutex_lock(&inode->i_mutex);
3659 /* Make sure we don't allow creating hardlink to an unlinked file */
3660 if (inode->i_nlink == 0)
3661 error = -ENOENT;
3662 else if (max_links && inode->i_nlink >= max_links)
3663 error = -EMLINK;
3664 else
3665 error = dir->i_op->link(old_dentry, dir, new_dentry);
3666 mutex_unlock(&inode->i_mutex);
3667 if (!error)
3668 fsnotify_link(dir, inode, new_dentry);
3669 return error;
3670 }
3671 EXPORT_SYMBOL(vfs_link2);
3672
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)3673 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3674 {
3675 return vfs_link2(NULL, old_dentry, dir, new_dentry);
3676 }
3677 EXPORT_SYMBOL(vfs_link);
3678
3679 /*
3680 * Hardlinks are often used in delicate situations. We avoid
3681 * security-related surprises by not following symlinks on the
3682 * newname. --KAB
3683 *
3684 * We don't follow them on the oldname either to be compatible
3685 * with linux 2.0, and to avoid hard-linking to directories
3686 * and other special files. --ADM
3687 */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)3688 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3689 int, newdfd, const char __user *, newname, int, flags)
3690 {
3691 struct dentry *new_dentry;
3692 struct path old_path, new_path;
3693 int how = 0;
3694 int error;
3695
3696 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3697 return -EINVAL;
3698 /*
3699 * To use null names we require CAP_DAC_READ_SEARCH
3700 * This ensures that not everyone will be able to create
3701 * handlink using the passed filedescriptor.
3702 */
3703 if (flags & AT_EMPTY_PATH) {
3704 if (!capable(CAP_DAC_READ_SEARCH))
3705 return -ENOENT;
3706 how = LOOKUP_EMPTY;
3707 }
3708
3709 if (flags & AT_SYMLINK_FOLLOW)
3710 how |= LOOKUP_FOLLOW;
3711 retry:
3712 error = user_path_at(olddfd, oldname, how, &old_path);
3713 if (error)
3714 return error;
3715
3716 new_dentry = user_path_create(newdfd, newname, &new_path,
3717 (how & LOOKUP_REVAL));
3718 error = PTR_ERR(new_dentry);
3719 if (IS_ERR(new_dentry))
3720 goto out;
3721
3722 error = -EXDEV;
3723 if (old_path.mnt != new_path.mnt)
3724 goto out_dput;
3725 error = may_linkat(&old_path);
3726 if (unlikely(error))
3727 goto out_dput;
3728 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3729 if (error)
3730 goto out_dput;
3731 error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry);
3732 out_dput:
3733 done_path_create(&new_path, new_dentry);
3734 if (retry_estale(error, how)) {
3735 how |= LOOKUP_REVAL;
3736 goto retry;
3737 }
3738 out:
3739 path_put(&old_path);
3740
3741 return error;
3742 }
3743
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3744 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3745 {
3746 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3747 }
3748
3749 /*
3750 * The worst of all namespace operations - renaming directory. "Perverted"
3751 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3752 * Problems:
3753 * a) we can get into loop creation. Check is done in is_subdir().
3754 * b) race potential - two innocent renames can create a loop together.
3755 * That's where 4.4 screws up. Current fix: serialization on
3756 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3757 * story.
3758 * c) we have to lock _three_ objects - parents and victim (if it exists).
3759 * And that - after we got ->i_mutex on parents (until then we don't know
3760 * whether the target exists). Solution: try to be smart with locking
3761 * order for inodes. We rely on the fact that tree topology may change
3762 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3763 * move will be locked. Thus we can rank directories by the tree
3764 * (ancestors first) and rank all non-directories after them.
3765 * That works since everybody except rename does "lock parent, lookup,
3766 * lock child" and rename is under ->s_vfs_rename_mutex.
3767 * HOWEVER, it relies on the assumption that any object with ->lookup()
3768 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3769 * we'd better make sure that there's no link(2) for them.
3770 * d) conversion from fhandle to dentry may come in the wrong moment - when
3771 * we are removing the target. Solution: we will have to grab ->i_mutex
3772 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3773 * ->i_mutex on parents, which works but leads to some truly excessive
3774 * locking].
3775 */
vfs_rename_dir(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3776 static int vfs_rename_dir(struct vfsmount *mnt,
3777 struct inode *old_dir, struct dentry *old_dentry,
3778 struct inode *new_dir, struct dentry *new_dentry)
3779 {
3780 int error = 0;
3781 struct inode *target = new_dentry->d_inode;
3782 unsigned max_links = new_dir->i_sb->s_max_links;
3783
3784 /*
3785 * If we are going to change the parent - check write permissions,
3786 * we'll need to flip '..'.
3787 */
3788 if (new_dir != old_dir) {
3789 error = inode_permission2(mnt, old_dentry->d_inode, MAY_WRITE);
3790 if (error)
3791 return error;
3792 }
3793
3794 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3795 if (error)
3796 return error;
3797
3798 dget(new_dentry);
3799 if (target)
3800 mutex_lock(&target->i_mutex);
3801
3802 error = -EBUSY;
3803 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3804 goto out;
3805
3806 error = -EMLINK;
3807 if (max_links && !target && new_dir != old_dir &&
3808 new_dir->i_nlink >= max_links)
3809 goto out;
3810
3811 if (target)
3812 shrink_dcache_parent(new_dentry);
3813 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3814 if (error)
3815 goto out;
3816
3817 if (target) {
3818 target->i_flags |= S_DEAD;
3819 dont_mount(new_dentry);
3820 }
3821 out:
3822 if (target)
3823 mutex_unlock(&target->i_mutex);
3824 dput(new_dentry);
3825 if (!error)
3826 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3827 d_move(old_dentry,new_dentry);
3828 return error;
3829 }
3830
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3831 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3832 struct inode *new_dir, struct dentry *new_dentry)
3833 {
3834 struct inode *target = new_dentry->d_inode;
3835 int error;
3836
3837 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3838 if (error)
3839 return error;
3840
3841 dget(new_dentry);
3842 if (target)
3843 mutex_lock(&target->i_mutex);
3844
3845 error = -EBUSY;
3846 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3847 goto out;
3848
3849 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3850 if (error)
3851 goto out;
3852
3853 if (target)
3854 dont_mount(new_dentry);
3855 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3856 d_move(old_dentry, new_dentry);
3857 out:
3858 if (target)
3859 mutex_unlock(&target->i_mutex);
3860 dput(new_dentry);
3861 return error;
3862 }
3863
vfs_rename2(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3864 int vfs_rename2(struct vfsmount *mnt,
3865 struct inode *old_dir, struct dentry *old_dentry,
3866 struct inode *new_dir, struct dentry *new_dentry)
3867 {
3868 int error;
3869 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3870 const unsigned char *old_name;
3871
3872 if (old_dentry->d_inode == new_dentry->d_inode)
3873 return 0;
3874
3875 error = may_delete(mnt, old_dir, old_dentry, is_dir);
3876 if (error)
3877 return error;
3878
3879 if (!new_dentry->d_inode)
3880 error = may_create(mnt, new_dir, new_dentry);
3881 else
3882 error = may_delete(mnt, new_dir, new_dentry, is_dir);
3883 if (error)
3884 return error;
3885
3886 if (!old_dir->i_op->rename)
3887 return -EPERM;
3888
3889 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3890
3891 if (is_dir)
3892 error = vfs_rename_dir(mnt, old_dir,old_dentry,new_dir,new_dentry);
3893 else
3894 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3895 if (!error)
3896 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3897 new_dentry->d_inode, old_dentry);
3898 fsnotify_oldname_free(old_name);
3899
3900 return error;
3901 }
3902 EXPORT_SYMBOL(vfs_rename2);
3903
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3904 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3905 struct inode *new_dir, struct dentry *new_dentry)
3906 {
3907 return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry);
3908 }
3909 EXPORT_SYMBOL(vfs_rename);
3910
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3911 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3912 int, newdfd, const char __user *, newname)
3913 {
3914 struct dentry *old_dir, *new_dir;
3915 struct dentry *old_dentry, *new_dentry;
3916 struct dentry *trap;
3917 struct nameidata oldnd, newnd;
3918 struct filename *from;
3919 struct filename *to;
3920 unsigned int lookup_flags = 0;
3921 bool should_retry = false;
3922 int error;
3923 retry:
3924 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3925 if (IS_ERR(from)) {
3926 error = PTR_ERR(from);
3927 goto exit;
3928 }
3929
3930 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3931 if (IS_ERR(to)) {
3932 error = PTR_ERR(to);
3933 goto exit1;
3934 }
3935
3936 error = -EXDEV;
3937 if (oldnd.path.mnt != newnd.path.mnt)
3938 goto exit2;
3939
3940 old_dir = oldnd.path.dentry;
3941 error = -EBUSY;
3942 if (oldnd.last_type != LAST_NORM)
3943 goto exit2;
3944
3945 new_dir = newnd.path.dentry;
3946 if (newnd.last_type != LAST_NORM)
3947 goto exit2;
3948
3949 error = mnt_want_write(oldnd.path.mnt);
3950 if (error)
3951 goto exit2;
3952
3953 oldnd.flags &= ~LOOKUP_PARENT;
3954 newnd.flags &= ~LOOKUP_PARENT;
3955 newnd.flags |= LOOKUP_RENAME_TARGET;
3956
3957 trap = lock_rename(new_dir, old_dir);
3958
3959 old_dentry = lookup_hash(&oldnd);
3960 error = PTR_ERR(old_dentry);
3961 if (IS_ERR(old_dentry))
3962 goto exit3;
3963 /* source must exist */
3964 error = -ENOENT;
3965 if (!old_dentry->d_inode)
3966 goto exit4;
3967 /* unless the source is a directory trailing slashes give -ENOTDIR */
3968 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3969 error = -ENOTDIR;
3970 if (oldnd.last.name[oldnd.last.len])
3971 goto exit4;
3972 if (newnd.last.name[newnd.last.len])
3973 goto exit4;
3974 }
3975 /* source should not be ancestor of target */
3976 error = -EINVAL;
3977 if (old_dentry == trap)
3978 goto exit4;
3979 new_dentry = lookup_hash(&newnd);
3980 error = PTR_ERR(new_dentry);
3981 if (IS_ERR(new_dentry))
3982 goto exit4;
3983 /* target should not be an ancestor of source */
3984 error = -ENOTEMPTY;
3985 if (new_dentry == trap)
3986 goto exit5;
3987
3988 error = security_path_rename(&oldnd.path, old_dentry,
3989 &newnd.path, new_dentry);
3990 if (error)
3991 goto exit5;
3992 error = vfs_rename2(oldnd.path.mnt, old_dir->d_inode, old_dentry,
3993 new_dir->d_inode, new_dentry);
3994 exit5:
3995 dput(new_dentry);
3996 exit4:
3997 dput(old_dentry);
3998 exit3:
3999 unlock_rename(new_dir, old_dir);
4000 mnt_drop_write(oldnd.path.mnt);
4001 exit2:
4002 if (retry_estale(error, lookup_flags))
4003 should_retry = true;
4004 path_put(&newnd.path);
4005 putname(to);
4006 exit1:
4007 path_put(&oldnd.path);
4008 putname(from);
4009 if (should_retry) {
4010 should_retry = false;
4011 lookup_flags |= LOOKUP_REVAL;
4012 goto retry;
4013 }
4014 exit:
4015 return error;
4016 }
4017
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4018 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4019 {
4020 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4021 }
4022
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)4023 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4024 {
4025 int len;
4026
4027 len = PTR_ERR(link);
4028 if (IS_ERR(link))
4029 goto out;
4030
4031 len = strlen(link);
4032 if (len > (unsigned) buflen)
4033 len = buflen;
4034 if (copy_to_user(buffer, link, len))
4035 len = -EFAULT;
4036 out:
4037 return len;
4038 }
4039
4040 /*
4041 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4042 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4043 * using) it for any given inode is up to filesystem.
4044 */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)4045 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4046 {
4047 struct nameidata nd;
4048 void *cookie;
4049 int res;
4050
4051 nd.depth = 0;
4052 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4053 if (IS_ERR(cookie))
4054 return PTR_ERR(cookie);
4055
4056 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4057 if (dentry->d_inode->i_op->put_link)
4058 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4059 return res;
4060 }
4061
vfs_follow_link(struct nameidata * nd,const char * link)4062 int vfs_follow_link(struct nameidata *nd, const char *link)
4063 {
4064 return __vfs_follow_link(nd, link);
4065 }
4066
4067 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)4068 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4069 {
4070 char *kaddr;
4071 struct page *page;
4072 struct address_space *mapping = dentry->d_inode->i_mapping;
4073 page = read_mapping_page(mapping, 0, NULL);
4074 if (IS_ERR(page))
4075 return (char*)page;
4076 *ppage = page;
4077 kaddr = kmap(page);
4078 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4079 return kaddr;
4080 }
4081
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4082 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4083 {
4084 struct page *page = NULL;
4085 char *s = page_getlink(dentry, &page);
4086 int res = vfs_readlink(dentry,buffer,buflen,s);
4087 if (page) {
4088 kunmap(page);
4089 page_cache_release(page);
4090 }
4091 return res;
4092 }
4093
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)4094 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4095 {
4096 struct page *page = NULL;
4097 nd_set_link(nd, page_getlink(dentry, &page));
4098 return page;
4099 }
4100
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)4101 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4102 {
4103 struct page *page = cookie;
4104
4105 if (page) {
4106 kunmap(page);
4107 page_cache_release(page);
4108 }
4109 }
4110
4111 /*
4112 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4113 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4114 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4115 {
4116 struct address_space *mapping = inode->i_mapping;
4117 struct page *page;
4118 void *fsdata;
4119 int err;
4120 char *kaddr;
4121 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4122 if (nofs)
4123 flags |= AOP_FLAG_NOFS;
4124
4125 retry:
4126 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4127 flags, &page, &fsdata);
4128 if (err)
4129 goto fail;
4130
4131 kaddr = kmap_atomic(page);
4132 memcpy(kaddr, symname, len-1);
4133 kunmap_atomic(kaddr);
4134
4135 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4136 page, fsdata);
4137 if (err < 0)
4138 goto fail;
4139 if (err < len-1)
4140 goto retry;
4141
4142 mark_inode_dirty(inode);
4143 return 0;
4144 fail:
4145 return err;
4146 }
4147
page_symlink(struct inode * inode,const char * symname,int len)4148 int page_symlink(struct inode *inode, const char *symname, int len)
4149 {
4150 return __page_symlink(inode, symname, len,
4151 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4152 }
4153
4154 const struct inode_operations page_symlink_inode_operations = {
4155 .readlink = generic_readlink,
4156 .follow_link = page_follow_link_light,
4157 .put_link = page_put_link,
4158 };
4159
4160 EXPORT_SYMBOL(user_path_at);
4161 EXPORT_SYMBOL(follow_down_one);
4162 EXPORT_SYMBOL(follow_down);
4163 EXPORT_SYMBOL(follow_up);
4164 EXPORT_SYMBOL(get_write_access); /* nfsd */
4165 EXPORT_SYMBOL(lock_rename);
4166 EXPORT_SYMBOL(page_follow_link_light);
4167 EXPORT_SYMBOL(page_put_link);
4168 EXPORT_SYMBOL(page_readlink);
4169 EXPORT_SYMBOL(__page_symlink);
4170 EXPORT_SYMBOL(page_symlink);
4171 EXPORT_SYMBOL(page_symlink_inode_operations);
4172 EXPORT_SYMBOL(kern_path);
4173 EXPORT_SYMBOL(vfs_path_lookup);
4174 EXPORT_SYMBOL(unlock_rename);
4175 EXPORT_SYMBOL(vfs_follow_link);
4176 EXPORT_SYMBOL(generic_permission);
4177 EXPORT_SYMBOL(vfs_readlink);
4178 EXPORT_SYMBOL(dentry_unhash);
4179 EXPORT_SYMBOL(generic_readlink);
4180