• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /* This file implements TNC functions for committing */
24 
25 #include <linux/random.h>
26 #include "ubifs.h"
27 
28 /**
29  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30  * @c: UBIFS file-system description object
31  * @idx: buffer in which to place new index node
32  * @znode: znode from which to make new index node
33  * @lnum: LEB number where new index node will be written
34  * @offs: offset where new index node will be written
35  * @len: length of new index node
36  */
make_idx_node(struct ubifs_info * c,struct ubifs_idx_node * idx,struct ubifs_znode * znode,int lnum,int offs,int len)37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
38 			 struct ubifs_znode *znode, int lnum, int offs, int len)
39 {
40 	struct ubifs_znode *zp;
41 	int i, err;
42 
43 	/* Make index node */
44 	idx->ch.node_type = UBIFS_IDX_NODE;
45 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
46 	idx->level = cpu_to_le16(znode->level);
47 	for (i = 0; i < znode->child_cnt; i++) {
48 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
49 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
50 
51 		key_write_idx(c, &zbr->key, &br->key);
52 		br->lnum = cpu_to_le32(zbr->lnum);
53 		br->offs = cpu_to_le32(zbr->offs);
54 		br->len = cpu_to_le32(zbr->len);
55 		if (!zbr->lnum || !zbr->len) {
56 			ubifs_err("bad ref in znode");
57 			ubifs_dump_znode(c, znode);
58 			if (zbr->znode)
59 				ubifs_dump_znode(c, zbr->znode);
60 		}
61 	}
62 	ubifs_prepare_node(c, idx, len, 0);
63 
64 	znode->lnum = lnum;
65 	znode->offs = offs;
66 	znode->len = len;
67 
68 	err = insert_old_idx_znode(c, znode);
69 
70 	/* Update the parent */
71 	zp = znode->parent;
72 	if (zp) {
73 		struct ubifs_zbranch *zbr;
74 
75 		zbr = &zp->zbranch[znode->iip];
76 		zbr->lnum = lnum;
77 		zbr->offs = offs;
78 		zbr->len = len;
79 	} else {
80 		c->zroot.lnum = lnum;
81 		c->zroot.offs = offs;
82 		c->zroot.len = len;
83 	}
84 	c->calc_idx_sz += ALIGN(len, 8);
85 
86 	atomic_long_dec(&c->dirty_zn_cnt);
87 
88 	ubifs_assert(ubifs_zn_dirty(znode));
89 	ubifs_assert(ubifs_zn_cow(znode));
90 
91 	/*
92 	 * Note, unlike 'write_index()' we do not add memory barriers here
93 	 * because this function is called with @c->tnc_mutex locked.
94 	 */
95 	__clear_bit(DIRTY_ZNODE, &znode->flags);
96 	__clear_bit(COW_ZNODE, &znode->flags);
97 
98 	return err;
99 }
100 
101 /**
102  * fill_gap - make index nodes in gaps in dirty index LEBs.
103  * @c: UBIFS file-system description object
104  * @lnum: LEB number that gap appears in
105  * @gap_start: offset of start of gap
106  * @gap_end: offset of end of gap
107  * @dirt: adds dirty space to this
108  *
109  * This function returns the number of index nodes written into the gap.
110  */
fill_gap(struct ubifs_info * c,int lnum,int gap_start,int gap_end,int * dirt)111 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
112 		    int *dirt)
113 {
114 	int len, gap_remains, gap_pos, written, pad_len;
115 
116 	ubifs_assert((gap_start & 7) == 0);
117 	ubifs_assert((gap_end & 7) == 0);
118 	ubifs_assert(gap_end >= gap_start);
119 
120 	gap_remains = gap_end - gap_start;
121 	if (!gap_remains)
122 		return 0;
123 	gap_pos = gap_start;
124 	written = 0;
125 	while (c->enext) {
126 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
127 		if (len < gap_remains) {
128 			struct ubifs_znode *znode = c->enext;
129 			const int alen = ALIGN(len, 8);
130 			int err;
131 
132 			ubifs_assert(alen <= gap_remains);
133 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
134 					    lnum, gap_pos, len);
135 			if (err)
136 				return err;
137 			gap_remains -= alen;
138 			gap_pos += alen;
139 			c->enext = znode->cnext;
140 			if (c->enext == c->cnext)
141 				c->enext = NULL;
142 			written += 1;
143 		} else
144 			break;
145 	}
146 	if (gap_end == c->leb_size) {
147 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
148 		/* Pad to end of min_io_size */
149 		pad_len = c->ileb_len - gap_pos;
150 	} else
151 		/* Pad to end of gap */
152 		pad_len = gap_remains;
153 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
154 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
155 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
156 	*dirt += pad_len;
157 	return written;
158 }
159 
160 /**
161  * find_old_idx - find an index node obsoleted since the last commit start.
162  * @c: UBIFS file-system description object
163  * @lnum: LEB number of obsoleted index node
164  * @offs: offset of obsoleted index node
165  *
166  * Returns %1 if found and %0 otherwise.
167  */
find_old_idx(struct ubifs_info * c,int lnum,int offs)168 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
169 {
170 	struct ubifs_old_idx *o;
171 	struct rb_node *p;
172 
173 	p = c->old_idx.rb_node;
174 	while (p) {
175 		o = rb_entry(p, struct ubifs_old_idx, rb);
176 		if (lnum < o->lnum)
177 			p = p->rb_left;
178 		else if (lnum > o->lnum)
179 			p = p->rb_right;
180 		else if (offs < o->offs)
181 			p = p->rb_left;
182 		else if (offs > o->offs)
183 			p = p->rb_right;
184 		else
185 			return 1;
186 	}
187 	return 0;
188 }
189 
190 /**
191  * is_idx_node_in_use - determine if an index node can be overwritten.
192  * @c: UBIFS file-system description object
193  * @key: key of index node
194  * @level: index node level
195  * @lnum: LEB number of index node
196  * @offs: offset of index node
197  *
198  * If @key / @lnum / @offs identify an index node that was not part of the old
199  * index, then this function returns %0 (obsolete).  Else if the index node was
200  * part of the old index but is now dirty %1 is returned, else if it is clean %2
201  * is returned. A negative error code is returned on failure.
202  */
is_idx_node_in_use(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)203 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
204 			      int level, int lnum, int offs)
205 {
206 	int ret;
207 
208 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
209 	if (ret < 0)
210 		return ret; /* Error code */
211 	if (ret == 0)
212 		if (find_old_idx(c, lnum, offs))
213 			return 1;
214 	return ret;
215 }
216 
217 /**
218  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
219  * @c: UBIFS file-system description object
220  * @p: return LEB number here
221  *
222  * This function lays out new index nodes for dirty znodes using in-the-gaps
223  * method of TNC commit.
224  * This function merely puts the next znode into the next gap, making no attempt
225  * to try to maximise the number of znodes that fit.
226  * This function returns the number of index nodes written into the gaps, or a
227  * negative error code on failure.
228  */
layout_leb_in_gaps(struct ubifs_info * c,int * p)229 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
230 {
231 	struct ubifs_scan_leb *sleb;
232 	struct ubifs_scan_node *snod;
233 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
234 
235 	tot_written = 0;
236 	/* Get an index LEB with lots of obsolete index nodes */
237 	lnum = ubifs_find_dirty_idx_leb(c);
238 	if (lnum < 0)
239 		/*
240 		 * There also may be dirt in the index head that could be
241 		 * filled, however we do not check there at present.
242 		 */
243 		return lnum; /* Error code */
244 	*p = lnum;
245 	dbg_gc("LEB %d", lnum);
246 	/*
247 	 * Scan the index LEB.  We use the generic scan for this even though
248 	 * it is more comprehensive and less efficient than is needed for this
249 	 * purpose.
250 	 */
251 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
252 	c->ileb_len = 0;
253 	if (IS_ERR(sleb))
254 		return PTR_ERR(sleb);
255 	gap_start = 0;
256 	list_for_each_entry(snod, &sleb->nodes, list) {
257 		struct ubifs_idx_node *idx;
258 		int in_use, level;
259 
260 		ubifs_assert(snod->type == UBIFS_IDX_NODE);
261 		idx = snod->node;
262 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
263 		level = le16_to_cpu(idx->level);
264 		/* Determine if the index node is in use (not obsolete) */
265 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
266 					    snod->offs);
267 		if (in_use < 0) {
268 			ubifs_scan_destroy(sleb);
269 			return in_use; /* Error code */
270 		}
271 		if (in_use) {
272 			if (in_use == 1)
273 				dirt += ALIGN(snod->len, 8);
274 			/*
275 			 * The obsolete index nodes form gaps that can be
276 			 * overwritten.  This gap has ended because we have
277 			 * found an index node that is still in use
278 			 * i.e. not obsolete
279 			 */
280 			gap_end = snod->offs;
281 			/* Try to fill gap */
282 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
283 			if (written < 0) {
284 				ubifs_scan_destroy(sleb);
285 				return written; /* Error code */
286 			}
287 			tot_written += written;
288 			gap_start = ALIGN(snod->offs + snod->len, 8);
289 		}
290 	}
291 	ubifs_scan_destroy(sleb);
292 	c->ileb_len = c->leb_size;
293 	gap_end = c->leb_size;
294 	/* Try to fill gap */
295 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
296 	if (written < 0)
297 		return written; /* Error code */
298 	tot_written += written;
299 	if (tot_written == 0) {
300 		struct ubifs_lprops lp;
301 
302 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
303 		err = ubifs_read_one_lp(c, lnum, &lp);
304 		if (err)
305 			return err;
306 		if (lp.free == c->leb_size) {
307 			/*
308 			 * We must have snatched this LEB from the idx_gc list
309 			 * so we need to correct the free and dirty space.
310 			 */
311 			err = ubifs_change_one_lp(c, lnum,
312 						  c->leb_size - c->ileb_len,
313 						  dirt, 0, 0, 0);
314 			if (err)
315 				return err;
316 		}
317 		return 0;
318 	}
319 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
320 				  0, 0, 0);
321 	if (err)
322 		return err;
323 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
324 	if (err)
325 		return err;
326 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
327 	return tot_written;
328 }
329 
330 /**
331  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
332  * @c: UBIFS file-system description object
333  * @cnt: number of znodes to commit
334  *
335  * This function returns the number of empty LEBs needed to commit @cnt znodes
336  * to the current index head.  The number is not exact and may be more than
337  * needed.
338  */
get_leb_cnt(struct ubifs_info * c,int cnt)339 static int get_leb_cnt(struct ubifs_info *c, int cnt)
340 {
341 	int d;
342 
343 	/* Assume maximum index node size (i.e. overestimate space needed) */
344 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
345 	if (cnt < 0)
346 		cnt = 0;
347 	d = c->leb_size / c->max_idx_node_sz;
348 	return DIV_ROUND_UP(cnt, d);
349 }
350 
351 /**
352  * layout_in_gaps - in-the-gaps method of committing TNC.
353  * @c: UBIFS file-system description object
354  * @cnt: number of dirty znodes to commit.
355  *
356  * This function lays out new index nodes for dirty znodes using in-the-gaps
357  * method of TNC commit.
358  *
359  * This function returns %0 on success and a negative error code on failure.
360  */
layout_in_gaps(struct ubifs_info * c,int cnt)361 static int layout_in_gaps(struct ubifs_info *c, int cnt)
362 {
363 	int err, leb_needed_cnt, written, *p;
364 
365 	dbg_gc("%d znodes to write", cnt);
366 
367 	c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
368 	if (!c->gap_lebs)
369 		return -ENOMEM;
370 
371 	p = c->gap_lebs;
372 	do {
373 		ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs);
374 		written = layout_leb_in_gaps(c, p);
375 		if (written < 0) {
376 			err = written;
377 			if (err != -ENOSPC) {
378 				kfree(c->gap_lebs);
379 				c->gap_lebs = NULL;
380 				return err;
381 			}
382 			if (!dbg_is_chk_index(c)) {
383 				/*
384 				 * Do not print scary warnings if the debugging
385 				 * option which forces in-the-gaps is enabled.
386 				 */
387 				ubifs_warn("out of space");
388 				ubifs_dump_budg(c, &c->bi);
389 				ubifs_dump_lprops(c);
390 			}
391 			/* Try to commit anyway */
392 			err = 0;
393 			break;
394 		}
395 		p++;
396 		cnt -= written;
397 		leb_needed_cnt = get_leb_cnt(c, cnt);
398 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
399 		       leb_needed_cnt, c->ileb_cnt);
400 	} while (leb_needed_cnt > c->ileb_cnt);
401 
402 	*p = -1;
403 	return 0;
404 }
405 
406 /**
407  * layout_in_empty_space - layout index nodes in empty space.
408  * @c: UBIFS file-system description object
409  *
410  * This function lays out new index nodes for dirty znodes using empty LEBs.
411  *
412  * This function returns %0 on success and a negative error code on failure.
413  */
layout_in_empty_space(struct ubifs_info * c)414 static int layout_in_empty_space(struct ubifs_info *c)
415 {
416 	struct ubifs_znode *znode, *cnext, *zp;
417 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
418 	int wlen, blen, err;
419 
420 	cnext = c->enext;
421 	if (!cnext)
422 		return 0;
423 
424 	lnum = c->ihead_lnum;
425 	buf_offs = c->ihead_offs;
426 
427 	buf_len = ubifs_idx_node_sz(c, c->fanout);
428 	buf_len = ALIGN(buf_len, c->min_io_size);
429 	used = 0;
430 	avail = buf_len;
431 
432 	/* Ensure there is enough room for first write */
433 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
434 	if (buf_offs + next_len > c->leb_size)
435 		lnum = -1;
436 
437 	while (1) {
438 		znode = cnext;
439 
440 		len = ubifs_idx_node_sz(c, znode->child_cnt);
441 
442 		/* Determine the index node position */
443 		if (lnum == -1) {
444 			if (c->ileb_nxt >= c->ileb_cnt) {
445 				ubifs_err("out of space");
446 				return -ENOSPC;
447 			}
448 			lnum = c->ilebs[c->ileb_nxt++];
449 			buf_offs = 0;
450 			used = 0;
451 			avail = buf_len;
452 		}
453 
454 		offs = buf_offs + used;
455 
456 		znode->lnum = lnum;
457 		znode->offs = offs;
458 		znode->len = len;
459 
460 		/* Update the parent */
461 		zp = znode->parent;
462 		if (zp) {
463 			struct ubifs_zbranch *zbr;
464 			int i;
465 
466 			i = znode->iip;
467 			zbr = &zp->zbranch[i];
468 			zbr->lnum = lnum;
469 			zbr->offs = offs;
470 			zbr->len = len;
471 		} else {
472 			c->zroot.lnum = lnum;
473 			c->zroot.offs = offs;
474 			c->zroot.len = len;
475 		}
476 		c->calc_idx_sz += ALIGN(len, 8);
477 
478 		/*
479 		 * Once lprops is updated, we can decrease the dirty znode count
480 		 * but it is easier to just do it here.
481 		 */
482 		atomic_long_dec(&c->dirty_zn_cnt);
483 
484 		/*
485 		 * Calculate the next index node length to see if there is
486 		 * enough room for it
487 		 */
488 		cnext = znode->cnext;
489 		if (cnext == c->cnext)
490 			next_len = 0;
491 		else
492 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
493 
494 		/* Update buffer positions */
495 		wlen = used + len;
496 		used += ALIGN(len, 8);
497 		avail -= ALIGN(len, 8);
498 
499 		if (next_len != 0 &&
500 		    buf_offs + used + next_len <= c->leb_size &&
501 		    avail > 0)
502 			continue;
503 
504 		if (avail <= 0 && next_len &&
505 		    buf_offs + used + next_len <= c->leb_size)
506 			blen = buf_len;
507 		else
508 			blen = ALIGN(wlen, c->min_io_size);
509 
510 		/* The buffer is full or there are no more znodes to do */
511 		buf_offs += blen;
512 		if (next_len) {
513 			if (buf_offs + next_len > c->leb_size) {
514 				err = ubifs_update_one_lp(c, lnum,
515 					c->leb_size - buf_offs, blen - used,
516 					0, 0);
517 				if (err)
518 					return err;
519 				lnum = -1;
520 			}
521 			used -= blen;
522 			if (used < 0)
523 				used = 0;
524 			avail = buf_len - used;
525 			continue;
526 		}
527 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
528 					  blen - used, 0, 0);
529 		if (err)
530 			return err;
531 		break;
532 	}
533 
534 	c->dbg->new_ihead_lnum = lnum;
535 	c->dbg->new_ihead_offs = buf_offs;
536 
537 	return 0;
538 }
539 
540 /**
541  * layout_commit - determine positions of index nodes to commit.
542  * @c: UBIFS file-system description object
543  * @no_space: indicates that insufficient empty LEBs were allocated
544  * @cnt: number of znodes to commit
545  *
546  * Calculate and update the positions of index nodes to commit.  If there were
547  * an insufficient number of empty LEBs allocated, then index nodes are placed
548  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
549  * this purpose, an obsolete index node is one that was not in the index as at
550  * the end of the last commit.  To write "in-the-gaps" requires that those index
551  * LEBs are updated atomically in-place.
552  */
layout_commit(struct ubifs_info * c,int no_space,int cnt)553 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
554 {
555 	int err;
556 
557 	if (no_space) {
558 		err = layout_in_gaps(c, cnt);
559 		if (err)
560 			return err;
561 	}
562 	err = layout_in_empty_space(c);
563 	return err;
564 }
565 
566 /**
567  * find_first_dirty - find first dirty znode.
568  * @znode: znode to begin searching from
569  */
find_first_dirty(struct ubifs_znode * znode)570 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
571 {
572 	int i, cont;
573 
574 	if (!znode)
575 		return NULL;
576 
577 	while (1) {
578 		if (znode->level == 0) {
579 			if (ubifs_zn_dirty(znode))
580 				return znode;
581 			return NULL;
582 		}
583 		cont = 0;
584 		for (i = 0; i < znode->child_cnt; i++) {
585 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
586 
587 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
588 				znode = zbr->znode;
589 				cont = 1;
590 				break;
591 			}
592 		}
593 		if (!cont) {
594 			if (ubifs_zn_dirty(znode))
595 				return znode;
596 			return NULL;
597 		}
598 	}
599 }
600 
601 /**
602  * find_next_dirty - find next dirty znode.
603  * @znode: znode to begin searching from
604  */
find_next_dirty(struct ubifs_znode * znode)605 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
606 {
607 	int n = znode->iip + 1;
608 
609 	znode = znode->parent;
610 	if (!znode)
611 		return NULL;
612 	for (; n < znode->child_cnt; n++) {
613 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
614 
615 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
616 			return find_first_dirty(zbr->znode);
617 	}
618 	return znode;
619 }
620 
621 /**
622  * get_znodes_to_commit - create list of dirty znodes to commit.
623  * @c: UBIFS file-system description object
624  *
625  * This function returns the number of znodes to commit.
626  */
get_znodes_to_commit(struct ubifs_info * c)627 static int get_znodes_to_commit(struct ubifs_info *c)
628 {
629 	struct ubifs_znode *znode, *cnext;
630 	int cnt = 0;
631 
632 	c->cnext = find_first_dirty(c->zroot.znode);
633 	znode = c->enext = c->cnext;
634 	if (!znode) {
635 		dbg_cmt("no znodes to commit");
636 		return 0;
637 	}
638 	cnt += 1;
639 	while (1) {
640 		ubifs_assert(!ubifs_zn_cow(znode));
641 		__set_bit(COW_ZNODE, &znode->flags);
642 		znode->alt = 0;
643 		cnext = find_next_dirty(znode);
644 		if (!cnext) {
645 			znode->cnext = c->cnext;
646 			break;
647 		}
648 		znode->cnext = cnext;
649 		znode = cnext;
650 		cnt += 1;
651 	}
652 	dbg_cmt("committing %d znodes", cnt);
653 	ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
654 	return cnt;
655 }
656 
657 /**
658  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
659  * @c: UBIFS file-system description object
660  * @cnt: number of znodes to commit
661  *
662  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
663  * empty LEBs.  %0 is returned on success, otherwise a negative error code
664  * is returned.
665  */
alloc_idx_lebs(struct ubifs_info * c,int cnt)666 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
667 {
668 	int i, leb_cnt, lnum;
669 
670 	c->ileb_cnt = 0;
671 	c->ileb_nxt = 0;
672 	leb_cnt = get_leb_cnt(c, cnt);
673 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
674 	if (!leb_cnt)
675 		return 0;
676 	c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
677 	if (!c->ilebs)
678 		return -ENOMEM;
679 	for (i = 0; i < leb_cnt; i++) {
680 		lnum = ubifs_find_free_leb_for_idx(c);
681 		if (lnum < 0)
682 			return lnum;
683 		c->ilebs[c->ileb_cnt++] = lnum;
684 		dbg_cmt("LEB %d", lnum);
685 	}
686 	if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
687 		return -ENOSPC;
688 	return 0;
689 }
690 
691 /**
692  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
693  * @c: UBIFS file-system description object
694  *
695  * It is possible that we allocate more empty LEBs for the commit than we need.
696  * This functions frees the surplus.
697  *
698  * This function returns %0 on success and a negative error code on failure.
699  */
free_unused_idx_lebs(struct ubifs_info * c)700 static int free_unused_idx_lebs(struct ubifs_info *c)
701 {
702 	int i, err = 0, lnum, er;
703 
704 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
705 		lnum = c->ilebs[i];
706 		dbg_cmt("LEB %d", lnum);
707 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
708 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
709 		if (!err)
710 			err = er;
711 	}
712 	return err;
713 }
714 
715 /**
716  * free_idx_lebs - free unused LEBs after commit end.
717  * @c: UBIFS file-system description object
718  *
719  * This function returns %0 on success and a negative error code on failure.
720  */
free_idx_lebs(struct ubifs_info * c)721 static int free_idx_lebs(struct ubifs_info *c)
722 {
723 	int err;
724 
725 	err = free_unused_idx_lebs(c);
726 	kfree(c->ilebs);
727 	c->ilebs = NULL;
728 	return err;
729 }
730 
731 /**
732  * ubifs_tnc_start_commit - start TNC commit.
733  * @c: UBIFS file-system description object
734  * @zroot: new index root position is returned here
735  *
736  * This function prepares the list of indexing nodes to commit and lays out
737  * their positions on flash. If there is not enough free space it uses the
738  * in-gap commit method. Returns zero in case of success and a negative error
739  * code in case of failure.
740  */
ubifs_tnc_start_commit(struct ubifs_info * c,struct ubifs_zbranch * zroot)741 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
742 {
743 	int err = 0, cnt;
744 
745 	mutex_lock(&c->tnc_mutex);
746 	err = dbg_check_tnc(c, 1);
747 	if (err)
748 		goto out;
749 	cnt = get_znodes_to_commit(c);
750 	if (cnt != 0) {
751 		int no_space = 0;
752 
753 		err = alloc_idx_lebs(c, cnt);
754 		if (err == -ENOSPC)
755 			no_space = 1;
756 		else if (err)
757 			goto out_free;
758 		err = layout_commit(c, no_space, cnt);
759 		if (err)
760 			goto out_free;
761 		ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
762 		err = free_unused_idx_lebs(c);
763 		if (err)
764 			goto out;
765 	}
766 	destroy_old_idx(c);
767 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
768 
769 	err = ubifs_save_dirty_idx_lnums(c);
770 	if (err)
771 		goto out;
772 
773 	spin_lock(&c->space_lock);
774 	/*
775 	 * Although we have not finished committing yet, update size of the
776 	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
777 	 * budget. It is OK to do this now, because we've reserved all the
778 	 * space which is needed to commit the index, and it is save for the
779 	 * budgeting subsystem to assume the index is already committed,
780 	 * even though it is not.
781 	 */
782 	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
783 	c->bi.old_idx_sz = c->calc_idx_sz;
784 	c->bi.uncommitted_idx = 0;
785 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
786 	spin_unlock(&c->space_lock);
787 	mutex_unlock(&c->tnc_mutex);
788 
789 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
790 	dbg_cmt("size of index %llu", c->calc_idx_sz);
791 	return err;
792 
793 out_free:
794 	free_idx_lebs(c);
795 out:
796 	mutex_unlock(&c->tnc_mutex);
797 	return err;
798 }
799 
800 /**
801  * write_index - write index nodes.
802  * @c: UBIFS file-system description object
803  *
804  * This function writes the index nodes whose positions were laid out in the
805  * layout_in_empty_space function.
806  */
write_index(struct ubifs_info * c)807 static int write_index(struct ubifs_info *c)
808 {
809 	struct ubifs_idx_node *idx;
810 	struct ubifs_znode *znode, *cnext;
811 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
812 	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
813 
814 	cnext = c->enext;
815 	if (!cnext)
816 		return 0;
817 
818 	/*
819 	 * Always write index nodes to the index head so that index nodes and
820 	 * other types of nodes are never mixed in the same erase block.
821 	 */
822 	lnum = c->ihead_lnum;
823 	buf_offs = c->ihead_offs;
824 
825 	/* Allocate commit buffer */
826 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
827 	used = 0;
828 	avail = buf_len;
829 
830 	/* Ensure there is enough room for first write */
831 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
832 	if (buf_offs + next_len > c->leb_size) {
833 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
834 					  LPROPS_TAKEN);
835 		if (err)
836 			return err;
837 		lnum = -1;
838 	}
839 
840 	while (1) {
841 		cond_resched();
842 
843 		znode = cnext;
844 		idx = c->cbuf + used;
845 
846 		/* Make index node */
847 		idx->ch.node_type = UBIFS_IDX_NODE;
848 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
849 		idx->level = cpu_to_le16(znode->level);
850 		for (i = 0; i < znode->child_cnt; i++) {
851 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
852 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
853 
854 			key_write_idx(c, &zbr->key, &br->key);
855 			br->lnum = cpu_to_le32(zbr->lnum);
856 			br->offs = cpu_to_le32(zbr->offs);
857 			br->len = cpu_to_le32(zbr->len);
858 			if (!zbr->lnum || !zbr->len) {
859 				ubifs_err("bad ref in znode");
860 				ubifs_dump_znode(c, znode);
861 				if (zbr->znode)
862 					ubifs_dump_znode(c, zbr->znode);
863 			}
864 		}
865 		len = ubifs_idx_node_sz(c, znode->child_cnt);
866 		ubifs_prepare_node(c, idx, len, 0);
867 
868 		/* Determine the index node position */
869 		if (lnum == -1) {
870 			lnum = c->ilebs[lnum_pos++];
871 			buf_offs = 0;
872 			used = 0;
873 			avail = buf_len;
874 		}
875 		offs = buf_offs + used;
876 
877 		if (lnum != znode->lnum || offs != znode->offs ||
878 		    len != znode->len) {
879 			ubifs_err("inconsistent znode posn");
880 			return -EINVAL;
881 		}
882 
883 		/* Grab some stuff from znode while we still can */
884 		cnext = znode->cnext;
885 
886 		ubifs_assert(ubifs_zn_dirty(znode));
887 		ubifs_assert(ubifs_zn_cow(znode));
888 
889 		/*
890 		 * It is important that other threads should see %DIRTY_ZNODE
891 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
892 		 * the 'dirty_cow_znode()' function. This is the reason for the
893 		 * first barrier. Also, we want the bit changes to be seen to
894 		 * other threads ASAP, to avoid unnecesarry copying, which is
895 		 * the reason for the second barrier.
896 		 */
897 		clear_bit(DIRTY_ZNODE, &znode->flags);
898 		smp_mb__before_clear_bit();
899 		clear_bit(COW_ZNODE, &znode->flags);
900 		smp_mb__after_clear_bit();
901 
902 		/*
903 		 * We have marked the znode as clean but have not updated the
904 		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
905 		 * before 'free_obsolete_znodes()' is called, then
906 		 * @c->clean_zn_cnt will be decremented before it gets
907 		 * incremented (resulting in 2 decrements for the same znode).
908 		 * This means that @c->clean_zn_cnt may become negative for a
909 		 * while.
910 		 *
911 		 * Q: why we cannot increment @c->clean_zn_cnt?
912 		 * A: because we do not have the @c->tnc_mutex locked, and the
913 		 *    following code would be racy and buggy:
914 		 *
915 		 *    if (!ubifs_zn_obsolete(znode)) {
916 		 *            atomic_long_inc(&c->clean_zn_cnt);
917 		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
918 		 *    }
919 		 *
920 		 *    Thus, we just delay the @c->clean_zn_cnt update until we
921 		 *    have the mutex locked.
922 		 */
923 
924 		/* Do not access znode from this point on */
925 
926 		/* Update buffer positions */
927 		wlen = used + len;
928 		used += ALIGN(len, 8);
929 		avail -= ALIGN(len, 8);
930 
931 		/*
932 		 * Calculate the next index node length to see if there is
933 		 * enough room for it
934 		 */
935 		if (cnext == c->cnext)
936 			next_len = 0;
937 		else
938 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
939 
940 		nxt_offs = buf_offs + used + next_len;
941 		if (next_len && nxt_offs <= c->leb_size) {
942 			if (avail > 0)
943 				continue;
944 			else
945 				blen = buf_len;
946 		} else {
947 			wlen = ALIGN(wlen, 8);
948 			blen = ALIGN(wlen, c->min_io_size);
949 			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
950 		}
951 
952 		/* The buffer is full or there are no more znodes to do */
953 		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
954 		if (err)
955 			return err;
956 		buf_offs += blen;
957 		if (next_len) {
958 			if (nxt_offs > c->leb_size) {
959 				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
960 							  0, LPROPS_TAKEN);
961 				if (err)
962 					return err;
963 				lnum = -1;
964 			}
965 			used -= blen;
966 			if (used < 0)
967 				used = 0;
968 			avail = buf_len - used;
969 			memmove(c->cbuf, c->cbuf + blen, used);
970 			continue;
971 		}
972 		break;
973 	}
974 
975 	if (lnum != c->dbg->new_ihead_lnum ||
976 	    buf_offs != c->dbg->new_ihead_offs) {
977 		ubifs_err("inconsistent ihead");
978 		return -EINVAL;
979 	}
980 
981 	c->ihead_lnum = lnum;
982 	c->ihead_offs = buf_offs;
983 
984 	return 0;
985 }
986 
987 /**
988  * free_obsolete_znodes - free obsolete znodes.
989  * @c: UBIFS file-system description object
990  *
991  * At the end of commit end, obsolete znodes are freed.
992  */
free_obsolete_znodes(struct ubifs_info * c)993 static void free_obsolete_znodes(struct ubifs_info *c)
994 {
995 	struct ubifs_znode *znode, *cnext;
996 
997 	cnext = c->cnext;
998 	do {
999 		znode = cnext;
1000 		cnext = znode->cnext;
1001 		if (ubifs_zn_obsolete(znode))
1002 			kfree(znode);
1003 		else {
1004 			znode->cnext = NULL;
1005 			atomic_long_inc(&c->clean_zn_cnt);
1006 			atomic_long_inc(&ubifs_clean_zn_cnt);
1007 		}
1008 	} while (cnext != c->cnext);
1009 }
1010 
1011 /**
1012  * return_gap_lebs - return LEBs used by the in-gap commit method.
1013  * @c: UBIFS file-system description object
1014  *
1015  * This function clears the "taken" flag for the LEBs which were used by the
1016  * "commit in-the-gaps" method.
1017  */
return_gap_lebs(struct ubifs_info * c)1018 static int return_gap_lebs(struct ubifs_info *c)
1019 {
1020 	int *p, err;
1021 
1022 	if (!c->gap_lebs)
1023 		return 0;
1024 
1025 	dbg_cmt("");
1026 	for (p = c->gap_lebs; *p != -1; p++) {
1027 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1028 					  LPROPS_TAKEN, 0);
1029 		if (err)
1030 			return err;
1031 	}
1032 
1033 	kfree(c->gap_lebs);
1034 	c->gap_lebs = NULL;
1035 	return 0;
1036 }
1037 
1038 /**
1039  * ubifs_tnc_end_commit - update the TNC for commit end.
1040  * @c: UBIFS file-system description object
1041  *
1042  * Write the dirty znodes.
1043  */
ubifs_tnc_end_commit(struct ubifs_info * c)1044 int ubifs_tnc_end_commit(struct ubifs_info *c)
1045 {
1046 	int err;
1047 
1048 	if (!c->cnext)
1049 		return 0;
1050 
1051 	err = return_gap_lebs(c);
1052 	if (err)
1053 		return err;
1054 
1055 	err = write_index(c);
1056 	if (err)
1057 		return err;
1058 
1059 	mutex_lock(&c->tnc_mutex);
1060 
1061 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1062 
1063 	free_obsolete_znodes(c);
1064 
1065 	c->cnext = NULL;
1066 	kfree(c->ilebs);
1067 	c->ilebs = NULL;
1068 
1069 	mutex_unlock(&c->tnc_mutex);
1070 
1071 	return 0;
1072 }
1073