1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32
33 #include <asm/uaccess.h>
34
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39
40 #define NFSDBG_FACILITY NFSDBG_FILE
41
42 static const struct vm_operations_struct nfs_file_vm_ops;
43
44 /* Hack for future NFS swap support */
45 #ifndef IS_SWAPFILE
46 # define IS_SWAPFILE(inode) (0)
47 #endif
48
nfs_check_flags(int flags)49 int nfs_check_flags(int flags)
50 {
51 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
52 return -EINVAL;
53
54 return 0;
55 }
56 EXPORT_SYMBOL_GPL(nfs_check_flags);
57
58 /*
59 * Open file
60 */
61 static int
nfs_file_open(struct inode * inode,struct file * filp)62 nfs_file_open(struct inode *inode, struct file *filp)
63 {
64 int res;
65
66 dprintk("NFS: open file(%s/%s)\n",
67 filp->f_path.dentry->d_parent->d_name.name,
68 filp->f_path.dentry->d_name.name);
69
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
74
75 res = nfs_open(inode, filp);
76 return res;
77 }
78
79 int
nfs_file_release(struct inode * inode,struct file * filp)80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 dprintk("NFS: release(%s/%s)\n",
83 filp->f_path.dentry->d_parent->d_name.name,
84 filp->f_path.dentry->d_name.name);
85
86 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
87 return nfs_release(inode, filp);
88 }
89 EXPORT_SYMBOL_GPL(nfs_file_release);
90
91 /**
92 * nfs_revalidate_size - Revalidate the file size
93 * @inode - pointer to inode struct
94 * @file - pointer to struct file
95 *
96 * Revalidates the file length. This is basically a wrapper around
97 * nfs_revalidate_inode() that takes into account the fact that we may
98 * have cached writes (in which case we don't care about the server's
99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
nfs_revalidate_file_size(struct inode * inode,struct file * filp)102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103 {
104 struct nfs_server *server = NFS_SERVER(inode);
105 struct nfs_inode *nfsi = NFS_I(inode);
106
107 if (nfs_have_delegated_attributes(inode))
108 goto out_noreval;
109
110 if (filp->f_flags & O_DIRECT)
111 goto force_reval;
112 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
113 goto force_reval;
114 if (nfs_attribute_timeout(inode))
115 goto force_reval;
116 out_noreval:
117 return 0;
118 force_reval:
119 return __nfs_revalidate_inode(server, inode);
120 }
121
nfs_file_llseek(struct file * filp,loff_t offset,int whence)122 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
123 {
124 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
125 filp->f_path.dentry->d_parent->d_name.name,
126 filp->f_path.dentry->d_name.name,
127 offset, whence);
128
129 /*
130 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
131 * the cached file length
132 */
133 if (whence != SEEK_SET && whence != SEEK_CUR) {
134 struct inode *inode = filp->f_mapping->host;
135
136 int retval = nfs_revalidate_file_size(inode, filp);
137 if (retval < 0)
138 return (loff_t)retval;
139 }
140
141 return generic_file_llseek(filp, offset, whence);
142 }
143 EXPORT_SYMBOL_GPL(nfs_file_llseek);
144
145 /*
146 * Flush all dirty pages, and check for write errors.
147 */
148 int
nfs_file_flush(struct file * file,fl_owner_t id)149 nfs_file_flush(struct file *file, fl_owner_t id)
150 {
151 struct dentry *dentry = file->f_path.dentry;
152 struct inode *inode = dentry->d_inode;
153
154 dprintk("NFS: flush(%s/%s)\n",
155 dentry->d_parent->d_name.name,
156 dentry->d_name.name);
157
158 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
159 if ((file->f_mode & FMODE_WRITE) == 0)
160 return 0;
161
162 /*
163 * If we're holding a write delegation, then just start the i/o
164 * but don't wait for completion (or send a commit).
165 */
166 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
167 return filemap_fdatawrite(file->f_mapping);
168
169 /* Flush writes to the server and return any errors */
170 return vfs_fsync(file, 0);
171 }
172 EXPORT_SYMBOL_GPL(nfs_file_flush);
173
174 ssize_t
nfs_file_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)175 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
176 unsigned long nr_segs, loff_t pos)
177 {
178 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
179 struct inode * inode = dentry->d_inode;
180 ssize_t result;
181
182 if (iocb->ki_filp->f_flags & O_DIRECT)
183 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
184
185 dprintk("NFS: read(%s/%s, %lu@%lu)\n",
186 dentry->d_parent->d_name.name, dentry->d_name.name,
187 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
188
189 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
190 if (!result) {
191 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
192 if (result > 0)
193 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
194 }
195 return result;
196 }
197 EXPORT_SYMBOL_GPL(nfs_file_read);
198
199 ssize_t
nfs_file_splice_read(struct file * filp,loff_t * ppos,struct pipe_inode_info * pipe,size_t count,unsigned int flags)200 nfs_file_splice_read(struct file *filp, loff_t *ppos,
201 struct pipe_inode_info *pipe, size_t count,
202 unsigned int flags)
203 {
204 struct dentry *dentry = filp->f_path.dentry;
205 struct inode *inode = dentry->d_inode;
206 ssize_t res;
207
208 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
209 dentry->d_parent->d_name.name, dentry->d_name.name,
210 (unsigned long) count, (unsigned long long) *ppos);
211
212 res = nfs_revalidate_mapping(inode, filp->f_mapping);
213 if (!res) {
214 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
215 if (res > 0)
216 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
217 }
218 return res;
219 }
220 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
221
222 int
nfs_file_mmap(struct file * file,struct vm_area_struct * vma)223 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
224 {
225 struct dentry *dentry = file->f_path.dentry;
226 struct inode *inode = dentry->d_inode;
227 int status;
228
229 dprintk("NFS: mmap(%s/%s)\n",
230 dentry->d_parent->d_name.name, dentry->d_name.name);
231
232 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
233 * so we call that before revalidating the mapping
234 */
235 status = generic_file_mmap(file, vma);
236 if (!status) {
237 vma->vm_ops = &nfs_file_vm_ops;
238 status = nfs_revalidate_mapping(inode, file->f_mapping);
239 }
240 return status;
241 }
242 EXPORT_SYMBOL_GPL(nfs_file_mmap);
243
244 /*
245 * Flush any dirty pages for this process, and check for write errors.
246 * The return status from this call provides a reliable indication of
247 * whether any write errors occurred for this process.
248 *
249 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
250 * disk, but it retrieves and clears ctx->error after synching, despite
251 * the two being set at the same time in nfs_context_set_write_error().
252 * This is because the former is used to notify the _next_ call to
253 * nfs_file_write() that a write error occurred, and hence cause it to
254 * fall back to doing a synchronous write.
255 */
256 int
nfs_file_fsync_commit(struct file * file,loff_t start,loff_t end,int datasync)257 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
258 {
259 struct dentry *dentry = file->f_path.dentry;
260 struct nfs_open_context *ctx = nfs_file_open_context(file);
261 struct inode *inode = dentry->d_inode;
262 int have_error, do_resend, status;
263 int ret = 0;
264
265 dprintk("NFS: fsync file(%s/%s) datasync %d\n",
266 dentry->d_parent->d_name.name, dentry->d_name.name,
267 datasync);
268
269 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
270 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
271 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
272 status = nfs_commit_inode(inode, FLUSH_SYNC);
273 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
274 if (have_error) {
275 ret = xchg(&ctx->error, 0);
276 if (ret)
277 goto out;
278 }
279 if (status < 0) {
280 ret = status;
281 goto out;
282 }
283 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
284 if (do_resend)
285 ret = -EAGAIN;
286 out:
287 return ret;
288 }
289 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
290
291 static int
nfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)292 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
293 {
294 int ret;
295 struct inode *inode = file_inode(file);
296
297 do {
298 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
299 if (ret != 0)
300 break;
301 mutex_lock(&inode->i_mutex);
302 ret = nfs_file_fsync_commit(file, start, end, datasync);
303 mutex_unlock(&inode->i_mutex);
304 /*
305 * If nfs_file_fsync_commit detected a server reboot, then
306 * resend all dirty pages that might have been covered by
307 * the NFS_CONTEXT_RESEND_WRITES flag
308 */
309 start = 0;
310 end = LLONG_MAX;
311 } while (ret == -EAGAIN);
312
313 return ret;
314 }
315
316 /*
317 * Decide whether a read/modify/write cycle may be more efficient
318 * then a modify/write/read cycle when writing to a page in the
319 * page cache.
320 *
321 * The modify/write/read cycle may occur if a page is read before
322 * being completely filled by the writer. In this situation, the
323 * page must be completely written to stable storage on the server
324 * before it can be refilled by reading in the page from the server.
325 * This can lead to expensive, small, FILE_SYNC mode writes being
326 * done.
327 *
328 * It may be more efficient to read the page first if the file is
329 * open for reading in addition to writing, the page is not marked
330 * as Uptodate, it is not dirty or waiting to be committed,
331 * indicating that it was previously allocated and then modified,
332 * that there were valid bytes of data in that range of the file,
333 * and that the new data won't completely replace the old data in
334 * that range of the file.
335 */
nfs_want_read_modify_write(struct file * file,struct page * page,loff_t pos,unsigned len)336 static int nfs_want_read_modify_write(struct file *file, struct page *page,
337 loff_t pos, unsigned len)
338 {
339 unsigned int pglen = nfs_page_length(page);
340 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
341 unsigned int end = offset + len;
342
343 if ((file->f_mode & FMODE_READ) && /* open for read? */
344 !PageUptodate(page) && /* Uptodate? */
345 !PagePrivate(page) && /* i/o request already? */
346 pglen && /* valid bytes of file? */
347 (end < pglen || offset)) /* replace all valid bytes? */
348 return 1;
349 return 0;
350 }
351
352 /*
353 * This does the "real" work of the write. We must allocate and lock the
354 * page to be sent back to the generic routine, which then copies the
355 * data from user space.
356 *
357 * If the writer ends up delaying the write, the writer needs to
358 * increment the page use counts until he is done with the page.
359 */
nfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)360 static int nfs_write_begin(struct file *file, struct address_space *mapping,
361 loff_t pos, unsigned len, unsigned flags,
362 struct page **pagep, void **fsdata)
363 {
364 int ret;
365 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
366 struct page *page;
367 int once_thru = 0;
368
369 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
370 file->f_path.dentry->d_parent->d_name.name,
371 file->f_path.dentry->d_name.name,
372 mapping->host->i_ino, len, (long long) pos);
373
374 start:
375 /*
376 * Prevent starvation issues if someone is doing a consistency
377 * sync-to-disk
378 */
379 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
380 nfs_wait_bit_killable, TASK_KILLABLE);
381 if (ret)
382 return ret;
383
384 page = grab_cache_page_write_begin(mapping, index, flags);
385 if (!page)
386 return -ENOMEM;
387 *pagep = page;
388
389 ret = nfs_flush_incompatible(file, page);
390 if (ret) {
391 unlock_page(page);
392 page_cache_release(page);
393 } else if (!once_thru &&
394 nfs_want_read_modify_write(file, page, pos, len)) {
395 once_thru = 1;
396 ret = nfs_readpage(file, page);
397 page_cache_release(page);
398 if (!ret)
399 goto start;
400 }
401 return ret;
402 }
403
nfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)404 static int nfs_write_end(struct file *file, struct address_space *mapping,
405 loff_t pos, unsigned len, unsigned copied,
406 struct page *page, void *fsdata)
407 {
408 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
409 int status;
410
411 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
412 file->f_path.dentry->d_parent->d_name.name,
413 file->f_path.dentry->d_name.name,
414 mapping->host->i_ino, len, (long long) pos);
415
416 /*
417 * Zero any uninitialised parts of the page, and then mark the page
418 * as up to date if it turns out that we're extending the file.
419 */
420 if (!PageUptodate(page)) {
421 unsigned pglen = nfs_page_length(page);
422 unsigned end = offset + len;
423
424 if (pglen == 0) {
425 zero_user_segments(page, 0, offset,
426 end, PAGE_CACHE_SIZE);
427 SetPageUptodate(page);
428 } else if (end >= pglen) {
429 zero_user_segment(page, end, PAGE_CACHE_SIZE);
430 if (offset == 0)
431 SetPageUptodate(page);
432 } else
433 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
434 }
435
436 status = nfs_updatepage(file, page, offset, copied);
437
438 unlock_page(page);
439 page_cache_release(page);
440
441 if (status < 0)
442 return status;
443 NFS_I(mapping->host)->write_io += copied;
444 return copied;
445 }
446
447 /*
448 * Partially or wholly invalidate a page
449 * - Release the private state associated with a page if undergoing complete
450 * page invalidation
451 * - Called if either PG_private or PG_fscache is set on the page
452 * - Caller holds page lock
453 */
nfs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)454 static void nfs_invalidate_page(struct page *page, unsigned int offset,
455 unsigned int length)
456 {
457 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
458 page, offset, length);
459
460 if (offset != 0 || length < PAGE_CACHE_SIZE)
461 return;
462 /* Cancel any unstarted writes on this page */
463 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
464
465 nfs_fscache_invalidate_page(page, page->mapping->host);
466 }
467
468 /*
469 * Attempt to release the private state associated with a page
470 * - Called if either PG_private or PG_fscache is set on the page
471 * - Caller holds page lock
472 * - Return true (may release page) or false (may not)
473 */
nfs_release_page(struct page * page,gfp_t gfp)474 static int nfs_release_page(struct page *page, gfp_t gfp)
475 {
476 struct address_space *mapping = page->mapping;
477
478 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
479
480 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
481 * doing this memory reclaim for a fs-related allocation.
482 */
483 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
484 !(current->flags & PF_FSTRANS)) {
485 int how = FLUSH_SYNC;
486
487 /* Don't let kswapd deadlock waiting for OOM RPC calls */
488 if (current_is_kswapd())
489 how = 0;
490 nfs_commit_inode(mapping->host, how);
491 }
492 /* If PagePrivate() is set, then the page is not freeable */
493 if (PagePrivate(page))
494 return 0;
495 return nfs_fscache_release_page(page, gfp);
496 }
497
498 /*
499 * Attempt to clear the private state associated with a page when an error
500 * occurs that requires the cached contents of an inode to be written back or
501 * destroyed
502 * - Called if either PG_private or fscache is set on the page
503 * - Caller holds page lock
504 * - Return 0 if successful, -error otherwise
505 */
nfs_launder_page(struct page * page)506 static int nfs_launder_page(struct page *page)
507 {
508 struct inode *inode = page_file_mapping(page)->host;
509 struct nfs_inode *nfsi = NFS_I(inode);
510
511 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
512 inode->i_ino, (long long)page_offset(page));
513
514 nfs_fscache_wait_on_page_write(nfsi, page);
515 return nfs_wb_page(inode, page);
516 }
517
518 #ifdef CONFIG_NFS_SWAP
nfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)519 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
520 sector_t *span)
521 {
522 *span = sis->pages;
523 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
524 }
525
nfs_swap_deactivate(struct file * file)526 static void nfs_swap_deactivate(struct file *file)
527 {
528 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
529 }
530 #endif
531
532 const struct address_space_operations nfs_file_aops = {
533 .readpage = nfs_readpage,
534 .readpages = nfs_readpages,
535 .set_page_dirty = __set_page_dirty_nobuffers,
536 .writepage = nfs_writepage,
537 .writepages = nfs_writepages,
538 .write_begin = nfs_write_begin,
539 .write_end = nfs_write_end,
540 .invalidatepage = nfs_invalidate_page,
541 .releasepage = nfs_release_page,
542 .direct_IO = nfs_direct_IO,
543 .migratepage = nfs_migrate_page,
544 .launder_page = nfs_launder_page,
545 .error_remove_page = generic_error_remove_page,
546 #ifdef CONFIG_NFS_SWAP
547 .swap_activate = nfs_swap_activate,
548 .swap_deactivate = nfs_swap_deactivate,
549 #endif
550 };
551
552 /*
553 * Notification that a PTE pointing to an NFS page is about to be made
554 * writable, implying that someone is about to modify the page through a
555 * shared-writable mapping
556 */
nfs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)557 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
558 {
559 struct page *page = vmf->page;
560 struct file *filp = vma->vm_file;
561 struct dentry *dentry = filp->f_path.dentry;
562 unsigned pagelen;
563 int ret = VM_FAULT_NOPAGE;
564 struct address_space *mapping;
565
566 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
567 dentry->d_parent->d_name.name, dentry->d_name.name,
568 filp->f_mapping->host->i_ino,
569 (long long)page_offset(page));
570
571 /* make sure the cache has finished storing the page */
572 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
573
574 lock_page(page);
575 mapping = page_file_mapping(page);
576 if (mapping != dentry->d_inode->i_mapping)
577 goto out_unlock;
578
579 wait_on_page_writeback(page);
580
581 pagelen = nfs_page_length(page);
582 if (pagelen == 0)
583 goto out_unlock;
584
585 ret = VM_FAULT_LOCKED;
586 if (nfs_flush_incompatible(filp, page) == 0 &&
587 nfs_updatepage(filp, page, 0, pagelen) == 0)
588 goto out;
589
590 ret = VM_FAULT_SIGBUS;
591 out_unlock:
592 unlock_page(page);
593 out:
594 return ret;
595 }
596
597 static const struct vm_operations_struct nfs_file_vm_ops = {
598 .fault = filemap_fault,
599 .page_mkwrite = nfs_vm_page_mkwrite,
600 .remap_pages = generic_file_remap_pages,
601 };
602
nfs_need_sync_write(struct file * filp,struct inode * inode)603 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
604 {
605 struct nfs_open_context *ctx;
606
607 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
608 return 1;
609 ctx = nfs_file_open_context(filp);
610 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
611 return 1;
612 return 0;
613 }
614
nfs_file_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)615 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
616 unsigned long nr_segs, loff_t pos)
617 {
618 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
619 struct inode * inode = dentry->d_inode;
620 unsigned long written = 0;
621 ssize_t result;
622 size_t count = iov_length(iov, nr_segs);
623
624 if (iocb->ki_filp->f_flags & O_DIRECT)
625 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
626
627 dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
628 dentry->d_parent->d_name.name, dentry->d_name.name,
629 (unsigned long) count, (long long) pos);
630
631 result = -EBUSY;
632 if (IS_SWAPFILE(inode))
633 goto out_swapfile;
634 /*
635 * O_APPEND implies that we must revalidate the file length.
636 */
637 if (iocb->ki_filp->f_flags & O_APPEND) {
638 result = nfs_revalidate_file_size(inode, iocb->ki_filp);
639 if (result)
640 goto out;
641 }
642
643 result = count;
644 if (!count)
645 goto out;
646
647 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
648 if (result > 0)
649 written = result;
650
651 /* Return error values for O_DSYNC and IS_SYNC() */
652 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
653 int err = vfs_fsync(iocb->ki_filp, 0);
654 if (err < 0)
655 result = err;
656 }
657 if (result > 0)
658 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
659 out:
660 return result;
661
662 out_swapfile:
663 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
664 goto out;
665 }
666 EXPORT_SYMBOL_GPL(nfs_file_write);
667
nfs_file_splice_write(struct pipe_inode_info * pipe,struct file * filp,loff_t * ppos,size_t count,unsigned int flags)668 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
669 struct file *filp, loff_t *ppos,
670 size_t count, unsigned int flags)
671 {
672 struct dentry *dentry = filp->f_path.dentry;
673 struct inode *inode = dentry->d_inode;
674 unsigned long written = 0;
675 ssize_t ret;
676
677 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
678 dentry->d_parent->d_name.name, dentry->d_name.name,
679 (unsigned long) count, (unsigned long long) *ppos);
680
681 /*
682 * The combination of splice and an O_APPEND destination is disallowed.
683 */
684
685 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
686 if (ret > 0)
687 written = ret;
688
689 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
690 int err = vfs_fsync(filp, 0);
691 if (err < 0)
692 ret = err;
693 }
694 if (ret > 0)
695 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
696 return ret;
697 }
698 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
699
700 static int
do_getlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)701 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
702 {
703 struct inode *inode = filp->f_mapping->host;
704 int status = 0;
705 unsigned int saved_type = fl->fl_type;
706
707 /* Try local locking first */
708 posix_test_lock(filp, fl);
709 if (fl->fl_type != F_UNLCK) {
710 /* found a conflict */
711 goto out;
712 }
713 fl->fl_type = saved_type;
714
715 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
716 goto out_noconflict;
717
718 if (is_local)
719 goto out_noconflict;
720
721 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
722 out:
723 return status;
724 out_noconflict:
725 fl->fl_type = F_UNLCK;
726 goto out;
727 }
728
do_vfs_lock(struct file * file,struct file_lock * fl)729 static int do_vfs_lock(struct file *file, struct file_lock *fl)
730 {
731 int res = 0;
732 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
733 case FL_POSIX:
734 res = posix_lock_file_wait(file, fl);
735 break;
736 case FL_FLOCK:
737 res = flock_lock_file_wait(file, fl);
738 break;
739 default:
740 BUG();
741 }
742 return res;
743 }
744
745 static int
do_unlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)746 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
747 {
748 struct inode *inode = filp->f_mapping->host;
749 struct nfs_lock_context *l_ctx;
750 int status;
751
752 /*
753 * Flush all pending writes before doing anything
754 * with locks..
755 */
756 nfs_sync_mapping(filp->f_mapping);
757
758 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
759 if (!IS_ERR(l_ctx)) {
760 status = nfs_iocounter_wait(&l_ctx->io_count);
761 nfs_put_lock_context(l_ctx);
762 if (status < 0)
763 return status;
764 }
765
766 /* NOTE: special case
767 * If we're signalled while cleaning up locks on process exit, we
768 * still need to complete the unlock.
769 */
770 /*
771 * Use local locking if mounted with "-onolock" or with appropriate
772 * "-olocal_lock="
773 */
774 if (!is_local)
775 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
776 else
777 status = do_vfs_lock(filp, fl);
778 return status;
779 }
780
781 static int
is_time_granular(struct timespec * ts)782 is_time_granular(struct timespec *ts) {
783 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
784 }
785
786 static int
do_setlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)787 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
788 {
789 struct inode *inode = filp->f_mapping->host;
790 int status;
791
792 /*
793 * Flush all pending writes before doing anything
794 * with locks..
795 */
796 status = nfs_sync_mapping(filp->f_mapping);
797 if (status != 0)
798 goto out;
799
800 /*
801 * Use local locking if mounted with "-onolock" or with appropriate
802 * "-olocal_lock="
803 */
804 if (!is_local)
805 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
806 else
807 status = do_vfs_lock(filp, fl);
808 if (status < 0)
809 goto out;
810
811 /*
812 * Revalidate the cache if the server has time stamps granular
813 * enough to detect subsecond changes. Otherwise, clear the
814 * cache to prevent missing any changes.
815 *
816 * This makes locking act as a cache coherency point.
817 */
818 nfs_sync_mapping(filp->f_mapping);
819 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
820 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
821 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
822 else
823 nfs_zap_caches(inode);
824 }
825 out:
826 return status;
827 }
828
829 /*
830 * Lock a (portion of) a file
831 */
nfs_lock(struct file * filp,int cmd,struct file_lock * fl)832 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
833 {
834 struct inode *inode = filp->f_mapping->host;
835 int ret = -ENOLCK;
836 int is_local = 0;
837
838 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
839 filp->f_path.dentry->d_parent->d_name.name,
840 filp->f_path.dentry->d_name.name,
841 fl->fl_type, fl->fl_flags,
842 (long long)fl->fl_start, (long long)fl->fl_end);
843
844 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
845
846 /* No mandatory locks over NFS */
847 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
848 goto out_err;
849
850 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
851 is_local = 1;
852
853 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
854 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
855 if (ret < 0)
856 goto out_err;
857 }
858
859 if (IS_GETLK(cmd))
860 ret = do_getlk(filp, cmd, fl, is_local);
861 else if (fl->fl_type == F_UNLCK)
862 ret = do_unlk(filp, cmd, fl, is_local);
863 else
864 ret = do_setlk(filp, cmd, fl, is_local);
865 out_err:
866 return ret;
867 }
868 EXPORT_SYMBOL_GPL(nfs_lock);
869
870 /*
871 * Lock a (portion of) a file
872 */
nfs_flock(struct file * filp,int cmd,struct file_lock * fl)873 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
874 {
875 struct inode *inode = filp->f_mapping->host;
876 int is_local = 0;
877
878 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
879 filp->f_path.dentry->d_parent->d_name.name,
880 filp->f_path.dentry->d_name.name,
881 fl->fl_type, fl->fl_flags);
882
883 if (!(fl->fl_flags & FL_FLOCK))
884 return -ENOLCK;
885
886 /*
887 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
888 * any standard. In principle we might be able to support LOCK_MAND
889 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
890 * NFS code is not set up for it.
891 */
892 if (fl->fl_type & LOCK_MAND)
893 return -EINVAL;
894
895 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
896 is_local = 1;
897
898 /* We're simulating flock() locks using posix locks on the server */
899 fl->fl_owner = (fl_owner_t)filp;
900 fl->fl_start = 0;
901 fl->fl_end = OFFSET_MAX;
902
903 if (fl->fl_type == F_UNLCK)
904 return do_unlk(filp, cmd, fl, is_local);
905 return do_setlk(filp, cmd, fl, is_local);
906 }
907 EXPORT_SYMBOL_GPL(nfs_flock);
908
909 /*
910 * There is no protocol support for leases, so we have no way to implement
911 * them correctly in the face of opens by other clients.
912 */
nfs_setlease(struct file * file,long arg,struct file_lock ** fl)913 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
914 {
915 dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
916 file->f_path.dentry->d_parent->d_name.name,
917 file->f_path.dentry->d_name.name, arg);
918 return -EINVAL;
919 }
920 EXPORT_SYMBOL_GPL(nfs_setlease);
921
922 const struct file_operations nfs_file_operations = {
923 .llseek = nfs_file_llseek,
924 .read = do_sync_read,
925 .write = do_sync_write,
926 .aio_read = nfs_file_read,
927 .aio_write = nfs_file_write,
928 .mmap = nfs_file_mmap,
929 .open = nfs_file_open,
930 .flush = nfs_file_flush,
931 .release = nfs_file_release,
932 .fsync = nfs_file_fsync,
933 .lock = nfs_lock,
934 .flock = nfs_flock,
935 .splice_read = nfs_file_splice_read,
936 .splice_write = nfs_file_splice_write,
937 .check_flags = nfs_check_flags,
938 .setlease = nfs_setlease,
939 };
940 EXPORT_SYMBOL_GPL(nfs_file_operations);
941