• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 #include <linux/aio.h>
25 
26 #include <asm/uaccess.h>
27 #include <asm/ioctls.h>
28 
29 #include "internal.h"
30 
31 /*
32  * The max size that a non-root user is allowed to grow the pipe. Can
33  * be set by root in /proc/sys/fs/pipe-max-size
34  */
35 unsigned int pipe_max_size = 1048576;
36 
37 /*
38  * Minimum pipe size, as required by POSIX
39  */
40 unsigned int pipe_min_size = PAGE_SIZE;
41 
42 /*
43  * We use a start+len construction, which provides full use of the
44  * allocated memory.
45  * -- Florian Coosmann (FGC)
46  *
47  * Reads with count = 0 should always return 0.
48  * -- Julian Bradfield 1999-06-07.
49  *
50  * FIFOs and Pipes now generate SIGIO for both readers and writers.
51  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
52  *
53  * pipe_read & write cleanup
54  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
55  */
56 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)57 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
58 {
59 	if (pipe->files)
60 		mutex_lock_nested(&pipe->mutex, subclass);
61 }
62 
pipe_lock(struct pipe_inode_info * pipe)63 void pipe_lock(struct pipe_inode_info *pipe)
64 {
65 	/*
66 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
67 	 */
68 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
69 }
70 EXPORT_SYMBOL(pipe_lock);
71 
pipe_unlock(struct pipe_inode_info * pipe)72 void pipe_unlock(struct pipe_inode_info *pipe)
73 {
74 	if (pipe->files)
75 		mutex_unlock(&pipe->mutex);
76 }
77 EXPORT_SYMBOL(pipe_unlock);
78 
__pipe_lock(struct pipe_inode_info * pipe)79 static inline void __pipe_lock(struct pipe_inode_info *pipe)
80 {
81 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
82 }
83 
__pipe_unlock(struct pipe_inode_info * pipe)84 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
85 {
86 	mutex_unlock(&pipe->mutex);
87 }
88 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)89 void pipe_double_lock(struct pipe_inode_info *pipe1,
90 		      struct pipe_inode_info *pipe2)
91 {
92 	BUG_ON(pipe1 == pipe2);
93 
94 	if (pipe1 < pipe2) {
95 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
96 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
97 	} else {
98 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
99 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
100 	}
101 }
102 
103 /* Drop the inode semaphore and wait for a pipe event, atomically */
pipe_wait(struct pipe_inode_info * pipe)104 void pipe_wait(struct pipe_inode_info *pipe)
105 {
106 	DEFINE_WAIT(wait);
107 
108 	/*
109 	 * Pipes are system-local resources, so sleeping on them
110 	 * is considered a noninteractive wait:
111 	 */
112 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
113 	pipe_unlock(pipe);
114 	schedule();
115 	finish_wait(&pipe->wait, &wait);
116 	pipe_lock(pipe);
117 }
118 
119 static int
pipe_iov_copy_from_user(void * addr,int * offset,struct iovec * iov,size_t * remaining,int atomic)120 pipe_iov_copy_from_user(void *addr, int *offset, struct iovec *iov,
121 			size_t *remaining, int atomic)
122 {
123 	unsigned long copy;
124 
125 	while (*remaining > 0) {
126 		while (!iov->iov_len)
127 			iov++;
128 		copy = min_t(unsigned long, *remaining, iov->iov_len);
129 
130 		if (atomic) {
131 			if (__copy_from_user_inatomic(addr + *offset,
132 						      iov->iov_base, copy))
133 				return -EFAULT;
134 		} else {
135 			if (copy_from_user(addr + *offset,
136 					   iov->iov_base, copy))
137 				return -EFAULT;
138 		}
139 		*offset += copy;
140 		*remaining -= copy;
141 		iov->iov_base += copy;
142 		iov->iov_len -= copy;
143 	}
144 	return 0;
145 }
146 
147 static int
pipe_iov_copy_to_user(struct iovec * iov,void * addr,int * offset,size_t * remaining,int atomic)148 pipe_iov_copy_to_user(struct iovec *iov, void *addr, int *offset,
149 		      size_t *remaining, int atomic)
150 {
151 	unsigned long copy;
152 
153 	while (*remaining > 0) {
154 		while (!iov->iov_len)
155 			iov++;
156 		copy = min_t(unsigned long, *remaining, iov->iov_len);
157 
158 		if (atomic) {
159 			if (__copy_to_user_inatomic(iov->iov_base,
160 						    addr + *offset, copy))
161 				return -EFAULT;
162 		} else {
163 			if (copy_to_user(iov->iov_base,
164 					 addr + *offset, copy))
165 				return -EFAULT;
166 		}
167 		*offset += copy;
168 		*remaining -= copy;
169 		iov->iov_base += copy;
170 		iov->iov_len -= copy;
171 	}
172 	return 0;
173 }
174 
175 /*
176  * Attempt to pre-fault in the user memory, so we can use atomic copies.
177  * Returns the number of bytes not faulted in.
178  */
iov_fault_in_pages_write(struct iovec * iov,unsigned long len)179 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
180 {
181 	while (!iov->iov_len)
182 		iov++;
183 
184 	while (len > 0) {
185 		unsigned long this_len;
186 
187 		this_len = min_t(unsigned long, len, iov->iov_len);
188 		if (fault_in_pages_writeable(iov->iov_base, this_len))
189 			break;
190 
191 		len -= this_len;
192 		iov++;
193 	}
194 
195 	return len;
196 }
197 
198 /*
199  * Pre-fault in the user memory, so we can use atomic copies.
200  */
iov_fault_in_pages_read(struct iovec * iov,unsigned long len)201 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
202 {
203 	while (!iov->iov_len)
204 		iov++;
205 
206 	while (len > 0) {
207 		unsigned long this_len;
208 
209 		this_len = min_t(unsigned long, len, iov->iov_len);
210 		fault_in_pages_readable(iov->iov_base, this_len);
211 		len -= this_len;
212 		iov++;
213 	}
214 }
215 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)216 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
217 				  struct pipe_buffer *buf)
218 {
219 	struct page *page = buf->page;
220 
221 	/*
222 	 * If nobody else uses this page, and we don't already have a
223 	 * temporary page, let's keep track of it as a one-deep
224 	 * allocation cache. (Otherwise just release our reference to it)
225 	 */
226 	if (page_count(page) == 1 && !pipe->tmp_page)
227 		pipe->tmp_page = page;
228 	else
229 		page_cache_release(page);
230 }
231 
232 /**
233  * generic_pipe_buf_map - virtually map a pipe buffer
234  * @pipe:	the pipe that the buffer belongs to
235  * @buf:	the buffer that should be mapped
236  * @atomic:	whether to use an atomic map
237  *
238  * Description:
239  *	This function returns a kernel virtual address mapping for the
240  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
241  *	and the caller has to be careful not to fault before calling
242  *	the unmap function.
243  *
244  *	Note that this function calls kmap_atomic() if @atomic != 0.
245  */
generic_pipe_buf_map(struct pipe_inode_info * pipe,struct pipe_buffer * buf,int atomic)246 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
247 			   struct pipe_buffer *buf, int atomic)
248 {
249 	if (atomic) {
250 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
251 		return kmap_atomic(buf->page);
252 	}
253 
254 	return kmap(buf->page);
255 }
256 EXPORT_SYMBOL(generic_pipe_buf_map);
257 
258 /**
259  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
260  * @pipe:	the pipe that the buffer belongs to
261  * @buf:	the buffer that should be unmapped
262  * @map_data:	the data that the mapping function returned
263  *
264  * Description:
265  *	This function undoes the mapping that ->map() provided.
266  */
generic_pipe_buf_unmap(struct pipe_inode_info * pipe,struct pipe_buffer * buf,void * map_data)267 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
268 			    struct pipe_buffer *buf, void *map_data)
269 {
270 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
271 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
272 		kunmap_atomic(map_data);
273 	} else
274 		kunmap(buf->page);
275 }
276 EXPORT_SYMBOL(generic_pipe_buf_unmap);
277 
278 /**
279  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
280  * @pipe:	the pipe that the buffer belongs to
281  * @buf:	the buffer to attempt to steal
282  *
283  * Description:
284  *	This function attempts to steal the &struct page attached to
285  *	@buf. If successful, this function returns 0 and returns with
286  *	the page locked. The caller may then reuse the page for whatever
287  *	he wishes; the typical use is insertion into a different file
288  *	page cache.
289  */
generic_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)290 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
291 			   struct pipe_buffer *buf)
292 {
293 	struct page *page = buf->page;
294 
295 	/*
296 	 * A reference of one is golden, that means that the owner of this
297 	 * page is the only one holding a reference to it. lock the page
298 	 * and return OK.
299 	 */
300 	if (page_count(page) == 1) {
301 		lock_page(page);
302 		return 0;
303 	}
304 
305 	return 1;
306 }
307 EXPORT_SYMBOL(generic_pipe_buf_steal);
308 
309 /**
310  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
311  * @pipe:	the pipe that the buffer belongs to
312  * @buf:	the buffer to get a reference to
313  *
314  * Description:
315  *	This function grabs an extra reference to @buf. It's used in
316  *	in the tee() system call, when we duplicate the buffers in one
317  *	pipe into another.
318  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)319 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
320 {
321 	page_cache_get(buf->page);
322 }
323 EXPORT_SYMBOL(generic_pipe_buf_get);
324 
325 /**
326  * generic_pipe_buf_confirm - verify contents of the pipe buffer
327  * @info:	the pipe that the buffer belongs to
328  * @buf:	the buffer to confirm
329  *
330  * Description:
331  *	This function does nothing, because the generic pipe code uses
332  *	pages that are always good when inserted into the pipe.
333  */
generic_pipe_buf_confirm(struct pipe_inode_info * info,struct pipe_buffer * buf)334 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
335 			     struct pipe_buffer *buf)
336 {
337 	return 0;
338 }
339 EXPORT_SYMBOL(generic_pipe_buf_confirm);
340 
341 /**
342  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
343  * @pipe:	the pipe that the buffer belongs to
344  * @buf:	the buffer to put a reference to
345  *
346  * Description:
347  *	This function releases a reference to @buf.
348  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)349 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
350 			      struct pipe_buffer *buf)
351 {
352 	page_cache_release(buf->page);
353 }
354 EXPORT_SYMBOL(generic_pipe_buf_release);
355 
356 static const struct pipe_buf_operations anon_pipe_buf_ops = {
357 	.can_merge = 1,
358 	.map = generic_pipe_buf_map,
359 	.unmap = generic_pipe_buf_unmap,
360 	.confirm = generic_pipe_buf_confirm,
361 	.release = anon_pipe_buf_release,
362 	.steal = generic_pipe_buf_steal,
363 	.get = generic_pipe_buf_get,
364 };
365 
366 static const struct pipe_buf_operations packet_pipe_buf_ops = {
367 	.can_merge = 0,
368 	.map = generic_pipe_buf_map,
369 	.unmap = generic_pipe_buf_unmap,
370 	.confirm = generic_pipe_buf_confirm,
371 	.release = anon_pipe_buf_release,
372 	.steal = generic_pipe_buf_steal,
373 	.get = generic_pipe_buf_get,
374 };
375 
376 static ssize_t
pipe_read(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t pos)377 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
378 	   unsigned long nr_segs, loff_t pos)
379 {
380 	struct file *filp = iocb->ki_filp;
381 	struct pipe_inode_info *pipe = filp->private_data;
382 	int do_wakeup;
383 	ssize_t ret;
384 	struct iovec *iov = (struct iovec *)_iov;
385 	size_t total_len;
386 
387 	total_len = iov_length(iov, nr_segs);
388 	/* Null read succeeds. */
389 	if (unlikely(total_len == 0))
390 		return 0;
391 
392 	do_wakeup = 0;
393 	ret = 0;
394 	__pipe_lock(pipe);
395 	for (;;) {
396 		int bufs = pipe->nrbufs;
397 		if (bufs) {
398 			int curbuf = pipe->curbuf;
399 			struct pipe_buffer *buf = pipe->bufs + curbuf;
400 			const struct pipe_buf_operations *ops = buf->ops;
401 			void *addr;
402 			size_t chars = buf->len, remaining;
403 			int error, atomic;
404 			int offset;
405 
406 			if (chars > total_len)
407 				chars = total_len;
408 
409 			error = ops->confirm(pipe, buf);
410 			if (error) {
411 				if (!ret)
412 					ret = error;
413 				break;
414 			}
415 
416 			atomic = !iov_fault_in_pages_write(iov, chars);
417 			remaining = chars;
418 			offset = buf->offset;
419 redo:
420 			addr = ops->map(pipe, buf, atomic);
421 			error = pipe_iov_copy_to_user(iov, addr, &offset,
422 						      &remaining, atomic);
423 			ops->unmap(pipe, buf, addr);
424 			if (unlikely(error)) {
425 				/*
426 				 * Just retry with the slow path if we failed.
427 				 */
428 				if (atomic) {
429 					atomic = 0;
430 					goto redo;
431 				}
432 				if (!ret)
433 					ret = error;
434 				break;
435 			}
436 			ret += chars;
437 			buf->offset += chars;
438 			buf->len -= chars;
439 
440 			/* Was it a packet buffer? Clean up and exit */
441 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
442 				total_len = chars;
443 				buf->len = 0;
444 			}
445 
446 			if (!buf->len) {
447 				buf->ops = NULL;
448 				ops->release(pipe, buf);
449 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
450 				pipe->curbuf = curbuf;
451 				pipe->nrbufs = --bufs;
452 				do_wakeup = 1;
453 			}
454 			total_len -= chars;
455 			if (!total_len)
456 				break;	/* common path: read succeeded */
457 		}
458 		if (bufs)	/* More to do? */
459 			continue;
460 		if (!pipe->writers)
461 			break;
462 		if (!pipe->waiting_writers) {
463 			/* syscall merging: Usually we must not sleep
464 			 * if O_NONBLOCK is set, or if we got some data.
465 			 * But if a writer sleeps in kernel space, then
466 			 * we can wait for that data without violating POSIX.
467 			 */
468 			if (ret)
469 				break;
470 			if (filp->f_flags & O_NONBLOCK) {
471 				ret = -EAGAIN;
472 				break;
473 			}
474 		}
475 		if (signal_pending(current)) {
476 			if (!ret)
477 				ret = -ERESTARTSYS;
478 			break;
479 		}
480 		if (do_wakeup) {
481 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
482  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
483 		}
484 		pipe_wait(pipe);
485 	}
486 	__pipe_unlock(pipe);
487 
488 	/* Signal writers asynchronously that there is more room. */
489 	if (do_wakeup) {
490 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
491 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
492 	}
493 	if (ret > 0)
494 		file_accessed(filp);
495 	return ret;
496 }
497 
is_packetized(struct file * file)498 static inline int is_packetized(struct file *file)
499 {
500 	return (file->f_flags & O_DIRECT) != 0;
501 }
502 
503 static ssize_t
pipe_write(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t ppos)504 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
505 	    unsigned long nr_segs, loff_t ppos)
506 {
507 	struct file *filp = iocb->ki_filp;
508 	struct pipe_inode_info *pipe = filp->private_data;
509 	ssize_t ret;
510 	int do_wakeup;
511 	struct iovec *iov = (struct iovec *)_iov;
512 	size_t total_len;
513 	ssize_t chars;
514 
515 	total_len = iov_length(iov, nr_segs);
516 	/* Null write succeeds. */
517 	if (unlikely(total_len == 0))
518 		return 0;
519 
520 	do_wakeup = 0;
521 	ret = 0;
522 	__pipe_lock(pipe);
523 
524 	if (!pipe->readers) {
525 		send_sig(SIGPIPE, current, 0);
526 		ret = -EPIPE;
527 		goto out;
528 	}
529 
530 	/* We try to merge small writes */
531 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
532 	if (pipe->nrbufs && chars != 0) {
533 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
534 							(pipe->buffers - 1);
535 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
536 		const struct pipe_buf_operations *ops = buf->ops;
537 		int offset = buf->offset + buf->len;
538 
539 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
540 			int error, atomic = 1;
541 			void *addr;
542 			size_t remaining = chars;
543 
544 			error = ops->confirm(pipe, buf);
545 			if (error)
546 				goto out;
547 
548 			iov_fault_in_pages_read(iov, chars);
549 redo1:
550 			addr = ops->map(pipe, buf, atomic);
551 			error = pipe_iov_copy_from_user(addr, &offset, iov,
552 							&remaining, atomic);
553 			ops->unmap(pipe, buf, addr);
554 			ret = error;
555 			do_wakeup = 1;
556 			if (error) {
557 				if (atomic) {
558 					atomic = 0;
559 					goto redo1;
560 				}
561 				goto out;
562 			}
563 			buf->len += chars;
564 			total_len -= chars;
565 			ret = chars;
566 			if (!total_len)
567 				goto out;
568 		}
569 	}
570 
571 	for (;;) {
572 		int bufs;
573 
574 		if (!pipe->readers) {
575 			send_sig(SIGPIPE, current, 0);
576 			if (!ret)
577 				ret = -EPIPE;
578 			break;
579 		}
580 		bufs = pipe->nrbufs;
581 		if (bufs < pipe->buffers) {
582 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
583 			struct pipe_buffer *buf = pipe->bufs + newbuf;
584 			struct page *page = pipe->tmp_page;
585 			char *src;
586 			int error, atomic = 1;
587 			int offset = 0;
588 			size_t remaining;
589 
590 			if (!page) {
591 				page = alloc_page(GFP_HIGHUSER);
592 				if (unlikely(!page)) {
593 					ret = ret ? : -ENOMEM;
594 					break;
595 				}
596 				pipe->tmp_page = page;
597 			}
598 			/* Always wake up, even if the copy fails. Otherwise
599 			 * we lock up (O_NONBLOCK-)readers that sleep due to
600 			 * syscall merging.
601 			 * FIXME! Is this really true?
602 			 */
603 			do_wakeup = 1;
604 			chars = PAGE_SIZE;
605 			if (chars > total_len)
606 				chars = total_len;
607 
608 			iov_fault_in_pages_read(iov, chars);
609 			remaining = chars;
610 redo2:
611 			if (atomic)
612 				src = kmap_atomic(page);
613 			else
614 				src = kmap(page);
615 
616 			error = pipe_iov_copy_from_user(src, &offset, iov,
617 							&remaining, atomic);
618 			if (atomic)
619 				kunmap_atomic(src);
620 			else
621 				kunmap(page);
622 
623 			if (unlikely(error)) {
624 				if (atomic) {
625 					atomic = 0;
626 					goto redo2;
627 				}
628 				if (!ret)
629 					ret = error;
630 				break;
631 			}
632 			ret += chars;
633 
634 			/* Insert it into the buffer array */
635 			buf->page = page;
636 			buf->ops = &anon_pipe_buf_ops;
637 			buf->offset = 0;
638 			buf->len = chars;
639 			buf->flags = 0;
640 			if (is_packetized(filp)) {
641 				buf->ops = &packet_pipe_buf_ops;
642 				buf->flags = PIPE_BUF_FLAG_PACKET;
643 			}
644 			pipe->nrbufs = ++bufs;
645 			pipe->tmp_page = NULL;
646 
647 			total_len -= chars;
648 			if (!total_len)
649 				break;
650 		}
651 		if (bufs < pipe->buffers)
652 			continue;
653 		if (filp->f_flags & O_NONBLOCK) {
654 			if (!ret)
655 				ret = -EAGAIN;
656 			break;
657 		}
658 		if (signal_pending(current)) {
659 			if (!ret)
660 				ret = -ERESTARTSYS;
661 			break;
662 		}
663 		if (do_wakeup) {
664 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
665 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
666 			do_wakeup = 0;
667 		}
668 		pipe->waiting_writers++;
669 		pipe_wait(pipe);
670 		pipe->waiting_writers--;
671 	}
672 out:
673 	__pipe_unlock(pipe);
674 	if (do_wakeup) {
675 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
676 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
677 	}
678 	if (ret > 0) {
679 		int err = file_update_time(filp);
680 		if (err)
681 			ret = err;
682 	}
683 	return ret;
684 }
685 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)686 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
687 {
688 	struct pipe_inode_info *pipe = filp->private_data;
689 	int count, buf, nrbufs;
690 
691 	switch (cmd) {
692 		case FIONREAD:
693 			__pipe_lock(pipe);
694 			count = 0;
695 			buf = pipe->curbuf;
696 			nrbufs = pipe->nrbufs;
697 			while (--nrbufs >= 0) {
698 				count += pipe->bufs[buf].len;
699 				buf = (buf+1) & (pipe->buffers - 1);
700 			}
701 			__pipe_unlock(pipe);
702 
703 			return put_user(count, (int __user *)arg);
704 		default:
705 			return -ENOIOCTLCMD;
706 	}
707 }
708 
709 /* No kernel lock held - fine */
710 static unsigned int
pipe_poll(struct file * filp,poll_table * wait)711 pipe_poll(struct file *filp, poll_table *wait)
712 {
713 	unsigned int mask;
714 	struct pipe_inode_info *pipe = filp->private_data;
715 	int nrbufs;
716 
717 	poll_wait(filp, &pipe->wait, wait);
718 
719 	/* Reading only -- no need for acquiring the semaphore.  */
720 	nrbufs = pipe->nrbufs;
721 	mask = 0;
722 	if (filp->f_mode & FMODE_READ) {
723 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
724 		if (!pipe->writers && filp->f_version != pipe->w_counter)
725 			mask |= POLLHUP;
726 	}
727 
728 	if (filp->f_mode & FMODE_WRITE) {
729 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
730 		/*
731 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
732 		 * behave exactly like pipes for poll().
733 		 */
734 		if (!pipe->readers)
735 			mask |= POLLERR;
736 	}
737 
738 	return mask;
739 }
740 
741 static int
pipe_release(struct inode * inode,struct file * file)742 pipe_release(struct inode *inode, struct file *file)
743 {
744 	struct pipe_inode_info *pipe = inode->i_pipe;
745 	int kill = 0;
746 
747 	__pipe_lock(pipe);
748 	if (file->f_mode & FMODE_READ)
749 		pipe->readers--;
750 	if (file->f_mode & FMODE_WRITE)
751 		pipe->writers--;
752 
753 	if (pipe->readers || pipe->writers) {
754 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
755 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
756 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
757 	}
758 	spin_lock(&inode->i_lock);
759 	if (!--pipe->files) {
760 		inode->i_pipe = NULL;
761 		kill = 1;
762 	}
763 	spin_unlock(&inode->i_lock);
764 	__pipe_unlock(pipe);
765 
766 	if (kill)
767 		free_pipe_info(pipe);
768 
769 	return 0;
770 }
771 
772 static int
pipe_fasync(int fd,struct file * filp,int on)773 pipe_fasync(int fd, struct file *filp, int on)
774 {
775 	struct pipe_inode_info *pipe = filp->private_data;
776 	int retval = 0;
777 
778 	__pipe_lock(pipe);
779 	if (filp->f_mode & FMODE_READ)
780 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
781 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
782 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
783 		if (retval < 0 && (filp->f_mode & FMODE_READ))
784 			/* this can happen only if on == T */
785 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
786 	}
787 	__pipe_unlock(pipe);
788 	return retval;
789 }
790 
alloc_pipe_info(void)791 struct pipe_inode_info *alloc_pipe_info(void)
792 {
793 	struct pipe_inode_info *pipe;
794 
795 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
796 	if (pipe) {
797 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
798 		if (pipe->bufs) {
799 			init_waitqueue_head(&pipe->wait);
800 			pipe->r_counter = pipe->w_counter = 1;
801 			pipe->buffers = PIPE_DEF_BUFFERS;
802 			mutex_init(&pipe->mutex);
803 			return pipe;
804 		}
805 		kfree(pipe);
806 	}
807 
808 	return NULL;
809 }
810 
free_pipe_info(struct pipe_inode_info * pipe)811 void free_pipe_info(struct pipe_inode_info *pipe)
812 {
813 	int i;
814 
815 	for (i = 0; i < pipe->buffers; i++) {
816 		struct pipe_buffer *buf = pipe->bufs + i;
817 		if (buf->ops)
818 			buf->ops->release(pipe, buf);
819 	}
820 	if (pipe->tmp_page)
821 		__free_page(pipe->tmp_page);
822 	kfree(pipe->bufs);
823 	kfree(pipe);
824 }
825 
826 static struct vfsmount *pipe_mnt __read_mostly;
827 
828 /*
829  * pipefs_dname() is called from d_path().
830  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)831 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
832 {
833 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
834 				dentry->d_inode->i_ino);
835 }
836 
837 static const struct dentry_operations pipefs_dentry_operations = {
838 	.d_dname	= pipefs_dname,
839 };
840 
get_pipe_inode(void)841 static struct inode * get_pipe_inode(void)
842 {
843 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
844 	struct pipe_inode_info *pipe;
845 
846 	if (!inode)
847 		goto fail_inode;
848 
849 	inode->i_ino = get_next_ino();
850 
851 	pipe = alloc_pipe_info();
852 	if (!pipe)
853 		goto fail_iput;
854 
855 	inode->i_pipe = pipe;
856 	pipe->files = 2;
857 	pipe->readers = pipe->writers = 1;
858 	inode->i_fop = &pipefifo_fops;
859 
860 	/*
861 	 * Mark the inode dirty from the very beginning,
862 	 * that way it will never be moved to the dirty
863 	 * list because "mark_inode_dirty()" will think
864 	 * that it already _is_ on the dirty list.
865 	 */
866 	inode->i_state = I_DIRTY;
867 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
868 	inode->i_uid = current_fsuid();
869 	inode->i_gid = current_fsgid();
870 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
871 
872 	return inode;
873 
874 fail_iput:
875 	iput(inode);
876 
877 fail_inode:
878 	return NULL;
879 }
880 
create_pipe_files(struct file ** res,int flags)881 int create_pipe_files(struct file **res, int flags)
882 {
883 	int err;
884 	struct inode *inode = get_pipe_inode();
885 	struct file *f;
886 	struct path path;
887 	static struct qstr name = { .name = "" };
888 
889 	if (!inode)
890 		return -ENFILE;
891 
892 	err = -ENOMEM;
893 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
894 	if (!path.dentry)
895 		goto err_inode;
896 	path.mnt = mntget(pipe_mnt);
897 
898 	d_instantiate(path.dentry, inode);
899 
900 	err = -ENFILE;
901 	f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
902 	if (IS_ERR(f))
903 		goto err_dentry;
904 
905 	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
906 	f->private_data = inode->i_pipe;
907 
908 	res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
909 	if (IS_ERR(res[0]))
910 		goto err_file;
911 
912 	path_get(&path);
913 	res[0]->private_data = inode->i_pipe;
914 	res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
915 	res[1] = f;
916 	return 0;
917 
918 err_file:
919 	put_filp(f);
920 err_dentry:
921 	free_pipe_info(inode->i_pipe);
922 	path_put(&path);
923 	return err;
924 
925 err_inode:
926 	free_pipe_info(inode->i_pipe);
927 	iput(inode);
928 	return err;
929 }
930 
__do_pipe_flags(int * fd,struct file ** files,int flags)931 static int __do_pipe_flags(int *fd, struct file **files, int flags)
932 {
933 	int error;
934 	int fdw, fdr;
935 
936 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
937 		return -EINVAL;
938 
939 	error = create_pipe_files(files, flags);
940 	if (error)
941 		return error;
942 
943 	error = get_unused_fd_flags(flags);
944 	if (error < 0)
945 		goto err_read_pipe;
946 	fdr = error;
947 
948 	error = get_unused_fd_flags(flags);
949 	if (error < 0)
950 		goto err_fdr;
951 	fdw = error;
952 
953 	audit_fd_pair(fdr, fdw);
954 	fd[0] = fdr;
955 	fd[1] = fdw;
956 	return 0;
957 
958  err_fdr:
959 	put_unused_fd(fdr);
960  err_read_pipe:
961 	fput(files[0]);
962 	fput(files[1]);
963 	return error;
964 }
965 
do_pipe_flags(int * fd,int flags)966 int do_pipe_flags(int *fd, int flags)
967 {
968 	struct file *files[2];
969 	int error = __do_pipe_flags(fd, files, flags);
970 	if (!error) {
971 		fd_install(fd[0], files[0]);
972 		fd_install(fd[1], files[1]);
973 	}
974 	return error;
975 }
976 
977 /*
978  * sys_pipe() is the normal C calling standard for creating
979  * a pipe. It's not the way Unix traditionally does this, though.
980  */
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)981 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
982 {
983 	struct file *files[2];
984 	int fd[2];
985 	int error;
986 
987 	error = __do_pipe_flags(fd, files, flags);
988 	if (!error) {
989 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
990 			fput(files[0]);
991 			fput(files[1]);
992 			put_unused_fd(fd[0]);
993 			put_unused_fd(fd[1]);
994 			error = -EFAULT;
995 		} else {
996 			fd_install(fd[0], files[0]);
997 			fd_install(fd[1], files[1]);
998 		}
999 	}
1000 	return error;
1001 }
1002 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1003 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1004 {
1005 	return sys_pipe2(fildes, 0);
1006 }
1007 
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1008 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1009 {
1010 	int cur = *cnt;
1011 
1012 	while (cur == *cnt) {
1013 		pipe_wait(pipe);
1014 		if (signal_pending(current))
1015 			break;
1016 	}
1017 	return cur == *cnt ? -ERESTARTSYS : 0;
1018 }
1019 
wake_up_partner(struct pipe_inode_info * pipe)1020 static void wake_up_partner(struct pipe_inode_info *pipe)
1021 {
1022 	wake_up_interruptible(&pipe->wait);
1023 }
1024 
fifo_open(struct inode * inode,struct file * filp)1025 static int fifo_open(struct inode *inode, struct file *filp)
1026 {
1027 	struct pipe_inode_info *pipe;
1028 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1029 	int kill = 0;
1030 	int ret;
1031 
1032 	filp->f_version = 0;
1033 
1034 	spin_lock(&inode->i_lock);
1035 	if (inode->i_pipe) {
1036 		pipe = inode->i_pipe;
1037 		pipe->files++;
1038 		spin_unlock(&inode->i_lock);
1039 	} else {
1040 		spin_unlock(&inode->i_lock);
1041 		pipe = alloc_pipe_info();
1042 		if (!pipe)
1043 			return -ENOMEM;
1044 		pipe->files = 1;
1045 		spin_lock(&inode->i_lock);
1046 		if (unlikely(inode->i_pipe)) {
1047 			inode->i_pipe->files++;
1048 			spin_unlock(&inode->i_lock);
1049 			free_pipe_info(pipe);
1050 			pipe = inode->i_pipe;
1051 		} else {
1052 			inode->i_pipe = pipe;
1053 			spin_unlock(&inode->i_lock);
1054 		}
1055 	}
1056 	filp->private_data = pipe;
1057 	/* OK, we have a pipe and it's pinned down */
1058 
1059 	__pipe_lock(pipe);
1060 
1061 	/* We can only do regular read/write on fifos */
1062 	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
1063 
1064 	switch (filp->f_mode) {
1065 	case FMODE_READ:
1066 	/*
1067 	 *  O_RDONLY
1068 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1069 	 *  opened, even when there is no process writing the FIFO.
1070 	 */
1071 		pipe->r_counter++;
1072 		if (pipe->readers++ == 0)
1073 			wake_up_partner(pipe);
1074 
1075 		if (!is_pipe && !pipe->writers) {
1076 			if ((filp->f_flags & O_NONBLOCK)) {
1077 				/* suppress POLLHUP until we have
1078 				 * seen a writer */
1079 				filp->f_version = pipe->w_counter;
1080 			} else {
1081 				if (wait_for_partner(pipe, &pipe->w_counter))
1082 					goto err_rd;
1083 			}
1084 		}
1085 		break;
1086 
1087 	case FMODE_WRITE:
1088 	/*
1089 	 *  O_WRONLY
1090 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1091 	 *  errno=ENXIO when there is no process reading the FIFO.
1092 	 */
1093 		ret = -ENXIO;
1094 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1095 			goto err;
1096 
1097 		pipe->w_counter++;
1098 		if (!pipe->writers++)
1099 			wake_up_partner(pipe);
1100 
1101 		if (!is_pipe && !pipe->readers) {
1102 			if (wait_for_partner(pipe, &pipe->r_counter))
1103 				goto err_wr;
1104 		}
1105 		break;
1106 
1107 	case FMODE_READ | FMODE_WRITE:
1108 	/*
1109 	 *  O_RDWR
1110 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1111 	 *  This implementation will NEVER block on a O_RDWR open, since
1112 	 *  the process can at least talk to itself.
1113 	 */
1114 
1115 		pipe->readers++;
1116 		pipe->writers++;
1117 		pipe->r_counter++;
1118 		pipe->w_counter++;
1119 		if (pipe->readers == 1 || pipe->writers == 1)
1120 			wake_up_partner(pipe);
1121 		break;
1122 
1123 	default:
1124 		ret = -EINVAL;
1125 		goto err;
1126 	}
1127 
1128 	/* Ok! */
1129 	__pipe_unlock(pipe);
1130 	return 0;
1131 
1132 err_rd:
1133 	if (!--pipe->readers)
1134 		wake_up_interruptible(&pipe->wait);
1135 	ret = -ERESTARTSYS;
1136 	goto err;
1137 
1138 err_wr:
1139 	if (!--pipe->writers)
1140 		wake_up_interruptible(&pipe->wait);
1141 	ret = -ERESTARTSYS;
1142 	goto err;
1143 
1144 err:
1145 	spin_lock(&inode->i_lock);
1146 	if (!--pipe->files) {
1147 		inode->i_pipe = NULL;
1148 		kill = 1;
1149 	}
1150 	spin_unlock(&inode->i_lock);
1151 	__pipe_unlock(pipe);
1152 	if (kill)
1153 		free_pipe_info(pipe);
1154 	return ret;
1155 }
1156 
1157 const struct file_operations pipefifo_fops = {
1158 	.open		= fifo_open,
1159 	.llseek		= no_llseek,
1160 	.read		= do_sync_read,
1161 	.aio_read	= pipe_read,
1162 	.write		= do_sync_write,
1163 	.aio_write	= pipe_write,
1164 	.poll		= pipe_poll,
1165 	.unlocked_ioctl	= pipe_ioctl,
1166 	.release	= pipe_release,
1167 	.fasync		= pipe_fasync,
1168 };
1169 
1170 /*
1171  * Allocate a new array of pipe buffers and copy the info over. Returns the
1172  * pipe size if successful, or return -ERROR on error.
1173  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long nr_pages)1174 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1175 {
1176 	struct pipe_buffer *bufs;
1177 
1178 	/*
1179 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1180 	 * expect a lot of shrink+grow operations, just free and allocate
1181 	 * again like we would do for growing. If the pipe currently
1182 	 * contains more buffers than arg, then return busy.
1183 	 */
1184 	if (nr_pages < pipe->nrbufs)
1185 		return -EBUSY;
1186 
1187 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1188 	if (unlikely(!bufs))
1189 		return -ENOMEM;
1190 
1191 	/*
1192 	 * The pipe array wraps around, so just start the new one at zero
1193 	 * and adjust the indexes.
1194 	 */
1195 	if (pipe->nrbufs) {
1196 		unsigned int tail;
1197 		unsigned int head;
1198 
1199 		tail = pipe->curbuf + pipe->nrbufs;
1200 		if (tail < pipe->buffers)
1201 			tail = 0;
1202 		else
1203 			tail &= (pipe->buffers - 1);
1204 
1205 		head = pipe->nrbufs - tail;
1206 		if (head)
1207 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1208 		if (tail)
1209 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1210 	}
1211 
1212 	pipe->curbuf = 0;
1213 	kfree(pipe->bufs);
1214 	pipe->bufs = bufs;
1215 	pipe->buffers = nr_pages;
1216 	return nr_pages * PAGE_SIZE;
1217 }
1218 
1219 /*
1220  * Currently we rely on the pipe array holding a power-of-2 number
1221  * of pages.
1222  */
round_pipe_size(unsigned int size)1223 static inline unsigned int round_pipe_size(unsigned int size)
1224 {
1225 	unsigned long nr_pages;
1226 
1227 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1228 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1229 }
1230 
1231 /*
1232  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1233  * will return an error.
1234  */
pipe_proc_fn(struct ctl_table * table,int write,void __user * buf,size_t * lenp,loff_t * ppos)1235 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1236 		 size_t *lenp, loff_t *ppos)
1237 {
1238 	int ret;
1239 
1240 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1241 	if (ret < 0 || !write)
1242 		return ret;
1243 
1244 	pipe_max_size = round_pipe_size(pipe_max_size);
1245 	return ret;
1246 }
1247 
1248 /*
1249  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1250  * location, so checking ->i_pipe is not enough to verify that this is a
1251  * pipe.
1252  */
get_pipe_info(struct file * file)1253 struct pipe_inode_info *get_pipe_info(struct file *file)
1254 {
1255 	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1256 }
1257 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1258 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1259 {
1260 	struct pipe_inode_info *pipe;
1261 	long ret;
1262 
1263 	pipe = get_pipe_info(file);
1264 	if (!pipe)
1265 		return -EBADF;
1266 
1267 	__pipe_lock(pipe);
1268 
1269 	switch (cmd) {
1270 	case F_SETPIPE_SZ: {
1271 		unsigned int size, nr_pages;
1272 
1273 		size = round_pipe_size(arg);
1274 		nr_pages = size >> PAGE_SHIFT;
1275 
1276 		ret = -EINVAL;
1277 		if (!nr_pages)
1278 			goto out;
1279 
1280 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1281 			ret = -EPERM;
1282 			goto out;
1283 		}
1284 		ret = pipe_set_size(pipe, nr_pages);
1285 		break;
1286 		}
1287 	case F_GETPIPE_SZ:
1288 		ret = pipe->buffers * PAGE_SIZE;
1289 		break;
1290 	default:
1291 		ret = -EINVAL;
1292 		break;
1293 	}
1294 
1295 out:
1296 	__pipe_unlock(pipe);
1297 	return ret;
1298 }
1299 
1300 static const struct super_operations pipefs_ops = {
1301 	.destroy_inode = free_inode_nonrcu,
1302 	.statfs = simple_statfs,
1303 };
1304 
1305 /*
1306  * pipefs should _never_ be mounted by userland - too much of security hassle,
1307  * no real gain from having the whole whorehouse mounted. So we don't need
1308  * any operations on the root directory. However, we need a non-trivial
1309  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1310  */
pipefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1311 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1312 			 int flags, const char *dev_name, void *data)
1313 {
1314 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1315 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1316 }
1317 
1318 static struct file_system_type pipe_fs_type = {
1319 	.name		= "pipefs",
1320 	.mount		= pipefs_mount,
1321 	.kill_sb	= kill_anon_super,
1322 };
1323 
init_pipe_fs(void)1324 static int __init init_pipe_fs(void)
1325 {
1326 	int err = register_filesystem(&pipe_fs_type);
1327 
1328 	if (!err) {
1329 		pipe_mnt = kern_mount(&pipe_fs_type);
1330 		if (IS_ERR(pipe_mnt)) {
1331 			err = PTR_ERR(pipe_mnt);
1332 			unregister_filesystem(&pipe_fs_type);
1333 		}
1334 	}
1335 	return err;
1336 }
1337 
1338 fs_initcall(init_pipe_fs);
1339