1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
43
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47
48 /*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56 DEFINE_BRLOCK(vfsmount_lock);
57
hash(struct vfsmount * mnt,struct dentry * dentry)58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
mnt_alloc_id(struct mount * mnt)72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 int res;
75
76 retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 if (!res)
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87 }
88
mnt_free_id(struct mount * mnt)89 static void mnt_free_id(struct mount *mnt)
90 {
91 int id = mnt->mnt_id;
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
96 spin_unlock(&mnt_id_lock);
97 }
98
99 /*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
mnt_alloc_group_id(struct mount * mnt)104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 int res;
107
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
113 &mnt->mnt_group_id);
114 if (!res)
115 mnt_group_start = mnt->mnt_group_id + 1;
116
117 return res;
118 }
119
120 /*
121 * Release a peer group ID
122 */
mnt_release_group_id(struct mount * mnt)123 void mnt_release_group_id(struct mount *mnt)
124 {
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
130 }
131
132 /*
133 * vfsmount lock must be held for read
134 */
mnt_add_count(struct mount * mnt,int n)135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 preempt_disable();
141 mnt->mnt_count += n;
142 preempt_enable();
143 #endif
144 }
145
146 /*
147 * vfsmount lock must be held for write
148 */
mnt_get_count(struct mount * mnt)149 unsigned int mnt_get_count(struct mount *mnt)
150 {
151 #ifdef CONFIG_SMP
152 unsigned int count = 0;
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 }
158
159 return count;
160 #else
161 return mnt->mnt_count;
162 #endif
163 }
164
alloc_vfsmnt(const char * name)165 static struct mount *alloc_vfsmnt(const char *name)
166 {
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
169 int err;
170
171 err = mnt_alloc_id(mnt);
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
178 goto out_free_id;
179 }
180
181 #ifdef CONFIG_SMP
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
184 goto out_free_devname;
185
186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
190 #endif
191 mnt->mnt.data = NULL;
192
193 INIT_LIST_HEAD(&mnt->mnt_hash);
194 INIT_LIST_HEAD(&mnt->mnt_child);
195 INIT_LIST_HEAD(&mnt->mnt_mounts);
196 INIT_LIST_HEAD(&mnt->mnt_list);
197 INIT_LIST_HEAD(&mnt->mnt_expire);
198 INIT_LIST_HEAD(&mnt->mnt_share);
199 INIT_LIST_HEAD(&mnt->mnt_slave_list);
200 INIT_LIST_HEAD(&mnt->mnt_slave);
201 #ifdef CONFIG_FSNOTIFY
202 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
203 #endif
204 }
205 return mnt;
206
207 #ifdef CONFIG_SMP
208 out_free_devname:
209 kfree(mnt->mnt_devname);
210 #endif
211 out_free_id:
212 mnt_free_id(mnt);
213 out_free_cache:
214 kmem_cache_free(mnt_cache, mnt);
215 return NULL;
216 }
217
218 /*
219 * Most r/o checks on a fs are for operations that take
220 * discrete amounts of time, like a write() or unlink().
221 * We must keep track of when those operations start
222 * (for permission checks) and when they end, so that
223 * we can determine when writes are able to occur to
224 * a filesystem.
225 */
226 /*
227 * __mnt_is_readonly: check whether a mount is read-only
228 * @mnt: the mount to check for its write status
229 *
230 * This shouldn't be used directly ouside of the VFS.
231 * It does not guarantee that the filesystem will stay
232 * r/w, just that it is right *now*. This can not and
233 * should not be used in place of IS_RDONLY(inode).
234 * mnt_want/drop_write() will _keep_ the filesystem
235 * r/w.
236 */
__mnt_is_readonly(struct vfsmount * mnt)237 int __mnt_is_readonly(struct vfsmount *mnt)
238 {
239 if (mnt->mnt_flags & MNT_READONLY)
240 return 1;
241 if (mnt->mnt_sb->s_flags & MS_RDONLY)
242 return 1;
243 return 0;
244 }
245 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
246
mnt_inc_writers(struct mount * mnt)247 static inline void mnt_inc_writers(struct mount *mnt)
248 {
249 #ifdef CONFIG_SMP
250 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
251 #else
252 mnt->mnt_writers++;
253 #endif
254 }
255
mnt_dec_writers(struct mount * mnt)256 static inline void mnt_dec_writers(struct mount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
260 #else
261 mnt->mnt_writers--;
262 #endif
263 }
264
mnt_get_writers(struct mount * mnt)265 static unsigned int mnt_get_writers(struct mount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 unsigned int count = 0;
269 int cpu;
270
271 for_each_possible_cpu(cpu) {
272 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
273 }
274
275 return count;
276 #else
277 return mnt->mnt_writers;
278 #endif
279 }
280
mnt_is_readonly(struct vfsmount * mnt)281 static int mnt_is_readonly(struct vfsmount *mnt)
282 {
283 if (mnt->mnt_sb->s_readonly_remount)
284 return 1;
285 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
286 smp_rmb();
287 return __mnt_is_readonly(mnt);
288 }
289
290 /*
291 * Most r/o & frozen checks on a fs are for operations that take discrete
292 * amounts of time, like a write() or unlink(). We must keep track of when
293 * those operations start (for permission checks) and when they end, so that we
294 * can determine when writes are able to occur to a filesystem.
295 */
296 /**
297 * __mnt_want_write - get write access to a mount without freeze protection
298 * @m: the mount on which to take a write
299 *
300 * This tells the low-level filesystem that a write is about to be performed to
301 * it, and makes sure that writes are allowed (mnt it read-write) before
302 * returning success. This operation does not protect against filesystem being
303 * frozen. When the write operation is finished, __mnt_drop_write() must be
304 * called. This is effectively a refcount.
305 */
__mnt_want_write(struct vfsmount * m)306 int __mnt_want_write(struct vfsmount *m)
307 {
308 struct mount *mnt = real_mount(m);
309 int ret = 0;
310
311 preempt_disable();
312 mnt_inc_writers(mnt);
313 /*
314 * The store to mnt_inc_writers must be visible before we pass
315 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
316 * incremented count after it has set MNT_WRITE_HOLD.
317 */
318 smp_mb();
319 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
320 cpu_relax();
321 /*
322 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
323 * be set to match its requirements. So we must not load that until
324 * MNT_WRITE_HOLD is cleared.
325 */
326 smp_rmb();
327 if (mnt_is_readonly(m)) {
328 mnt_dec_writers(mnt);
329 ret = -EROFS;
330 }
331 preempt_enable();
332
333 return ret;
334 }
335
336 /**
337 * mnt_want_write - get write access to a mount
338 * @m: the mount on which to take a write
339 *
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mount is read-write, filesystem
342 * is not frozen) before returning success. When the write operation is
343 * finished, mnt_drop_write() must be called. This is effectively a refcount.
344 */
mnt_want_write(struct vfsmount * m)345 int mnt_want_write(struct vfsmount *m)
346 {
347 int ret;
348
349 sb_start_write(m->mnt_sb);
350 ret = __mnt_want_write(m);
351 if (ret)
352 sb_end_write(m->mnt_sb);
353 return ret;
354 }
355 EXPORT_SYMBOL_GPL(mnt_want_write);
356
357 /**
358 * mnt_clone_write - get write access to a mount
359 * @mnt: the mount on which to take a write
360 *
361 * This is effectively like mnt_want_write, except
362 * it must only be used to take an extra write reference
363 * on a mountpoint that we already know has a write reference
364 * on it. This allows some optimisation.
365 *
366 * After finished, mnt_drop_write must be called as usual to
367 * drop the reference.
368 */
mnt_clone_write(struct vfsmount * mnt)369 int mnt_clone_write(struct vfsmount *mnt)
370 {
371 /* superblock may be r/o */
372 if (__mnt_is_readonly(mnt))
373 return -EROFS;
374 preempt_disable();
375 mnt_inc_writers(real_mount(mnt));
376 preempt_enable();
377 return 0;
378 }
379 EXPORT_SYMBOL_GPL(mnt_clone_write);
380
381 /**
382 * __mnt_want_write_file - get write access to a file's mount
383 * @file: the file who's mount on which to take a write
384 *
385 * This is like __mnt_want_write, but it takes a file and can
386 * do some optimisations if the file is open for write already
387 */
__mnt_want_write_file(struct file * file)388 int __mnt_want_write_file(struct file *file)
389 {
390 struct inode *inode = file_inode(file);
391
392 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
393 return __mnt_want_write(file->f_path.mnt);
394 else
395 return mnt_clone_write(file->f_path.mnt);
396 }
397
398 /**
399 * mnt_want_write_file - get write access to a file's mount
400 * @file: the file who's mount on which to take a write
401 *
402 * This is like mnt_want_write, but it takes a file and can
403 * do some optimisations if the file is open for write already
404 */
mnt_want_write_file(struct file * file)405 int mnt_want_write_file(struct file *file)
406 {
407 int ret;
408
409 sb_start_write(file->f_path.mnt->mnt_sb);
410 ret = __mnt_want_write_file(file);
411 if (ret)
412 sb_end_write(file->f_path.mnt->mnt_sb);
413 return ret;
414 }
415 EXPORT_SYMBOL_GPL(mnt_want_write_file);
416
417 /**
418 * __mnt_drop_write - give up write access to a mount
419 * @mnt: the mount on which to give up write access
420 *
421 * Tells the low-level filesystem that we are done
422 * performing writes to it. Must be matched with
423 * __mnt_want_write() call above.
424 */
__mnt_drop_write(struct vfsmount * mnt)425 void __mnt_drop_write(struct vfsmount *mnt)
426 {
427 preempt_disable();
428 mnt_dec_writers(real_mount(mnt));
429 preempt_enable();
430 }
431
432 /**
433 * mnt_drop_write - give up write access to a mount
434 * @mnt: the mount on which to give up write access
435 *
436 * Tells the low-level filesystem that we are done performing writes to it and
437 * also allows filesystem to be frozen again. Must be matched with
438 * mnt_want_write() call above.
439 */
mnt_drop_write(struct vfsmount * mnt)440 void mnt_drop_write(struct vfsmount *mnt)
441 {
442 __mnt_drop_write(mnt);
443 sb_end_write(mnt->mnt_sb);
444 }
445 EXPORT_SYMBOL_GPL(mnt_drop_write);
446
__mnt_drop_write_file(struct file * file)447 void __mnt_drop_write_file(struct file *file)
448 {
449 __mnt_drop_write(file->f_path.mnt);
450 }
451
mnt_drop_write_file(struct file * file)452 void mnt_drop_write_file(struct file *file)
453 {
454 mnt_drop_write(file->f_path.mnt);
455 }
456 EXPORT_SYMBOL(mnt_drop_write_file);
457
mnt_make_readonly(struct mount * mnt)458 static int mnt_make_readonly(struct mount *mnt)
459 {
460 int ret = 0;
461
462 br_write_lock(&vfsmount_lock);
463 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
464 /*
465 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
466 * should be visible before we do.
467 */
468 smp_mb();
469
470 /*
471 * With writers on hold, if this value is zero, then there are
472 * definitely no active writers (although held writers may subsequently
473 * increment the count, they'll have to wait, and decrement it after
474 * seeing MNT_READONLY).
475 *
476 * It is OK to have counter incremented on one CPU and decremented on
477 * another: the sum will add up correctly. The danger would be when we
478 * sum up each counter, if we read a counter before it is incremented,
479 * but then read another CPU's count which it has been subsequently
480 * decremented from -- we would see more decrements than we should.
481 * MNT_WRITE_HOLD protects against this scenario, because
482 * mnt_want_write first increments count, then smp_mb, then spins on
483 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
484 * we're counting up here.
485 */
486 if (mnt_get_writers(mnt) > 0)
487 ret = -EBUSY;
488 else
489 mnt->mnt.mnt_flags |= MNT_READONLY;
490 /*
491 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
492 * that become unheld will see MNT_READONLY.
493 */
494 smp_wmb();
495 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
496 br_write_unlock(&vfsmount_lock);
497 return ret;
498 }
499
__mnt_unmake_readonly(struct mount * mnt)500 static void __mnt_unmake_readonly(struct mount *mnt)
501 {
502 br_write_lock(&vfsmount_lock);
503 mnt->mnt.mnt_flags &= ~MNT_READONLY;
504 br_write_unlock(&vfsmount_lock);
505 }
506
sb_prepare_remount_readonly(struct super_block * sb)507 int sb_prepare_remount_readonly(struct super_block *sb)
508 {
509 struct mount *mnt;
510 int err = 0;
511
512 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
513 if (atomic_long_read(&sb->s_remove_count))
514 return -EBUSY;
515
516 br_write_lock(&vfsmount_lock);
517 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
518 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
519 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
520 smp_mb();
521 if (mnt_get_writers(mnt) > 0) {
522 err = -EBUSY;
523 break;
524 }
525 }
526 }
527 if (!err && atomic_long_read(&sb->s_remove_count))
528 err = -EBUSY;
529
530 if (!err) {
531 sb->s_readonly_remount = 1;
532 smp_wmb();
533 }
534 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
536 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
537 }
538 br_write_unlock(&vfsmount_lock);
539
540 return err;
541 }
542
free_vfsmnt(struct mount * mnt)543 static void free_vfsmnt(struct mount *mnt)
544 {
545 kfree(mnt->mnt.data);
546 kfree(mnt->mnt_devname);
547 mnt_free_id(mnt);
548 #ifdef CONFIG_SMP
549 free_percpu(mnt->mnt_pcp);
550 #endif
551 kmem_cache_free(mnt_cache, mnt);
552 }
553
554 /*
555 * find the first or last mount at @dentry on vfsmount @mnt depending on
556 * @dir. If @dir is set return the first mount else return the last mount.
557 * vfsmount_lock must be held for read or write.
558 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry,int dir)559 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
560 int dir)
561 {
562 struct list_head *head = mount_hashtable + hash(mnt, dentry);
563 struct list_head *tmp = head;
564 struct mount *p, *found = NULL;
565
566 for (;;) {
567 tmp = dir ? tmp->next : tmp->prev;
568 p = NULL;
569 if (tmp == head)
570 break;
571 p = list_entry(tmp, struct mount, mnt_hash);
572 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
573 found = p;
574 break;
575 }
576 }
577 return found;
578 }
579
580 /*
581 * lookup_mnt - Return the first child mount mounted at path
582 *
583 * "First" means first mounted chronologically. If you create the
584 * following mounts:
585 *
586 * mount /dev/sda1 /mnt
587 * mount /dev/sda2 /mnt
588 * mount /dev/sda3 /mnt
589 *
590 * Then lookup_mnt() on the base /mnt dentry in the root mount will
591 * return successively the root dentry and vfsmount of /dev/sda1, then
592 * /dev/sda2, then /dev/sda3, then NULL.
593 *
594 * lookup_mnt takes a reference to the found vfsmount.
595 */
lookup_mnt(struct path * path)596 struct vfsmount *lookup_mnt(struct path *path)
597 {
598 struct mount *child_mnt;
599
600 br_read_lock(&vfsmount_lock);
601 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
602 if (child_mnt) {
603 mnt_add_count(child_mnt, 1);
604 br_read_unlock(&vfsmount_lock);
605 return &child_mnt->mnt;
606 } else {
607 br_read_unlock(&vfsmount_lock);
608 return NULL;
609 }
610 }
611
new_mountpoint(struct dentry * dentry)612 static struct mountpoint *new_mountpoint(struct dentry *dentry)
613 {
614 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
615 struct mountpoint *mp;
616
617 list_for_each_entry(mp, chain, m_hash) {
618 if (mp->m_dentry == dentry) {
619 /* might be worth a WARN_ON() */
620 if (d_unlinked(dentry))
621 return ERR_PTR(-ENOENT);
622 mp->m_count++;
623 return mp;
624 }
625 }
626
627 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
628 if (!mp)
629 return ERR_PTR(-ENOMEM);
630
631 spin_lock(&dentry->d_lock);
632 if (d_unlinked(dentry)) {
633 spin_unlock(&dentry->d_lock);
634 kfree(mp);
635 return ERR_PTR(-ENOENT);
636 }
637 dentry->d_flags |= DCACHE_MOUNTED;
638 spin_unlock(&dentry->d_lock);
639 mp->m_dentry = dentry;
640 mp->m_count = 1;
641 list_add(&mp->m_hash, chain);
642 return mp;
643 }
644
put_mountpoint(struct mountpoint * mp)645 static void put_mountpoint(struct mountpoint *mp)
646 {
647 if (!--mp->m_count) {
648 struct dentry *dentry = mp->m_dentry;
649 spin_lock(&dentry->d_lock);
650 dentry->d_flags &= ~DCACHE_MOUNTED;
651 spin_unlock(&dentry->d_lock);
652 list_del(&mp->m_hash);
653 kfree(mp);
654 }
655 }
656
check_mnt(struct mount * mnt)657 static inline int check_mnt(struct mount *mnt)
658 {
659 return mnt->mnt_ns == current->nsproxy->mnt_ns;
660 }
661
662 /*
663 * vfsmount lock must be held for write
664 */
touch_mnt_namespace(struct mnt_namespace * ns)665 static void touch_mnt_namespace(struct mnt_namespace *ns)
666 {
667 if (ns) {
668 ns->event = ++event;
669 wake_up_interruptible(&ns->poll);
670 }
671 }
672
673 /*
674 * vfsmount lock must be held for write
675 */
__touch_mnt_namespace(struct mnt_namespace * ns)676 static void __touch_mnt_namespace(struct mnt_namespace *ns)
677 {
678 if (ns && ns->event != event) {
679 ns->event = event;
680 wake_up_interruptible(&ns->poll);
681 }
682 }
683
684 /*
685 * vfsmount lock must be held for write
686 */
detach_mnt(struct mount * mnt,struct path * old_path)687 static void detach_mnt(struct mount *mnt, struct path *old_path)
688 {
689 old_path->dentry = mnt->mnt_mountpoint;
690 old_path->mnt = &mnt->mnt_parent->mnt;
691 mnt->mnt_parent = mnt;
692 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
693 list_del_init(&mnt->mnt_child);
694 list_del_init(&mnt->mnt_hash);
695 put_mountpoint(mnt->mnt_mp);
696 mnt->mnt_mp = NULL;
697 }
698
699 /*
700 * vfsmount lock must be held for write
701 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)702 void mnt_set_mountpoint(struct mount *mnt,
703 struct mountpoint *mp,
704 struct mount *child_mnt)
705 {
706 mp->m_count++;
707 mnt_add_count(mnt, 1); /* essentially, that's mntget */
708 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
709 child_mnt->mnt_parent = mnt;
710 child_mnt->mnt_mp = mp;
711 }
712
713 /*
714 * vfsmount lock must be held for write
715 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)716 static void attach_mnt(struct mount *mnt,
717 struct mount *parent,
718 struct mountpoint *mp)
719 {
720 mnt_set_mountpoint(parent, mp, mnt);
721 list_add_tail(&mnt->mnt_hash, mount_hashtable +
722 hash(&parent->mnt, mp->m_dentry));
723 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
724 }
725
726 /*
727 * vfsmount lock must be held for write
728 */
commit_tree(struct mount * mnt)729 static void commit_tree(struct mount *mnt)
730 {
731 struct mount *parent = mnt->mnt_parent;
732 struct mount *m;
733 LIST_HEAD(head);
734 struct mnt_namespace *n = parent->mnt_ns;
735
736 BUG_ON(parent == mnt);
737
738 list_add_tail(&head, &mnt->mnt_list);
739 list_for_each_entry(m, &head, mnt_list)
740 m->mnt_ns = n;
741
742 list_splice(&head, n->list.prev);
743
744 list_add_tail(&mnt->mnt_hash, mount_hashtable +
745 hash(&parent->mnt, mnt->mnt_mountpoint));
746 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
747 touch_mnt_namespace(n);
748 }
749
next_mnt(struct mount * p,struct mount * root)750 static struct mount *next_mnt(struct mount *p, struct mount *root)
751 {
752 struct list_head *next = p->mnt_mounts.next;
753 if (next == &p->mnt_mounts) {
754 while (1) {
755 if (p == root)
756 return NULL;
757 next = p->mnt_child.next;
758 if (next != &p->mnt_parent->mnt_mounts)
759 break;
760 p = p->mnt_parent;
761 }
762 }
763 return list_entry(next, struct mount, mnt_child);
764 }
765
skip_mnt_tree(struct mount * p)766 static struct mount *skip_mnt_tree(struct mount *p)
767 {
768 struct list_head *prev = p->mnt_mounts.prev;
769 while (prev != &p->mnt_mounts) {
770 p = list_entry(prev, struct mount, mnt_child);
771 prev = p->mnt_mounts.prev;
772 }
773 return p;
774 }
775
776 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)777 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
778 {
779 struct mount *mnt;
780 struct dentry *root;
781
782 if (!type)
783 return ERR_PTR(-ENODEV);
784
785 mnt = alloc_vfsmnt(name);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
788
789 if (type->alloc_mnt_data) {
790 mnt->mnt.data = type->alloc_mnt_data();
791 if (!mnt->mnt.data) {
792 mnt_free_id(mnt);
793 free_vfsmnt(mnt);
794 return ERR_PTR(-ENOMEM);
795 }
796 }
797 if (flags & MS_KERNMOUNT)
798 mnt->mnt.mnt_flags = MNT_INTERNAL;
799
800 root = mount_fs(type, flags, name, &mnt->mnt, data);
801 if (IS_ERR(root)) {
802 free_vfsmnt(mnt);
803 return ERR_CAST(root);
804 }
805
806 mnt->mnt.mnt_root = root;
807 mnt->mnt.mnt_sb = root->d_sb;
808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 mnt->mnt_parent = mnt;
810 br_write_lock(&vfsmount_lock);
811 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
812 br_write_unlock(&vfsmount_lock);
813 return &mnt->mnt;
814 }
815 EXPORT_SYMBOL_GPL(vfs_kern_mount);
816
clone_mnt(struct mount * old,struct dentry * root,int flag)817 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
818 int flag)
819 {
820 struct super_block *sb = old->mnt.mnt_sb;
821 struct mount *mnt;
822 int err;
823
824 mnt = alloc_vfsmnt(old->mnt_devname);
825 if (!mnt)
826 return ERR_PTR(-ENOMEM);
827
828 if (sb->s_op->clone_mnt_data) {
829 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
830 if (!mnt->mnt.data) {
831 err = -ENOMEM;
832 goto out_free;
833 }
834 }
835
836 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
837 mnt->mnt_group_id = 0; /* not a peer of original */
838 else
839 mnt->mnt_group_id = old->mnt_group_id;
840
841 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
842 err = mnt_alloc_group_id(mnt);
843 if (err)
844 goto out_free;
845 }
846
847 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
848 /* Don't allow unprivileged users to change mount flags */
849 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
850 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
851
852 atomic_inc(&sb->s_active);
853 mnt->mnt.mnt_sb = sb;
854 mnt->mnt.mnt_root = dget(root);
855 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
856 mnt->mnt_parent = mnt;
857 br_write_lock(&vfsmount_lock);
858 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
859 br_write_unlock(&vfsmount_lock);
860
861 if ((flag & CL_SLAVE) ||
862 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
863 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
864 mnt->mnt_master = old;
865 CLEAR_MNT_SHARED(mnt);
866 } else if (!(flag & CL_PRIVATE)) {
867 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
868 list_add(&mnt->mnt_share, &old->mnt_share);
869 if (IS_MNT_SLAVE(old))
870 list_add(&mnt->mnt_slave, &old->mnt_slave);
871 mnt->mnt_master = old->mnt_master;
872 }
873 if (flag & CL_MAKE_SHARED)
874 set_mnt_shared(mnt);
875
876 /* stick the duplicate mount on the same expiry list
877 * as the original if that was on one */
878 if (flag & CL_EXPIRE) {
879 if (!list_empty(&old->mnt_expire))
880 list_add(&mnt->mnt_expire, &old->mnt_expire);
881 }
882
883 return mnt;
884
885 out_free:
886 free_vfsmnt(mnt);
887 return ERR_PTR(err);
888 }
889
mntfree(struct mount * mnt)890 static inline void mntfree(struct mount *mnt)
891 {
892 struct vfsmount *m = &mnt->mnt;
893 struct super_block *sb = m->mnt_sb;
894
895 /*
896 * This probably indicates that somebody messed
897 * up a mnt_want/drop_write() pair. If this
898 * happens, the filesystem was probably unable
899 * to make r/w->r/o transitions.
900 */
901 /*
902 * The locking used to deal with mnt_count decrement provides barriers,
903 * so mnt_get_writers() below is safe.
904 */
905 WARN_ON(mnt_get_writers(mnt));
906 fsnotify_vfsmount_delete(m);
907 dput(m->mnt_root);
908 free_vfsmnt(mnt);
909 deactivate_super(sb);
910 }
911
mntput_no_expire(struct mount * mnt)912 static void mntput_no_expire(struct mount *mnt)
913 {
914 put_again:
915 #ifdef CONFIG_SMP
916 br_read_lock(&vfsmount_lock);
917 if (likely(mnt->mnt_ns)) {
918 /* shouldn't be the last one */
919 mnt_add_count(mnt, -1);
920 br_read_unlock(&vfsmount_lock);
921 return;
922 }
923 br_read_unlock(&vfsmount_lock);
924
925 br_write_lock(&vfsmount_lock);
926 mnt_add_count(mnt, -1);
927 if (mnt_get_count(mnt)) {
928 br_write_unlock(&vfsmount_lock);
929 return;
930 }
931 #else
932 mnt_add_count(mnt, -1);
933 if (likely(mnt_get_count(mnt)))
934 return;
935 br_write_lock(&vfsmount_lock);
936 #endif
937 if (unlikely(mnt->mnt_pinned)) {
938 mnt_add_count(mnt, mnt->mnt_pinned + 1);
939 mnt->mnt_pinned = 0;
940 br_write_unlock(&vfsmount_lock);
941 acct_auto_close_mnt(&mnt->mnt);
942 goto put_again;
943 }
944
945 list_del(&mnt->mnt_instance);
946 br_write_unlock(&vfsmount_lock);
947 mntfree(mnt);
948 }
949
mntput(struct vfsmount * mnt)950 void mntput(struct vfsmount *mnt)
951 {
952 if (mnt) {
953 struct mount *m = real_mount(mnt);
954 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
955 if (unlikely(m->mnt_expiry_mark))
956 m->mnt_expiry_mark = 0;
957 mntput_no_expire(m);
958 }
959 }
960 EXPORT_SYMBOL(mntput);
961
mntget(struct vfsmount * mnt)962 struct vfsmount *mntget(struct vfsmount *mnt)
963 {
964 if (mnt)
965 mnt_add_count(real_mount(mnt), 1);
966 return mnt;
967 }
968 EXPORT_SYMBOL(mntget);
969
mnt_pin(struct vfsmount * mnt)970 void mnt_pin(struct vfsmount *mnt)
971 {
972 br_write_lock(&vfsmount_lock);
973 real_mount(mnt)->mnt_pinned++;
974 br_write_unlock(&vfsmount_lock);
975 }
976 EXPORT_SYMBOL(mnt_pin);
977
mnt_unpin(struct vfsmount * m)978 void mnt_unpin(struct vfsmount *m)
979 {
980 struct mount *mnt = real_mount(m);
981 br_write_lock(&vfsmount_lock);
982 if (mnt->mnt_pinned) {
983 mnt_add_count(mnt, 1);
984 mnt->mnt_pinned--;
985 }
986 br_write_unlock(&vfsmount_lock);
987 }
988 EXPORT_SYMBOL(mnt_unpin);
989
mangle(struct seq_file * m,const char * s)990 static inline void mangle(struct seq_file *m, const char *s)
991 {
992 seq_escape(m, s, " \t\n\\");
993 }
994
995 /*
996 * Simple .show_options callback for filesystems which don't want to
997 * implement more complex mount option showing.
998 *
999 * See also save_mount_options().
1000 */
generic_show_options(struct seq_file * m,struct dentry * root)1001 int generic_show_options(struct seq_file *m, struct dentry *root)
1002 {
1003 const char *options;
1004
1005 rcu_read_lock();
1006 options = rcu_dereference(root->d_sb->s_options);
1007
1008 if (options != NULL && options[0]) {
1009 seq_putc(m, ',');
1010 mangle(m, options);
1011 }
1012 rcu_read_unlock();
1013
1014 return 0;
1015 }
1016 EXPORT_SYMBOL(generic_show_options);
1017
1018 /*
1019 * If filesystem uses generic_show_options(), this function should be
1020 * called from the fill_super() callback.
1021 *
1022 * The .remount_fs callback usually needs to be handled in a special
1023 * way, to make sure, that previous options are not overwritten if the
1024 * remount fails.
1025 *
1026 * Also note, that if the filesystem's .remount_fs function doesn't
1027 * reset all options to their default value, but changes only newly
1028 * given options, then the displayed options will not reflect reality
1029 * any more.
1030 */
save_mount_options(struct super_block * sb,char * options)1031 void save_mount_options(struct super_block *sb, char *options)
1032 {
1033 BUG_ON(sb->s_options);
1034 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1035 }
1036 EXPORT_SYMBOL(save_mount_options);
1037
replace_mount_options(struct super_block * sb,char * options)1038 void replace_mount_options(struct super_block *sb, char *options)
1039 {
1040 char *old = sb->s_options;
1041 rcu_assign_pointer(sb->s_options, options);
1042 if (old) {
1043 synchronize_rcu();
1044 kfree(old);
1045 }
1046 }
1047 EXPORT_SYMBOL(replace_mount_options);
1048
1049 #ifdef CONFIG_PROC_FS
1050 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1051 static void *m_start(struct seq_file *m, loff_t *pos)
1052 {
1053 struct proc_mounts *p = proc_mounts(m);
1054
1055 down_read(&namespace_sem);
1056 return seq_list_start(&p->ns->list, *pos);
1057 }
1058
m_next(struct seq_file * m,void * v,loff_t * pos)1059 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1060 {
1061 struct proc_mounts *p = proc_mounts(m);
1062
1063 return seq_list_next(v, &p->ns->list, pos);
1064 }
1065
m_stop(struct seq_file * m,void * v)1066 static void m_stop(struct seq_file *m, void *v)
1067 {
1068 up_read(&namespace_sem);
1069 }
1070
m_show(struct seq_file * m,void * v)1071 static int m_show(struct seq_file *m, void *v)
1072 {
1073 struct proc_mounts *p = proc_mounts(m);
1074 struct mount *r = list_entry(v, struct mount, mnt_list);
1075 return p->show(m, &r->mnt);
1076 }
1077
1078 const struct seq_operations mounts_op = {
1079 .start = m_start,
1080 .next = m_next,
1081 .stop = m_stop,
1082 .show = m_show,
1083 };
1084 #endif /* CONFIG_PROC_FS */
1085
1086 /**
1087 * may_umount_tree - check if a mount tree is busy
1088 * @mnt: root of mount tree
1089 *
1090 * This is called to check if a tree of mounts has any
1091 * open files, pwds, chroots or sub mounts that are
1092 * busy.
1093 */
may_umount_tree(struct vfsmount * m)1094 int may_umount_tree(struct vfsmount *m)
1095 {
1096 struct mount *mnt = real_mount(m);
1097 int actual_refs = 0;
1098 int minimum_refs = 0;
1099 struct mount *p;
1100 BUG_ON(!m);
1101
1102 /* write lock needed for mnt_get_count */
1103 br_write_lock(&vfsmount_lock);
1104 for (p = mnt; p; p = next_mnt(p, mnt)) {
1105 actual_refs += mnt_get_count(p);
1106 minimum_refs += 2;
1107 }
1108 br_write_unlock(&vfsmount_lock);
1109
1110 if (actual_refs > minimum_refs)
1111 return 0;
1112
1113 return 1;
1114 }
1115
1116 EXPORT_SYMBOL(may_umount_tree);
1117
1118 /**
1119 * may_umount - check if a mount point is busy
1120 * @mnt: root of mount
1121 *
1122 * This is called to check if a mount point has any
1123 * open files, pwds, chroots or sub mounts. If the
1124 * mount has sub mounts this will return busy
1125 * regardless of whether the sub mounts are busy.
1126 *
1127 * Doesn't take quota and stuff into account. IOW, in some cases it will
1128 * give false negatives. The main reason why it's here is that we need
1129 * a non-destructive way to look for easily umountable filesystems.
1130 */
may_umount(struct vfsmount * mnt)1131 int may_umount(struct vfsmount *mnt)
1132 {
1133 int ret = 1;
1134 down_read(&namespace_sem);
1135 br_write_lock(&vfsmount_lock);
1136 if (propagate_mount_busy(real_mount(mnt), 2))
1137 ret = 0;
1138 br_write_unlock(&vfsmount_lock);
1139 up_read(&namespace_sem);
1140 return ret;
1141 }
1142
1143 EXPORT_SYMBOL(may_umount);
1144
1145 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1146
namespace_unlock(void)1147 static void namespace_unlock(void)
1148 {
1149 struct mount *mnt;
1150 LIST_HEAD(head);
1151
1152 if (likely(list_empty(&unmounted))) {
1153 up_write(&namespace_sem);
1154 return;
1155 }
1156
1157 list_splice_init(&unmounted, &head);
1158 up_write(&namespace_sem);
1159
1160 while (!list_empty(&head)) {
1161 mnt = list_first_entry(&head, struct mount, mnt_hash);
1162 list_del_init(&mnt->mnt_hash);
1163 if (mnt_has_parent(mnt)) {
1164 struct dentry *dentry;
1165 struct mount *m;
1166
1167 br_write_lock(&vfsmount_lock);
1168 dentry = mnt->mnt_mountpoint;
1169 m = mnt->mnt_parent;
1170 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1171 mnt->mnt_parent = mnt;
1172 m->mnt_ghosts--;
1173 br_write_unlock(&vfsmount_lock);
1174 dput(dentry);
1175 mntput(&m->mnt);
1176 }
1177 mntput(&mnt->mnt);
1178 }
1179 }
1180
namespace_lock(void)1181 static inline void namespace_lock(void)
1182 {
1183 down_write(&namespace_sem);
1184 }
1185
1186 /*
1187 * vfsmount lock must be held for write
1188 * namespace_sem must be held for write
1189 */
umount_tree(struct mount * mnt,int propagate)1190 void umount_tree(struct mount *mnt, int propagate)
1191 {
1192 LIST_HEAD(tmp_list);
1193 struct mount *p;
1194
1195 for (p = mnt; p; p = next_mnt(p, mnt))
1196 list_move(&p->mnt_hash, &tmp_list);
1197
1198 if (propagate)
1199 propagate_umount(&tmp_list);
1200
1201 list_for_each_entry(p, &tmp_list, mnt_hash) {
1202 list_del_init(&p->mnt_expire);
1203 list_del_init(&p->mnt_list);
1204 __touch_mnt_namespace(p->mnt_ns);
1205 p->mnt_ns = NULL;
1206 list_del_init(&p->mnt_child);
1207 if (mnt_has_parent(p)) {
1208 p->mnt_parent->mnt_ghosts++;
1209 put_mountpoint(p->mnt_mp);
1210 p->mnt_mp = NULL;
1211 }
1212 change_mnt_propagation(p, MS_PRIVATE);
1213 }
1214 list_splice(&tmp_list, &unmounted);
1215 }
1216
1217 static void shrink_submounts(struct mount *mnt);
1218
do_umount(struct mount * mnt,int flags)1219 static int do_umount(struct mount *mnt, int flags)
1220 {
1221 struct super_block *sb = mnt->mnt.mnt_sb;
1222 int retval;
1223
1224 retval = security_sb_umount(&mnt->mnt, flags);
1225 if (retval)
1226 return retval;
1227
1228 /*
1229 * Allow userspace to request a mountpoint be expired rather than
1230 * unmounting unconditionally. Unmount only happens if:
1231 * (1) the mark is already set (the mark is cleared by mntput())
1232 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1233 */
1234 if (flags & MNT_EXPIRE) {
1235 if (&mnt->mnt == current->fs->root.mnt ||
1236 flags & (MNT_FORCE | MNT_DETACH))
1237 return -EINVAL;
1238
1239 /*
1240 * probably don't strictly need the lock here if we examined
1241 * all race cases, but it's a slowpath.
1242 */
1243 br_write_lock(&vfsmount_lock);
1244 if (mnt_get_count(mnt) != 2) {
1245 br_write_unlock(&vfsmount_lock);
1246 return -EBUSY;
1247 }
1248 br_write_unlock(&vfsmount_lock);
1249
1250 if (!xchg(&mnt->mnt_expiry_mark, 1))
1251 return -EAGAIN;
1252 }
1253
1254 /*
1255 * If we may have to abort operations to get out of this
1256 * mount, and they will themselves hold resources we must
1257 * allow the fs to do things. In the Unix tradition of
1258 * 'Gee thats tricky lets do it in userspace' the umount_begin
1259 * might fail to complete on the first run through as other tasks
1260 * must return, and the like. Thats for the mount program to worry
1261 * about for the moment.
1262 */
1263
1264 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1265 sb->s_op->umount_begin(sb);
1266 }
1267
1268 /*
1269 * No sense to grab the lock for this test, but test itself looks
1270 * somewhat bogus. Suggestions for better replacement?
1271 * Ho-hum... In principle, we might treat that as umount + switch
1272 * to rootfs. GC would eventually take care of the old vfsmount.
1273 * Actually it makes sense, especially if rootfs would contain a
1274 * /reboot - static binary that would close all descriptors and
1275 * call reboot(9). Then init(8) could umount root and exec /reboot.
1276 */
1277 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1278 /*
1279 * Special case for "unmounting" root ...
1280 * we just try to remount it readonly.
1281 */
1282 down_write(&sb->s_umount);
1283 if (!(sb->s_flags & MS_RDONLY))
1284 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1285 up_write(&sb->s_umount);
1286 return retval;
1287 }
1288
1289 namespace_lock();
1290 br_write_lock(&vfsmount_lock);
1291 event++;
1292
1293 if (!(flags & MNT_DETACH))
1294 shrink_submounts(mnt);
1295
1296 retval = -EBUSY;
1297 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1298 if (!list_empty(&mnt->mnt_list))
1299 umount_tree(mnt, 1);
1300 retval = 0;
1301 }
1302 br_write_unlock(&vfsmount_lock);
1303 namespace_unlock();
1304 return retval;
1305 }
1306
1307 /*
1308 * Is the caller allowed to modify his namespace?
1309 */
may_mount(void)1310 static inline bool may_mount(void)
1311 {
1312 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1313 }
1314
1315 /*
1316 * Now umount can handle mount points as well as block devices.
1317 * This is important for filesystems which use unnamed block devices.
1318 *
1319 * We now support a flag for forced unmount like the other 'big iron'
1320 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1321 */
1322
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1323 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1324 {
1325 struct path path;
1326 struct mount *mnt;
1327 int retval;
1328 int lookup_flags = 0;
1329
1330 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1331 return -EINVAL;
1332
1333 if (!may_mount())
1334 return -EPERM;
1335
1336 if (!(flags & UMOUNT_NOFOLLOW))
1337 lookup_flags |= LOOKUP_FOLLOW;
1338
1339 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1340 if (retval)
1341 goto out;
1342 mnt = real_mount(path.mnt);
1343 retval = -EINVAL;
1344 if (path.dentry != path.mnt->mnt_root)
1345 goto dput_and_out;
1346 if (!check_mnt(mnt))
1347 goto dput_and_out;
1348
1349 retval = do_umount(mnt, flags);
1350 dput_and_out:
1351 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1352 dput(path.dentry);
1353 mntput_no_expire(mnt);
1354 out:
1355 return retval;
1356 }
1357
1358 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1359
1360 /*
1361 * The 2.0 compatible umount. No flags.
1362 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1363 SYSCALL_DEFINE1(oldumount, char __user *, name)
1364 {
1365 return sys_umount(name, 0);
1366 }
1367
1368 #endif
1369
mnt_ns_loop(struct path * path)1370 static bool mnt_ns_loop(struct path *path)
1371 {
1372 /* Could bind mounting the mount namespace inode cause a
1373 * mount namespace loop?
1374 */
1375 struct inode *inode = path->dentry->d_inode;
1376 struct proc_ns *ei;
1377 struct mnt_namespace *mnt_ns;
1378
1379 if (!proc_ns_inode(inode))
1380 return false;
1381
1382 ei = get_proc_ns(inode);
1383 if (ei->ns_ops != &mntns_operations)
1384 return false;
1385
1386 mnt_ns = ei->ns;
1387 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1388 }
1389
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1390 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1391 int flag)
1392 {
1393 struct mount *res, *p, *q, *r, *parent;
1394
1395 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1396 return ERR_PTR(-EINVAL);
1397
1398 res = q = clone_mnt(mnt, dentry, flag);
1399 if (IS_ERR(q))
1400 return q;
1401
1402 q->mnt_mountpoint = mnt->mnt_mountpoint;
1403
1404 p = mnt;
1405 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1406 struct mount *s;
1407 if (!is_subdir(r->mnt_mountpoint, dentry))
1408 continue;
1409
1410 for (s = r; s; s = next_mnt(s, r)) {
1411 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1412 s = skip_mnt_tree(s);
1413 continue;
1414 }
1415 while (p != s->mnt_parent) {
1416 p = p->mnt_parent;
1417 q = q->mnt_parent;
1418 }
1419 p = s;
1420 parent = q;
1421 q = clone_mnt(p, p->mnt.mnt_root, flag);
1422 if (IS_ERR(q))
1423 goto out;
1424 br_write_lock(&vfsmount_lock);
1425 list_add_tail(&q->mnt_list, &res->mnt_list);
1426 attach_mnt(q, parent, p->mnt_mp);
1427 br_write_unlock(&vfsmount_lock);
1428 }
1429 }
1430 return res;
1431 out:
1432 if (res) {
1433 br_write_lock(&vfsmount_lock);
1434 umount_tree(res, 0);
1435 br_write_unlock(&vfsmount_lock);
1436 }
1437 return q;
1438 }
1439
1440 /* Caller should check returned pointer for errors */
1441
collect_mounts(struct path * path)1442 struct vfsmount *collect_mounts(struct path *path)
1443 {
1444 struct mount *tree;
1445 namespace_lock();
1446 tree = copy_tree(real_mount(path->mnt), path->dentry,
1447 CL_COPY_ALL | CL_PRIVATE);
1448 namespace_unlock();
1449 if (IS_ERR(tree))
1450 return NULL;
1451 return &tree->mnt;
1452 }
1453
drop_collected_mounts(struct vfsmount * mnt)1454 void drop_collected_mounts(struct vfsmount *mnt)
1455 {
1456 namespace_lock();
1457 br_write_lock(&vfsmount_lock);
1458 umount_tree(real_mount(mnt), 0);
1459 br_write_unlock(&vfsmount_lock);
1460 namespace_unlock();
1461 }
1462
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1463 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1464 struct vfsmount *root)
1465 {
1466 struct mount *mnt;
1467 int res = f(root, arg);
1468 if (res)
1469 return res;
1470 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1471 res = f(&mnt->mnt, arg);
1472 if (res)
1473 return res;
1474 }
1475 return 0;
1476 }
1477
cleanup_group_ids(struct mount * mnt,struct mount * end)1478 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1479 {
1480 struct mount *p;
1481
1482 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1483 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1484 mnt_release_group_id(p);
1485 }
1486 }
1487
invent_group_ids(struct mount * mnt,bool recurse)1488 static int invent_group_ids(struct mount *mnt, bool recurse)
1489 {
1490 struct mount *p;
1491
1492 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1493 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1494 int err = mnt_alloc_group_id(p);
1495 if (err) {
1496 cleanup_group_ids(mnt, p);
1497 return err;
1498 }
1499 }
1500 }
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * @source_mnt : mount tree to be attached
1507 * @nd : place the mount tree @source_mnt is attached
1508 * @parent_nd : if non-null, detach the source_mnt from its parent and
1509 * store the parent mount and mountpoint dentry.
1510 * (done when source_mnt is moved)
1511 *
1512 * NOTE: in the table below explains the semantics when a source mount
1513 * of a given type is attached to a destination mount of a given type.
1514 * ---------------------------------------------------------------------------
1515 * | BIND MOUNT OPERATION |
1516 * |**************************************************************************
1517 * | source-->| shared | private | slave | unbindable |
1518 * | dest | | | | |
1519 * | | | | | | |
1520 * | v | | | | |
1521 * |**************************************************************************
1522 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1523 * | | | | | |
1524 * |non-shared| shared (+) | private | slave (*) | invalid |
1525 * ***************************************************************************
1526 * A bind operation clones the source mount and mounts the clone on the
1527 * destination mount.
1528 *
1529 * (++) the cloned mount is propagated to all the mounts in the propagation
1530 * tree of the destination mount and the cloned mount is added to
1531 * the peer group of the source mount.
1532 * (+) the cloned mount is created under the destination mount and is marked
1533 * as shared. The cloned mount is added to the peer group of the source
1534 * mount.
1535 * (+++) the mount is propagated to all the mounts in the propagation tree
1536 * of the destination mount and the cloned mount is made slave
1537 * of the same master as that of the source mount. The cloned mount
1538 * is marked as 'shared and slave'.
1539 * (*) the cloned mount is made a slave of the same master as that of the
1540 * source mount.
1541 *
1542 * ---------------------------------------------------------------------------
1543 * | MOVE MOUNT OPERATION |
1544 * |**************************************************************************
1545 * | source-->| shared | private | slave | unbindable |
1546 * | dest | | | | |
1547 * | | | | | | |
1548 * | v | | | | |
1549 * |**************************************************************************
1550 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1551 * | | | | | |
1552 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1553 * ***************************************************************************
1554 *
1555 * (+) the mount is moved to the destination. And is then propagated to
1556 * all the mounts in the propagation tree of the destination mount.
1557 * (+*) the mount is moved to the destination.
1558 * (+++) the mount is moved to the destination and is then propagated to
1559 * all the mounts belonging to the destination mount's propagation tree.
1560 * the mount is marked as 'shared and slave'.
1561 * (*) the mount continues to be a slave at the new location.
1562 *
1563 * if the source mount is a tree, the operations explained above is
1564 * applied to each mount in the tree.
1565 * Must be called without spinlocks held, since this function can sleep
1566 * in allocations.
1567 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1568 static int attach_recursive_mnt(struct mount *source_mnt,
1569 struct mount *dest_mnt,
1570 struct mountpoint *dest_mp,
1571 struct path *parent_path)
1572 {
1573 LIST_HEAD(tree_list);
1574 struct mount *child, *p;
1575 int err;
1576
1577 if (IS_MNT_SHARED(dest_mnt)) {
1578 err = invent_group_ids(source_mnt, true);
1579 if (err)
1580 goto out;
1581 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1582 br_write_lock(&vfsmount_lock);
1583 if (err)
1584 goto out_cleanup_ids;
1585 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1586 set_mnt_shared(p);
1587 } else {
1588 br_write_lock(&vfsmount_lock);
1589 }
1590 if (parent_path) {
1591 detach_mnt(source_mnt, parent_path);
1592 attach_mnt(source_mnt, dest_mnt, dest_mp);
1593 touch_mnt_namespace(source_mnt->mnt_ns);
1594 } else {
1595 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1596 commit_tree(source_mnt);
1597 }
1598
1599 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1600 list_del_init(&child->mnt_hash);
1601 commit_tree(child);
1602 }
1603 br_write_unlock(&vfsmount_lock);
1604
1605 return 0;
1606
1607 out_cleanup_ids:
1608 while (!list_empty(&tree_list)) {
1609 child = list_first_entry(&tree_list, struct mount, mnt_hash);
1610 umount_tree(child, 0);
1611 }
1612 br_write_unlock(&vfsmount_lock);
1613 cleanup_group_ids(source_mnt, NULL);
1614 out:
1615 return err;
1616 }
1617
lock_mount(struct path * path)1618 static struct mountpoint *lock_mount(struct path *path)
1619 {
1620 struct vfsmount *mnt;
1621 struct dentry *dentry = path->dentry;
1622 retry:
1623 mutex_lock(&dentry->d_inode->i_mutex);
1624 if (unlikely(cant_mount(dentry))) {
1625 mutex_unlock(&dentry->d_inode->i_mutex);
1626 return ERR_PTR(-ENOENT);
1627 }
1628 namespace_lock();
1629 mnt = lookup_mnt(path);
1630 if (likely(!mnt)) {
1631 struct mountpoint *mp = new_mountpoint(dentry);
1632 if (IS_ERR(mp)) {
1633 namespace_unlock();
1634 mutex_unlock(&dentry->d_inode->i_mutex);
1635 return mp;
1636 }
1637 return mp;
1638 }
1639 namespace_unlock();
1640 mutex_unlock(&path->dentry->d_inode->i_mutex);
1641 path_put(path);
1642 path->mnt = mnt;
1643 dentry = path->dentry = dget(mnt->mnt_root);
1644 goto retry;
1645 }
1646
unlock_mount(struct mountpoint * where)1647 static void unlock_mount(struct mountpoint *where)
1648 {
1649 struct dentry *dentry = where->m_dentry;
1650 put_mountpoint(where);
1651 namespace_unlock();
1652 mutex_unlock(&dentry->d_inode->i_mutex);
1653 }
1654
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)1655 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1656 {
1657 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1658 return -EINVAL;
1659
1660 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1661 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1662 return -ENOTDIR;
1663
1664 return attach_recursive_mnt(mnt, p, mp, NULL);
1665 }
1666
1667 /*
1668 * Sanity check the flags to change_mnt_propagation.
1669 */
1670
flags_to_propagation_type(int flags)1671 static int flags_to_propagation_type(int flags)
1672 {
1673 int type = flags & ~(MS_REC | MS_SILENT);
1674
1675 /* Fail if any non-propagation flags are set */
1676 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1677 return 0;
1678 /* Only one propagation flag should be set */
1679 if (!is_power_of_2(type))
1680 return 0;
1681 return type;
1682 }
1683
1684 /*
1685 * recursively change the type of the mountpoint.
1686 */
do_change_type(struct path * path,int flag)1687 static int do_change_type(struct path *path, int flag)
1688 {
1689 struct mount *m;
1690 struct mount *mnt = real_mount(path->mnt);
1691 int recurse = flag & MS_REC;
1692 int type;
1693 int err = 0;
1694
1695 if (path->dentry != path->mnt->mnt_root)
1696 return -EINVAL;
1697
1698 type = flags_to_propagation_type(flag);
1699 if (!type)
1700 return -EINVAL;
1701
1702 namespace_lock();
1703 if (type == MS_SHARED) {
1704 err = invent_group_ids(mnt, recurse);
1705 if (err)
1706 goto out_unlock;
1707 }
1708
1709 br_write_lock(&vfsmount_lock);
1710 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1711 change_mnt_propagation(m, type);
1712 br_write_unlock(&vfsmount_lock);
1713
1714 out_unlock:
1715 namespace_unlock();
1716 return err;
1717 }
1718
1719 /*
1720 * do loopback mount.
1721 */
do_loopback(struct path * path,const char * old_name,int recurse)1722 static int do_loopback(struct path *path, const char *old_name,
1723 int recurse)
1724 {
1725 struct path old_path;
1726 struct mount *mnt = NULL, *old, *parent;
1727 struct mountpoint *mp;
1728 int err;
1729 if (!old_name || !*old_name)
1730 return -EINVAL;
1731 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1732 if (err)
1733 return err;
1734
1735 err = -EINVAL;
1736 if (mnt_ns_loop(&old_path))
1737 goto out;
1738
1739 mp = lock_mount(path);
1740 err = PTR_ERR(mp);
1741 if (IS_ERR(mp))
1742 goto out;
1743
1744 old = real_mount(old_path.mnt);
1745 parent = real_mount(path->mnt);
1746
1747 err = -EINVAL;
1748 if (IS_MNT_UNBINDABLE(old))
1749 goto out2;
1750
1751 if (!check_mnt(parent) || !check_mnt(old))
1752 goto out2;
1753
1754 if (recurse)
1755 mnt = copy_tree(old, old_path.dentry, 0);
1756 else
1757 mnt = clone_mnt(old, old_path.dentry, 0);
1758
1759 if (IS_ERR(mnt)) {
1760 err = PTR_ERR(mnt);
1761 goto out2;
1762 }
1763
1764 err = graft_tree(mnt, parent, mp);
1765 if (err) {
1766 br_write_lock(&vfsmount_lock);
1767 umount_tree(mnt, 0);
1768 br_write_unlock(&vfsmount_lock);
1769 }
1770 out2:
1771 unlock_mount(mp);
1772 out:
1773 path_put(&old_path);
1774 return err;
1775 }
1776
change_mount_flags(struct vfsmount * mnt,int ms_flags)1777 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1778 {
1779 int error = 0;
1780 int readonly_request = 0;
1781
1782 if (ms_flags & MS_RDONLY)
1783 readonly_request = 1;
1784 if (readonly_request == __mnt_is_readonly(mnt))
1785 return 0;
1786
1787 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1788 return -EPERM;
1789
1790 if (readonly_request)
1791 error = mnt_make_readonly(real_mount(mnt));
1792 else
1793 __mnt_unmake_readonly(real_mount(mnt));
1794 return error;
1795 }
1796
1797 /*
1798 * change filesystem flags. dir should be a physical root of filesystem.
1799 * If you've mounted a non-root directory somewhere and want to do remount
1800 * on it - tough luck.
1801 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)1802 static int do_remount(struct path *path, int flags, int mnt_flags,
1803 void *data)
1804 {
1805 int err;
1806 struct super_block *sb = path->mnt->mnt_sb;
1807 struct mount *mnt = real_mount(path->mnt);
1808
1809 if (!check_mnt(mnt))
1810 return -EINVAL;
1811
1812 if (path->dentry != path->mnt->mnt_root)
1813 return -EINVAL;
1814
1815 err = security_sb_remount(sb, data);
1816 if (err)
1817 return err;
1818
1819 down_write(&sb->s_umount);
1820 if (flags & MS_BIND)
1821 err = change_mount_flags(path->mnt, flags);
1822 else if (!capable(CAP_SYS_ADMIN))
1823 err = -EPERM;
1824 else {
1825 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
1826 namespace_lock();
1827 br_write_lock(&vfsmount_lock);
1828 propagate_remount(mnt);
1829 br_write_unlock(&vfsmount_lock);
1830 namespace_unlock();
1831 }
1832 if (!err) {
1833 br_write_lock(&vfsmount_lock);
1834 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1835 mnt->mnt.mnt_flags = mnt_flags;
1836 br_write_unlock(&vfsmount_lock);
1837 }
1838 up_write(&sb->s_umount);
1839 if (!err) {
1840 br_write_lock(&vfsmount_lock);
1841 touch_mnt_namespace(mnt->mnt_ns);
1842 br_write_unlock(&vfsmount_lock);
1843 }
1844 return err;
1845 }
1846
tree_contains_unbindable(struct mount * mnt)1847 static inline int tree_contains_unbindable(struct mount *mnt)
1848 {
1849 struct mount *p;
1850 for (p = mnt; p; p = next_mnt(p, mnt)) {
1851 if (IS_MNT_UNBINDABLE(p))
1852 return 1;
1853 }
1854 return 0;
1855 }
1856
do_move_mount(struct path * path,const char * old_name)1857 static int do_move_mount(struct path *path, const char *old_name)
1858 {
1859 struct path old_path, parent_path;
1860 struct mount *p;
1861 struct mount *old;
1862 struct mountpoint *mp;
1863 int err;
1864 if (!old_name || !*old_name)
1865 return -EINVAL;
1866 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1867 if (err)
1868 return err;
1869
1870 mp = lock_mount(path);
1871 err = PTR_ERR(mp);
1872 if (IS_ERR(mp))
1873 goto out;
1874
1875 old = real_mount(old_path.mnt);
1876 p = real_mount(path->mnt);
1877
1878 err = -EINVAL;
1879 if (!check_mnt(p) || !check_mnt(old))
1880 goto out1;
1881
1882 err = -EINVAL;
1883 if (old_path.dentry != old_path.mnt->mnt_root)
1884 goto out1;
1885
1886 if (!mnt_has_parent(old))
1887 goto out1;
1888
1889 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1890 S_ISDIR(old_path.dentry->d_inode->i_mode))
1891 goto out1;
1892 /*
1893 * Don't move a mount residing in a shared parent.
1894 */
1895 if (IS_MNT_SHARED(old->mnt_parent))
1896 goto out1;
1897 /*
1898 * Don't move a mount tree containing unbindable mounts to a destination
1899 * mount which is shared.
1900 */
1901 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1902 goto out1;
1903 err = -ELOOP;
1904 for (; mnt_has_parent(p); p = p->mnt_parent)
1905 if (p == old)
1906 goto out1;
1907
1908 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1909 if (err)
1910 goto out1;
1911
1912 /* if the mount is moved, it should no longer be expire
1913 * automatically */
1914 list_del_init(&old->mnt_expire);
1915 out1:
1916 unlock_mount(mp);
1917 out:
1918 if (!err)
1919 path_put(&parent_path);
1920 path_put(&old_path);
1921 return err;
1922 }
1923
fs_set_subtype(struct vfsmount * mnt,const char * fstype)1924 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1925 {
1926 int err;
1927 const char *subtype = strchr(fstype, '.');
1928 if (subtype) {
1929 subtype++;
1930 err = -EINVAL;
1931 if (!subtype[0])
1932 goto err;
1933 } else
1934 subtype = "";
1935
1936 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1937 err = -ENOMEM;
1938 if (!mnt->mnt_sb->s_subtype)
1939 goto err;
1940 return mnt;
1941
1942 err:
1943 mntput(mnt);
1944 return ERR_PTR(err);
1945 }
1946
1947 /*
1948 * add a mount into a namespace's mount tree
1949 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)1950 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1951 {
1952 struct mountpoint *mp;
1953 struct mount *parent;
1954 int err;
1955
1956 mnt_flags &= ~MNT_INTERNAL_FLAGS;
1957
1958 mp = lock_mount(path);
1959 if (IS_ERR(mp))
1960 return PTR_ERR(mp);
1961
1962 parent = real_mount(path->mnt);
1963 err = -EINVAL;
1964 if (unlikely(!check_mnt(parent))) {
1965 /* that's acceptable only for automounts done in private ns */
1966 if (!(mnt_flags & MNT_SHRINKABLE))
1967 goto unlock;
1968 /* ... and for those we'd better have mountpoint still alive */
1969 if (!parent->mnt_ns)
1970 goto unlock;
1971 }
1972
1973 /* Refuse the same filesystem on the same mount point */
1974 err = -EBUSY;
1975 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1976 path->mnt->mnt_root == path->dentry)
1977 goto unlock;
1978
1979 err = -EINVAL;
1980 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1981 goto unlock;
1982
1983 newmnt->mnt.mnt_flags = mnt_flags;
1984 err = graft_tree(newmnt, parent, mp);
1985
1986 unlock:
1987 unlock_mount(mp);
1988 return err;
1989 }
1990
1991 /*
1992 * create a new mount for userspace and request it to be added into the
1993 * namespace's tree
1994 */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)1995 static int do_new_mount(struct path *path, const char *fstype, int flags,
1996 int mnt_flags, const char *name, void *data)
1997 {
1998 struct file_system_type *type;
1999 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2000 struct vfsmount *mnt;
2001 int err;
2002
2003 if (!fstype)
2004 return -EINVAL;
2005
2006 type = get_fs_type(fstype);
2007 if (!type)
2008 return -ENODEV;
2009
2010 if (user_ns != &init_user_ns) {
2011 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2012 put_filesystem(type);
2013 return -EPERM;
2014 }
2015 /* Only in special cases allow devices from mounts
2016 * created outside the initial user namespace.
2017 */
2018 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2019 flags |= MS_NODEV;
2020 mnt_flags |= MNT_NODEV;
2021 }
2022 }
2023
2024 mnt = vfs_kern_mount(type, flags, name, data);
2025 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2026 !mnt->mnt_sb->s_subtype)
2027 mnt = fs_set_subtype(mnt, fstype);
2028
2029 put_filesystem(type);
2030 if (IS_ERR(mnt))
2031 return PTR_ERR(mnt);
2032
2033 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2034 if (err)
2035 mntput(mnt);
2036 return err;
2037 }
2038
finish_automount(struct vfsmount * m,struct path * path)2039 int finish_automount(struct vfsmount *m, struct path *path)
2040 {
2041 struct mount *mnt = real_mount(m);
2042 int err;
2043 /* The new mount record should have at least 2 refs to prevent it being
2044 * expired before we get a chance to add it
2045 */
2046 BUG_ON(mnt_get_count(mnt) < 2);
2047
2048 if (m->mnt_sb == path->mnt->mnt_sb &&
2049 m->mnt_root == path->dentry) {
2050 err = -ELOOP;
2051 goto fail;
2052 }
2053
2054 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2055 if (!err)
2056 return 0;
2057 fail:
2058 /* remove m from any expiration list it may be on */
2059 if (!list_empty(&mnt->mnt_expire)) {
2060 namespace_lock();
2061 br_write_lock(&vfsmount_lock);
2062 list_del_init(&mnt->mnt_expire);
2063 br_write_unlock(&vfsmount_lock);
2064 namespace_unlock();
2065 }
2066 mntput(m);
2067 mntput(m);
2068 return err;
2069 }
2070
2071 /**
2072 * mnt_set_expiry - Put a mount on an expiration list
2073 * @mnt: The mount to list.
2074 * @expiry_list: The list to add the mount to.
2075 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2076 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2077 {
2078 namespace_lock();
2079 br_write_lock(&vfsmount_lock);
2080
2081 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2082
2083 br_write_unlock(&vfsmount_lock);
2084 namespace_unlock();
2085 }
2086 EXPORT_SYMBOL(mnt_set_expiry);
2087
2088 /*
2089 * process a list of expirable mountpoints with the intent of discarding any
2090 * mountpoints that aren't in use and haven't been touched since last we came
2091 * here
2092 */
mark_mounts_for_expiry(struct list_head * mounts)2093 void mark_mounts_for_expiry(struct list_head *mounts)
2094 {
2095 struct mount *mnt, *next;
2096 LIST_HEAD(graveyard);
2097
2098 if (list_empty(mounts))
2099 return;
2100
2101 namespace_lock();
2102 br_write_lock(&vfsmount_lock);
2103
2104 /* extract from the expiration list every vfsmount that matches the
2105 * following criteria:
2106 * - only referenced by its parent vfsmount
2107 * - still marked for expiry (marked on the last call here; marks are
2108 * cleared by mntput())
2109 */
2110 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2111 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2112 propagate_mount_busy(mnt, 1))
2113 continue;
2114 list_move(&mnt->mnt_expire, &graveyard);
2115 }
2116 while (!list_empty(&graveyard)) {
2117 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2118 touch_mnt_namespace(mnt->mnt_ns);
2119 umount_tree(mnt, 1);
2120 }
2121 br_write_unlock(&vfsmount_lock);
2122 namespace_unlock();
2123 }
2124
2125 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2126
2127 /*
2128 * Ripoff of 'select_parent()'
2129 *
2130 * search the list of submounts for a given mountpoint, and move any
2131 * shrinkable submounts to the 'graveyard' list.
2132 */
select_submounts(struct mount * parent,struct list_head * graveyard)2133 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2134 {
2135 struct mount *this_parent = parent;
2136 struct list_head *next;
2137 int found = 0;
2138
2139 repeat:
2140 next = this_parent->mnt_mounts.next;
2141 resume:
2142 while (next != &this_parent->mnt_mounts) {
2143 struct list_head *tmp = next;
2144 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2145
2146 next = tmp->next;
2147 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2148 continue;
2149 /*
2150 * Descend a level if the d_mounts list is non-empty.
2151 */
2152 if (!list_empty(&mnt->mnt_mounts)) {
2153 this_parent = mnt;
2154 goto repeat;
2155 }
2156
2157 if (!propagate_mount_busy(mnt, 1)) {
2158 list_move_tail(&mnt->mnt_expire, graveyard);
2159 found++;
2160 }
2161 }
2162 /*
2163 * All done at this level ... ascend and resume the search
2164 */
2165 if (this_parent != parent) {
2166 next = this_parent->mnt_child.next;
2167 this_parent = this_parent->mnt_parent;
2168 goto resume;
2169 }
2170 return found;
2171 }
2172
2173 /*
2174 * process a list of expirable mountpoints with the intent of discarding any
2175 * submounts of a specific parent mountpoint
2176 *
2177 * vfsmount_lock must be held for write
2178 */
shrink_submounts(struct mount * mnt)2179 static void shrink_submounts(struct mount *mnt)
2180 {
2181 LIST_HEAD(graveyard);
2182 struct mount *m;
2183
2184 /* extract submounts of 'mountpoint' from the expiration list */
2185 while (select_submounts(mnt, &graveyard)) {
2186 while (!list_empty(&graveyard)) {
2187 m = list_first_entry(&graveyard, struct mount,
2188 mnt_expire);
2189 touch_mnt_namespace(m->mnt_ns);
2190 umount_tree(m, 1);
2191 }
2192 }
2193 }
2194
2195 /*
2196 * Some copy_from_user() implementations do not return the exact number of
2197 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2198 * Note that this function differs from copy_from_user() in that it will oops
2199 * on bad values of `to', rather than returning a short copy.
2200 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2201 static long exact_copy_from_user(void *to, const void __user * from,
2202 unsigned long n)
2203 {
2204 char *t = to;
2205 const char __user *f = from;
2206 char c;
2207
2208 if (!access_ok(VERIFY_READ, from, n))
2209 return n;
2210
2211 while (n) {
2212 if (__get_user(c, f)) {
2213 memset(t, 0, n);
2214 break;
2215 }
2216 *t++ = c;
2217 f++;
2218 n--;
2219 }
2220 return n;
2221 }
2222
copy_mount_options(const void __user * data,unsigned long * where)2223 int copy_mount_options(const void __user * data, unsigned long *where)
2224 {
2225 int i;
2226 unsigned long page;
2227 unsigned long size;
2228
2229 *where = 0;
2230 if (!data)
2231 return 0;
2232
2233 if (!(page = __get_free_page(GFP_KERNEL)))
2234 return -ENOMEM;
2235
2236 /* We only care that *some* data at the address the user
2237 * gave us is valid. Just in case, we'll zero
2238 * the remainder of the page.
2239 */
2240 /* copy_from_user cannot cross TASK_SIZE ! */
2241 size = TASK_SIZE - (unsigned long)data;
2242 if (size > PAGE_SIZE)
2243 size = PAGE_SIZE;
2244
2245 i = size - exact_copy_from_user((void *)page, data, size);
2246 if (!i) {
2247 free_page(page);
2248 return -EFAULT;
2249 }
2250 if (i != PAGE_SIZE)
2251 memset((char *)page + i, 0, PAGE_SIZE - i);
2252 *where = page;
2253 return 0;
2254 }
2255
copy_mount_string(const void __user * data,char ** where)2256 int copy_mount_string(const void __user *data, char **where)
2257 {
2258 char *tmp;
2259
2260 if (!data) {
2261 *where = NULL;
2262 return 0;
2263 }
2264
2265 tmp = strndup_user(data, PAGE_SIZE);
2266 if (IS_ERR(tmp))
2267 return PTR_ERR(tmp);
2268
2269 *where = tmp;
2270 return 0;
2271 }
2272
2273 /*
2274 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2275 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2276 *
2277 * data is a (void *) that can point to any structure up to
2278 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2279 * information (or be NULL).
2280 *
2281 * Pre-0.97 versions of mount() didn't have a flags word.
2282 * When the flags word was introduced its top half was required
2283 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2284 * Therefore, if this magic number is present, it carries no information
2285 * and must be discarded.
2286 */
do_mount(const char * dev_name,const char * dir_name,const char * type_page,unsigned long flags,void * data_page)2287 long do_mount(const char *dev_name, const char *dir_name,
2288 const char *type_page, unsigned long flags, void *data_page)
2289 {
2290 struct path path;
2291 int retval = 0;
2292 int mnt_flags = 0;
2293
2294 /* Discard magic */
2295 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2296 flags &= ~MS_MGC_MSK;
2297
2298 /* Basic sanity checks */
2299
2300 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2301 return -EINVAL;
2302
2303 if (data_page)
2304 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2305
2306 /* ... and get the mountpoint */
2307 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2308 if (retval)
2309 return retval;
2310
2311 retval = security_sb_mount(dev_name, &path,
2312 type_page, flags, data_page);
2313 if (!retval && !may_mount())
2314 retval = -EPERM;
2315 if (retval)
2316 goto dput_out;
2317
2318 /* Default to relatime unless overriden */
2319 if (!(flags & MS_NOATIME))
2320 mnt_flags |= MNT_RELATIME;
2321
2322 /* Separate the per-mountpoint flags */
2323 if (flags & MS_NOSUID)
2324 mnt_flags |= MNT_NOSUID;
2325 if (flags & MS_NODEV)
2326 mnt_flags |= MNT_NODEV;
2327 if (flags & MS_NOEXEC)
2328 mnt_flags |= MNT_NOEXEC;
2329 if (flags & MS_NOATIME)
2330 mnt_flags |= MNT_NOATIME;
2331 if (flags & MS_NODIRATIME)
2332 mnt_flags |= MNT_NODIRATIME;
2333 if (flags & MS_STRICTATIME)
2334 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2335 if (flags & MS_RDONLY)
2336 mnt_flags |= MNT_READONLY;
2337
2338 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2339 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2340 MS_STRICTATIME);
2341
2342 if (flags & MS_REMOUNT)
2343 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2344 data_page);
2345 else if (flags & MS_BIND)
2346 retval = do_loopback(&path, dev_name, flags & MS_REC);
2347 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2348 retval = do_change_type(&path, flags);
2349 else if (flags & MS_MOVE)
2350 retval = do_move_mount(&path, dev_name);
2351 else
2352 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2353 dev_name, data_page);
2354 dput_out:
2355 path_put(&path);
2356 return retval;
2357 }
2358
free_mnt_ns(struct mnt_namespace * ns)2359 static void free_mnt_ns(struct mnt_namespace *ns)
2360 {
2361 proc_free_inum(ns->proc_inum);
2362 put_user_ns(ns->user_ns);
2363 kfree(ns);
2364 }
2365
2366 /*
2367 * Assign a sequence number so we can detect when we attempt to bind
2368 * mount a reference to an older mount namespace into the current
2369 * mount namespace, preventing reference counting loops. A 64bit
2370 * number incrementing at 10Ghz will take 12,427 years to wrap which
2371 * is effectively never, so we can ignore the possibility.
2372 */
2373 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2374
alloc_mnt_ns(struct user_namespace * user_ns)2375 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2376 {
2377 struct mnt_namespace *new_ns;
2378 int ret;
2379
2380 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2381 if (!new_ns)
2382 return ERR_PTR(-ENOMEM);
2383 ret = proc_alloc_inum(&new_ns->proc_inum);
2384 if (ret) {
2385 kfree(new_ns);
2386 return ERR_PTR(ret);
2387 }
2388 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2389 atomic_set(&new_ns->count, 1);
2390 new_ns->root = NULL;
2391 INIT_LIST_HEAD(&new_ns->list);
2392 init_waitqueue_head(&new_ns->poll);
2393 new_ns->event = 0;
2394 new_ns->user_ns = get_user_ns(user_ns);
2395 return new_ns;
2396 }
2397
2398 /*
2399 * Allocate a new namespace structure and populate it with contents
2400 * copied from the namespace of the passed in task structure.
2401 */
dup_mnt_ns(struct mnt_namespace * mnt_ns,struct user_namespace * user_ns,struct fs_struct * fs)2402 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2403 struct user_namespace *user_ns, struct fs_struct *fs)
2404 {
2405 struct mnt_namespace *new_ns;
2406 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2407 struct mount *p, *q;
2408 struct mount *old = mnt_ns->root;
2409 struct mount *new;
2410 int copy_flags;
2411
2412 new_ns = alloc_mnt_ns(user_ns);
2413 if (IS_ERR(new_ns))
2414 return new_ns;
2415
2416 namespace_lock();
2417 /* First pass: copy the tree topology */
2418 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2419 if (user_ns != mnt_ns->user_ns)
2420 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2421 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2422 if (IS_ERR(new)) {
2423 namespace_unlock();
2424 free_mnt_ns(new_ns);
2425 return ERR_CAST(new);
2426 }
2427 new_ns->root = new;
2428 br_write_lock(&vfsmount_lock);
2429 list_add_tail(&new_ns->list, &new->mnt_list);
2430 br_write_unlock(&vfsmount_lock);
2431
2432 /*
2433 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2434 * as belonging to new namespace. We have already acquired a private
2435 * fs_struct, so tsk->fs->lock is not needed.
2436 */
2437 p = old;
2438 q = new;
2439 while (p) {
2440 q->mnt_ns = new_ns;
2441 if (fs) {
2442 if (&p->mnt == fs->root.mnt) {
2443 fs->root.mnt = mntget(&q->mnt);
2444 rootmnt = &p->mnt;
2445 }
2446 if (&p->mnt == fs->pwd.mnt) {
2447 fs->pwd.mnt = mntget(&q->mnt);
2448 pwdmnt = &p->mnt;
2449 }
2450 }
2451 p = next_mnt(p, old);
2452 q = next_mnt(q, new);
2453 }
2454 namespace_unlock();
2455
2456 if (rootmnt)
2457 mntput(rootmnt);
2458 if (pwdmnt)
2459 mntput(pwdmnt);
2460
2461 return new_ns;
2462 }
2463
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2464 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2465 struct user_namespace *user_ns, struct fs_struct *new_fs)
2466 {
2467 struct mnt_namespace *new_ns;
2468
2469 BUG_ON(!ns);
2470 get_mnt_ns(ns);
2471
2472 if (!(flags & CLONE_NEWNS))
2473 return ns;
2474
2475 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2476
2477 put_mnt_ns(ns);
2478 return new_ns;
2479 }
2480
2481 /**
2482 * create_mnt_ns - creates a private namespace and adds a root filesystem
2483 * @mnt: pointer to the new root filesystem mountpoint
2484 */
create_mnt_ns(struct vfsmount * m)2485 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2486 {
2487 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2488 if (!IS_ERR(new_ns)) {
2489 struct mount *mnt = real_mount(m);
2490 mnt->mnt_ns = new_ns;
2491 new_ns->root = mnt;
2492 list_add(&mnt->mnt_list, &new_ns->list);
2493 } else {
2494 mntput(m);
2495 }
2496 return new_ns;
2497 }
2498
mount_subtree(struct vfsmount * mnt,const char * name)2499 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2500 {
2501 struct mnt_namespace *ns;
2502 struct super_block *s;
2503 struct path path;
2504 int err;
2505
2506 ns = create_mnt_ns(mnt);
2507 if (IS_ERR(ns))
2508 return ERR_CAST(ns);
2509
2510 err = vfs_path_lookup(mnt->mnt_root, mnt,
2511 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2512
2513 put_mnt_ns(ns);
2514
2515 if (err)
2516 return ERR_PTR(err);
2517
2518 /* trade a vfsmount reference for active sb one */
2519 s = path.mnt->mnt_sb;
2520 atomic_inc(&s->s_active);
2521 mntput(path.mnt);
2522 /* lock the sucker */
2523 down_write(&s->s_umount);
2524 /* ... and return the root of (sub)tree on it */
2525 return path.dentry;
2526 }
2527 EXPORT_SYMBOL(mount_subtree);
2528
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2529 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2530 char __user *, type, unsigned long, flags, void __user *, data)
2531 {
2532 int ret;
2533 char *kernel_type;
2534 struct filename *kernel_dir;
2535 char *kernel_dev;
2536 unsigned long data_page;
2537
2538 ret = copy_mount_string(type, &kernel_type);
2539 if (ret < 0)
2540 goto out_type;
2541
2542 kernel_dir = getname(dir_name);
2543 if (IS_ERR(kernel_dir)) {
2544 ret = PTR_ERR(kernel_dir);
2545 goto out_dir;
2546 }
2547
2548 ret = copy_mount_string(dev_name, &kernel_dev);
2549 if (ret < 0)
2550 goto out_dev;
2551
2552 ret = copy_mount_options(data, &data_page);
2553 if (ret < 0)
2554 goto out_data;
2555
2556 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2557 (void *) data_page);
2558
2559 free_page(data_page);
2560 out_data:
2561 kfree(kernel_dev);
2562 out_dev:
2563 putname(kernel_dir);
2564 out_dir:
2565 kfree(kernel_type);
2566 out_type:
2567 return ret;
2568 }
2569
2570 /*
2571 * Return true if path is reachable from root
2572 *
2573 * namespace_sem or vfsmount_lock is held
2574 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)2575 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2576 const struct path *root)
2577 {
2578 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2579 dentry = mnt->mnt_mountpoint;
2580 mnt = mnt->mnt_parent;
2581 }
2582 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2583 }
2584
path_is_under(struct path * path1,struct path * path2)2585 int path_is_under(struct path *path1, struct path *path2)
2586 {
2587 int res;
2588 br_read_lock(&vfsmount_lock);
2589 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2590 br_read_unlock(&vfsmount_lock);
2591 return res;
2592 }
2593 EXPORT_SYMBOL(path_is_under);
2594
2595 /*
2596 * pivot_root Semantics:
2597 * Moves the root file system of the current process to the directory put_old,
2598 * makes new_root as the new root file system of the current process, and sets
2599 * root/cwd of all processes which had them on the current root to new_root.
2600 *
2601 * Restrictions:
2602 * The new_root and put_old must be directories, and must not be on the
2603 * same file system as the current process root. The put_old must be
2604 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2605 * pointed to by put_old must yield the same directory as new_root. No other
2606 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2607 *
2608 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2609 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2610 * in this situation.
2611 *
2612 * Notes:
2613 * - we don't move root/cwd if they are not at the root (reason: if something
2614 * cared enough to change them, it's probably wrong to force them elsewhere)
2615 * - it's okay to pick a root that isn't the root of a file system, e.g.
2616 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2617 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2618 * first.
2619 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2620 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2621 const char __user *, put_old)
2622 {
2623 struct path new, old, parent_path, root_parent, root;
2624 struct mount *new_mnt, *root_mnt, *old_mnt;
2625 struct mountpoint *old_mp, *root_mp;
2626 int error;
2627
2628 if (!may_mount())
2629 return -EPERM;
2630
2631 error = user_path_dir(new_root, &new);
2632 if (error)
2633 goto out0;
2634
2635 error = user_path_dir(put_old, &old);
2636 if (error)
2637 goto out1;
2638
2639 error = security_sb_pivotroot(&old, &new);
2640 if (error)
2641 goto out2;
2642
2643 get_fs_root(current->fs, &root);
2644 old_mp = lock_mount(&old);
2645 error = PTR_ERR(old_mp);
2646 if (IS_ERR(old_mp))
2647 goto out3;
2648
2649 error = -EINVAL;
2650 new_mnt = real_mount(new.mnt);
2651 root_mnt = real_mount(root.mnt);
2652 old_mnt = real_mount(old.mnt);
2653 if (IS_MNT_SHARED(old_mnt) ||
2654 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2655 IS_MNT_SHARED(root_mnt->mnt_parent))
2656 goto out4;
2657 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2658 goto out4;
2659 error = -ENOENT;
2660 if (d_unlinked(new.dentry))
2661 goto out4;
2662 error = -EBUSY;
2663 if (new_mnt == root_mnt || old_mnt == root_mnt)
2664 goto out4; /* loop, on the same file system */
2665 error = -EINVAL;
2666 if (root.mnt->mnt_root != root.dentry)
2667 goto out4; /* not a mountpoint */
2668 if (!mnt_has_parent(root_mnt))
2669 goto out4; /* not attached */
2670 root_mp = root_mnt->mnt_mp;
2671 if (new.mnt->mnt_root != new.dentry)
2672 goto out4; /* not a mountpoint */
2673 if (!mnt_has_parent(new_mnt))
2674 goto out4; /* not attached */
2675 /* make sure we can reach put_old from new_root */
2676 if (!is_path_reachable(old_mnt, old.dentry, &new))
2677 goto out4;
2678 root_mp->m_count++; /* pin it so it won't go away */
2679 br_write_lock(&vfsmount_lock);
2680 detach_mnt(new_mnt, &parent_path);
2681 detach_mnt(root_mnt, &root_parent);
2682 /* mount old root on put_old */
2683 attach_mnt(root_mnt, old_mnt, old_mp);
2684 /* mount new_root on / */
2685 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2686 touch_mnt_namespace(current->nsproxy->mnt_ns);
2687 br_write_unlock(&vfsmount_lock);
2688 chroot_fs_refs(&root, &new);
2689 put_mountpoint(root_mp);
2690 error = 0;
2691 out4:
2692 unlock_mount(old_mp);
2693 if (!error) {
2694 path_put(&root_parent);
2695 path_put(&parent_path);
2696 }
2697 out3:
2698 path_put(&root);
2699 out2:
2700 path_put(&old);
2701 out1:
2702 path_put(&new);
2703 out0:
2704 return error;
2705 }
2706
init_mount_tree(void)2707 static void __init init_mount_tree(void)
2708 {
2709 struct vfsmount *mnt;
2710 struct mnt_namespace *ns;
2711 struct path root;
2712 struct file_system_type *type;
2713
2714 type = get_fs_type("rootfs");
2715 if (!type)
2716 panic("Can't find rootfs type");
2717 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2718 put_filesystem(type);
2719 if (IS_ERR(mnt))
2720 panic("Can't create rootfs");
2721
2722 ns = create_mnt_ns(mnt);
2723 if (IS_ERR(ns))
2724 panic("Can't allocate initial namespace");
2725
2726 init_task.nsproxy->mnt_ns = ns;
2727 get_mnt_ns(ns);
2728
2729 root.mnt = mnt;
2730 root.dentry = mnt->mnt_root;
2731
2732 set_fs_pwd(current->fs, &root);
2733 set_fs_root(current->fs, &root);
2734 }
2735
mnt_init(void)2736 void __init mnt_init(void)
2737 {
2738 unsigned u;
2739 int err;
2740
2741 init_rwsem(&namespace_sem);
2742
2743 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2744 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2745
2746 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2747 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2748
2749 if (!mount_hashtable || !mountpoint_hashtable)
2750 panic("Failed to allocate mount hash table\n");
2751
2752 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2753
2754 for (u = 0; u < HASH_SIZE; u++)
2755 INIT_LIST_HEAD(&mount_hashtable[u]);
2756 for (u = 0; u < HASH_SIZE; u++)
2757 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2758
2759 br_lock_init(&vfsmount_lock);
2760
2761 err = sysfs_init();
2762 if (err)
2763 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2764 __func__, err);
2765 fs_kobj = kobject_create_and_add("fs", NULL);
2766 if (!fs_kobj)
2767 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2768 init_rootfs();
2769 init_mount_tree();
2770 }
2771
put_mnt_ns(struct mnt_namespace * ns)2772 void put_mnt_ns(struct mnt_namespace *ns)
2773 {
2774 if (!atomic_dec_and_test(&ns->count))
2775 return;
2776 namespace_lock();
2777 br_write_lock(&vfsmount_lock);
2778 umount_tree(ns->root, 0);
2779 br_write_unlock(&vfsmount_lock);
2780 namespace_unlock();
2781 free_mnt_ns(ns);
2782 }
2783
kern_mount_data(struct file_system_type * type,void * data)2784 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2785 {
2786 struct vfsmount *mnt;
2787 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2788 if (!IS_ERR(mnt)) {
2789 /*
2790 * it is a longterm mount, don't release mnt until
2791 * we unmount before file sys is unregistered
2792 */
2793 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2794 }
2795 return mnt;
2796 }
2797 EXPORT_SYMBOL_GPL(kern_mount_data);
2798
kern_unmount(struct vfsmount * mnt)2799 void kern_unmount(struct vfsmount *mnt)
2800 {
2801 /* release long term mount so mount point can be released */
2802 if (!IS_ERR_OR_NULL(mnt)) {
2803 br_write_lock(&vfsmount_lock);
2804 real_mount(mnt)->mnt_ns = NULL;
2805 br_write_unlock(&vfsmount_lock);
2806 mntput(mnt);
2807 }
2808 }
2809 EXPORT_SYMBOL(kern_unmount);
2810
our_mnt(struct vfsmount * mnt)2811 bool our_mnt(struct vfsmount *mnt)
2812 {
2813 return check_mnt(real_mount(mnt));
2814 }
2815
current_chrooted(void)2816 bool current_chrooted(void)
2817 {
2818 /* Does the current process have a non-standard root */
2819 struct path ns_root;
2820 struct path fs_root;
2821 bool chrooted;
2822
2823 /* Find the namespace root */
2824 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
2825 ns_root.dentry = ns_root.mnt->mnt_root;
2826 path_get(&ns_root);
2827 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2828 ;
2829
2830 get_fs_root(current->fs, &fs_root);
2831
2832 chrooted = !path_equal(&fs_root, &ns_root);
2833
2834 path_put(&fs_root);
2835 path_put(&ns_root);
2836
2837 return chrooted;
2838 }
2839
update_mnt_policy(struct user_namespace * userns)2840 void update_mnt_policy(struct user_namespace *userns)
2841 {
2842 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2843 struct mount *mnt;
2844
2845 down_read(&namespace_sem);
2846 list_for_each_entry(mnt, &ns->list, mnt_list) {
2847 switch (mnt->mnt.mnt_sb->s_magic) {
2848 case SYSFS_MAGIC:
2849 userns->may_mount_sysfs = true;
2850 break;
2851 case PROC_SUPER_MAGIC:
2852 userns->may_mount_proc = true;
2853 break;
2854 }
2855 if (userns->may_mount_sysfs && userns->may_mount_proc)
2856 break;
2857 }
2858 up_read(&namespace_sem);
2859 }
2860
mntns_get(struct task_struct * task)2861 static void *mntns_get(struct task_struct *task)
2862 {
2863 struct mnt_namespace *ns = NULL;
2864 struct nsproxy *nsproxy;
2865
2866 rcu_read_lock();
2867 nsproxy = task_nsproxy(task);
2868 if (nsproxy) {
2869 ns = nsproxy->mnt_ns;
2870 get_mnt_ns(ns);
2871 }
2872 rcu_read_unlock();
2873
2874 return ns;
2875 }
2876
mntns_put(void * ns)2877 static void mntns_put(void *ns)
2878 {
2879 put_mnt_ns(ns);
2880 }
2881
mntns_install(struct nsproxy * nsproxy,void * ns)2882 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2883 {
2884 struct fs_struct *fs = current->fs;
2885 struct mnt_namespace *mnt_ns = ns;
2886 struct path root;
2887
2888 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2889 !nsown_capable(CAP_SYS_CHROOT) ||
2890 !nsown_capable(CAP_SYS_ADMIN))
2891 return -EPERM;
2892
2893 if (fs->users != 1)
2894 return -EINVAL;
2895
2896 get_mnt_ns(mnt_ns);
2897 put_mnt_ns(nsproxy->mnt_ns);
2898 nsproxy->mnt_ns = mnt_ns;
2899
2900 /* Find the root */
2901 root.mnt = &mnt_ns->root->mnt;
2902 root.dentry = mnt_ns->root->mnt.mnt_root;
2903 path_get(&root);
2904 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2905 ;
2906
2907 /* Update the pwd and root */
2908 set_fs_pwd(fs, &root);
2909 set_fs_root(fs, &root);
2910
2911 path_put(&root);
2912 return 0;
2913 }
2914
mntns_inum(void * ns)2915 static unsigned int mntns_inum(void *ns)
2916 {
2917 struct mnt_namespace *mnt_ns = ns;
2918 return mnt_ns->proc_inum;
2919 }
2920
2921 const struct proc_ns_operations mntns_operations = {
2922 .name = "mnt",
2923 .type = CLONE_NEWNS,
2924 .get = mntns_get,
2925 .put = mntns_put,
2926 .install = mntns_install,
2927 .inum = mntns_inum,
2928 };
2929