1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * Copyright (c) 2008 Dave Chinner
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30
31 #ifdef DEBUG
32 /*
33 * Check that the list is sorted as it should be.
34 */
35 STATIC void
xfs_ail_check(struct xfs_ail * ailp,xfs_log_item_t * lip)36 xfs_ail_check(
37 struct xfs_ail *ailp,
38 xfs_log_item_t *lip)
39 {
40 xfs_log_item_t *prev_lip;
41
42 if (list_empty(&ailp->xa_ail))
43 return;
44
45 /*
46 * Check the next and previous entries are valid.
47 */
48 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 if (&prev_lip->li_ail != &ailp->xa_ail)
51 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52
53 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 if (&prev_lip->li_ail != &ailp->xa_ail)
55 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56
57
58 }
59 #else /* !DEBUG */
60 #define xfs_ail_check(a,l)
61 #endif /* DEBUG */
62
63 /*
64 * Return a pointer to the first item in the AIL. If the AIL is empty, then
65 * return NULL.
66 */
67 xfs_log_item_t *
xfs_ail_min(struct xfs_ail * ailp)68 xfs_ail_min(
69 struct xfs_ail *ailp)
70 {
71 if (list_empty(&ailp->xa_ail))
72 return NULL;
73
74 return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
75 }
76
77 /*
78 * Return a pointer to the last item in the AIL. If the AIL is empty, then
79 * return NULL.
80 */
81 static xfs_log_item_t *
xfs_ail_max(struct xfs_ail * ailp)82 xfs_ail_max(
83 struct xfs_ail *ailp)
84 {
85 if (list_empty(&ailp->xa_ail))
86 return NULL;
87
88 return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
89 }
90
91 /*
92 * Return a pointer to the item which follows the given item in the AIL. If
93 * the given item is the last item in the list, then return NULL.
94 */
95 static xfs_log_item_t *
xfs_ail_next(struct xfs_ail * ailp,xfs_log_item_t * lip)96 xfs_ail_next(
97 struct xfs_ail *ailp,
98 xfs_log_item_t *lip)
99 {
100 if (lip->li_ail.next == &ailp->xa_ail)
101 return NULL;
102
103 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
104 }
105
106 /*
107 * This is called by the log manager code to determine the LSN of the tail of
108 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
109 * is empty, then this function returns 0.
110 *
111 * We need the AIL lock in order to get a coherent read of the lsn of the last
112 * item in the AIL.
113 */
114 xfs_lsn_t
xfs_ail_min_lsn(struct xfs_ail * ailp)115 xfs_ail_min_lsn(
116 struct xfs_ail *ailp)
117 {
118 xfs_lsn_t lsn = 0;
119 xfs_log_item_t *lip;
120
121 spin_lock(&ailp->xa_lock);
122 lip = xfs_ail_min(ailp);
123 if (lip)
124 lsn = lip->li_lsn;
125 spin_unlock(&ailp->xa_lock);
126
127 return lsn;
128 }
129
130 /*
131 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
132 */
133 static xfs_lsn_t
xfs_ail_max_lsn(struct xfs_ail * ailp)134 xfs_ail_max_lsn(
135 struct xfs_ail *ailp)
136 {
137 xfs_lsn_t lsn = 0;
138 xfs_log_item_t *lip;
139
140 spin_lock(&ailp->xa_lock);
141 lip = xfs_ail_max(ailp);
142 if (lip)
143 lsn = lip->li_lsn;
144 spin_unlock(&ailp->xa_lock);
145
146 return lsn;
147 }
148
149 /*
150 * The cursor keeps track of where our current traversal is up to by tracking
151 * the next item in the list for us. However, for this to be safe, removing an
152 * object from the AIL needs to invalidate any cursor that points to it. hence
153 * the traversal cursor needs to be linked to the struct xfs_ail so that
154 * deletion can search all the active cursors for invalidation.
155 */
156 STATIC void
xfs_trans_ail_cursor_init(struct xfs_ail * ailp,struct xfs_ail_cursor * cur)157 xfs_trans_ail_cursor_init(
158 struct xfs_ail *ailp,
159 struct xfs_ail_cursor *cur)
160 {
161 cur->item = NULL;
162 list_add_tail(&cur->list, &ailp->xa_cursors);
163 }
164
165 /*
166 * Get the next item in the traversal and advance the cursor. If the cursor
167 * was invalidated (indicated by a lip of 1), restart the traversal.
168 */
169 struct xfs_log_item *
xfs_trans_ail_cursor_next(struct xfs_ail * ailp,struct xfs_ail_cursor * cur)170 xfs_trans_ail_cursor_next(
171 struct xfs_ail *ailp,
172 struct xfs_ail_cursor *cur)
173 {
174 struct xfs_log_item *lip = cur->item;
175
176 if ((__psint_t)lip & 1)
177 lip = xfs_ail_min(ailp);
178 if (lip)
179 cur->item = xfs_ail_next(ailp, lip);
180 return lip;
181 }
182
183 /*
184 * When the traversal is complete, we need to remove the cursor from the list
185 * of traversing cursors.
186 */
187 void
xfs_trans_ail_cursor_done(struct xfs_ail * ailp,struct xfs_ail_cursor * cur)188 xfs_trans_ail_cursor_done(
189 struct xfs_ail *ailp,
190 struct xfs_ail_cursor *cur)
191 {
192 cur->item = NULL;
193 list_del_init(&cur->list);
194 }
195
196 /*
197 * Invalidate any cursor that is pointing to this item. This is called when an
198 * item is removed from the AIL. Any cursor pointing to this object is now
199 * invalid and the traversal needs to be terminated so it doesn't reference a
200 * freed object. We set the low bit of the cursor item pointer so we can
201 * distinguish between an invalidation and the end of the list when getting the
202 * next item from the cursor.
203 */
204 STATIC void
xfs_trans_ail_cursor_clear(struct xfs_ail * ailp,struct xfs_log_item * lip)205 xfs_trans_ail_cursor_clear(
206 struct xfs_ail *ailp,
207 struct xfs_log_item *lip)
208 {
209 struct xfs_ail_cursor *cur;
210
211 list_for_each_entry(cur, &ailp->xa_cursors, list) {
212 if (cur->item == lip)
213 cur->item = (struct xfs_log_item *)
214 ((__psint_t)cur->item | 1);
215 }
216 }
217
218 /*
219 * Find the first item in the AIL with the given @lsn by searching in ascending
220 * LSN order and initialise the cursor to point to the next item for a
221 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
222 * first item in the AIL. Returns NULL if the list is empty.
223 */
224 xfs_log_item_t *
xfs_trans_ail_cursor_first(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,xfs_lsn_t lsn)225 xfs_trans_ail_cursor_first(
226 struct xfs_ail *ailp,
227 struct xfs_ail_cursor *cur,
228 xfs_lsn_t lsn)
229 {
230 xfs_log_item_t *lip;
231
232 xfs_trans_ail_cursor_init(ailp, cur);
233
234 if (lsn == 0) {
235 lip = xfs_ail_min(ailp);
236 goto out;
237 }
238
239 list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
240 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
241 goto out;
242 }
243 return NULL;
244
245 out:
246 if (lip)
247 cur->item = xfs_ail_next(ailp, lip);
248 return lip;
249 }
250
251 static struct xfs_log_item *
__xfs_trans_ail_cursor_last(struct xfs_ail * ailp,xfs_lsn_t lsn)252 __xfs_trans_ail_cursor_last(
253 struct xfs_ail *ailp,
254 xfs_lsn_t lsn)
255 {
256 xfs_log_item_t *lip;
257
258 list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
259 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
260 return lip;
261 }
262 return NULL;
263 }
264
265 /*
266 * Find the last item in the AIL with the given @lsn by searching in descending
267 * LSN order and initialise the cursor to point to that item. If there is no
268 * item with the value of @lsn, then it sets the cursor to the last item with an
269 * LSN lower than @lsn. Returns NULL if the list is empty.
270 */
271 struct xfs_log_item *
xfs_trans_ail_cursor_last(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,xfs_lsn_t lsn)272 xfs_trans_ail_cursor_last(
273 struct xfs_ail *ailp,
274 struct xfs_ail_cursor *cur,
275 xfs_lsn_t lsn)
276 {
277 xfs_trans_ail_cursor_init(ailp, cur);
278 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
279 return cur->item;
280 }
281
282 /*
283 * Splice the log item list into the AIL at the given LSN. We splice to the
284 * tail of the given LSN to maintain insert order for push traversals. The
285 * cursor is optional, allowing repeated updates to the same LSN to avoid
286 * repeated traversals. This should not be called with an empty list.
287 */
288 static void
xfs_ail_splice(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct list_head * list,xfs_lsn_t lsn)289 xfs_ail_splice(
290 struct xfs_ail *ailp,
291 struct xfs_ail_cursor *cur,
292 struct list_head *list,
293 xfs_lsn_t lsn)
294 {
295 struct xfs_log_item *lip;
296
297 ASSERT(!list_empty(list));
298
299 /*
300 * Use the cursor to determine the insertion point if one is
301 * provided. If not, or if the one we got is not valid,
302 * find the place in the AIL where the items belong.
303 */
304 lip = cur ? cur->item : NULL;
305 if (!lip || (__psint_t) lip & 1)
306 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
307
308 /*
309 * If a cursor is provided, we know we're processing the AIL
310 * in lsn order, and future items to be spliced in will
311 * follow the last one being inserted now. Update the
312 * cursor to point to that last item, now while we have a
313 * reliable pointer to it.
314 */
315 if (cur)
316 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
317
318 /*
319 * Finally perform the splice. Unless the AIL was empty,
320 * lip points to the item in the AIL _after_ which the new
321 * items should go. If lip is null the AIL was empty, so
322 * the new items go at the head of the AIL.
323 */
324 if (lip)
325 list_splice(list, &lip->li_ail);
326 else
327 list_splice(list, &ailp->xa_ail);
328 }
329
330 /*
331 * Delete the given item from the AIL. Return a pointer to the item.
332 */
333 static void
xfs_ail_delete(struct xfs_ail * ailp,xfs_log_item_t * lip)334 xfs_ail_delete(
335 struct xfs_ail *ailp,
336 xfs_log_item_t *lip)
337 {
338 xfs_ail_check(ailp, lip);
339 list_del(&lip->li_ail);
340 xfs_trans_ail_cursor_clear(ailp, lip);
341 }
342
343 static long
xfsaild_push(struct xfs_ail * ailp)344 xfsaild_push(
345 struct xfs_ail *ailp)
346 {
347 xfs_mount_t *mp = ailp->xa_mount;
348 struct xfs_ail_cursor cur;
349 xfs_log_item_t *lip;
350 xfs_lsn_t lsn;
351 xfs_lsn_t target;
352 long tout;
353 int stuck = 0;
354 int flushing = 0;
355 int count = 0;
356
357 /*
358 * If we encountered pinned items or did not finish writing out all
359 * buffers the last time we ran, force the log first and wait for it
360 * before pushing again.
361 */
362 if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
363 (!list_empty_careful(&ailp->xa_buf_list) ||
364 xfs_ail_min_lsn(ailp))) {
365 ailp->xa_log_flush = 0;
366
367 XFS_STATS_INC(xs_push_ail_flush);
368 xfs_log_force(mp, XFS_LOG_SYNC);
369 }
370
371 spin_lock(&ailp->xa_lock);
372
373 /* barrier matches the xa_target update in xfs_ail_push() */
374 smp_rmb();
375 target = ailp->xa_target;
376 ailp->xa_target_prev = target;
377
378 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
379 if (!lip) {
380 /*
381 * If the AIL is empty or our push has reached the end we are
382 * done now.
383 */
384 xfs_trans_ail_cursor_done(ailp, &cur);
385 spin_unlock(&ailp->xa_lock);
386 goto out_done;
387 }
388
389 XFS_STATS_INC(xs_push_ail);
390
391 lsn = lip->li_lsn;
392 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
393 int lock_result;
394
395 /*
396 * Note that IOP_PUSH may unlock and reacquire the AIL lock. We
397 * rely on the AIL cursor implementation to be able to deal with
398 * the dropped lock.
399 */
400 lock_result = IOP_PUSH(lip, &ailp->xa_buf_list);
401 switch (lock_result) {
402 case XFS_ITEM_SUCCESS:
403 XFS_STATS_INC(xs_push_ail_success);
404 trace_xfs_ail_push(lip);
405
406 ailp->xa_last_pushed_lsn = lsn;
407 break;
408
409 case XFS_ITEM_FLUSHING:
410 /*
411 * The item or its backing buffer is already beeing
412 * flushed. The typical reason for that is that an
413 * inode buffer is locked because we already pushed the
414 * updates to it as part of inode clustering.
415 *
416 * We do not want to to stop flushing just because lots
417 * of items are already beeing flushed, but we need to
418 * re-try the flushing relatively soon if most of the
419 * AIL is beeing flushed.
420 */
421 XFS_STATS_INC(xs_push_ail_flushing);
422 trace_xfs_ail_flushing(lip);
423
424 flushing++;
425 ailp->xa_last_pushed_lsn = lsn;
426 break;
427
428 case XFS_ITEM_PINNED:
429 XFS_STATS_INC(xs_push_ail_pinned);
430 trace_xfs_ail_pinned(lip);
431
432 stuck++;
433 ailp->xa_log_flush++;
434 break;
435 case XFS_ITEM_LOCKED:
436 XFS_STATS_INC(xs_push_ail_locked);
437 trace_xfs_ail_locked(lip);
438
439 stuck++;
440 break;
441 default:
442 ASSERT(0);
443 break;
444 }
445
446 count++;
447
448 /*
449 * Are there too many items we can't do anything with?
450 *
451 * If we we are skipping too many items because we can't flush
452 * them or they are already being flushed, we back off and
453 * given them time to complete whatever operation is being
454 * done. i.e. remove pressure from the AIL while we can't make
455 * progress so traversals don't slow down further inserts and
456 * removals to/from the AIL.
457 *
458 * The value of 100 is an arbitrary magic number based on
459 * observation.
460 */
461 if (stuck > 100)
462 break;
463
464 lip = xfs_trans_ail_cursor_next(ailp, &cur);
465 if (lip == NULL)
466 break;
467 lsn = lip->li_lsn;
468 }
469 xfs_trans_ail_cursor_done(ailp, &cur);
470 spin_unlock(&ailp->xa_lock);
471
472 if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
473 ailp->xa_log_flush++;
474
475 if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
476 out_done:
477 /*
478 * We reached the target or the AIL is empty, so wait a bit
479 * longer for I/O to complete and remove pushed items from the
480 * AIL before we start the next scan from the start of the AIL.
481 */
482 tout = 50;
483 ailp->xa_last_pushed_lsn = 0;
484 } else if (((stuck + flushing) * 100) / count > 90) {
485 /*
486 * Either there is a lot of contention on the AIL or we are
487 * stuck due to operations in progress. "Stuck" in this case
488 * is defined as >90% of the items we tried to push were stuck.
489 *
490 * Backoff a bit more to allow some I/O to complete before
491 * restarting from the start of the AIL. This prevents us from
492 * spinning on the same items, and if they are pinned will all
493 * the restart to issue a log force to unpin the stuck items.
494 */
495 tout = 20;
496 ailp->xa_last_pushed_lsn = 0;
497 } else {
498 /*
499 * Assume we have more work to do in a short while.
500 */
501 tout = 10;
502 }
503
504 return tout;
505 }
506
507 static int
xfsaild(void * data)508 xfsaild(
509 void *data)
510 {
511 struct xfs_ail *ailp = data;
512 long tout = 0; /* milliseconds */
513
514 current->flags |= PF_MEMALLOC;
515
516 while (!kthread_should_stop()) {
517 if (tout && tout <= 20)
518 __set_current_state(TASK_KILLABLE);
519 else
520 __set_current_state(TASK_INTERRUPTIBLE);
521
522 spin_lock(&ailp->xa_lock);
523
524 /*
525 * Idle if the AIL is empty and we are not racing with a target
526 * update. We check the AIL after we set the task to a sleep
527 * state to guarantee that we either catch an xa_target update
528 * or that a wake_up resets the state to TASK_RUNNING.
529 * Otherwise, we run the risk of sleeping indefinitely.
530 *
531 * The barrier matches the xa_target update in xfs_ail_push().
532 */
533 smp_rmb();
534 if (!xfs_ail_min(ailp) &&
535 ailp->xa_target == ailp->xa_target_prev) {
536 spin_unlock(&ailp->xa_lock);
537 schedule();
538 tout = 0;
539 continue;
540 }
541 spin_unlock(&ailp->xa_lock);
542
543 if (tout)
544 schedule_timeout(msecs_to_jiffies(tout));
545
546 __set_current_state(TASK_RUNNING);
547
548 try_to_freeze();
549
550 tout = xfsaild_push(ailp);
551 }
552
553 return 0;
554 }
555
556 /*
557 * This routine is called to move the tail of the AIL forward. It does this by
558 * trying to flush items in the AIL whose lsns are below the given
559 * threshold_lsn.
560 *
561 * The push is run asynchronously in a workqueue, which means the caller needs
562 * to handle waiting on the async flush for space to become available.
563 * We don't want to interrupt any push that is in progress, hence we only queue
564 * work if we set the pushing bit approriately.
565 *
566 * We do this unlocked - we only need to know whether there is anything in the
567 * AIL at the time we are called. We don't need to access the contents of
568 * any of the objects, so the lock is not needed.
569 */
570 void
xfs_ail_push(struct xfs_ail * ailp,xfs_lsn_t threshold_lsn)571 xfs_ail_push(
572 struct xfs_ail *ailp,
573 xfs_lsn_t threshold_lsn)
574 {
575 xfs_log_item_t *lip;
576
577 lip = xfs_ail_min(ailp);
578 if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
579 XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
580 return;
581
582 /*
583 * Ensure that the new target is noticed in push code before it clears
584 * the XFS_AIL_PUSHING_BIT.
585 */
586 smp_wmb();
587 xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
588 smp_wmb();
589
590 wake_up_process(ailp->xa_task);
591 }
592
593 /*
594 * Push out all items in the AIL immediately
595 */
596 void
xfs_ail_push_all(struct xfs_ail * ailp)597 xfs_ail_push_all(
598 struct xfs_ail *ailp)
599 {
600 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
601
602 if (threshold_lsn)
603 xfs_ail_push(ailp, threshold_lsn);
604 }
605
606 /*
607 * Push out all items in the AIL immediately and wait until the AIL is empty.
608 */
609 void
xfs_ail_push_all_sync(struct xfs_ail * ailp)610 xfs_ail_push_all_sync(
611 struct xfs_ail *ailp)
612 {
613 struct xfs_log_item *lip;
614 DEFINE_WAIT(wait);
615
616 spin_lock(&ailp->xa_lock);
617 while ((lip = xfs_ail_max(ailp)) != NULL) {
618 prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
619 ailp->xa_target = lip->li_lsn;
620 wake_up_process(ailp->xa_task);
621 spin_unlock(&ailp->xa_lock);
622 schedule();
623 spin_lock(&ailp->xa_lock);
624 }
625 spin_unlock(&ailp->xa_lock);
626
627 finish_wait(&ailp->xa_empty, &wait);
628 }
629
630 /*
631 * xfs_trans_ail_update - bulk AIL insertion operation.
632 *
633 * @xfs_trans_ail_update takes an array of log items that all need to be
634 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
635 * be added. Otherwise, it will be repositioned by removing it and re-adding
636 * it to the AIL. If we move the first item in the AIL, update the log tail to
637 * match the new minimum LSN in the AIL.
638 *
639 * This function takes the AIL lock once to execute the update operations on
640 * all the items in the array, and as such should not be called with the AIL
641 * lock held. As a result, once we have the AIL lock, we need to check each log
642 * item LSN to confirm it needs to be moved forward in the AIL.
643 *
644 * To optimise the insert operation, we delete all the items from the AIL in
645 * the first pass, moving them into a temporary list, then splice the temporary
646 * list into the correct position in the AIL. This avoids needing to do an
647 * insert operation on every item.
648 *
649 * This function must be called with the AIL lock held. The lock is dropped
650 * before returning.
651 */
652 void
xfs_trans_ail_update_bulk(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t lsn)653 xfs_trans_ail_update_bulk(
654 struct xfs_ail *ailp,
655 struct xfs_ail_cursor *cur,
656 struct xfs_log_item **log_items,
657 int nr_items,
658 xfs_lsn_t lsn) __releases(ailp->xa_lock)
659 {
660 xfs_log_item_t *mlip;
661 int mlip_changed = 0;
662 int i;
663 LIST_HEAD(tmp);
664
665 ASSERT(nr_items > 0); /* Not required, but true. */
666 mlip = xfs_ail_min(ailp);
667
668 for (i = 0; i < nr_items; i++) {
669 struct xfs_log_item *lip = log_items[i];
670 if (lip->li_flags & XFS_LI_IN_AIL) {
671 /* check if we really need to move the item */
672 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
673 continue;
674
675 xfs_ail_delete(ailp, lip);
676 if (mlip == lip)
677 mlip_changed = 1;
678 } else {
679 lip->li_flags |= XFS_LI_IN_AIL;
680 }
681 lip->li_lsn = lsn;
682 list_add(&lip->li_ail, &tmp);
683 }
684
685 if (!list_empty(&tmp))
686 xfs_ail_splice(ailp, cur, &tmp, lsn);
687
688 if (mlip_changed) {
689 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
690 xlog_assign_tail_lsn_locked(ailp->xa_mount);
691 spin_unlock(&ailp->xa_lock);
692
693 xfs_log_space_wake(ailp->xa_mount);
694 } else {
695 spin_unlock(&ailp->xa_lock);
696 }
697 }
698
699 /*
700 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
701 *
702 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
703 * removed from the AIL. The caller is already holding the AIL lock, and done
704 * all the checks necessary to ensure the items passed in via @log_items are
705 * ready for deletion. This includes checking that the items are in the AIL.
706 *
707 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
708 * flag from the item and reset the item's lsn to 0. If we remove the first
709 * item in the AIL, update the log tail to match the new minimum LSN in the
710 * AIL.
711 *
712 * This function will not drop the AIL lock until all items are removed from
713 * the AIL to minimise the amount of lock traffic on the AIL. This does not
714 * greatly increase the AIL hold time, but does significantly reduce the amount
715 * of traffic on the lock, especially during IO completion.
716 *
717 * This function must be called with the AIL lock held. The lock is dropped
718 * before returning.
719 */
720 void
xfs_trans_ail_delete_bulk(struct xfs_ail * ailp,struct xfs_log_item ** log_items,int nr_items,int shutdown_type)721 xfs_trans_ail_delete_bulk(
722 struct xfs_ail *ailp,
723 struct xfs_log_item **log_items,
724 int nr_items,
725 int shutdown_type) __releases(ailp->xa_lock)
726 {
727 xfs_log_item_t *mlip;
728 int mlip_changed = 0;
729 int i;
730
731 mlip = xfs_ail_min(ailp);
732
733 for (i = 0; i < nr_items; i++) {
734 struct xfs_log_item *lip = log_items[i];
735 if (!(lip->li_flags & XFS_LI_IN_AIL)) {
736 struct xfs_mount *mp = ailp->xa_mount;
737
738 spin_unlock(&ailp->xa_lock);
739 if (!XFS_FORCED_SHUTDOWN(mp)) {
740 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
741 "%s: attempting to delete a log item that is not in the AIL",
742 __func__);
743 xfs_force_shutdown(mp, shutdown_type);
744 }
745 return;
746 }
747
748 xfs_ail_delete(ailp, lip);
749 lip->li_flags &= ~XFS_LI_IN_AIL;
750 lip->li_lsn = 0;
751 if (mlip == lip)
752 mlip_changed = 1;
753 }
754
755 if (mlip_changed) {
756 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
757 xlog_assign_tail_lsn_locked(ailp->xa_mount);
758 if (list_empty(&ailp->xa_ail))
759 wake_up_all(&ailp->xa_empty);
760 spin_unlock(&ailp->xa_lock);
761
762 xfs_log_space_wake(ailp->xa_mount);
763 } else {
764 spin_unlock(&ailp->xa_lock);
765 }
766 }
767
768 int
xfs_trans_ail_init(xfs_mount_t * mp)769 xfs_trans_ail_init(
770 xfs_mount_t *mp)
771 {
772 struct xfs_ail *ailp;
773
774 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
775 if (!ailp)
776 return ENOMEM;
777
778 ailp->xa_mount = mp;
779 INIT_LIST_HEAD(&ailp->xa_ail);
780 INIT_LIST_HEAD(&ailp->xa_cursors);
781 spin_lock_init(&ailp->xa_lock);
782 INIT_LIST_HEAD(&ailp->xa_buf_list);
783 init_waitqueue_head(&ailp->xa_empty);
784
785 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
786 ailp->xa_mount->m_fsname);
787 if (IS_ERR(ailp->xa_task))
788 goto out_free_ailp;
789
790 mp->m_ail = ailp;
791 return 0;
792
793 out_free_ailp:
794 kmem_free(ailp);
795 return ENOMEM;
796 }
797
798 void
xfs_trans_ail_destroy(xfs_mount_t * mp)799 xfs_trans_ail_destroy(
800 xfs_mount_t *mp)
801 {
802 struct xfs_ail *ailp = mp->m_ail;
803
804 kthread_stop(ailp->xa_task);
805 kmem_free(ailp);
806 }
807