1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
54
55 #include <linux/audit.h>
56
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <net/netlink.h>
64 #include <linux/freezer.h>
65 #include <linux/tty.h>
66 #include <linux/pid_namespace.h>
67
68 #include "audit.h"
69
70 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72 #define AUDIT_DISABLED -1
73 #define AUDIT_UNINITIALIZED 0
74 #define AUDIT_INITIALIZED 1
75 static int audit_initialized;
76
77 #define AUDIT_OFF 0
78 #define AUDIT_ON 1
79 #define AUDIT_LOCKED 2
80 int audit_enabled;
81 int audit_ever_enabled;
82
83 EXPORT_SYMBOL_GPL(audit_enabled);
84
85 /* Default state when kernel boots without any parameters. */
86 static int audit_default;
87
88 /* If auditing cannot proceed, audit_failure selects what happens. */
89 static int audit_failure = AUDIT_FAIL_PRINTK;
90
91 /*
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
95 */
96 int audit_pid;
97 static int audit_nlk_portid;
98
99 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102 static int audit_rate_limit;
103
104 /* Number of outstanding audit_buffers allowed. */
105 static int audit_backlog_limit = 64;
106 static int audit_backlog_wait_time = 60 * HZ;
107 static int audit_backlog_wait_overflow = 0;
108
109 /* The identity of the user shutting down the audit system. */
110 kuid_t audit_sig_uid = INVALID_UID;
111 pid_t audit_sig_pid = -1;
112 u32 audit_sig_sid = 0;
113
114 /* Records can be lost in several ways:
115 0) [suppressed in audit_alloc]
116 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
117 2) out of memory in audit_log_move [alloc_skb]
118 3) suppressed due to audit_rate_limit
119 4) suppressed due to audit_backlog_limit
120 */
121 static atomic_t audit_lost = ATOMIC_INIT(0);
122
123 /* The netlink socket. */
124 static struct sock *audit_sock;
125
126 /* Hash for inode-based rules */
127 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
128
129 /* The audit_freelist is a list of pre-allocated audit buffers (if more
130 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
131 * being placed on the freelist). */
132 static DEFINE_SPINLOCK(audit_freelist_lock);
133 static int audit_freelist_count;
134 static LIST_HEAD(audit_freelist);
135
136 static struct sk_buff_head audit_skb_queue;
137 /* queue of skbs to send to auditd when/if it comes back */
138 static struct sk_buff_head audit_skb_hold_queue;
139 static struct task_struct *kauditd_task;
140 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
141 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
142
143 /* Serialize requests from userspace. */
144 DEFINE_MUTEX(audit_cmd_mutex);
145
146 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
147 * audit records. Since printk uses a 1024 byte buffer, this buffer
148 * should be at least that large. */
149 #define AUDIT_BUFSIZ 1024
150
151 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
152 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
153 #define AUDIT_MAXFREE (2*NR_CPUS)
154
155 /* The audit_buffer is used when formatting an audit record. The caller
156 * locks briefly to get the record off the freelist or to allocate the
157 * buffer, and locks briefly to send the buffer to the netlink layer or
158 * to place it on a transmit queue. Multiple audit_buffers can be in
159 * use simultaneously. */
160 struct audit_buffer {
161 struct list_head list;
162 struct sk_buff *skb; /* formatted skb ready to send */
163 struct audit_context *ctx; /* NULL or associated context */
164 gfp_t gfp_mask;
165 };
166
167 struct audit_reply {
168 int pid;
169 struct sk_buff *skb;
170 };
171
audit_set_pid(struct audit_buffer * ab,pid_t pid)172 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
173 {
174 if (ab) {
175 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
176 nlh->nlmsg_pid = pid;
177 }
178 }
179
audit_panic(const char * message)180 void audit_panic(const char *message)
181 {
182 switch (audit_failure)
183 {
184 case AUDIT_FAIL_SILENT:
185 break;
186 case AUDIT_FAIL_PRINTK:
187 if (printk_ratelimit())
188 printk(KERN_ERR "audit: %s\n", message);
189 break;
190 case AUDIT_FAIL_PANIC:
191 /* test audit_pid since printk is always losey, why bother? */
192 if (audit_pid)
193 panic("audit: %s\n", message);
194 break;
195 }
196 }
197
audit_rate_check(void)198 static inline int audit_rate_check(void)
199 {
200 static unsigned long last_check = 0;
201 static int messages = 0;
202 static DEFINE_SPINLOCK(lock);
203 unsigned long flags;
204 unsigned long now;
205 unsigned long elapsed;
206 int retval = 0;
207
208 if (!audit_rate_limit) return 1;
209
210 spin_lock_irqsave(&lock, flags);
211 if (++messages < audit_rate_limit) {
212 retval = 1;
213 } else {
214 now = jiffies;
215 elapsed = now - last_check;
216 if (elapsed > HZ) {
217 last_check = now;
218 messages = 0;
219 retval = 1;
220 }
221 }
222 spin_unlock_irqrestore(&lock, flags);
223
224 return retval;
225 }
226
227 /**
228 * audit_log_lost - conditionally log lost audit message event
229 * @message: the message stating reason for lost audit message
230 *
231 * Emit at least 1 message per second, even if audit_rate_check is
232 * throttling.
233 * Always increment the lost messages counter.
234 */
audit_log_lost(const char * message)235 void audit_log_lost(const char *message)
236 {
237 static unsigned long last_msg = 0;
238 static DEFINE_SPINLOCK(lock);
239 unsigned long flags;
240 unsigned long now;
241 int print;
242
243 atomic_inc(&audit_lost);
244
245 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
246
247 if (!print) {
248 spin_lock_irqsave(&lock, flags);
249 now = jiffies;
250 if (now - last_msg > HZ) {
251 print = 1;
252 last_msg = now;
253 }
254 spin_unlock_irqrestore(&lock, flags);
255 }
256
257 if (print) {
258 if (printk_ratelimit())
259 printk(KERN_WARNING
260 "audit: audit_lost=%d audit_rate_limit=%d "
261 "audit_backlog_limit=%d\n",
262 atomic_read(&audit_lost),
263 audit_rate_limit,
264 audit_backlog_limit);
265 audit_panic(message);
266 }
267 }
268
audit_log_config_change(char * function_name,int new,int old,int allow_changes)269 static int audit_log_config_change(char *function_name, int new, int old,
270 int allow_changes)
271 {
272 struct audit_buffer *ab;
273 int rc = 0;
274
275 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
276 if (unlikely(!ab))
277 return rc;
278 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
279 audit_log_session_info(ab);
280 rc = audit_log_task_context(ab);
281 if (rc)
282 allow_changes = 0; /* Something weird, deny request */
283 audit_log_format(ab, " res=%d", allow_changes);
284 audit_log_end(ab);
285 return rc;
286 }
287
audit_do_config_change(char * function_name,int * to_change,int new)288 static int audit_do_config_change(char *function_name, int *to_change, int new)
289 {
290 int allow_changes, rc = 0, old = *to_change;
291
292 /* check if we are locked */
293 if (audit_enabled == AUDIT_LOCKED)
294 allow_changes = 0;
295 else
296 allow_changes = 1;
297
298 if (audit_enabled != AUDIT_OFF) {
299 rc = audit_log_config_change(function_name, new, old, allow_changes);
300 if (rc)
301 allow_changes = 0;
302 }
303
304 /* If we are allowed, make the change */
305 if (allow_changes == 1)
306 *to_change = new;
307 /* Not allowed, update reason */
308 else if (rc == 0)
309 rc = -EPERM;
310 return rc;
311 }
312
audit_set_rate_limit(int limit)313 static int audit_set_rate_limit(int limit)
314 {
315 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
316 }
317
audit_set_backlog_limit(int limit)318 static int audit_set_backlog_limit(int limit)
319 {
320 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
321 }
322
audit_set_enabled(int state)323 static int audit_set_enabled(int state)
324 {
325 int rc;
326 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
327 return -EINVAL;
328
329 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
330 if (!rc)
331 audit_ever_enabled |= !!state;
332
333 return rc;
334 }
335
audit_set_failure(int state)336 static int audit_set_failure(int state)
337 {
338 if (state != AUDIT_FAIL_SILENT
339 && state != AUDIT_FAIL_PRINTK
340 && state != AUDIT_FAIL_PANIC)
341 return -EINVAL;
342
343 return audit_do_config_change("audit_failure", &audit_failure, state);
344 }
345
346 /*
347 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
348 * already have been sent via prink/syslog and so if these messages are dropped
349 * it is not a huge concern since we already passed the audit_log_lost()
350 * notification and stuff. This is just nice to get audit messages during
351 * boot before auditd is running or messages generated while auditd is stopped.
352 * This only holds messages is audit_default is set, aka booting with audit=1
353 * or building your kernel that way.
354 */
audit_hold_skb(struct sk_buff * skb)355 static void audit_hold_skb(struct sk_buff *skb)
356 {
357 if (audit_default &&
358 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
359 skb_queue_tail(&audit_skb_hold_queue, skb);
360 else
361 kfree_skb(skb);
362 }
363
364 /*
365 * For one reason or another this nlh isn't getting delivered to the userspace
366 * audit daemon, just send it to printk.
367 */
audit_printk_skb(struct sk_buff * skb)368 static void audit_printk_skb(struct sk_buff *skb)
369 {
370 struct nlmsghdr *nlh = nlmsg_hdr(skb);
371 char *data = nlmsg_data(nlh);
372
373 if (nlh->nlmsg_type != AUDIT_EOE) {
374 if (printk_ratelimit())
375 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
376 else
377 audit_log_lost("printk limit exceeded\n");
378 }
379
380 audit_hold_skb(skb);
381 }
382
kauditd_send_skb(struct sk_buff * skb)383 static void kauditd_send_skb(struct sk_buff *skb)
384 {
385 int err;
386 /* take a reference in case we can't send it and we want to hold it */
387 skb_get(skb);
388 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
389 if (err < 0) {
390 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
391 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
392 audit_log_lost("auditd disappeared\n");
393 audit_pid = 0;
394 /* we might get lucky and get this in the next auditd */
395 audit_hold_skb(skb);
396 } else
397 /* drop the extra reference if sent ok */
398 consume_skb(skb);
399 }
400
401 /*
402 * flush_hold_queue - empty the hold queue if auditd appears
403 *
404 * If auditd just started, drain the queue of messages already
405 * sent to syslog/printk. Remember loss here is ok. We already
406 * called audit_log_lost() if it didn't go out normally. so the
407 * race between the skb_dequeue and the next check for audit_pid
408 * doesn't matter.
409 *
410 * If you ever find kauditd to be too slow we can get a perf win
411 * by doing our own locking and keeping better track if there
412 * are messages in this queue. I don't see the need now, but
413 * in 5 years when I want to play with this again I'll see this
414 * note and still have no friggin idea what i'm thinking today.
415 */
flush_hold_queue(void)416 static void flush_hold_queue(void)
417 {
418 struct sk_buff *skb;
419
420 if (!audit_default || !audit_pid)
421 return;
422
423 skb = skb_dequeue(&audit_skb_hold_queue);
424 if (likely(!skb))
425 return;
426
427 while (skb && audit_pid) {
428 kauditd_send_skb(skb);
429 skb = skb_dequeue(&audit_skb_hold_queue);
430 }
431
432 /*
433 * if auditd just disappeared but we
434 * dequeued an skb we need to drop ref
435 */
436 if (skb)
437 consume_skb(skb);
438 }
439
kauditd_thread(void * dummy)440 static int kauditd_thread(void *dummy)
441 {
442 set_freezable();
443 while (!kthread_should_stop()) {
444 struct sk_buff *skb;
445 DECLARE_WAITQUEUE(wait, current);
446
447 flush_hold_queue();
448
449 skb = skb_dequeue(&audit_skb_queue);
450 wake_up(&audit_backlog_wait);
451 if (skb) {
452 if (audit_pid)
453 kauditd_send_skb(skb);
454 else
455 audit_printk_skb(skb);
456 continue;
457 }
458 set_current_state(TASK_INTERRUPTIBLE);
459 add_wait_queue(&kauditd_wait, &wait);
460
461 if (!skb_queue_len(&audit_skb_queue)) {
462 try_to_freeze();
463 schedule();
464 }
465
466 __set_current_state(TASK_RUNNING);
467 remove_wait_queue(&kauditd_wait, &wait);
468 }
469 return 0;
470 }
471
audit_send_list(void * _dest)472 int audit_send_list(void *_dest)
473 {
474 struct audit_netlink_list *dest = _dest;
475 int pid = dest->pid;
476 struct sk_buff *skb;
477
478 /* wait for parent to finish and send an ACK */
479 mutex_lock(&audit_cmd_mutex);
480 mutex_unlock(&audit_cmd_mutex);
481
482 while ((skb = __skb_dequeue(&dest->q)) != NULL)
483 netlink_unicast(audit_sock, skb, pid, 0);
484
485 kfree(dest);
486
487 return 0;
488 }
489
audit_make_reply(int pid,int seq,int type,int done,int multi,const void * payload,int size)490 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
491 int multi, const void *payload, int size)
492 {
493 struct sk_buff *skb;
494 struct nlmsghdr *nlh;
495 void *data;
496 int flags = multi ? NLM_F_MULTI : 0;
497 int t = done ? NLMSG_DONE : type;
498
499 skb = nlmsg_new(size, GFP_KERNEL);
500 if (!skb)
501 return NULL;
502
503 nlh = nlmsg_put(skb, pid, seq, t, size, flags);
504 if (!nlh)
505 goto out_kfree_skb;
506 data = nlmsg_data(nlh);
507 memcpy(data, payload, size);
508 return skb;
509
510 out_kfree_skb:
511 kfree_skb(skb);
512 return NULL;
513 }
514
audit_send_reply_thread(void * arg)515 static int audit_send_reply_thread(void *arg)
516 {
517 struct audit_reply *reply = (struct audit_reply *)arg;
518
519 mutex_lock(&audit_cmd_mutex);
520 mutex_unlock(&audit_cmd_mutex);
521
522 /* Ignore failure. It'll only happen if the sender goes away,
523 because our timeout is set to infinite. */
524 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
525 kfree(reply);
526 return 0;
527 }
528 /**
529 * audit_send_reply - send an audit reply message via netlink
530 * @pid: process id to send reply to
531 * @seq: sequence number
532 * @type: audit message type
533 * @done: done (last) flag
534 * @multi: multi-part message flag
535 * @payload: payload data
536 * @size: payload size
537 *
538 * Allocates an skb, builds the netlink message, and sends it to the pid.
539 * No failure notifications.
540 */
audit_send_reply(int pid,int seq,int type,int done,int multi,const void * payload,int size)541 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
542 const void *payload, int size)
543 {
544 struct sk_buff *skb;
545 struct task_struct *tsk;
546 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
547 GFP_KERNEL);
548
549 if (!reply)
550 return;
551
552 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
553 if (!skb)
554 goto out;
555
556 reply->pid = pid;
557 reply->skb = skb;
558
559 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
560 if (!IS_ERR(tsk))
561 return;
562 kfree_skb(skb);
563 out:
564 kfree(reply);
565 }
566
567 /*
568 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
569 * control messages.
570 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)571 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
572 {
573 int err = 0;
574
575 /* Only support the initial namespaces for now. */
576 if ((current_user_ns() != &init_user_ns) ||
577 (task_active_pid_ns(current) != &init_pid_ns))
578 return -EPERM;
579
580 switch (msg_type) {
581 case AUDIT_LIST:
582 case AUDIT_ADD:
583 case AUDIT_DEL:
584 return -EOPNOTSUPP;
585 case AUDIT_GET:
586 case AUDIT_SET:
587 case AUDIT_LIST_RULES:
588 case AUDIT_ADD_RULE:
589 case AUDIT_DEL_RULE:
590 case AUDIT_SIGNAL_INFO:
591 case AUDIT_TTY_GET:
592 case AUDIT_TTY_SET:
593 case AUDIT_TRIM:
594 case AUDIT_MAKE_EQUIV:
595 if (!capable(CAP_AUDIT_CONTROL))
596 err = -EPERM;
597 break;
598 case AUDIT_USER:
599 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
600 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
601 if (!capable(CAP_AUDIT_WRITE))
602 err = -EPERM;
603 break;
604 default: /* bad msg */
605 err = -EINVAL;
606 }
607
608 return err;
609 }
610
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)611 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
612 {
613 int rc = 0;
614 uid_t uid = from_kuid(&init_user_ns, current_uid());
615
616 if (!audit_enabled) {
617 *ab = NULL;
618 return rc;
619 }
620
621 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
622 if (unlikely(!*ab))
623 return rc;
624 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
625 audit_log_session_info(*ab);
626 audit_log_task_context(*ab);
627
628 return rc;
629 }
630
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)631 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
632 {
633 u32 seq;
634 void *data;
635 struct audit_status *status_get, status_set;
636 int err;
637 struct audit_buffer *ab;
638 u16 msg_type = nlh->nlmsg_type;
639 struct audit_sig_info *sig_data;
640 char *ctx = NULL;
641 u32 len;
642
643 err = audit_netlink_ok(skb, msg_type);
644 if (err)
645 return err;
646
647 /* As soon as there's any sign of userspace auditd,
648 * start kauditd to talk to it */
649 if (!kauditd_task) {
650 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
651 if (IS_ERR(kauditd_task)) {
652 err = PTR_ERR(kauditd_task);
653 kauditd_task = NULL;
654 return err;
655 }
656 }
657 seq = nlh->nlmsg_seq;
658 data = nlmsg_data(nlh);
659
660 switch (msg_type) {
661 case AUDIT_GET:
662 status_set.enabled = audit_enabled;
663 status_set.failure = audit_failure;
664 status_set.pid = audit_pid;
665 status_set.rate_limit = audit_rate_limit;
666 status_set.backlog_limit = audit_backlog_limit;
667 status_set.lost = atomic_read(&audit_lost);
668 status_set.backlog = skb_queue_len(&audit_skb_queue);
669 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
670 &status_set, sizeof(status_set));
671 break;
672 case AUDIT_SET:
673 if (nlh->nlmsg_len < sizeof(struct audit_status))
674 return -EINVAL;
675 status_get = (struct audit_status *)data;
676 if (status_get->mask & AUDIT_STATUS_ENABLED) {
677 err = audit_set_enabled(status_get->enabled);
678 if (err < 0)
679 return err;
680 }
681 if (status_get->mask & AUDIT_STATUS_FAILURE) {
682 err = audit_set_failure(status_get->failure);
683 if (err < 0)
684 return err;
685 }
686 if (status_get->mask & AUDIT_STATUS_PID) {
687 /* NOTE: we are using task_tgid_vnr() below because
688 * the s.pid value is relative to the namespace
689 * of the caller; at present this doesn't matter
690 * much since you can really only run auditd
691 * from the initial pid namespace, but something
692 * to keep in mind if this changes */
693 int new_pid = status_get->pid;
694
695 if (audit_enabled != AUDIT_OFF)
696 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
697 audit_pid = new_pid;
698 audit_nlk_portid = NETLINK_CB(skb).portid;
699 }
700 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
701 err = audit_set_rate_limit(status_get->rate_limit);
702 if (err < 0)
703 return err;
704 }
705 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
706 err = audit_set_backlog_limit(status_get->backlog_limit);
707 break;
708 case AUDIT_USER:
709 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
710 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
711 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
712 return 0;
713
714 err = audit_filter_user(msg_type);
715 if (err == 1) {
716 err = 0;
717 if (msg_type == AUDIT_USER_TTY) {
718 err = tty_audit_push_current();
719 if (err)
720 break;
721 }
722 audit_log_common_recv_msg(&ab, msg_type);
723 if (msg_type != AUDIT_USER_TTY)
724 audit_log_format(ab, " msg='%.1024s'",
725 (char *)data);
726 else {
727 int size;
728
729 audit_log_format(ab, " data=");
730 size = nlmsg_len(nlh);
731 if (size > 0 &&
732 ((unsigned char *)data)[size - 1] == '\0')
733 size--;
734 audit_log_n_untrustedstring(ab, data, size);
735 }
736 audit_set_pid(ab, NETLINK_CB(skb).portid);
737 audit_log_end(ab);
738 }
739 break;
740 case AUDIT_ADD_RULE:
741 case AUDIT_DEL_RULE:
742 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
743 return -EINVAL;
744 if (audit_enabled == AUDIT_LOCKED) {
745 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
746 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
747 audit_log_end(ab);
748 return -EPERM;
749 }
750 /* fallthrough */
751 case AUDIT_LIST_RULES:
752 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
753 seq, data, nlmsg_len(nlh));
754 break;
755 case AUDIT_TRIM:
756 audit_trim_trees();
757 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
758 audit_log_format(ab, " op=trim res=1");
759 audit_log_end(ab);
760 break;
761 case AUDIT_MAKE_EQUIV: {
762 void *bufp = data;
763 u32 sizes[2];
764 size_t msglen = nlmsg_len(nlh);
765 char *old, *new;
766
767 err = -EINVAL;
768 if (msglen < 2 * sizeof(u32))
769 break;
770 memcpy(sizes, bufp, 2 * sizeof(u32));
771 bufp += 2 * sizeof(u32);
772 msglen -= 2 * sizeof(u32);
773 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
774 if (IS_ERR(old)) {
775 err = PTR_ERR(old);
776 break;
777 }
778 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
779 if (IS_ERR(new)) {
780 err = PTR_ERR(new);
781 kfree(old);
782 break;
783 }
784 /* OK, here comes... */
785 err = audit_tag_tree(old, new);
786
787 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
788
789 audit_log_format(ab, " op=make_equiv old=");
790 audit_log_untrustedstring(ab, old);
791 audit_log_format(ab, " new=");
792 audit_log_untrustedstring(ab, new);
793 audit_log_format(ab, " res=%d", !err);
794 audit_log_end(ab);
795 kfree(old);
796 kfree(new);
797 break;
798 }
799 case AUDIT_SIGNAL_INFO:
800 len = 0;
801 if (audit_sig_sid) {
802 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
803 if (err)
804 return err;
805 }
806 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
807 if (!sig_data) {
808 if (audit_sig_sid)
809 security_release_secctx(ctx, len);
810 return -ENOMEM;
811 }
812 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
813 sig_data->pid = audit_sig_pid;
814 if (audit_sig_sid) {
815 memcpy(sig_data->ctx, ctx, len);
816 security_release_secctx(ctx, len);
817 }
818 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
819 0, 0, sig_data, sizeof(*sig_data) + len);
820 kfree(sig_data);
821 break;
822 case AUDIT_TTY_GET: {
823 struct audit_tty_status s;
824 struct task_struct *tsk = current;
825
826 spin_lock(&tsk->sighand->siglock);
827 s.enabled = tsk->signal->audit_tty != 0;
828 s.log_passwd = tsk->signal->audit_tty_log_passwd;
829 spin_unlock(&tsk->sighand->siglock);
830
831 audit_send_reply(NETLINK_CB(skb).portid, seq,
832 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
833 break;
834 }
835 case AUDIT_TTY_SET: {
836 struct audit_tty_status s;
837 struct task_struct *tsk = current;
838
839 memset(&s, 0, sizeof(s));
840 /* guard against past and future API changes */
841 memcpy(&s, data, min(sizeof(s), (size_t)nlh->nlmsg_len));
842 if ((s.enabled != 0 && s.enabled != 1) ||
843 (s.log_passwd != 0 && s.log_passwd != 1))
844 return -EINVAL;
845
846 spin_lock(&tsk->sighand->siglock);
847 tsk->signal->audit_tty = s.enabled;
848 tsk->signal->audit_tty_log_passwd = s.log_passwd;
849 spin_unlock(&tsk->sighand->siglock);
850 break;
851 }
852 default:
853 err = -EINVAL;
854 break;
855 }
856
857 return err < 0 ? err : 0;
858 }
859
860 /*
861 * Get message from skb. Each message is processed by audit_receive_msg.
862 * Malformed skbs with wrong length are discarded silently.
863 */
audit_receive_skb(struct sk_buff * skb)864 static void audit_receive_skb(struct sk_buff *skb)
865 {
866 struct nlmsghdr *nlh;
867 /*
868 * len MUST be signed for nlmsg_next to be able to dec it below 0
869 * if the nlmsg_len was not aligned
870 */
871 int len;
872 int err;
873
874 nlh = nlmsg_hdr(skb);
875 len = skb->len;
876
877 while (nlmsg_ok(nlh, len)) {
878 err = audit_receive_msg(skb, nlh);
879 /* if err or if this message says it wants a response */
880 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
881 netlink_ack(skb, nlh, err);
882
883 nlh = nlmsg_next(nlh, &len);
884 }
885 }
886
887 /* Receive messages from netlink socket. */
audit_receive(struct sk_buff * skb)888 static void audit_receive(struct sk_buff *skb)
889 {
890 mutex_lock(&audit_cmd_mutex);
891 audit_receive_skb(skb);
892 mutex_unlock(&audit_cmd_mutex);
893 }
894
895 /* Initialize audit support at boot time. */
audit_init(void)896 static int __init audit_init(void)
897 {
898 int i;
899 struct netlink_kernel_cfg cfg = {
900 .input = audit_receive,
901 };
902
903 if (audit_initialized == AUDIT_DISABLED)
904 return 0;
905
906 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
907 audit_default ? "enabled" : "disabled");
908 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg);
909 if (!audit_sock)
910 audit_panic("cannot initialize netlink socket");
911 else
912 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
913
914 skb_queue_head_init(&audit_skb_queue);
915 skb_queue_head_init(&audit_skb_hold_queue);
916 audit_initialized = AUDIT_INITIALIZED;
917 audit_enabled = audit_default;
918 audit_ever_enabled |= !!audit_default;
919
920 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
921
922 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
923 INIT_LIST_HEAD(&audit_inode_hash[i]);
924
925 return 0;
926 }
927 __initcall(audit_init);
928
929 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
audit_enable(char * str)930 static int __init audit_enable(char *str)
931 {
932 audit_default = !!simple_strtol(str, NULL, 0);
933 if (!audit_default)
934 audit_initialized = AUDIT_DISABLED;
935
936 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
937
938 if (audit_initialized == AUDIT_INITIALIZED) {
939 audit_enabled = audit_default;
940 audit_ever_enabled |= !!audit_default;
941 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
942 printk(" (after initialization)");
943 } else {
944 printk(" (until reboot)");
945 }
946 printk("\n");
947
948 return 1;
949 }
950
951 __setup("audit=", audit_enable);
952
audit_buffer_free(struct audit_buffer * ab)953 static void audit_buffer_free(struct audit_buffer *ab)
954 {
955 unsigned long flags;
956
957 if (!ab)
958 return;
959
960 if (ab->skb)
961 kfree_skb(ab->skb);
962
963 spin_lock_irqsave(&audit_freelist_lock, flags);
964 if (audit_freelist_count > AUDIT_MAXFREE)
965 kfree(ab);
966 else {
967 audit_freelist_count++;
968 list_add(&ab->list, &audit_freelist);
969 }
970 spin_unlock_irqrestore(&audit_freelist_lock, flags);
971 }
972
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)973 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
974 gfp_t gfp_mask, int type)
975 {
976 unsigned long flags;
977 struct audit_buffer *ab = NULL;
978 struct nlmsghdr *nlh;
979
980 spin_lock_irqsave(&audit_freelist_lock, flags);
981 if (!list_empty(&audit_freelist)) {
982 ab = list_entry(audit_freelist.next,
983 struct audit_buffer, list);
984 list_del(&ab->list);
985 --audit_freelist_count;
986 }
987 spin_unlock_irqrestore(&audit_freelist_lock, flags);
988
989 if (!ab) {
990 ab = kmalloc(sizeof(*ab), gfp_mask);
991 if (!ab)
992 goto err;
993 }
994
995 ab->ctx = ctx;
996 ab->gfp_mask = gfp_mask;
997
998 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
999 if (!ab->skb)
1000 goto err;
1001
1002 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1003 if (!nlh)
1004 goto out_kfree_skb;
1005
1006 return ab;
1007
1008 out_kfree_skb:
1009 kfree_skb(ab->skb);
1010 ab->skb = NULL;
1011 err:
1012 audit_buffer_free(ab);
1013 return NULL;
1014 }
1015
1016 /**
1017 * audit_serial - compute a serial number for the audit record
1018 *
1019 * Compute a serial number for the audit record. Audit records are
1020 * written to user-space as soon as they are generated, so a complete
1021 * audit record may be written in several pieces. The timestamp of the
1022 * record and this serial number are used by the user-space tools to
1023 * determine which pieces belong to the same audit record. The
1024 * (timestamp,serial) tuple is unique for each syscall and is live from
1025 * syscall entry to syscall exit.
1026 *
1027 * NOTE: Another possibility is to store the formatted records off the
1028 * audit context (for those records that have a context), and emit them
1029 * all at syscall exit. However, this could delay the reporting of
1030 * significant errors until syscall exit (or never, if the system
1031 * halts).
1032 */
audit_serial(void)1033 unsigned int audit_serial(void)
1034 {
1035 static DEFINE_SPINLOCK(serial_lock);
1036 static unsigned int serial = 0;
1037
1038 unsigned long flags;
1039 unsigned int ret;
1040
1041 spin_lock_irqsave(&serial_lock, flags);
1042 do {
1043 ret = ++serial;
1044 } while (unlikely(!ret));
1045 spin_unlock_irqrestore(&serial_lock, flags);
1046
1047 return ret;
1048 }
1049
audit_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)1050 static inline void audit_get_stamp(struct audit_context *ctx,
1051 struct timespec *t, unsigned int *serial)
1052 {
1053 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1054 *t = CURRENT_TIME;
1055 *serial = audit_serial();
1056 }
1057 }
1058
1059 /*
1060 * Wait for auditd to drain the queue a little
1061 */
wait_for_auditd(unsigned long sleep_time)1062 static void wait_for_auditd(unsigned long sleep_time)
1063 {
1064 DECLARE_WAITQUEUE(wait, current);
1065 set_current_state(TASK_UNINTERRUPTIBLE);
1066 add_wait_queue(&audit_backlog_wait, &wait);
1067
1068 if (audit_backlog_limit &&
1069 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1070 schedule_timeout(sleep_time);
1071
1072 __set_current_state(TASK_RUNNING);
1073 remove_wait_queue(&audit_backlog_wait, &wait);
1074 }
1075
1076 /* Obtain an audit buffer. This routine does locking to obtain the
1077 * audit buffer, but then no locking is required for calls to
1078 * audit_log_*format. If the tsk is a task that is currently in a
1079 * syscall, then the syscall is marked as auditable and an audit record
1080 * will be written at syscall exit. If there is no associated task, tsk
1081 * should be NULL. */
1082
1083 /**
1084 * audit_log_start - obtain an audit buffer
1085 * @ctx: audit_context (may be NULL)
1086 * @gfp_mask: type of allocation
1087 * @type: audit message type
1088 *
1089 * Returns audit_buffer pointer on success or NULL on error.
1090 *
1091 * Obtain an audit buffer. This routine does locking to obtain the
1092 * audit buffer, but then no locking is required for calls to
1093 * audit_log_*format. If the task (ctx) is a task that is currently in a
1094 * syscall, then the syscall is marked as auditable and an audit record
1095 * will be written at syscall exit. If there is no associated task, then
1096 * task context (ctx) should be NULL.
1097 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1098 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1099 int type)
1100 {
1101 struct audit_buffer *ab = NULL;
1102 struct timespec t;
1103 unsigned int uninitialized_var(serial);
1104 int reserve;
1105 unsigned long timeout_start = jiffies;
1106
1107 if (audit_initialized != AUDIT_INITIALIZED)
1108 return NULL;
1109
1110 if (unlikely(audit_filter_type(type)))
1111 return NULL;
1112
1113 if (gfp_mask & __GFP_WAIT)
1114 reserve = 0;
1115 else
1116 reserve = 5; /* Allow atomic callers to go up to five
1117 entries over the normal backlog limit */
1118
1119 while (audit_backlog_limit
1120 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1121 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1122 unsigned long sleep_time;
1123
1124 sleep_time = timeout_start + audit_backlog_wait_time -
1125 jiffies;
1126 if ((long)sleep_time > 0)
1127 wait_for_auditd(sleep_time);
1128 continue;
1129 }
1130 if (audit_rate_check() && printk_ratelimit())
1131 printk(KERN_WARNING
1132 "audit: audit_backlog=%d > "
1133 "audit_backlog_limit=%d\n",
1134 skb_queue_len(&audit_skb_queue),
1135 audit_backlog_limit);
1136 audit_log_lost("backlog limit exceeded");
1137 audit_backlog_wait_time = audit_backlog_wait_overflow;
1138 wake_up(&audit_backlog_wait);
1139 return NULL;
1140 }
1141
1142 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1143 if (!ab) {
1144 audit_log_lost("out of memory in audit_log_start");
1145 return NULL;
1146 }
1147
1148 audit_get_stamp(ab->ctx, &t, &serial);
1149
1150 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1151 t.tv_sec, t.tv_nsec/1000000, serial);
1152 return ab;
1153 }
1154
1155 /**
1156 * audit_expand - expand skb in the audit buffer
1157 * @ab: audit_buffer
1158 * @extra: space to add at tail of the skb
1159 *
1160 * Returns 0 (no space) on failed expansion, or available space if
1161 * successful.
1162 */
audit_expand(struct audit_buffer * ab,int extra)1163 static inline int audit_expand(struct audit_buffer *ab, int extra)
1164 {
1165 struct sk_buff *skb = ab->skb;
1166 int oldtail = skb_tailroom(skb);
1167 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1168 int newtail = skb_tailroom(skb);
1169
1170 if (ret < 0) {
1171 audit_log_lost("out of memory in audit_expand");
1172 return 0;
1173 }
1174
1175 skb->truesize += newtail - oldtail;
1176 return newtail;
1177 }
1178
1179 /*
1180 * Format an audit message into the audit buffer. If there isn't enough
1181 * room in the audit buffer, more room will be allocated and vsnprint
1182 * will be called a second time. Currently, we assume that a printk
1183 * can't format message larger than 1024 bytes, so we don't either.
1184 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1185 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1186 va_list args)
1187 {
1188 int len, avail;
1189 struct sk_buff *skb;
1190 va_list args2;
1191
1192 if (!ab)
1193 return;
1194
1195 BUG_ON(!ab->skb);
1196 skb = ab->skb;
1197 avail = skb_tailroom(skb);
1198 if (avail == 0) {
1199 avail = audit_expand(ab, AUDIT_BUFSIZ);
1200 if (!avail)
1201 goto out;
1202 }
1203 va_copy(args2, args);
1204 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1205 if (len >= avail) {
1206 /* The printk buffer is 1024 bytes long, so if we get
1207 * here and AUDIT_BUFSIZ is at least 1024, then we can
1208 * log everything that printk could have logged. */
1209 avail = audit_expand(ab,
1210 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1211 if (!avail)
1212 goto out_va_end;
1213 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1214 }
1215 if (len > 0)
1216 skb_put(skb, len);
1217 out_va_end:
1218 va_end(args2);
1219 out:
1220 return;
1221 }
1222
1223 /**
1224 * audit_log_format - format a message into the audit buffer.
1225 * @ab: audit_buffer
1226 * @fmt: format string
1227 * @...: optional parameters matching @fmt string
1228 *
1229 * All the work is done in audit_log_vformat.
1230 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1231 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1232 {
1233 va_list args;
1234
1235 if (!ab)
1236 return;
1237 va_start(args, fmt);
1238 audit_log_vformat(ab, fmt, args);
1239 va_end(args);
1240 }
1241
1242 /**
1243 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1244 * @ab: the audit_buffer
1245 * @buf: buffer to convert to hex
1246 * @len: length of @buf to be converted
1247 *
1248 * No return value; failure to expand is silently ignored.
1249 *
1250 * This function will take the passed buf and convert it into a string of
1251 * ascii hex digits. The new string is placed onto the skb.
1252 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1253 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1254 size_t len)
1255 {
1256 int i, avail, new_len;
1257 unsigned char *ptr;
1258 struct sk_buff *skb;
1259 static const unsigned char *hex = "0123456789ABCDEF";
1260
1261 if (!ab)
1262 return;
1263
1264 BUG_ON(!ab->skb);
1265 skb = ab->skb;
1266 avail = skb_tailroom(skb);
1267 new_len = len<<1;
1268 if (new_len >= avail) {
1269 /* Round the buffer request up to the next multiple */
1270 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1271 avail = audit_expand(ab, new_len);
1272 if (!avail)
1273 return;
1274 }
1275
1276 ptr = skb_tail_pointer(skb);
1277 for (i=0; i<len; i++) {
1278 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1279 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1280 }
1281 *ptr = 0;
1282 skb_put(skb, len << 1); /* new string is twice the old string */
1283 }
1284
1285 /*
1286 * Format a string of no more than slen characters into the audit buffer,
1287 * enclosed in quote marks.
1288 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1289 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1290 size_t slen)
1291 {
1292 int avail, new_len;
1293 unsigned char *ptr;
1294 struct sk_buff *skb;
1295
1296 if (!ab)
1297 return;
1298
1299 BUG_ON(!ab->skb);
1300 skb = ab->skb;
1301 avail = skb_tailroom(skb);
1302 new_len = slen + 3; /* enclosing quotes + null terminator */
1303 if (new_len > avail) {
1304 avail = audit_expand(ab, new_len);
1305 if (!avail)
1306 return;
1307 }
1308 ptr = skb_tail_pointer(skb);
1309 *ptr++ = '"';
1310 memcpy(ptr, string, slen);
1311 ptr += slen;
1312 *ptr++ = '"';
1313 *ptr = 0;
1314 skb_put(skb, slen + 2); /* don't include null terminator */
1315 }
1316
1317 /**
1318 * audit_string_contains_control - does a string need to be logged in hex
1319 * @string: string to be checked
1320 * @len: max length of the string to check
1321 */
audit_string_contains_control(const char * string,size_t len)1322 int audit_string_contains_control(const char *string, size_t len)
1323 {
1324 const unsigned char *p;
1325 for (p = string; p < (const unsigned char *)string + len; p++) {
1326 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1327 return 1;
1328 }
1329 return 0;
1330 }
1331
1332 /**
1333 * audit_log_n_untrustedstring - log a string that may contain random characters
1334 * @ab: audit_buffer
1335 * @len: length of string (not including trailing null)
1336 * @string: string to be logged
1337 *
1338 * This code will escape a string that is passed to it if the string
1339 * contains a control character, unprintable character, double quote mark,
1340 * or a space. Unescaped strings will start and end with a double quote mark.
1341 * Strings that are escaped are printed in hex (2 digits per char).
1342 *
1343 * The caller specifies the number of characters in the string to log, which may
1344 * or may not be the entire string.
1345 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1346 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1347 size_t len)
1348 {
1349 if (audit_string_contains_control(string, len))
1350 audit_log_n_hex(ab, string, len);
1351 else
1352 audit_log_n_string(ab, string, len);
1353 }
1354
1355 /**
1356 * audit_log_untrustedstring - log a string that may contain random characters
1357 * @ab: audit_buffer
1358 * @string: string to be logged
1359 *
1360 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1361 * determine string length.
1362 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1363 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1364 {
1365 audit_log_n_untrustedstring(ab, string, strlen(string));
1366 }
1367
1368 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1369 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1370 const struct path *path)
1371 {
1372 char *p, *pathname;
1373
1374 if (prefix)
1375 audit_log_format(ab, "%s", prefix);
1376
1377 /* We will allow 11 spaces for ' (deleted)' to be appended */
1378 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1379 if (!pathname) {
1380 audit_log_string(ab, "<no_memory>");
1381 return;
1382 }
1383 p = d_path(path, pathname, PATH_MAX+11);
1384 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1385 /* FIXME: can we save some information here? */
1386 audit_log_string(ab, "<too_long>");
1387 } else
1388 audit_log_untrustedstring(ab, p);
1389 kfree(pathname);
1390 }
1391
audit_log_session_info(struct audit_buffer * ab)1392 void audit_log_session_info(struct audit_buffer *ab)
1393 {
1394 u32 sessionid = audit_get_sessionid(current);
1395 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1396
1397 audit_log_format(ab, " auid=%u ses=%u\n", auid, sessionid);
1398 }
1399
audit_log_key(struct audit_buffer * ab,char * key)1400 void audit_log_key(struct audit_buffer *ab, char *key)
1401 {
1402 audit_log_format(ab, " key=");
1403 if (key)
1404 audit_log_untrustedstring(ab, key);
1405 else
1406 audit_log_format(ab, "(null)");
1407 }
1408
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1409 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1410 {
1411 int i;
1412
1413 audit_log_format(ab, " %s=", prefix);
1414 CAP_FOR_EACH_U32(i) {
1415 audit_log_format(ab, "%08x",
1416 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1417 }
1418 }
1419
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1420 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1421 {
1422 kernel_cap_t *perm = &name->fcap.permitted;
1423 kernel_cap_t *inh = &name->fcap.inheritable;
1424 int log = 0;
1425
1426 if (!cap_isclear(*perm)) {
1427 audit_log_cap(ab, "cap_fp", perm);
1428 log = 1;
1429 }
1430 if (!cap_isclear(*inh)) {
1431 audit_log_cap(ab, "cap_fi", inh);
1432 log = 1;
1433 }
1434
1435 if (log)
1436 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1437 name->fcap.fE, name->fcap_ver);
1438 }
1439
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1440 static inline int audit_copy_fcaps(struct audit_names *name,
1441 const struct dentry *dentry)
1442 {
1443 struct cpu_vfs_cap_data caps;
1444 int rc;
1445
1446 if (!dentry)
1447 return 0;
1448
1449 rc = get_vfs_caps_from_disk(dentry, &caps);
1450 if (rc)
1451 return rc;
1452
1453 name->fcap.permitted = caps.permitted;
1454 name->fcap.inheritable = caps.inheritable;
1455 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1456 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1457 VFS_CAP_REVISION_SHIFT;
1458
1459 return 0;
1460 }
1461
1462 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,const struct inode * inode)1463 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1464 const struct inode *inode)
1465 {
1466 name->ino = inode->i_ino;
1467 name->dev = inode->i_sb->s_dev;
1468 name->mode = inode->i_mode;
1469 name->uid = inode->i_uid;
1470 name->gid = inode->i_gid;
1471 name->rdev = inode->i_rdev;
1472 security_inode_getsecid(inode, &name->osid);
1473 audit_copy_fcaps(name, dentry);
1474 }
1475
1476 /**
1477 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1478 * @context: audit_context for the task
1479 * @n: audit_names structure with reportable details
1480 * @path: optional path to report instead of audit_names->name
1481 * @record_num: record number to report when handling a list of names
1482 * @call_panic: optional pointer to int that will be updated if secid fails
1483 */
audit_log_name(struct audit_context * context,struct audit_names * n,struct path * path,int record_num,int * call_panic)1484 void audit_log_name(struct audit_context *context, struct audit_names *n,
1485 struct path *path, int record_num, int *call_panic)
1486 {
1487 struct audit_buffer *ab;
1488 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1489 if (!ab)
1490 return;
1491
1492 audit_log_format(ab, "item=%d", record_num);
1493
1494 if (path)
1495 audit_log_d_path(ab, " name=", path);
1496 else if (n->name) {
1497 switch (n->name_len) {
1498 case AUDIT_NAME_FULL:
1499 /* log the full path */
1500 audit_log_format(ab, " name=");
1501 audit_log_untrustedstring(ab, n->name->name);
1502 break;
1503 case 0:
1504 /* name was specified as a relative path and the
1505 * directory component is the cwd */
1506 audit_log_d_path(ab, " name=", &context->pwd);
1507 break;
1508 default:
1509 /* log the name's directory component */
1510 audit_log_format(ab, " name=");
1511 audit_log_n_untrustedstring(ab, n->name->name,
1512 n->name_len);
1513 }
1514 } else
1515 audit_log_format(ab, " name=(null)");
1516
1517 if (n->ino != (unsigned long)-1) {
1518 audit_log_format(ab, " inode=%lu"
1519 " dev=%02x:%02x mode=%#ho"
1520 " ouid=%u ogid=%u rdev=%02x:%02x",
1521 n->ino,
1522 MAJOR(n->dev),
1523 MINOR(n->dev),
1524 n->mode,
1525 from_kuid(&init_user_ns, n->uid),
1526 from_kgid(&init_user_ns, n->gid),
1527 MAJOR(n->rdev),
1528 MINOR(n->rdev));
1529 }
1530 if (n->osid != 0) {
1531 char *ctx = NULL;
1532 u32 len;
1533 if (security_secid_to_secctx(
1534 n->osid, &ctx, &len)) {
1535 audit_log_format(ab, " osid=%u", n->osid);
1536 if (call_panic)
1537 *call_panic = 2;
1538 } else {
1539 audit_log_format(ab, " obj=%s", ctx);
1540 security_release_secctx(ctx, len);
1541 }
1542 }
1543
1544 audit_log_fcaps(ab, n);
1545 audit_log_end(ab);
1546 }
1547
audit_log_task_context(struct audit_buffer * ab)1548 int audit_log_task_context(struct audit_buffer *ab)
1549 {
1550 char *ctx = NULL;
1551 unsigned len;
1552 int error;
1553 u32 sid;
1554
1555 security_task_getsecid(current, &sid);
1556 if (!sid)
1557 return 0;
1558
1559 error = security_secid_to_secctx(sid, &ctx, &len);
1560 if (error) {
1561 if (error != -EINVAL)
1562 goto error_path;
1563 return 0;
1564 }
1565
1566 audit_log_format(ab, " subj=%s", ctx);
1567 security_release_secctx(ctx, len);
1568 return 0;
1569
1570 error_path:
1571 audit_panic("error in audit_log_task_context");
1572 return error;
1573 }
1574 EXPORT_SYMBOL(audit_log_task_context);
1575
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1576 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1577 {
1578 const struct cred *cred;
1579 char name[sizeof(tsk->comm)];
1580 struct mm_struct *mm = tsk->mm;
1581 char *tty;
1582
1583 if (!ab)
1584 return;
1585
1586 /* tsk == current */
1587 cred = current_cred();
1588
1589 spin_lock_irq(&tsk->sighand->siglock);
1590 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1591 tty = tsk->signal->tty->name;
1592 else
1593 tty = "(none)";
1594 spin_unlock_irq(&tsk->sighand->siglock);
1595
1596 audit_log_format(ab,
1597 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1598 " euid=%u suid=%u fsuid=%u"
1599 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1600 sys_getppid(),
1601 task_tgid_nr(tsk),
1602 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1603 from_kuid(&init_user_ns, cred->uid),
1604 from_kgid(&init_user_ns, cred->gid),
1605 from_kuid(&init_user_ns, cred->euid),
1606 from_kuid(&init_user_ns, cred->suid),
1607 from_kuid(&init_user_ns, cred->fsuid),
1608 from_kgid(&init_user_ns, cred->egid),
1609 from_kgid(&init_user_ns, cred->sgid),
1610 from_kgid(&init_user_ns, cred->fsgid),
1611 audit_get_sessionid(tsk), tty);
1612
1613 get_task_comm(name, tsk);
1614 audit_log_format(ab, " comm=");
1615 audit_log_untrustedstring(ab, name);
1616
1617 if (mm) {
1618 down_read(&mm->mmap_sem);
1619 if (mm->exe_file)
1620 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1621 up_read(&mm->mmap_sem);
1622 }
1623 audit_log_task_context(ab);
1624 }
1625 EXPORT_SYMBOL(audit_log_task_info);
1626
1627 /**
1628 * audit_log_link_denied - report a link restriction denial
1629 * @operation: specific link opreation
1630 * @link: the path that triggered the restriction
1631 */
audit_log_link_denied(const char * operation,struct path * link)1632 void audit_log_link_denied(const char *operation, struct path *link)
1633 {
1634 struct audit_buffer *ab;
1635 struct audit_names *name;
1636
1637 name = kzalloc(sizeof(*name), GFP_NOFS);
1638 if (!name)
1639 return;
1640
1641 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1642 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1643 AUDIT_ANOM_LINK);
1644 if (!ab)
1645 goto out;
1646 audit_log_format(ab, "op=%s", operation);
1647 audit_log_task_info(ab, current);
1648 audit_log_format(ab, " res=0");
1649 audit_log_end(ab);
1650
1651 /* Generate AUDIT_PATH record with object. */
1652 name->type = AUDIT_TYPE_NORMAL;
1653 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1654 audit_log_name(current->audit_context, name, link, 0, NULL);
1655 out:
1656 kfree(name);
1657 }
1658
1659 /**
1660 * audit_log_end - end one audit record
1661 * @ab: the audit_buffer
1662 *
1663 * The netlink_* functions cannot be called inside an irq context, so
1664 * the audit buffer is placed on a queue and a tasklet is scheduled to
1665 * remove them from the queue outside the irq context. May be called in
1666 * any context.
1667 */
audit_log_end(struct audit_buffer * ab)1668 void audit_log_end(struct audit_buffer *ab)
1669 {
1670 if (!ab)
1671 return;
1672 if (!audit_rate_check()) {
1673 audit_log_lost("rate limit exceeded");
1674 } else {
1675 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1676 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1677
1678 if (audit_pid) {
1679 skb_queue_tail(&audit_skb_queue, ab->skb);
1680 wake_up_interruptible(&kauditd_wait);
1681 } else {
1682 audit_printk_skb(ab->skb);
1683 }
1684 ab->skb = NULL;
1685 }
1686 audit_buffer_free(ab);
1687 }
1688
1689 /**
1690 * audit_log - Log an audit record
1691 * @ctx: audit context
1692 * @gfp_mask: type of allocation
1693 * @type: audit message type
1694 * @fmt: format string to use
1695 * @...: variable parameters matching the format string
1696 *
1697 * This is a convenience function that calls audit_log_start,
1698 * audit_log_vformat, and audit_log_end. It may be called
1699 * in any context.
1700 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)1701 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1702 const char *fmt, ...)
1703 {
1704 struct audit_buffer *ab;
1705 va_list args;
1706
1707 ab = audit_log_start(ctx, gfp_mask, type);
1708 if (ab) {
1709 va_start(args, fmt);
1710 audit_log_vformat(ab, fmt, args);
1711 va_end(args);
1712 audit_log_end(ab);
1713 }
1714 }
1715
1716 #ifdef CONFIG_SECURITY
1717 /**
1718 * audit_log_secctx - Converts and logs SELinux context
1719 * @ab: audit_buffer
1720 * @secid: security number
1721 *
1722 * This is a helper function that calls security_secid_to_secctx to convert
1723 * secid to secctx and then adds the (converted) SELinux context to the audit
1724 * log by calling audit_log_format, thus also preventing leak of internal secid
1725 * to userspace. If secid cannot be converted audit_panic is called.
1726 */
audit_log_secctx(struct audit_buffer * ab,u32 secid)1727 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1728 {
1729 u32 len;
1730 char *secctx;
1731
1732 if (security_secid_to_secctx(secid, &secctx, &len)) {
1733 audit_panic("Cannot convert secid to context");
1734 } else {
1735 audit_log_format(ab, " obj=%s", secctx);
1736 security_release_secctx(secctx, len);
1737 }
1738 }
1739 EXPORT_SYMBOL(audit_log_secctx);
1740 #endif
1741
1742 EXPORT_SYMBOL(audit_log_start);
1743 EXPORT_SYMBOL(audit_log_end);
1744 EXPORT_SYMBOL(audit_log_format);
1745 EXPORT_SYMBOL(audit_log);
1746