• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28 
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31 
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38 
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
43 
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47 
48 /*
49  * vfsmount lock may be taken for read to prevent changes to the
50  * vfsmount hash, ie. during mountpoint lookups or walking back
51  * up the tree.
52  *
53  * It should be taken for write in all cases where the vfsmount
54  * tree or hash is modified or when a vfsmount structure is modified.
55  */
56 DEFINE_BRLOCK(vfsmount_lock);
57 
hash(struct vfsmount * mnt,struct dentry * dentry)58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 	tmp = tmp + (tmp >> HASH_SHIFT);
63 	return tmp & (HASH_SIZE - 1);
64 }
65 
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67 
68 /*
69  * allocation is serialized by namespace_sem, but we need the spinlock to
70  * serialize with freeing.
71  */
mnt_alloc_id(struct mount * mnt)72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 	int res;
75 
76 retry:
77 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 	spin_lock(&mnt_id_lock);
79 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 	if (!res)
81 		mnt_id_start = mnt->mnt_id + 1;
82 	spin_unlock(&mnt_id_lock);
83 	if (res == -EAGAIN)
84 		goto retry;
85 
86 	return res;
87 }
88 
mnt_free_id(struct mount * mnt)89 static void mnt_free_id(struct mount *mnt)
90 {
91 	int id = mnt->mnt_id;
92 	spin_lock(&mnt_id_lock);
93 	ida_remove(&mnt_id_ida, id);
94 	if (mnt_id_start > id)
95 		mnt_id_start = id;
96 	spin_unlock(&mnt_id_lock);
97 }
98 
99 /*
100  * Allocate a new peer group ID
101  *
102  * mnt_group_ida is protected by namespace_sem
103  */
mnt_alloc_group_id(struct mount * mnt)104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 	int res;
107 
108 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 		return -ENOMEM;
110 
111 	res = ida_get_new_above(&mnt_group_ida,
112 				mnt_group_start,
113 				&mnt->mnt_group_id);
114 	if (!res)
115 		mnt_group_start = mnt->mnt_group_id + 1;
116 
117 	return res;
118 }
119 
120 /*
121  * Release a peer group ID
122  */
mnt_release_group_id(struct mount * mnt)123 void mnt_release_group_id(struct mount *mnt)
124 {
125 	int id = mnt->mnt_group_id;
126 	ida_remove(&mnt_group_ida, id);
127 	if (mnt_group_start > id)
128 		mnt_group_start = id;
129 	mnt->mnt_group_id = 0;
130 }
131 
132 /*
133  * vfsmount lock must be held for read
134  */
mnt_add_count(struct mount * mnt,int n)135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 	preempt_disable();
141 	mnt->mnt_count += n;
142 	preempt_enable();
143 #endif
144 }
145 
146 /*
147  * vfsmount lock must be held for write
148  */
mnt_get_count(struct mount * mnt)149 unsigned int mnt_get_count(struct mount *mnt)
150 {
151 #ifdef CONFIG_SMP
152 	unsigned int count = 0;
153 	int cpu;
154 
155 	for_each_possible_cpu(cpu) {
156 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 	}
158 
159 	return count;
160 #else
161 	return mnt->mnt_count;
162 #endif
163 }
164 
alloc_vfsmnt(const char * name)165 static struct mount *alloc_vfsmnt(const char *name)
166 {
167 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 	if (mnt) {
169 		int err;
170 
171 		err = mnt_alloc_id(mnt);
172 		if (err)
173 			goto out_free_cache;
174 
175 		if (name) {
176 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 			if (!mnt->mnt_devname)
178 				goto out_free_id;
179 		}
180 
181 #ifdef CONFIG_SMP
182 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 		if (!mnt->mnt_pcp)
184 			goto out_free_devname;
185 
186 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 		mnt->mnt_count = 1;
189 		mnt->mnt_writers = 0;
190 #endif
191 		mnt->mnt.data = NULL;
192 
193 		INIT_LIST_HEAD(&mnt->mnt_hash);
194 		INIT_LIST_HEAD(&mnt->mnt_child);
195 		INIT_LIST_HEAD(&mnt->mnt_mounts);
196 		INIT_LIST_HEAD(&mnt->mnt_list);
197 		INIT_LIST_HEAD(&mnt->mnt_expire);
198 		INIT_LIST_HEAD(&mnt->mnt_share);
199 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
200 		INIT_LIST_HEAD(&mnt->mnt_slave);
201 #ifdef CONFIG_FSNOTIFY
202 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
203 #endif
204 	}
205 	return mnt;
206 
207 #ifdef CONFIG_SMP
208 out_free_devname:
209 	kfree(mnt->mnt_devname);
210 #endif
211 out_free_id:
212 	mnt_free_id(mnt);
213 out_free_cache:
214 	kmem_cache_free(mnt_cache, mnt);
215 	return NULL;
216 }
217 
218 /*
219  * Most r/o checks on a fs are for operations that take
220  * discrete amounts of time, like a write() or unlink().
221  * We must keep track of when those operations start
222  * (for permission checks) and when they end, so that
223  * we can determine when writes are able to occur to
224  * a filesystem.
225  */
226 /*
227  * __mnt_is_readonly: check whether a mount is read-only
228  * @mnt: the mount to check for its write status
229  *
230  * This shouldn't be used directly ouside of the VFS.
231  * It does not guarantee that the filesystem will stay
232  * r/w, just that it is right *now*.  This can not and
233  * should not be used in place of IS_RDONLY(inode).
234  * mnt_want/drop_write() will _keep_ the filesystem
235  * r/w.
236  */
__mnt_is_readonly(struct vfsmount * mnt)237 int __mnt_is_readonly(struct vfsmount *mnt)
238 {
239 	if (mnt->mnt_flags & MNT_READONLY)
240 		return 1;
241 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
242 		return 1;
243 	return 0;
244 }
245 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
246 
mnt_inc_writers(struct mount * mnt)247 static inline void mnt_inc_writers(struct mount *mnt)
248 {
249 #ifdef CONFIG_SMP
250 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
251 #else
252 	mnt->mnt_writers++;
253 #endif
254 }
255 
mnt_dec_writers(struct mount * mnt)256 static inline void mnt_dec_writers(struct mount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
260 #else
261 	mnt->mnt_writers--;
262 #endif
263 }
264 
mnt_get_writers(struct mount * mnt)265 static unsigned int mnt_get_writers(struct mount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 	unsigned int count = 0;
269 	int cpu;
270 
271 	for_each_possible_cpu(cpu) {
272 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
273 	}
274 
275 	return count;
276 #else
277 	return mnt->mnt_writers;
278 #endif
279 }
280 
mnt_is_readonly(struct vfsmount * mnt)281 static int mnt_is_readonly(struct vfsmount *mnt)
282 {
283 	if (mnt->mnt_sb->s_readonly_remount)
284 		return 1;
285 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
286 	smp_rmb();
287 	return __mnt_is_readonly(mnt);
288 }
289 
290 /*
291  * Most r/o & frozen checks on a fs are for operations that take discrete
292  * amounts of time, like a write() or unlink().  We must keep track of when
293  * those operations start (for permission checks) and when they end, so that we
294  * can determine when writes are able to occur to a filesystem.
295  */
296 /**
297  * __mnt_want_write - get write access to a mount without freeze protection
298  * @m: the mount on which to take a write
299  *
300  * This tells the low-level filesystem that a write is about to be performed to
301  * it, and makes sure that writes are allowed (mnt it read-write) before
302  * returning success. This operation does not protect against filesystem being
303  * frozen. When the write operation is finished, __mnt_drop_write() must be
304  * called. This is effectively a refcount.
305  */
__mnt_want_write(struct vfsmount * m)306 int __mnt_want_write(struct vfsmount *m)
307 {
308 	struct mount *mnt = real_mount(m);
309 	int ret = 0;
310 
311 	preempt_disable();
312 	mnt_inc_writers(mnt);
313 	/*
314 	 * The store to mnt_inc_writers must be visible before we pass
315 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
316 	 * incremented count after it has set MNT_WRITE_HOLD.
317 	 */
318 	smp_mb();
319 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
320 		cpu_relax();
321 	/*
322 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
323 	 * be set to match its requirements. So we must not load that until
324 	 * MNT_WRITE_HOLD is cleared.
325 	 */
326 	smp_rmb();
327 	if (mnt_is_readonly(m)) {
328 		mnt_dec_writers(mnt);
329 		ret = -EROFS;
330 	}
331 	preempt_enable();
332 
333 	return ret;
334 }
335 
336 /**
337  * mnt_want_write - get write access to a mount
338  * @m: the mount on which to take a write
339  *
340  * This tells the low-level filesystem that a write is about to be performed to
341  * it, and makes sure that writes are allowed (mount is read-write, filesystem
342  * is not frozen) before returning success.  When the write operation is
343  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
344  */
mnt_want_write(struct vfsmount * m)345 int mnt_want_write(struct vfsmount *m)
346 {
347 	int ret;
348 
349 	sb_start_write(m->mnt_sb);
350 	ret = __mnt_want_write(m);
351 	if (ret)
352 		sb_end_write(m->mnt_sb);
353 	return ret;
354 }
355 EXPORT_SYMBOL_GPL(mnt_want_write);
356 
357 /**
358  * mnt_clone_write - get write access to a mount
359  * @mnt: the mount on which to take a write
360  *
361  * This is effectively like mnt_want_write, except
362  * it must only be used to take an extra write reference
363  * on a mountpoint that we already know has a write reference
364  * on it. This allows some optimisation.
365  *
366  * After finished, mnt_drop_write must be called as usual to
367  * drop the reference.
368  */
mnt_clone_write(struct vfsmount * mnt)369 int mnt_clone_write(struct vfsmount *mnt)
370 {
371 	/* superblock may be r/o */
372 	if (__mnt_is_readonly(mnt))
373 		return -EROFS;
374 	preempt_disable();
375 	mnt_inc_writers(real_mount(mnt));
376 	preempt_enable();
377 	return 0;
378 }
379 EXPORT_SYMBOL_GPL(mnt_clone_write);
380 
381 /**
382  * __mnt_want_write_file - get write access to a file's mount
383  * @file: the file who's mount on which to take a write
384  *
385  * This is like __mnt_want_write, but it takes a file and can
386  * do some optimisations if the file is open for write already
387  */
__mnt_want_write_file(struct file * file)388 int __mnt_want_write_file(struct file *file)
389 {
390 	struct inode *inode = file_inode(file);
391 
392 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
393 		return __mnt_want_write(file->f_path.mnt);
394 	else
395 		return mnt_clone_write(file->f_path.mnt);
396 }
397 
398 /**
399  * mnt_want_write_file - get write access to a file's mount
400  * @file: the file who's mount on which to take a write
401  *
402  * This is like mnt_want_write, but it takes a file and can
403  * do some optimisations if the file is open for write already
404  */
mnt_want_write_file(struct file * file)405 int mnt_want_write_file(struct file *file)
406 {
407 	int ret;
408 
409 	sb_start_write(file->f_path.mnt->mnt_sb);
410 	ret = __mnt_want_write_file(file);
411 	if (ret)
412 		sb_end_write(file->f_path.mnt->mnt_sb);
413 	return ret;
414 }
415 EXPORT_SYMBOL_GPL(mnt_want_write_file);
416 
417 /**
418  * __mnt_drop_write - give up write access to a mount
419  * @mnt: the mount on which to give up write access
420  *
421  * Tells the low-level filesystem that we are done
422  * performing writes to it.  Must be matched with
423  * __mnt_want_write() call above.
424  */
__mnt_drop_write(struct vfsmount * mnt)425 void __mnt_drop_write(struct vfsmount *mnt)
426 {
427 	preempt_disable();
428 	mnt_dec_writers(real_mount(mnt));
429 	preempt_enable();
430 }
431 
432 /**
433  * mnt_drop_write - give up write access to a mount
434  * @mnt: the mount on which to give up write access
435  *
436  * Tells the low-level filesystem that we are done performing writes to it and
437  * also allows filesystem to be frozen again.  Must be matched with
438  * mnt_want_write() call above.
439  */
mnt_drop_write(struct vfsmount * mnt)440 void mnt_drop_write(struct vfsmount *mnt)
441 {
442 	__mnt_drop_write(mnt);
443 	sb_end_write(mnt->mnt_sb);
444 }
445 EXPORT_SYMBOL_GPL(mnt_drop_write);
446 
__mnt_drop_write_file(struct file * file)447 void __mnt_drop_write_file(struct file *file)
448 {
449 	__mnt_drop_write(file->f_path.mnt);
450 }
451 
mnt_drop_write_file(struct file * file)452 void mnt_drop_write_file(struct file *file)
453 {
454 	mnt_drop_write(file->f_path.mnt);
455 }
456 EXPORT_SYMBOL(mnt_drop_write_file);
457 
mnt_make_readonly(struct mount * mnt)458 static int mnt_make_readonly(struct mount *mnt)
459 {
460 	int ret = 0;
461 
462 	br_write_lock(&vfsmount_lock);
463 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
464 	/*
465 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
466 	 * should be visible before we do.
467 	 */
468 	smp_mb();
469 
470 	/*
471 	 * With writers on hold, if this value is zero, then there are
472 	 * definitely no active writers (although held writers may subsequently
473 	 * increment the count, they'll have to wait, and decrement it after
474 	 * seeing MNT_READONLY).
475 	 *
476 	 * It is OK to have counter incremented on one CPU and decremented on
477 	 * another: the sum will add up correctly. The danger would be when we
478 	 * sum up each counter, if we read a counter before it is incremented,
479 	 * but then read another CPU's count which it has been subsequently
480 	 * decremented from -- we would see more decrements than we should.
481 	 * MNT_WRITE_HOLD protects against this scenario, because
482 	 * mnt_want_write first increments count, then smp_mb, then spins on
483 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
484 	 * we're counting up here.
485 	 */
486 	if (mnt_get_writers(mnt) > 0)
487 		ret = -EBUSY;
488 	else
489 		mnt->mnt.mnt_flags |= MNT_READONLY;
490 	/*
491 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
492 	 * that become unheld will see MNT_READONLY.
493 	 */
494 	smp_wmb();
495 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
496 	br_write_unlock(&vfsmount_lock);
497 	return ret;
498 }
499 
__mnt_unmake_readonly(struct mount * mnt)500 static void __mnt_unmake_readonly(struct mount *mnt)
501 {
502 	br_write_lock(&vfsmount_lock);
503 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
504 	br_write_unlock(&vfsmount_lock);
505 }
506 
sb_prepare_remount_readonly(struct super_block * sb)507 int sb_prepare_remount_readonly(struct super_block *sb)
508 {
509 	struct mount *mnt;
510 	int err = 0;
511 
512 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
513 	if (atomic_long_read(&sb->s_remove_count))
514 		return -EBUSY;
515 
516 	br_write_lock(&vfsmount_lock);
517 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
518 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
519 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
520 			smp_mb();
521 			if (mnt_get_writers(mnt) > 0) {
522 				err = -EBUSY;
523 				break;
524 			}
525 		}
526 	}
527 	if (!err && atomic_long_read(&sb->s_remove_count))
528 		err = -EBUSY;
529 
530 	if (!err) {
531 		sb->s_readonly_remount = 1;
532 		smp_wmb();
533 	}
534 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
536 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
537 	}
538 	br_write_unlock(&vfsmount_lock);
539 
540 	return err;
541 }
542 
free_vfsmnt(struct mount * mnt)543 static void free_vfsmnt(struct mount *mnt)
544 {
545 	kfree(mnt->mnt.data);
546 	kfree(mnt->mnt_devname);
547 	mnt_free_id(mnt);
548 #ifdef CONFIG_SMP
549 	free_percpu(mnt->mnt_pcp);
550 #endif
551 	kmem_cache_free(mnt_cache, mnt);
552 }
553 
554 /*
555  * find the first or last mount at @dentry on vfsmount @mnt depending on
556  * @dir. If @dir is set return the first mount else return the last mount.
557  * vfsmount_lock must be held for read or write.
558  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry,int dir)559 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
560 			      int dir)
561 {
562 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
563 	struct list_head *tmp = head;
564 	struct mount *p, *found = NULL;
565 
566 	for (;;) {
567 		tmp = dir ? tmp->next : tmp->prev;
568 		p = NULL;
569 		if (tmp == head)
570 			break;
571 		p = list_entry(tmp, struct mount, mnt_hash);
572 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
573 			found = p;
574 			break;
575 		}
576 	}
577 	return found;
578 }
579 
580 /*
581  * lookup_mnt - Return the first child mount mounted at path
582  *
583  * "First" means first mounted chronologically.  If you create the
584  * following mounts:
585  *
586  * mount /dev/sda1 /mnt
587  * mount /dev/sda2 /mnt
588  * mount /dev/sda3 /mnt
589  *
590  * Then lookup_mnt() on the base /mnt dentry in the root mount will
591  * return successively the root dentry and vfsmount of /dev/sda1, then
592  * /dev/sda2, then /dev/sda3, then NULL.
593  *
594  * lookup_mnt takes a reference to the found vfsmount.
595  */
lookup_mnt(struct path * path)596 struct vfsmount *lookup_mnt(struct path *path)
597 {
598 	struct mount *child_mnt;
599 
600 	br_read_lock(&vfsmount_lock);
601 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
602 	if (child_mnt) {
603 		mnt_add_count(child_mnt, 1);
604 		br_read_unlock(&vfsmount_lock);
605 		return &child_mnt->mnt;
606 	} else {
607 		br_read_unlock(&vfsmount_lock);
608 		return NULL;
609 	}
610 }
611 
new_mountpoint(struct dentry * dentry)612 static struct mountpoint *new_mountpoint(struct dentry *dentry)
613 {
614 	struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
615 	struct mountpoint *mp;
616 
617 	list_for_each_entry(mp, chain, m_hash) {
618 		if (mp->m_dentry == dentry) {
619 			/* might be worth a WARN_ON() */
620 			if (d_unlinked(dentry))
621 				return ERR_PTR(-ENOENT);
622 			mp->m_count++;
623 			return mp;
624 		}
625 	}
626 
627 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
628 	if (!mp)
629 		return ERR_PTR(-ENOMEM);
630 
631 	spin_lock(&dentry->d_lock);
632 	if (d_unlinked(dentry)) {
633 		spin_unlock(&dentry->d_lock);
634 		kfree(mp);
635 		return ERR_PTR(-ENOENT);
636 	}
637 	dentry->d_flags |= DCACHE_MOUNTED;
638 	spin_unlock(&dentry->d_lock);
639 	mp->m_dentry = dentry;
640 	mp->m_count = 1;
641 	list_add(&mp->m_hash, chain);
642 	return mp;
643 }
644 
put_mountpoint(struct mountpoint * mp)645 static void put_mountpoint(struct mountpoint *mp)
646 {
647 	if (!--mp->m_count) {
648 		struct dentry *dentry = mp->m_dentry;
649 		spin_lock(&dentry->d_lock);
650 		dentry->d_flags &= ~DCACHE_MOUNTED;
651 		spin_unlock(&dentry->d_lock);
652 		list_del(&mp->m_hash);
653 		kfree(mp);
654 	}
655 }
656 
check_mnt(struct mount * mnt)657 static inline int check_mnt(struct mount *mnt)
658 {
659 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
660 }
661 
662 /*
663  * vfsmount lock must be held for write
664  */
touch_mnt_namespace(struct mnt_namespace * ns)665 static void touch_mnt_namespace(struct mnt_namespace *ns)
666 {
667 	if (ns) {
668 		ns->event = ++event;
669 		wake_up_interruptible(&ns->poll);
670 	}
671 }
672 
673 /*
674  * vfsmount lock must be held for write
675  */
__touch_mnt_namespace(struct mnt_namespace * ns)676 static void __touch_mnt_namespace(struct mnt_namespace *ns)
677 {
678 	if (ns && ns->event != event) {
679 		ns->event = event;
680 		wake_up_interruptible(&ns->poll);
681 	}
682 }
683 
684 /*
685  * vfsmount lock must be held for write
686  */
detach_mnt(struct mount * mnt,struct path * old_path)687 static void detach_mnt(struct mount *mnt, struct path *old_path)
688 {
689 	old_path->dentry = mnt->mnt_mountpoint;
690 	old_path->mnt = &mnt->mnt_parent->mnt;
691 	mnt->mnt_parent = mnt;
692 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
693 	list_del_init(&mnt->mnt_child);
694 	list_del_init(&mnt->mnt_hash);
695 	put_mountpoint(mnt->mnt_mp);
696 	mnt->mnt_mp = NULL;
697 }
698 
699 /*
700  * vfsmount lock must be held for write
701  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)702 void mnt_set_mountpoint(struct mount *mnt,
703 			struct mountpoint *mp,
704 			struct mount *child_mnt)
705 {
706 	mp->m_count++;
707 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
708 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
709 	child_mnt->mnt_parent = mnt;
710 	child_mnt->mnt_mp = mp;
711 }
712 
713 /*
714  * vfsmount lock must be held for write
715  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)716 static void attach_mnt(struct mount *mnt,
717 			struct mount *parent,
718 			struct mountpoint *mp)
719 {
720 	mnt_set_mountpoint(parent, mp, mnt);
721 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
722 			hash(&parent->mnt, mp->m_dentry));
723 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
724 }
725 
726 /*
727  * vfsmount lock must be held for write
728  */
commit_tree(struct mount * mnt)729 static void commit_tree(struct mount *mnt)
730 {
731 	struct mount *parent = mnt->mnt_parent;
732 	struct mount *m;
733 	LIST_HEAD(head);
734 	struct mnt_namespace *n = parent->mnt_ns;
735 
736 	BUG_ON(parent == mnt);
737 
738 	list_add_tail(&head, &mnt->mnt_list);
739 	list_for_each_entry(m, &head, mnt_list)
740 		m->mnt_ns = n;
741 
742 	list_splice(&head, n->list.prev);
743 
744 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
745 				hash(&parent->mnt, mnt->mnt_mountpoint));
746 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
747 	touch_mnt_namespace(n);
748 }
749 
next_mnt(struct mount * p,struct mount * root)750 static struct mount *next_mnt(struct mount *p, struct mount *root)
751 {
752 	struct list_head *next = p->mnt_mounts.next;
753 	if (next == &p->mnt_mounts) {
754 		while (1) {
755 			if (p == root)
756 				return NULL;
757 			next = p->mnt_child.next;
758 			if (next != &p->mnt_parent->mnt_mounts)
759 				break;
760 			p = p->mnt_parent;
761 		}
762 	}
763 	return list_entry(next, struct mount, mnt_child);
764 }
765 
skip_mnt_tree(struct mount * p)766 static struct mount *skip_mnt_tree(struct mount *p)
767 {
768 	struct list_head *prev = p->mnt_mounts.prev;
769 	while (prev != &p->mnt_mounts) {
770 		p = list_entry(prev, struct mount, mnt_child);
771 		prev = p->mnt_mounts.prev;
772 	}
773 	return p;
774 }
775 
776 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)777 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
778 {
779 	struct mount *mnt;
780 	struct dentry *root;
781 
782 	if (!type)
783 		return ERR_PTR(-ENODEV);
784 
785 	mnt = alloc_vfsmnt(name);
786 	if (!mnt)
787 		return ERR_PTR(-ENOMEM);
788 
789 	if (type->alloc_mnt_data) {
790 		mnt->mnt.data = type->alloc_mnt_data();
791 		if (!mnt->mnt.data) {
792 			mnt_free_id(mnt);
793 			free_vfsmnt(mnt);
794 			return ERR_PTR(-ENOMEM);
795 		}
796 	}
797 	if (flags & MS_KERNMOUNT)
798 		mnt->mnt.mnt_flags = MNT_INTERNAL;
799 
800 	root = mount_fs(type, flags, name, &mnt->mnt, data);
801 	if (IS_ERR(root)) {
802 		free_vfsmnt(mnt);
803 		return ERR_CAST(root);
804 	}
805 
806 	mnt->mnt.mnt_root = root;
807 	mnt->mnt.mnt_sb = root->d_sb;
808 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 	mnt->mnt_parent = mnt;
810 	br_write_lock(&vfsmount_lock);
811 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
812 	br_write_unlock(&vfsmount_lock);
813 	return &mnt->mnt;
814 }
815 EXPORT_SYMBOL_GPL(vfs_kern_mount);
816 
clone_mnt(struct mount * old,struct dentry * root,int flag)817 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
818 					int flag)
819 {
820 	struct super_block *sb = old->mnt.mnt_sb;
821 	struct mount *mnt;
822 	int err;
823 
824 	mnt = alloc_vfsmnt(old->mnt_devname);
825 	if (!mnt)
826 		return ERR_PTR(-ENOMEM);
827 
828 	if (sb->s_op->clone_mnt_data) {
829 		mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
830 		if (!mnt->mnt.data) {
831 			err = -ENOMEM;
832 			goto out_free;
833 		}
834 	}
835 
836 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
837 		mnt->mnt_group_id = 0; /* not a peer of original */
838 	else
839 		mnt->mnt_group_id = old->mnt_group_id;
840 
841 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
842 		err = mnt_alloc_group_id(mnt);
843 		if (err)
844 			goto out_free;
845 	}
846 
847 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
848 	/* Don't allow unprivileged users to change mount flags */
849 	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
850 		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
851 
852 	atomic_inc(&sb->s_active);
853 	mnt->mnt.mnt_sb = sb;
854 	mnt->mnt.mnt_root = dget(root);
855 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
856 	mnt->mnt_parent = mnt;
857 	br_write_lock(&vfsmount_lock);
858 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
859 	br_write_unlock(&vfsmount_lock);
860 
861 	if ((flag & CL_SLAVE) ||
862 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
863 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
864 		mnt->mnt_master = old;
865 		CLEAR_MNT_SHARED(mnt);
866 	} else if (!(flag & CL_PRIVATE)) {
867 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
868 			list_add(&mnt->mnt_share, &old->mnt_share);
869 		if (IS_MNT_SLAVE(old))
870 			list_add(&mnt->mnt_slave, &old->mnt_slave);
871 		mnt->mnt_master = old->mnt_master;
872 	}
873 	if (flag & CL_MAKE_SHARED)
874 		set_mnt_shared(mnt);
875 
876 	/* stick the duplicate mount on the same expiry list
877 	 * as the original if that was on one */
878 	if (flag & CL_EXPIRE) {
879 		if (!list_empty(&old->mnt_expire))
880 			list_add(&mnt->mnt_expire, &old->mnt_expire);
881 	}
882 
883 	return mnt;
884 
885  out_free:
886 	free_vfsmnt(mnt);
887 	return ERR_PTR(err);
888 }
889 
mntfree(struct mount * mnt)890 static inline void mntfree(struct mount *mnt)
891 {
892 	struct vfsmount *m = &mnt->mnt;
893 	struct super_block *sb = m->mnt_sb;
894 
895 	/*
896 	 * This probably indicates that somebody messed
897 	 * up a mnt_want/drop_write() pair.  If this
898 	 * happens, the filesystem was probably unable
899 	 * to make r/w->r/o transitions.
900 	 */
901 	/*
902 	 * The locking used to deal with mnt_count decrement provides barriers,
903 	 * so mnt_get_writers() below is safe.
904 	 */
905 	WARN_ON(mnt_get_writers(mnt));
906 	fsnotify_vfsmount_delete(m);
907 	dput(m->mnt_root);
908 	free_vfsmnt(mnt);
909 	deactivate_super(sb);
910 }
911 
mntput_no_expire(struct mount * mnt)912 static void mntput_no_expire(struct mount *mnt)
913 {
914 put_again:
915 #ifdef CONFIG_SMP
916 	br_read_lock(&vfsmount_lock);
917 	if (likely(mnt->mnt_ns)) {
918 		/* shouldn't be the last one */
919 		mnt_add_count(mnt, -1);
920 		br_read_unlock(&vfsmount_lock);
921 		return;
922 	}
923 	br_read_unlock(&vfsmount_lock);
924 
925 	br_write_lock(&vfsmount_lock);
926 	mnt_add_count(mnt, -1);
927 	if (mnt_get_count(mnt)) {
928 		br_write_unlock(&vfsmount_lock);
929 		return;
930 	}
931 #else
932 	mnt_add_count(mnt, -1);
933 	if (likely(mnt_get_count(mnt)))
934 		return;
935 	br_write_lock(&vfsmount_lock);
936 #endif
937 	if (unlikely(mnt->mnt_pinned)) {
938 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
939 		mnt->mnt_pinned = 0;
940 		br_write_unlock(&vfsmount_lock);
941 		acct_auto_close_mnt(&mnt->mnt);
942 		goto put_again;
943 	}
944 
945 	list_del(&mnt->mnt_instance);
946 	br_write_unlock(&vfsmount_lock);
947 	mntfree(mnt);
948 }
949 
mntput(struct vfsmount * mnt)950 void mntput(struct vfsmount *mnt)
951 {
952 	if (mnt) {
953 		struct mount *m = real_mount(mnt);
954 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
955 		if (unlikely(m->mnt_expiry_mark))
956 			m->mnt_expiry_mark = 0;
957 		mntput_no_expire(m);
958 	}
959 }
960 EXPORT_SYMBOL(mntput);
961 
mntget(struct vfsmount * mnt)962 struct vfsmount *mntget(struct vfsmount *mnt)
963 {
964 	if (mnt)
965 		mnt_add_count(real_mount(mnt), 1);
966 	return mnt;
967 }
968 EXPORT_SYMBOL(mntget);
969 
mnt_pin(struct vfsmount * mnt)970 void mnt_pin(struct vfsmount *mnt)
971 {
972 	br_write_lock(&vfsmount_lock);
973 	real_mount(mnt)->mnt_pinned++;
974 	br_write_unlock(&vfsmount_lock);
975 }
976 EXPORT_SYMBOL(mnt_pin);
977 
mnt_unpin(struct vfsmount * m)978 void mnt_unpin(struct vfsmount *m)
979 {
980 	struct mount *mnt = real_mount(m);
981 	br_write_lock(&vfsmount_lock);
982 	if (mnt->mnt_pinned) {
983 		mnt_add_count(mnt, 1);
984 		mnt->mnt_pinned--;
985 	}
986 	br_write_unlock(&vfsmount_lock);
987 }
988 EXPORT_SYMBOL(mnt_unpin);
989 
mangle(struct seq_file * m,const char * s)990 static inline void mangle(struct seq_file *m, const char *s)
991 {
992 	seq_escape(m, s, " \t\n\\");
993 }
994 
995 /*
996  * Simple .show_options callback for filesystems which don't want to
997  * implement more complex mount option showing.
998  *
999  * See also save_mount_options().
1000  */
generic_show_options(struct seq_file * m,struct dentry * root)1001 int generic_show_options(struct seq_file *m, struct dentry *root)
1002 {
1003 	const char *options;
1004 
1005 	rcu_read_lock();
1006 	options = rcu_dereference(root->d_sb->s_options);
1007 
1008 	if (options != NULL && options[0]) {
1009 		seq_putc(m, ',');
1010 		mangle(m, options);
1011 	}
1012 	rcu_read_unlock();
1013 
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL(generic_show_options);
1017 
1018 /*
1019  * If filesystem uses generic_show_options(), this function should be
1020  * called from the fill_super() callback.
1021  *
1022  * The .remount_fs callback usually needs to be handled in a special
1023  * way, to make sure, that previous options are not overwritten if the
1024  * remount fails.
1025  *
1026  * Also note, that if the filesystem's .remount_fs function doesn't
1027  * reset all options to their default value, but changes only newly
1028  * given options, then the displayed options will not reflect reality
1029  * any more.
1030  */
save_mount_options(struct super_block * sb,char * options)1031 void save_mount_options(struct super_block *sb, char *options)
1032 {
1033 	BUG_ON(sb->s_options);
1034 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1035 }
1036 EXPORT_SYMBOL(save_mount_options);
1037 
replace_mount_options(struct super_block * sb,char * options)1038 void replace_mount_options(struct super_block *sb, char *options)
1039 {
1040 	char *old = sb->s_options;
1041 	rcu_assign_pointer(sb->s_options, options);
1042 	if (old) {
1043 		synchronize_rcu();
1044 		kfree(old);
1045 	}
1046 }
1047 EXPORT_SYMBOL(replace_mount_options);
1048 
1049 #ifdef CONFIG_PROC_FS
1050 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1051 static void *m_start(struct seq_file *m, loff_t *pos)
1052 {
1053 	struct proc_mounts *p = proc_mounts(m);
1054 
1055 	down_read(&namespace_sem);
1056 	return seq_list_start(&p->ns->list, *pos);
1057 }
1058 
m_next(struct seq_file * m,void * v,loff_t * pos)1059 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1060 {
1061 	struct proc_mounts *p = proc_mounts(m);
1062 
1063 	return seq_list_next(v, &p->ns->list, pos);
1064 }
1065 
m_stop(struct seq_file * m,void * v)1066 static void m_stop(struct seq_file *m, void *v)
1067 {
1068 	up_read(&namespace_sem);
1069 }
1070 
m_show(struct seq_file * m,void * v)1071 static int m_show(struct seq_file *m, void *v)
1072 {
1073 	struct proc_mounts *p = proc_mounts(m);
1074 	struct mount *r = list_entry(v, struct mount, mnt_list);
1075 	return p->show(m, &r->mnt);
1076 }
1077 
1078 const struct seq_operations mounts_op = {
1079 	.start	= m_start,
1080 	.next	= m_next,
1081 	.stop	= m_stop,
1082 	.show	= m_show,
1083 };
1084 #endif  /* CONFIG_PROC_FS */
1085 
1086 /**
1087  * may_umount_tree - check if a mount tree is busy
1088  * @mnt: root of mount tree
1089  *
1090  * This is called to check if a tree of mounts has any
1091  * open files, pwds, chroots or sub mounts that are
1092  * busy.
1093  */
may_umount_tree(struct vfsmount * m)1094 int may_umount_tree(struct vfsmount *m)
1095 {
1096 	struct mount *mnt = real_mount(m);
1097 	int actual_refs = 0;
1098 	int minimum_refs = 0;
1099 	struct mount *p;
1100 	BUG_ON(!m);
1101 
1102 	/* write lock needed for mnt_get_count */
1103 	br_write_lock(&vfsmount_lock);
1104 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1105 		actual_refs += mnt_get_count(p);
1106 		minimum_refs += 2;
1107 	}
1108 	br_write_unlock(&vfsmount_lock);
1109 
1110 	if (actual_refs > minimum_refs)
1111 		return 0;
1112 
1113 	return 1;
1114 }
1115 
1116 EXPORT_SYMBOL(may_umount_tree);
1117 
1118 /**
1119  * may_umount - check if a mount point is busy
1120  * @mnt: root of mount
1121  *
1122  * This is called to check if a mount point has any
1123  * open files, pwds, chroots or sub mounts. If the
1124  * mount has sub mounts this will return busy
1125  * regardless of whether the sub mounts are busy.
1126  *
1127  * Doesn't take quota and stuff into account. IOW, in some cases it will
1128  * give false negatives. The main reason why it's here is that we need
1129  * a non-destructive way to look for easily umountable filesystems.
1130  */
may_umount(struct vfsmount * mnt)1131 int may_umount(struct vfsmount *mnt)
1132 {
1133 	int ret = 1;
1134 	down_read(&namespace_sem);
1135 	br_write_lock(&vfsmount_lock);
1136 	if (propagate_mount_busy(real_mount(mnt), 2))
1137 		ret = 0;
1138 	br_write_unlock(&vfsmount_lock);
1139 	up_read(&namespace_sem);
1140 	return ret;
1141 }
1142 
1143 EXPORT_SYMBOL(may_umount);
1144 
1145 static LIST_HEAD(unmounted);	/* protected by namespace_sem */
1146 
namespace_unlock(void)1147 static void namespace_unlock(void)
1148 {
1149 	struct mount *mnt;
1150 	LIST_HEAD(head);
1151 
1152 	if (likely(list_empty(&unmounted))) {
1153 		up_write(&namespace_sem);
1154 		return;
1155 	}
1156 
1157 	list_splice_init(&unmounted, &head);
1158 	up_write(&namespace_sem);
1159 
1160 	while (!list_empty(&head)) {
1161 		mnt = list_first_entry(&head, struct mount, mnt_hash);
1162 		list_del_init(&mnt->mnt_hash);
1163 		if (mnt_has_parent(mnt)) {
1164 			struct dentry *dentry;
1165 			struct mount *m;
1166 
1167 			br_write_lock(&vfsmount_lock);
1168 			dentry = mnt->mnt_mountpoint;
1169 			m = mnt->mnt_parent;
1170 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1171 			mnt->mnt_parent = mnt;
1172 			m->mnt_ghosts--;
1173 			br_write_unlock(&vfsmount_lock);
1174 			dput(dentry);
1175 			mntput(&m->mnt);
1176 		}
1177 		mntput(&mnt->mnt);
1178 	}
1179 }
1180 
namespace_lock(void)1181 static inline void namespace_lock(void)
1182 {
1183 	down_write(&namespace_sem);
1184 }
1185 
1186 /*
1187  * vfsmount lock must be held for write
1188  * namespace_sem must be held for write
1189  */
umount_tree(struct mount * mnt,int propagate)1190 void umount_tree(struct mount *mnt, int propagate)
1191 {
1192 	LIST_HEAD(tmp_list);
1193 	struct mount *p;
1194 
1195 	for (p = mnt; p; p = next_mnt(p, mnt))
1196 		list_move(&p->mnt_hash, &tmp_list);
1197 
1198 	if (propagate)
1199 		propagate_umount(&tmp_list);
1200 
1201 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1202 		list_del_init(&p->mnt_expire);
1203 		list_del_init(&p->mnt_list);
1204 		__touch_mnt_namespace(p->mnt_ns);
1205 		p->mnt_ns = NULL;
1206 		list_del_init(&p->mnt_child);
1207 		if (mnt_has_parent(p)) {
1208 			p->mnt_parent->mnt_ghosts++;
1209 			put_mountpoint(p->mnt_mp);
1210 			p->mnt_mp = NULL;
1211 		}
1212 		change_mnt_propagation(p, MS_PRIVATE);
1213 	}
1214 	list_splice(&tmp_list, &unmounted);
1215 }
1216 
1217 static void shrink_submounts(struct mount *mnt);
1218 
do_umount(struct mount * mnt,int flags)1219 static int do_umount(struct mount *mnt, int flags)
1220 {
1221 	struct super_block *sb = mnt->mnt.mnt_sb;
1222 	int retval;
1223 
1224 	retval = security_sb_umount(&mnt->mnt, flags);
1225 	if (retval)
1226 		return retval;
1227 
1228 	/*
1229 	 * Allow userspace to request a mountpoint be expired rather than
1230 	 * unmounting unconditionally. Unmount only happens if:
1231 	 *  (1) the mark is already set (the mark is cleared by mntput())
1232 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1233 	 */
1234 	if (flags & MNT_EXPIRE) {
1235 		if (&mnt->mnt == current->fs->root.mnt ||
1236 		    flags & (MNT_FORCE | MNT_DETACH))
1237 			return -EINVAL;
1238 
1239 		/*
1240 		 * probably don't strictly need the lock here if we examined
1241 		 * all race cases, but it's a slowpath.
1242 		 */
1243 		br_write_lock(&vfsmount_lock);
1244 		if (mnt_get_count(mnt) != 2) {
1245 			br_write_unlock(&vfsmount_lock);
1246 			return -EBUSY;
1247 		}
1248 		br_write_unlock(&vfsmount_lock);
1249 
1250 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1251 			return -EAGAIN;
1252 	}
1253 
1254 	/*
1255 	 * If we may have to abort operations to get out of this
1256 	 * mount, and they will themselves hold resources we must
1257 	 * allow the fs to do things. In the Unix tradition of
1258 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1259 	 * might fail to complete on the first run through as other tasks
1260 	 * must return, and the like. Thats for the mount program to worry
1261 	 * about for the moment.
1262 	 */
1263 
1264 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1265 		sb->s_op->umount_begin(sb);
1266 	}
1267 
1268 	/*
1269 	 * No sense to grab the lock for this test, but test itself looks
1270 	 * somewhat bogus. Suggestions for better replacement?
1271 	 * Ho-hum... In principle, we might treat that as umount + switch
1272 	 * to rootfs. GC would eventually take care of the old vfsmount.
1273 	 * Actually it makes sense, especially if rootfs would contain a
1274 	 * /reboot - static binary that would close all descriptors and
1275 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1276 	 */
1277 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1278 		/*
1279 		 * Special case for "unmounting" root ...
1280 		 * we just try to remount it readonly.
1281 		 */
1282 		down_write(&sb->s_umount);
1283 		if (!(sb->s_flags & MS_RDONLY))
1284 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1285 		up_write(&sb->s_umount);
1286 		return retval;
1287 	}
1288 
1289 	namespace_lock();
1290 	br_write_lock(&vfsmount_lock);
1291 	event++;
1292 
1293 	if (!(flags & MNT_DETACH))
1294 		shrink_submounts(mnt);
1295 
1296 	retval = -EBUSY;
1297 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1298 		if (!list_empty(&mnt->mnt_list))
1299 			umount_tree(mnt, 1);
1300 		retval = 0;
1301 	}
1302 	br_write_unlock(&vfsmount_lock);
1303 	namespace_unlock();
1304 	return retval;
1305 }
1306 
1307 /*
1308  * Is the caller allowed to modify his namespace?
1309  */
may_mount(void)1310 static inline bool may_mount(void)
1311 {
1312 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1313 }
1314 
1315 /*
1316  * Now umount can handle mount points as well as block devices.
1317  * This is important for filesystems which use unnamed block devices.
1318  *
1319  * We now support a flag for forced unmount like the other 'big iron'
1320  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1321  */
1322 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1323 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1324 {
1325 	struct path path;
1326 	struct mount *mnt;
1327 	int retval;
1328 	int lookup_flags = 0;
1329 
1330 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1331 		return -EINVAL;
1332 
1333 	if (!may_mount())
1334 		return -EPERM;
1335 
1336 	if (!(flags & UMOUNT_NOFOLLOW))
1337 		lookup_flags |= LOOKUP_FOLLOW;
1338 
1339 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1340 	if (retval)
1341 		goto out;
1342 	mnt = real_mount(path.mnt);
1343 	retval = -EINVAL;
1344 	if (path.dentry != path.mnt->mnt_root)
1345 		goto dput_and_out;
1346 	if (!check_mnt(mnt))
1347 		goto dput_and_out;
1348 
1349 	retval = do_umount(mnt, flags);
1350 dput_and_out:
1351 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1352 	dput(path.dentry);
1353 	mntput_no_expire(mnt);
1354 out:
1355 	return retval;
1356 }
1357 
1358 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1359 
1360 /*
1361  *	The 2.0 compatible umount. No flags.
1362  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1363 SYSCALL_DEFINE1(oldumount, char __user *, name)
1364 {
1365 	return sys_umount(name, 0);
1366 }
1367 
1368 #endif
1369 
mnt_ns_loop(struct path * path)1370 static bool mnt_ns_loop(struct path *path)
1371 {
1372 	/* Could bind mounting the mount namespace inode cause a
1373 	 * mount namespace loop?
1374 	 */
1375 	struct inode *inode = path->dentry->d_inode;
1376 	struct proc_ns *ei;
1377 	struct mnt_namespace *mnt_ns;
1378 
1379 	if (!proc_ns_inode(inode))
1380 		return false;
1381 
1382 	ei = get_proc_ns(inode);
1383 	if (ei->ns_ops != &mntns_operations)
1384 		return false;
1385 
1386 	mnt_ns = ei->ns;
1387 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1388 }
1389 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1390 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1391 					int flag)
1392 {
1393 	struct mount *res, *p, *q, *r, *parent;
1394 
1395 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1396 		return ERR_PTR(-EINVAL);
1397 
1398 	res = q = clone_mnt(mnt, dentry, flag);
1399 	if (IS_ERR(q))
1400 		return q;
1401 
1402 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1403 
1404 	p = mnt;
1405 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1406 		struct mount *s;
1407 		if (!is_subdir(r->mnt_mountpoint, dentry))
1408 			continue;
1409 
1410 		for (s = r; s; s = next_mnt(s, r)) {
1411 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1412 				s = skip_mnt_tree(s);
1413 				continue;
1414 			}
1415 			while (p != s->mnt_parent) {
1416 				p = p->mnt_parent;
1417 				q = q->mnt_parent;
1418 			}
1419 			p = s;
1420 			parent = q;
1421 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1422 			if (IS_ERR(q))
1423 				goto out;
1424 			br_write_lock(&vfsmount_lock);
1425 			list_add_tail(&q->mnt_list, &res->mnt_list);
1426 			attach_mnt(q, parent, p->mnt_mp);
1427 			br_write_unlock(&vfsmount_lock);
1428 		}
1429 	}
1430 	return res;
1431 out:
1432 	if (res) {
1433 		br_write_lock(&vfsmount_lock);
1434 		umount_tree(res, 0);
1435 		br_write_unlock(&vfsmount_lock);
1436 	}
1437 	return q;
1438 }
1439 
1440 /* Caller should check returned pointer for errors */
1441 
collect_mounts(struct path * path)1442 struct vfsmount *collect_mounts(struct path *path)
1443 {
1444 	struct mount *tree;
1445 	namespace_lock();
1446 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1447 			 CL_COPY_ALL | CL_PRIVATE);
1448 	namespace_unlock();
1449 	if (IS_ERR(tree))
1450 		return NULL;
1451 	return &tree->mnt;
1452 }
1453 
drop_collected_mounts(struct vfsmount * mnt)1454 void drop_collected_mounts(struct vfsmount *mnt)
1455 {
1456 	namespace_lock();
1457 	br_write_lock(&vfsmount_lock);
1458 	umount_tree(real_mount(mnt), 0);
1459 	br_write_unlock(&vfsmount_lock);
1460 	namespace_unlock();
1461 }
1462 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1463 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1464 		   struct vfsmount *root)
1465 {
1466 	struct mount *mnt;
1467 	int res = f(root, arg);
1468 	if (res)
1469 		return res;
1470 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1471 		res = f(&mnt->mnt, arg);
1472 		if (res)
1473 			return res;
1474 	}
1475 	return 0;
1476 }
1477 
cleanup_group_ids(struct mount * mnt,struct mount * end)1478 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1479 {
1480 	struct mount *p;
1481 
1482 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1483 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1484 			mnt_release_group_id(p);
1485 	}
1486 }
1487 
invent_group_ids(struct mount * mnt,bool recurse)1488 static int invent_group_ids(struct mount *mnt, bool recurse)
1489 {
1490 	struct mount *p;
1491 
1492 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1493 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1494 			int err = mnt_alloc_group_id(p);
1495 			if (err) {
1496 				cleanup_group_ids(mnt, p);
1497 				return err;
1498 			}
1499 		}
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  *  @source_mnt : mount tree to be attached
1507  *  @nd         : place the mount tree @source_mnt is attached
1508  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1509  *  		   store the parent mount and mountpoint dentry.
1510  *  		   (done when source_mnt is moved)
1511  *
1512  *  NOTE: in the table below explains the semantics when a source mount
1513  *  of a given type is attached to a destination mount of a given type.
1514  * ---------------------------------------------------------------------------
1515  * |         BIND MOUNT OPERATION                                            |
1516  * |**************************************************************************
1517  * | source-->| shared        |       private  |       slave    | unbindable |
1518  * | dest     |               |                |                |            |
1519  * |   |      |               |                |                |            |
1520  * |   v      |               |                |                |            |
1521  * |**************************************************************************
1522  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1523  * |          |               |                |                |            |
1524  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1525  * ***************************************************************************
1526  * A bind operation clones the source mount and mounts the clone on the
1527  * destination mount.
1528  *
1529  * (++)  the cloned mount is propagated to all the mounts in the propagation
1530  * 	 tree of the destination mount and the cloned mount is added to
1531  * 	 the peer group of the source mount.
1532  * (+)   the cloned mount is created under the destination mount and is marked
1533  *       as shared. The cloned mount is added to the peer group of the source
1534  *       mount.
1535  * (+++) the mount is propagated to all the mounts in the propagation tree
1536  *       of the destination mount and the cloned mount is made slave
1537  *       of the same master as that of the source mount. The cloned mount
1538  *       is marked as 'shared and slave'.
1539  * (*)   the cloned mount is made a slave of the same master as that of the
1540  * 	 source mount.
1541  *
1542  * ---------------------------------------------------------------------------
1543  * |         		MOVE MOUNT OPERATION                                 |
1544  * |**************************************************************************
1545  * | source-->| shared        |       private  |       slave    | unbindable |
1546  * | dest     |               |                |                |            |
1547  * |   |      |               |                |                |            |
1548  * |   v      |               |                |                |            |
1549  * |**************************************************************************
1550  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1551  * |          |               |                |                |            |
1552  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1553  * ***************************************************************************
1554  *
1555  * (+)  the mount is moved to the destination. And is then propagated to
1556  * 	all the mounts in the propagation tree of the destination mount.
1557  * (+*)  the mount is moved to the destination.
1558  * (+++)  the mount is moved to the destination and is then propagated to
1559  * 	all the mounts belonging to the destination mount's propagation tree.
1560  * 	the mount is marked as 'shared and slave'.
1561  * (*)	the mount continues to be a slave at the new location.
1562  *
1563  * if the source mount is a tree, the operations explained above is
1564  * applied to each mount in the tree.
1565  * Must be called without spinlocks held, since this function can sleep
1566  * in allocations.
1567  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1568 static int attach_recursive_mnt(struct mount *source_mnt,
1569 			struct mount *dest_mnt,
1570 			struct mountpoint *dest_mp,
1571 			struct path *parent_path)
1572 {
1573 	LIST_HEAD(tree_list);
1574 	struct mount *child, *p;
1575 	int err;
1576 
1577 	if (IS_MNT_SHARED(dest_mnt)) {
1578 		err = invent_group_ids(source_mnt, true);
1579 		if (err)
1580 			goto out;
1581 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1582 		br_write_lock(&vfsmount_lock);
1583 		if (err)
1584 			goto out_cleanup_ids;
1585 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1586 			set_mnt_shared(p);
1587 	} else {
1588 		br_write_lock(&vfsmount_lock);
1589 	}
1590 	if (parent_path) {
1591 		detach_mnt(source_mnt, parent_path);
1592 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1593 		touch_mnt_namespace(source_mnt->mnt_ns);
1594 	} else {
1595 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1596 		commit_tree(source_mnt);
1597 	}
1598 
1599 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1600 		list_del_init(&child->mnt_hash);
1601 		commit_tree(child);
1602 	}
1603 	br_write_unlock(&vfsmount_lock);
1604 
1605 	return 0;
1606 
1607  out_cleanup_ids:
1608 	while (!list_empty(&tree_list)) {
1609 		child = list_first_entry(&tree_list, struct mount, mnt_hash);
1610 		umount_tree(child, 0);
1611 	}
1612 	br_write_unlock(&vfsmount_lock);
1613 	cleanup_group_ids(source_mnt, NULL);
1614  out:
1615 	return err;
1616 }
1617 
lock_mount(struct path * path)1618 static struct mountpoint *lock_mount(struct path *path)
1619 {
1620 	struct vfsmount *mnt;
1621 	struct dentry *dentry = path->dentry;
1622 retry:
1623 	mutex_lock(&dentry->d_inode->i_mutex);
1624 	if (unlikely(cant_mount(dentry))) {
1625 		mutex_unlock(&dentry->d_inode->i_mutex);
1626 		return ERR_PTR(-ENOENT);
1627 	}
1628 	namespace_lock();
1629 	mnt = lookup_mnt(path);
1630 	if (likely(!mnt)) {
1631 		struct mountpoint *mp = new_mountpoint(dentry);
1632 		if (IS_ERR(mp)) {
1633 			namespace_unlock();
1634 			mutex_unlock(&dentry->d_inode->i_mutex);
1635 			return mp;
1636 		}
1637 		return mp;
1638 	}
1639 	namespace_unlock();
1640 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1641 	path_put(path);
1642 	path->mnt = mnt;
1643 	dentry = path->dentry = dget(mnt->mnt_root);
1644 	goto retry;
1645 }
1646 
unlock_mount(struct mountpoint * where)1647 static void unlock_mount(struct mountpoint *where)
1648 {
1649 	struct dentry *dentry = where->m_dentry;
1650 	put_mountpoint(where);
1651 	namespace_unlock();
1652 	mutex_unlock(&dentry->d_inode->i_mutex);
1653 }
1654 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)1655 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1656 {
1657 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1658 		return -EINVAL;
1659 
1660 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1661 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1662 		return -ENOTDIR;
1663 
1664 	return attach_recursive_mnt(mnt, p, mp, NULL);
1665 }
1666 
1667 /*
1668  * Sanity check the flags to change_mnt_propagation.
1669  */
1670 
flags_to_propagation_type(int flags)1671 static int flags_to_propagation_type(int flags)
1672 {
1673 	int type = flags & ~(MS_REC | MS_SILENT);
1674 
1675 	/* Fail if any non-propagation flags are set */
1676 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1677 		return 0;
1678 	/* Only one propagation flag should be set */
1679 	if (!is_power_of_2(type))
1680 		return 0;
1681 	return type;
1682 }
1683 
1684 /*
1685  * recursively change the type of the mountpoint.
1686  */
do_change_type(struct path * path,int flag)1687 static int do_change_type(struct path *path, int flag)
1688 {
1689 	struct mount *m;
1690 	struct mount *mnt = real_mount(path->mnt);
1691 	int recurse = flag & MS_REC;
1692 	int type;
1693 	int err = 0;
1694 
1695 	if (path->dentry != path->mnt->mnt_root)
1696 		return -EINVAL;
1697 
1698 	type = flags_to_propagation_type(flag);
1699 	if (!type)
1700 		return -EINVAL;
1701 
1702 	namespace_lock();
1703 	if (type == MS_SHARED) {
1704 		err = invent_group_ids(mnt, recurse);
1705 		if (err)
1706 			goto out_unlock;
1707 	}
1708 
1709 	br_write_lock(&vfsmount_lock);
1710 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1711 		change_mnt_propagation(m, type);
1712 	br_write_unlock(&vfsmount_lock);
1713 
1714  out_unlock:
1715 	namespace_unlock();
1716 	return err;
1717 }
1718 
1719 /*
1720  * do loopback mount.
1721  */
do_loopback(struct path * path,const char * old_name,int recurse)1722 static int do_loopback(struct path *path, const char *old_name,
1723 				int recurse)
1724 {
1725 	struct path old_path;
1726 	struct mount *mnt = NULL, *old, *parent;
1727 	struct mountpoint *mp;
1728 	int err;
1729 	if (!old_name || !*old_name)
1730 		return -EINVAL;
1731 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1732 	if (err)
1733 		return err;
1734 
1735 	err = -EINVAL;
1736 	if (mnt_ns_loop(&old_path))
1737 		goto out;
1738 
1739 	mp = lock_mount(path);
1740 	err = PTR_ERR(mp);
1741 	if (IS_ERR(mp))
1742 		goto out;
1743 
1744 	old = real_mount(old_path.mnt);
1745 	parent = real_mount(path->mnt);
1746 
1747 	err = -EINVAL;
1748 	if (IS_MNT_UNBINDABLE(old))
1749 		goto out2;
1750 
1751 	if (!check_mnt(parent) || !check_mnt(old))
1752 		goto out2;
1753 
1754 	if (recurse)
1755 		mnt = copy_tree(old, old_path.dentry, 0);
1756 	else
1757 		mnt = clone_mnt(old, old_path.dentry, 0);
1758 
1759 	if (IS_ERR(mnt)) {
1760 		err = PTR_ERR(mnt);
1761 		goto out2;
1762 	}
1763 
1764 	err = graft_tree(mnt, parent, mp);
1765 	if (err) {
1766 		br_write_lock(&vfsmount_lock);
1767 		umount_tree(mnt, 0);
1768 		br_write_unlock(&vfsmount_lock);
1769 	}
1770 out2:
1771 	unlock_mount(mp);
1772 out:
1773 	path_put(&old_path);
1774 	return err;
1775 }
1776 
change_mount_flags(struct vfsmount * mnt,int ms_flags)1777 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1778 {
1779 	int error = 0;
1780 	int readonly_request = 0;
1781 
1782 	if (ms_flags & MS_RDONLY)
1783 		readonly_request = 1;
1784 	if (readonly_request == __mnt_is_readonly(mnt))
1785 		return 0;
1786 
1787 	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1788 		return -EPERM;
1789 
1790 	if (readonly_request)
1791 		error = mnt_make_readonly(real_mount(mnt));
1792 	else
1793 		__mnt_unmake_readonly(real_mount(mnt));
1794 	return error;
1795 }
1796 
1797 /*
1798  * change filesystem flags. dir should be a physical root of filesystem.
1799  * If you've mounted a non-root directory somewhere and want to do remount
1800  * on it - tough luck.
1801  */
do_remount(struct path * path,int flags,int mnt_flags,void * data)1802 static int do_remount(struct path *path, int flags, int mnt_flags,
1803 		      void *data)
1804 {
1805 	int err;
1806 	struct super_block *sb = path->mnt->mnt_sb;
1807 	struct mount *mnt = real_mount(path->mnt);
1808 
1809 	if (!check_mnt(mnt))
1810 		return -EINVAL;
1811 
1812 	if (path->dentry != path->mnt->mnt_root)
1813 		return -EINVAL;
1814 
1815 	err = security_sb_remount(sb, data);
1816 	if (err)
1817 		return err;
1818 
1819 	down_write(&sb->s_umount);
1820 	if (flags & MS_BIND)
1821 		err = change_mount_flags(path->mnt, flags);
1822 	else if (!capable(CAP_SYS_ADMIN))
1823 		err = -EPERM;
1824 	else {
1825 		err = do_remount_sb2(path->mnt, sb, flags, data, 0);
1826 		namespace_lock();
1827 		br_write_lock(&vfsmount_lock);
1828 		propagate_remount(mnt);
1829 		br_write_unlock(&vfsmount_lock);
1830 		namespace_unlock();
1831 	}
1832 	if (!err) {
1833 		br_write_lock(&vfsmount_lock);
1834 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1835 		mnt->mnt.mnt_flags = mnt_flags;
1836 		br_write_unlock(&vfsmount_lock);
1837 	}
1838 	up_write(&sb->s_umount);
1839 	if (!err) {
1840 		br_write_lock(&vfsmount_lock);
1841 		touch_mnt_namespace(mnt->mnt_ns);
1842 		br_write_unlock(&vfsmount_lock);
1843 	}
1844 	return err;
1845 }
1846 
tree_contains_unbindable(struct mount * mnt)1847 static inline int tree_contains_unbindable(struct mount *mnt)
1848 {
1849 	struct mount *p;
1850 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1851 		if (IS_MNT_UNBINDABLE(p))
1852 			return 1;
1853 	}
1854 	return 0;
1855 }
1856 
do_move_mount(struct path * path,const char * old_name)1857 static int do_move_mount(struct path *path, const char *old_name)
1858 {
1859 	struct path old_path, parent_path;
1860 	struct mount *p;
1861 	struct mount *old;
1862 	struct mountpoint *mp;
1863 	int err;
1864 	if (!old_name || !*old_name)
1865 		return -EINVAL;
1866 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1867 	if (err)
1868 		return err;
1869 
1870 	mp = lock_mount(path);
1871 	err = PTR_ERR(mp);
1872 	if (IS_ERR(mp))
1873 		goto out;
1874 
1875 	old = real_mount(old_path.mnt);
1876 	p = real_mount(path->mnt);
1877 
1878 	err = -EINVAL;
1879 	if (!check_mnt(p) || !check_mnt(old))
1880 		goto out1;
1881 
1882 	err = -EINVAL;
1883 	if (old_path.dentry != old_path.mnt->mnt_root)
1884 		goto out1;
1885 
1886 	if (!mnt_has_parent(old))
1887 		goto out1;
1888 
1889 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1890 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1891 		goto out1;
1892 	/*
1893 	 * Don't move a mount residing in a shared parent.
1894 	 */
1895 	if (IS_MNT_SHARED(old->mnt_parent))
1896 		goto out1;
1897 	/*
1898 	 * Don't move a mount tree containing unbindable mounts to a destination
1899 	 * mount which is shared.
1900 	 */
1901 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1902 		goto out1;
1903 	err = -ELOOP;
1904 	for (; mnt_has_parent(p); p = p->mnt_parent)
1905 		if (p == old)
1906 			goto out1;
1907 
1908 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1909 	if (err)
1910 		goto out1;
1911 
1912 	/* if the mount is moved, it should no longer be expire
1913 	 * automatically */
1914 	list_del_init(&old->mnt_expire);
1915 out1:
1916 	unlock_mount(mp);
1917 out:
1918 	if (!err)
1919 		path_put(&parent_path);
1920 	path_put(&old_path);
1921 	return err;
1922 }
1923 
fs_set_subtype(struct vfsmount * mnt,const char * fstype)1924 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1925 {
1926 	int err;
1927 	const char *subtype = strchr(fstype, '.');
1928 	if (subtype) {
1929 		subtype++;
1930 		err = -EINVAL;
1931 		if (!subtype[0])
1932 			goto err;
1933 	} else
1934 		subtype = "";
1935 
1936 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1937 	err = -ENOMEM;
1938 	if (!mnt->mnt_sb->s_subtype)
1939 		goto err;
1940 	return mnt;
1941 
1942  err:
1943 	mntput(mnt);
1944 	return ERR_PTR(err);
1945 }
1946 
1947 /*
1948  * add a mount into a namespace's mount tree
1949  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)1950 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1951 {
1952 	struct mountpoint *mp;
1953 	struct mount *parent;
1954 	int err;
1955 
1956 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
1957 
1958 	mp = lock_mount(path);
1959 	if (IS_ERR(mp))
1960 		return PTR_ERR(mp);
1961 
1962 	parent = real_mount(path->mnt);
1963 	err = -EINVAL;
1964 	if (unlikely(!check_mnt(parent))) {
1965 		/* that's acceptable only for automounts done in private ns */
1966 		if (!(mnt_flags & MNT_SHRINKABLE))
1967 			goto unlock;
1968 		/* ... and for those we'd better have mountpoint still alive */
1969 		if (!parent->mnt_ns)
1970 			goto unlock;
1971 	}
1972 
1973 	/* Refuse the same filesystem on the same mount point */
1974 	err = -EBUSY;
1975 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1976 	    path->mnt->mnt_root == path->dentry)
1977 		goto unlock;
1978 
1979 	err = -EINVAL;
1980 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1981 		goto unlock;
1982 
1983 	newmnt->mnt.mnt_flags = mnt_flags;
1984 	err = graft_tree(newmnt, parent, mp);
1985 
1986 unlock:
1987 	unlock_mount(mp);
1988 	return err;
1989 }
1990 
1991 /*
1992  * create a new mount for userspace and request it to be added into the
1993  * namespace's tree
1994  */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)1995 static int do_new_mount(struct path *path, const char *fstype, int flags,
1996 			int mnt_flags, const char *name, void *data)
1997 {
1998 	struct file_system_type *type;
1999 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2000 	struct vfsmount *mnt;
2001 	int err;
2002 
2003 	if (!fstype)
2004 		return -EINVAL;
2005 
2006 	type = get_fs_type(fstype);
2007 	if (!type)
2008 		return -ENODEV;
2009 
2010 	if (user_ns != &init_user_ns) {
2011 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2012 			put_filesystem(type);
2013 			return -EPERM;
2014 		}
2015 		/* Only in special cases allow devices from mounts
2016 		 * created outside the initial user namespace.
2017 		 */
2018 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2019 			flags |= MS_NODEV;
2020 			mnt_flags |= MNT_NODEV;
2021 		}
2022 	}
2023 
2024 	mnt = vfs_kern_mount(type, flags, name, data);
2025 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2026 	    !mnt->mnt_sb->s_subtype)
2027 		mnt = fs_set_subtype(mnt, fstype);
2028 
2029 	put_filesystem(type);
2030 	if (IS_ERR(mnt))
2031 		return PTR_ERR(mnt);
2032 
2033 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2034 	if (err)
2035 		mntput(mnt);
2036 	return err;
2037 }
2038 
finish_automount(struct vfsmount * m,struct path * path)2039 int finish_automount(struct vfsmount *m, struct path *path)
2040 {
2041 	struct mount *mnt = real_mount(m);
2042 	int err;
2043 	/* The new mount record should have at least 2 refs to prevent it being
2044 	 * expired before we get a chance to add it
2045 	 */
2046 	BUG_ON(mnt_get_count(mnt) < 2);
2047 
2048 	if (m->mnt_sb == path->mnt->mnt_sb &&
2049 	    m->mnt_root == path->dentry) {
2050 		err = -ELOOP;
2051 		goto fail;
2052 	}
2053 
2054 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2055 	if (!err)
2056 		return 0;
2057 fail:
2058 	/* remove m from any expiration list it may be on */
2059 	if (!list_empty(&mnt->mnt_expire)) {
2060 		namespace_lock();
2061 		br_write_lock(&vfsmount_lock);
2062 		list_del_init(&mnt->mnt_expire);
2063 		br_write_unlock(&vfsmount_lock);
2064 		namespace_unlock();
2065 	}
2066 	mntput(m);
2067 	mntput(m);
2068 	return err;
2069 }
2070 
2071 /**
2072  * mnt_set_expiry - Put a mount on an expiration list
2073  * @mnt: The mount to list.
2074  * @expiry_list: The list to add the mount to.
2075  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2076 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2077 {
2078 	namespace_lock();
2079 	br_write_lock(&vfsmount_lock);
2080 
2081 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2082 
2083 	br_write_unlock(&vfsmount_lock);
2084 	namespace_unlock();
2085 }
2086 EXPORT_SYMBOL(mnt_set_expiry);
2087 
2088 /*
2089  * process a list of expirable mountpoints with the intent of discarding any
2090  * mountpoints that aren't in use and haven't been touched since last we came
2091  * here
2092  */
mark_mounts_for_expiry(struct list_head * mounts)2093 void mark_mounts_for_expiry(struct list_head *mounts)
2094 {
2095 	struct mount *mnt, *next;
2096 	LIST_HEAD(graveyard);
2097 
2098 	if (list_empty(mounts))
2099 		return;
2100 
2101 	namespace_lock();
2102 	br_write_lock(&vfsmount_lock);
2103 
2104 	/* extract from the expiration list every vfsmount that matches the
2105 	 * following criteria:
2106 	 * - only referenced by its parent vfsmount
2107 	 * - still marked for expiry (marked on the last call here; marks are
2108 	 *   cleared by mntput())
2109 	 */
2110 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2111 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2112 			propagate_mount_busy(mnt, 1))
2113 			continue;
2114 		list_move(&mnt->mnt_expire, &graveyard);
2115 	}
2116 	while (!list_empty(&graveyard)) {
2117 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2118 		touch_mnt_namespace(mnt->mnt_ns);
2119 		umount_tree(mnt, 1);
2120 	}
2121 	br_write_unlock(&vfsmount_lock);
2122 	namespace_unlock();
2123 }
2124 
2125 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2126 
2127 /*
2128  * Ripoff of 'select_parent()'
2129  *
2130  * search the list of submounts for a given mountpoint, and move any
2131  * shrinkable submounts to the 'graveyard' list.
2132  */
select_submounts(struct mount * parent,struct list_head * graveyard)2133 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2134 {
2135 	struct mount *this_parent = parent;
2136 	struct list_head *next;
2137 	int found = 0;
2138 
2139 repeat:
2140 	next = this_parent->mnt_mounts.next;
2141 resume:
2142 	while (next != &this_parent->mnt_mounts) {
2143 		struct list_head *tmp = next;
2144 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2145 
2146 		next = tmp->next;
2147 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2148 			continue;
2149 		/*
2150 		 * Descend a level if the d_mounts list is non-empty.
2151 		 */
2152 		if (!list_empty(&mnt->mnt_mounts)) {
2153 			this_parent = mnt;
2154 			goto repeat;
2155 		}
2156 
2157 		if (!propagate_mount_busy(mnt, 1)) {
2158 			list_move_tail(&mnt->mnt_expire, graveyard);
2159 			found++;
2160 		}
2161 	}
2162 	/*
2163 	 * All done at this level ... ascend and resume the search
2164 	 */
2165 	if (this_parent != parent) {
2166 		next = this_parent->mnt_child.next;
2167 		this_parent = this_parent->mnt_parent;
2168 		goto resume;
2169 	}
2170 	return found;
2171 }
2172 
2173 /*
2174  * process a list of expirable mountpoints with the intent of discarding any
2175  * submounts of a specific parent mountpoint
2176  *
2177  * vfsmount_lock must be held for write
2178  */
shrink_submounts(struct mount * mnt)2179 static void shrink_submounts(struct mount *mnt)
2180 {
2181 	LIST_HEAD(graveyard);
2182 	struct mount *m;
2183 
2184 	/* extract submounts of 'mountpoint' from the expiration list */
2185 	while (select_submounts(mnt, &graveyard)) {
2186 		while (!list_empty(&graveyard)) {
2187 			m = list_first_entry(&graveyard, struct mount,
2188 						mnt_expire);
2189 			touch_mnt_namespace(m->mnt_ns);
2190 			umount_tree(m, 1);
2191 		}
2192 	}
2193 }
2194 
2195 /*
2196  * Some copy_from_user() implementations do not return the exact number of
2197  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2198  * Note that this function differs from copy_from_user() in that it will oops
2199  * on bad values of `to', rather than returning a short copy.
2200  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2201 static long exact_copy_from_user(void *to, const void __user * from,
2202 				 unsigned long n)
2203 {
2204 	char *t = to;
2205 	const char __user *f = from;
2206 	char c;
2207 
2208 	if (!access_ok(VERIFY_READ, from, n))
2209 		return n;
2210 
2211 	while (n) {
2212 		if (__get_user(c, f)) {
2213 			memset(t, 0, n);
2214 			break;
2215 		}
2216 		*t++ = c;
2217 		f++;
2218 		n--;
2219 	}
2220 	return n;
2221 }
2222 
copy_mount_options(const void __user * data,unsigned long * where)2223 int copy_mount_options(const void __user * data, unsigned long *where)
2224 {
2225 	int i;
2226 	unsigned long page;
2227 	unsigned long size;
2228 
2229 	*where = 0;
2230 	if (!data)
2231 		return 0;
2232 
2233 	if (!(page = __get_free_page(GFP_KERNEL)))
2234 		return -ENOMEM;
2235 
2236 	/* We only care that *some* data at the address the user
2237 	 * gave us is valid.  Just in case, we'll zero
2238 	 * the remainder of the page.
2239 	 */
2240 	/* copy_from_user cannot cross TASK_SIZE ! */
2241 	size = TASK_SIZE - (unsigned long)data;
2242 	if (size > PAGE_SIZE)
2243 		size = PAGE_SIZE;
2244 
2245 	i = size - exact_copy_from_user((void *)page, data, size);
2246 	if (!i) {
2247 		free_page(page);
2248 		return -EFAULT;
2249 	}
2250 	if (i != PAGE_SIZE)
2251 		memset((char *)page + i, 0, PAGE_SIZE - i);
2252 	*where = page;
2253 	return 0;
2254 }
2255 
copy_mount_string(const void __user * data,char ** where)2256 int copy_mount_string(const void __user *data, char **where)
2257 {
2258 	char *tmp;
2259 
2260 	if (!data) {
2261 		*where = NULL;
2262 		return 0;
2263 	}
2264 
2265 	tmp = strndup_user(data, PAGE_SIZE);
2266 	if (IS_ERR(tmp))
2267 		return PTR_ERR(tmp);
2268 
2269 	*where = tmp;
2270 	return 0;
2271 }
2272 
2273 /*
2274  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2275  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2276  *
2277  * data is a (void *) that can point to any structure up to
2278  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2279  * information (or be NULL).
2280  *
2281  * Pre-0.97 versions of mount() didn't have a flags word.
2282  * When the flags word was introduced its top half was required
2283  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2284  * Therefore, if this magic number is present, it carries no information
2285  * and must be discarded.
2286  */
do_mount(const char * dev_name,const char * dir_name,const char * type_page,unsigned long flags,void * data_page)2287 long do_mount(const char *dev_name, const char *dir_name,
2288 		const char *type_page, unsigned long flags, void *data_page)
2289 {
2290 	struct path path;
2291 	int retval = 0;
2292 	int mnt_flags = 0;
2293 
2294 	/* Discard magic */
2295 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2296 		flags &= ~MS_MGC_MSK;
2297 
2298 	/* Basic sanity checks */
2299 
2300 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2301 		return -EINVAL;
2302 
2303 	if (data_page)
2304 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2305 
2306 	/* ... and get the mountpoint */
2307 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2308 	if (retval)
2309 		return retval;
2310 
2311 	retval = security_sb_mount(dev_name, &path,
2312 				   type_page, flags, data_page);
2313 	if (!retval && !may_mount())
2314 		retval = -EPERM;
2315 	if (retval)
2316 		goto dput_out;
2317 
2318 	/* Default to relatime unless overriden */
2319 	if (!(flags & MS_NOATIME))
2320 		mnt_flags |= MNT_RELATIME;
2321 
2322 	/* Separate the per-mountpoint flags */
2323 	if (flags & MS_NOSUID)
2324 		mnt_flags |= MNT_NOSUID;
2325 	if (flags & MS_NODEV)
2326 		mnt_flags |= MNT_NODEV;
2327 	if (flags & MS_NOEXEC)
2328 		mnt_flags |= MNT_NOEXEC;
2329 	if (flags & MS_NOATIME)
2330 		mnt_flags |= MNT_NOATIME;
2331 	if (flags & MS_NODIRATIME)
2332 		mnt_flags |= MNT_NODIRATIME;
2333 	if (flags & MS_STRICTATIME)
2334 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2335 	if (flags & MS_RDONLY)
2336 		mnt_flags |= MNT_READONLY;
2337 
2338 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2339 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2340 		   MS_STRICTATIME);
2341 
2342 	if (flags & MS_REMOUNT)
2343 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2344 				    data_page);
2345 	else if (flags & MS_BIND)
2346 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2347 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2348 		retval = do_change_type(&path, flags);
2349 	else if (flags & MS_MOVE)
2350 		retval = do_move_mount(&path, dev_name);
2351 	else
2352 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2353 				      dev_name, data_page);
2354 dput_out:
2355 	path_put(&path);
2356 	return retval;
2357 }
2358 
free_mnt_ns(struct mnt_namespace * ns)2359 static void free_mnt_ns(struct mnt_namespace *ns)
2360 {
2361 	proc_free_inum(ns->proc_inum);
2362 	put_user_ns(ns->user_ns);
2363 	kfree(ns);
2364 }
2365 
2366 /*
2367  * Assign a sequence number so we can detect when we attempt to bind
2368  * mount a reference to an older mount namespace into the current
2369  * mount namespace, preventing reference counting loops.  A 64bit
2370  * number incrementing at 10Ghz will take 12,427 years to wrap which
2371  * is effectively never, so we can ignore the possibility.
2372  */
2373 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2374 
alloc_mnt_ns(struct user_namespace * user_ns)2375 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2376 {
2377 	struct mnt_namespace *new_ns;
2378 	int ret;
2379 
2380 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2381 	if (!new_ns)
2382 		return ERR_PTR(-ENOMEM);
2383 	ret = proc_alloc_inum(&new_ns->proc_inum);
2384 	if (ret) {
2385 		kfree(new_ns);
2386 		return ERR_PTR(ret);
2387 	}
2388 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2389 	atomic_set(&new_ns->count, 1);
2390 	new_ns->root = NULL;
2391 	INIT_LIST_HEAD(&new_ns->list);
2392 	init_waitqueue_head(&new_ns->poll);
2393 	new_ns->event = 0;
2394 	new_ns->user_ns = get_user_ns(user_ns);
2395 	return new_ns;
2396 }
2397 
2398 /*
2399  * Allocate a new namespace structure and populate it with contents
2400  * copied from the namespace of the passed in task structure.
2401  */
dup_mnt_ns(struct mnt_namespace * mnt_ns,struct user_namespace * user_ns,struct fs_struct * fs)2402 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2403 		struct user_namespace *user_ns, struct fs_struct *fs)
2404 {
2405 	struct mnt_namespace *new_ns;
2406 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2407 	struct mount *p, *q;
2408 	struct mount *old = mnt_ns->root;
2409 	struct mount *new;
2410 	int copy_flags;
2411 
2412 	new_ns = alloc_mnt_ns(user_ns);
2413 	if (IS_ERR(new_ns))
2414 		return new_ns;
2415 
2416 	namespace_lock();
2417 	/* First pass: copy the tree topology */
2418 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2419 	if (user_ns != mnt_ns->user_ns)
2420 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2421 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2422 	if (IS_ERR(new)) {
2423 		namespace_unlock();
2424 		free_mnt_ns(new_ns);
2425 		return ERR_CAST(new);
2426 	}
2427 	new_ns->root = new;
2428 	br_write_lock(&vfsmount_lock);
2429 	list_add_tail(&new_ns->list, &new->mnt_list);
2430 	br_write_unlock(&vfsmount_lock);
2431 
2432 	/*
2433 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2434 	 * as belonging to new namespace.  We have already acquired a private
2435 	 * fs_struct, so tsk->fs->lock is not needed.
2436 	 */
2437 	p = old;
2438 	q = new;
2439 	while (p) {
2440 		q->mnt_ns = new_ns;
2441 		if (fs) {
2442 			if (&p->mnt == fs->root.mnt) {
2443 				fs->root.mnt = mntget(&q->mnt);
2444 				rootmnt = &p->mnt;
2445 			}
2446 			if (&p->mnt == fs->pwd.mnt) {
2447 				fs->pwd.mnt = mntget(&q->mnt);
2448 				pwdmnt = &p->mnt;
2449 			}
2450 		}
2451 		p = next_mnt(p, old);
2452 		q = next_mnt(q, new);
2453 	}
2454 	namespace_unlock();
2455 
2456 	if (rootmnt)
2457 		mntput(rootmnt);
2458 	if (pwdmnt)
2459 		mntput(pwdmnt);
2460 
2461 	return new_ns;
2462 }
2463 
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2464 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2465 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2466 {
2467 	struct mnt_namespace *new_ns;
2468 
2469 	BUG_ON(!ns);
2470 	get_mnt_ns(ns);
2471 
2472 	if (!(flags & CLONE_NEWNS))
2473 		return ns;
2474 
2475 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2476 
2477 	put_mnt_ns(ns);
2478 	return new_ns;
2479 }
2480 
2481 /**
2482  * create_mnt_ns - creates a private namespace and adds a root filesystem
2483  * @mnt: pointer to the new root filesystem mountpoint
2484  */
create_mnt_ns(struct vfsmount * m)2485 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2486 {
2487 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2488 	if (!IS_ERR(new_ns)) {
2489 		struct mount *mnt = real_mount(m);
2490 		mnt->mnt_ns = new_ns;
2491 		new_ns->root = mnt;
2492 		list_add(&mnt->mnt_list, &new_ns->list);
2493 	} else {
2494 		mntput(m);
2495 	}
2496 	return new_ns;
2497 }
2498 
mount_subtree(struct vfsmount * mnt,const char * name)2499 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2500 {
2501 	struct mnt_namespace *ns;
2502 	struct super_block *s;
2503 	struct path path;
2504 	int err;
2505 
2506 	ns = create_mnt_ns(mnt);
2507 	if (IS_ERR(ns))
2508 		return ERR_CAST(ns);
2509 
2510 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2511 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2512 
2513 	put_mnt_ns(ns);
2514 
2515 	if (err)
2516 		return ERR_PTR(err);
2517 
2518 	/* trade a vfsmount reference for active sb one */
2519 	s = path.mnt->mnt_sb;
2520 	atomic_inc(&s->s_active);
2521 	mntput(path.mnt);
2522 	/* lock the sucker */
2523 	down_write(&s->s_umount);
2524 	/* ... and return the root of (sub)tree on it */
2525 	return path.dentry;
2526 }
2527 EXPORT_SYMBOL(mount_subtree);
2528 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2529 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2530 		char __user *, type, unsigned long, flags, void __user *, data)
2531 {
2532 	int ret;
2533 	char *kernel_type;
2534 	struct filename *kernel_dir;
2535 	char *kernel_dev;
2536 	unsigned long data_page;
2537 
2538 	ret = copy_mount_string(type, &kernel_type);
2539 	if (ret < 0)
2540 		goto out_type;
2541 
2542 	kernel_dir = getname(dir_name);
2543 	if (IS_ERR(kernel_dir)) {
2544 		ret = PTR_ERR(kernel_dir);
2545 		goto out_dir;
2546 	}
2547 
2548 	ret = copy_mount_string(dev_name, &kernel_dev);
2549 	if (ret < 0)
2550 		goto out_dev;
2551 
2552 	ret = copy_mount_options(data, &data_page);
2553 	if (ret < 0)
2554 		goto out_data;
2555 
2556 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2557 		(void *) data_page);
2558 
2559 	free_page(data_page);
2560 out_data:
2561 	kfree(kernel_dev);
2562 out_dev:
2563 	putname(kernel_dir);
2564 out_dir:
2565 	kfree(kernel_type);
2566 out_type:
2567 	return ret;
2568 }
2569 
2570 /*
2571  * Return true if path is reachable from root
2572  *
2573  * namespace_sem or vfsmount_lock is held
2574  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)2575 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2576 			 const struct path *root)
2577 {
2578 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2579 		dentry = mnt->mnt_mountpoint;
2580 		mnt = mnt->mnt_parent;
2581 	}
2582 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2583 }
2584 
path_is_under(struct path * path1,struct path * path2)2585 int path_is_under(struct path *path1, struct path *path2)
2586 {
2587 	int res;
2588 	br_read_lock(&vfsmount_lock);
2589 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2590 	br_read_unlock(&vfsmount_lock);
2591 	return res;
2592 }
2593 EXPORT_SYMBOL(path_is_under);
2594 
2595 /*
2596  * pivot_root Semantics:
2597  * Moves the root file system of the current process to the directory put_old,
2598  * makes new_root as the new root file system of the current process, and sets
2599  * root/cwd of all processes which had them on the current root to new_root.
2600  *
2601  * Restrictions:
2602  * The new_root and put_old must be directories, and  must not be on the
2603  * same file  system as the current process root. The put_old  must  be
2604  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2605  * pointed to by put_old must yield the same directory as new_root. No other
2606  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2607  *
2608  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2609  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2610  * in this situation.
2611  *
2612  * Notes:
2613  *  - we don't move root/cwd if they are not at the root (reason: if something
2614  *    cared enough to change them, it's probably wrong to force them elsewhere)
2615  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2616  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2617  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2618  *    first.
2619  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2620 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2621 		const char __user *, put_old)
2622 {
2623 	struct path new, old, parent_path, root_parent, root;
2624 	struct mount *new_mnt, *root_mnt, *old_mnt;
2625 	struct mountpoint *old_mp, *root_mp;
2626 	int error;
2627 
2628 	if (!may_mount())
2629 		return -EPERM;
2630 
2631 	error = user_path_dir(new_root, &new);
2632 	if (error)
2633 		goto out0;
2634 
2635 	error = user_path_dir(put_old, &old);
2636 	if (error)
2637 		goto out1;
2638 
2639 	error = security_sb_pivotroot(&old, &new);
2640 	if (error)
2641 		goto out2;
2642 
2643 	get_fs_root(current->fs, &root);
2644 	old_mp = lock_mount(&old);
2645 	error = PTR_ERR(old_mp);
2646 	if (IS_ERR(old_mp))
2647 		goto out3;
2648 
2649 	error = -EINVAL;
2650 	new_mnt = real_mount(new.mnt);
2651 	root_mnt = real_mount(root.mnt);
2652 	old_mnt = real_mount(old.mnt);
2653 	if (IS_MNT_SHARED(old_mnt) ||
2654 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2655 		IS_MNT_SHARED(root_mnt->mnt_parent))
2656 		goto out4;
2657 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2658 		goto out4;
2659 	error = -ENOENT;
2660 	if (d_unlinked(new.dentry))
2661 		goto out4;
2662 	error = -EBUSY;
2663 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2664 		goto out4; /* loop, on the same file system  */
2665 	error = -EINVAL;
2666 	if (root.mnt->mnt_root != root.dentry)
2667 		goto out4; /* not a mountpoint */
2668 	if (!mnt_has_parent(root_mnt))
2669 		goto out4; /* not attached */
2670 	root_mp = root_mnt->mnt_mp;
2671 	if (new.mnt->mnt_root != new.dentry)
2672 		goto out4; /* not a mountpoint */
2673 	if (!mnt_has_parent(new_mnt))
2674 		goto out4; /* not attached */
2675 	/* make sure we can reach put_old from new_root */
2676 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2677 		goto out4;
2678 	root_mp->m_count++; /* pin it so it won't go away */
2679 	br_write_lock(&vfsmount_lock);
2680 	detach_mnt(new_mnt, &parent_path);
2681 	detach_mnt(root_mnt, &root_parent);
2682 	/* mount old root on put_old */
2683 	attach_mnt(root_mnt, old_mnt, old_mp);
2684 	/* mount new_root on / */
2685 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2686 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2687 	br_write_unlock(&vfsmount_lock);
2688 	chroot_fs_refs(&root, &new);
2689 	put_mountpoint(root_mp);
2690 	error = 0;
2691 out4:
2692 	unlock_mount(old_mp);
2693 	if (!error) {
2694 		path_put(&root_parent);
2695 		path_put(&parent_path);
2696 	}
2697 out3:
2698 	path_put(&root);
2699 out2:
2700 	path_put(&old);
2701 out1:
2702 	path_put(&new);
2703 out0:
2704 	return error;
2705 }
2706 
init_mount_tree(void)2707 static void __init init_mount_tree(void)
2708 {
2709 	struct vfsmount *mnt;
2710 	struct mnt_namespace *ns;
2711 	struct path root;
2712 	struct file_system_type *type;
2713 
2714 	type = get_fs_type("rootfs");
2715 	if (!type)
2716 		panic("Can't find rootfs type");
2717 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2718 	put_filesystem(type);
2719 	if (IS_ERR(mnt))
2720 		panic("Can't create rootfs");
2721 
2722 	ns = create_mnt_ns(mnt);
2723 	if (IS_ERR(ns))
2724 		panic("Can't allocate initial namespace");
2725 
2726 	init_task.nsproxy->mnt_ns = ns;
2727 	get_mnt_ns(ns);
2728 
2729 	root.mnt = mnt;
2730 	root.dentry = mnt->mnt_root;
2731 
2732 	set_fs_pwd(current->fs, &root);
2733 	set_fs_root(current->fs, &root);
2734 }
2735 
mnt_init(void)2736 void __init mnt_init(void)
2737 {
2738 	unsigned u;
2739 	int err;
2740 
2741 	init_rwsem(&namespace_sem);
2742 
2743 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2744 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2745 
2746 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2747 	mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2748 
2749 	if (!mount_hashtable || !mountpoint_hashtable)
2750 		panic("Failed to allocate mount hash table\n");
2751 
2752 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2753 
2754 	for (u = 0; u < HASH_SIZE; u++)
2755 		INIT_LIST_HEAD(&mount_hashtable[u]);
2756 	for (u = 0; u < HASH_SIZE; u++)
2757 		INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2758 
2759 	br_lock_init(&vfsmount_lock);
2760 
2761 	err = sysfs_init();
2762 	if (err)
2763 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2764 			__func__, err);
2765 	fs_kobj = kobject_create_and_add("fs", NULL);
2766 	if (!fs_kobj)
2767 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2768 	init_rootfs();
2769 	init_mount_tree();
2770 }
2771 
put_mnt_ns(struct mnt_namespace * ns)2772 void put_mnt_ns(struct mnt_namespace *ns)
2773 {
2774 	if (!atomic_dec_and_test(&ns->count))
2775 		return;
2776 	namespace_lock();
2777 	br_write_lock(&vfsmount_lock);
2778 	umount_tree(ns->root, 0);
2779 	br_write_unlock(&vfsmount_lock);
2780 	namespace_unlock();
2781 	free_mnt_ns(ns);
2782 }
2783 
kern_mount_data(struct file_system_type * type,void * data)2784 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2785 {
2786 	struct vfsmount *mnt;
2787 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2788 	if (!IS_ERR(mnt)) {
2789 		/*
2790 		 * it is a longterm mount, don't release mnt until
2791 		 * we unmount before file sys is unregistered
2792 		*/
2793 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2794 	}
2795 	return mnt;
2796 }
2797 EXPORT_SYMBOL_GPL(kern_mount_data);
2798 
kern_unmount(struct vfsmount * mnt)2799 void kern_unmount(struct vfsmount *mnt)
2800 {
2801 	/* release long term mount so mount point can be released */
2802 	if (!IS_ERR_OR_NULL(mnt)) {
2803 		br_write_lock(&vfsmount_lock);
2804 		real_mount(mnt)->mnt_ns = NULL;
2805 		br_write_unlock(&vfsmount_lock);
2806 		mntput(mnt);
2807 	}
2808 }
2809 EXPORT_SYMBOL(kern_unmount);
2810 
our_mnt(struct vfsmount * mnt)2811 bool our_mnt(struct vfsmount *mnt)
2812 {
2813 	return check_mnt(real_mount(mnt));
2814 }
2815 
current_chrooted(void)2816 bool current_chrooted(void)
2817 {
2818 	/* Does the current process have a non-standard root */
2819 	struct path ns_root;
2820 	struct path fs_root;
2821 	bool chrooted;
2822 
2823 	/* Find the namespace root */
2824 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2825 	ns_root.dentry = ns_root.mnt->mnt_root;
2826 	path_get(&ns_root);
2827 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2828 		;
2829 
2830 	get_fs_root(current->fs, &fs_root);
2831 
2832 	chrooted = !path_equal(&fs_root, &ns_root);
2833 
2834 	path_put(&fs_root);
2835 	path_put(&ns_root);
2836 
2837 	return chrooted;
2838 }
2839 
update_mnt_policy(struct user_namespace * userns)2840 void update_mnt_policy(struct user_namespace *userns)
2841 {
2842 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2843 	struct mount *mnt;
2844 
2845 	down_read(&namespace_sem);
2846 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2847 		switch (mnt->mnt.mnt_sb->s_magic) {
2848 		case SYSFS_MAGIC:
2849 			userns->may_mount_sysfs = true;
2850 			break;
2851 		case PROC_SUPER_MAGIC:
2852 			userns->may_mount_proc = true;
2853 			break;
2854 		}
2855 		if (userns->may_mount_sysfs && userns->may_mount_proc)
2856 			break;
2857 	}
2858 	up_read(&namespace_sem);
2859 }
2860 
mntns_get(struct task_struct * task)2861 static void *mntns_get(struct task_struct *task)
2862 {
2863 	struct mnt_namespace *ns = NULL;
2864 	struct nsproxy *nsproxy;
2865 
2866 	rcu_read_lock();
2867 	nsproxy = task_nsproxy(task);
2868 	if (nsproxy) {
2869 		ns = nsproxy->mnt_ns;
2870 		get_mnt_ns(ns);
2871 	}
2872 	rcu_read_unlock();
2873 
2874 	return ns;
2875 }
2876 
mntns_put(void * ns)2877 static void mntns_put(void *ns)
2878 {
2879 	put_mnt_ns(ns);
2880 }
2881 
mntns_install(struct nsproxy * nsproxy,void * ns)2882 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2883 {
2884 	struct fs_struct *fs = current->fs;
2885 	struct mnt_namespace *mnt_ns = ns;
2886 	struct path root;
2887 
2888 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2889 	    !nsown_capable(CAP_SYS_CHROOT) ||
2890 	    !nsown_capable(CAP_SYS_ADMIN))
2891 		return -EPERM;
2892 
2893 	if (fs->users != 1)
2894 		return -EINVAL;
2895 
2896 	get_mnt_ns(mnt_ns);
2897 	put_mnt_ns(nsproxy->mnt_ns);
2898 	nsproxy->mnt_ns = mnt_ns;
2899 
2900 	/* Find the root */
2901 	root.mnt    = &mnt_ns->root->mnt;
2902 	root.dentry = mnt_ns->root->mnt.mnt_root;
2903 	path_get(&root);
2904 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2905 		;
2906 
2907 	/* Update the pwd and root */
2908 	set_fs_pwd(fs, &root);
2909 	set_fs_root(fs, &root);
2910 
2911 	path_put(&root);
2912 	return 0;
2913 }
2914 
mntns_inum(void * ns)2915 static unsigned int mntns_inum(void *ns)
2916 {
2917 	struct mnt_namespace *mnt_ns = ns;
2918 	return mnt_ns->proc_inum;
2919 }
2920 
2921 const struct proc_ns_operations mntns_operations = {
2922 	.name		= "mnt",
2923 	.type		= CLONE_NEWNS,
2924 	.get		= mntns_get,
2925 	.put		= mntns_put,
2926 	.install	= mntns_install,
2927 	.inum		= mntns_inum,
2928 };
2929