• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63 
64 #include <linux/atomic.h>
65 
66 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
67 #define CSS_DEACT_BIAS		INT_MIN
68 
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74  * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75  * release_agent_path and so on.  Modifying requires both cgroup_mutex and
76  * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
77  * break the following locking order cycle.
78  *
79  *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80  *  B. namespace_sem -> cgroup_mutex
81  *
82  * B happens only through cgroup_show_options() and using cgroup_root_mutex
83  * breaks it.
84  */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for task_subsys_state_check() */
88 #else
89 static DEFINE_MUTEX(cgroup_mutex);
90 #endif
91 
92 static DEFINE_MUTEX(cgroup_root_mutex);
93 
94 /*
95  * Generate an array of cgroup subsystem pointers. At boot time, this is
96  * populated with the built in subsystems, and modular subsystems are
97  * registered after that. The mutable section of this array is protected by
98  * cgroup_mutex.
99  */
100 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
101 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
102 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
103 #include <linux/cgroup_subsys.h>
104 };
105 
106 /*
107  * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
108  * subsystems that are otherwise unattached - it never has more than a
109  * single cgroup, and all tasks are part of that cgroup.
110  */
111 static struct cgroupfs_root rootnode;
112 
113 /*
114  * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115  */
116 struct cfent {
117 	struct list_head		node;
118 	struct dentry			*dentry;
119 	struct cftype			*type;
120 
121 	/* file xattrs */
122 	struct simple_xattrs		xattrs;
123 };
124 
125 /*
126  * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127  * cgroup_subsys->use_id != 0.
128  */
129 #define CSS_ID_MAX	(65535)
130 struct css_id {
131 	/*
132 	 * The css to which this ID points. This pointer is set to valid value
133 	 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 	 * This pointer is expected to be RCU-safe because destroy()
135 	 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 	 * should be used for avoiding race.
137 	 */
138 	struct cgroup_subsys_state __rcu *css;
139 	/*
140 	 * ID of this css.
141 	 */
142 	unsigned short id;
143 	/*
144 	 * Depth in hierarchy which this ID belongs to.
145 	 */
146 	unsigned short depth;
147 	/*
148 	 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 	 */
150 	struct rcu_head rcu_head;
151 	/*
152 	 * Hierarchy of CSS ID belongs to.
153 	 */
154 	unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156 
157 /*
158  * cgroup_event represents events which userspace want to receive.
159  */
160 struct cgroup_event {
161 	/*
162 	 * Cgroup which the event belongs to.
163 	 */
164 	struct cgroup *cgrp;
165 	/*
166 	 * Control file which the event associated.
167 	 */
168 	struct cftype *cft;
169 	/*
170 	 * eventfd to signal userspace about the event.
171 	 */
172 	struct eventfd_ctx *eventfd;
173 	/*
174 	 * Each of these stored in a list by the cgroup.
175 	 */
176 	struct list_head list;
177 	/*
178 	 * All fields below needed to unregister event when
179 	 * userspace closes eventfd.
180 	 */
181 	poll_table pt;
182 	wait_queue_head_t *wqh;
183 	wait_queue_t wait;
184 	struct work_struct remove;
185 };
186 
187 /* The list of hierarchy roots */
188 
189 static LIST_HEAD(roots);
190 static int root_count;
191 
192 static DEFINE_IDA(hierarchy_ida);
193 static int next_hierarchy_id;
194 static DEFINE_SPINLOCK(hierarchy_id_lock);
195 
196 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197 #define dummytop (&rootnode.top_cgroup)
198 
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
200 
201 /* This flag indicates whether tasks in the fork and exit paths should
202  * check for fork/exit handlers to call. This avoids us having to do
203  * extra work in the fork/exit path if none of the subsystems need to
204  * be called.
205  */
206 static int need_forkexit_callback __read_mostly;
207 
208 static int cgroup_destroy_locked(struct cgroup *cgrp);
209 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
210 			      struct cftype cfts[], bool is_add);
211 
css_unbias_refcnt(int refcnt)212 static int css_unbias_refcnt(int refcnt)
213 {
214 	return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
215 }
216 
217 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
css_refcnt(struct cgroup_subsys_state * css)218 static int css_refcnt(struct cgroup_subsys_state *css)
219 {
220 	int v = atomic_read(&css->refcnt);
221 
222 	return css_unbias_refcnt(v);
223 }
224 
225 /* convenient tests for these bits */
cgroup_is_removed(const struct cgroup * cgrp)226 inline int cgroup_is_removed(const struct cgroup *cgrp)
227 {
228 	return test_bit(CGRP_REMOVED, &cgrp->flags);
229 }
230 
231 /**
232  * cgroup_is_descendant - test ancestry
233  * @cgrp: the cgroup to be tested
234  * @ancestor: possible ancestor of @cgrp
235  *
236  * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
237  * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
238  * and @ancestor are accessible.
239  */
cgroup_is_descendant(struct cgroup * cgrp,struct cgroup * ancestor)240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241 {
242 	while (cgrp) {
243 		if (cgrp == ancestor)
244 			return true;
245 		cgrp = cgrp->parent;
246 	}
247 	return false;
248 }
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250 
cgroup_is_releasable(const struct cgroup * cgrp)251 static int cgroup_is_releasable(const struct cgroup *cgrp)
252 {
253 	const int bits =
254 		(1 << CGRP_RELEASABLE) |
255 		(1 << CGRP_NOTIFY_ON_RELEASE);
256 	return (cgrp->flags & bits) == bits;
257 }
258 
notify_on_release(const struct cgroup * cgrp)259 static int notify_on_release(const struct cgroup *cgrp)
260 {
261 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 }
263 
264 /*
265  * for_each_subsys() allows you to iterate on each subsystem attached to
266  * an active hierarchy
267  */
268 #define for_each_subsys(_root, _ss) \
269 list_for_each_entry(_ss, &_root->subsys_list, sibling)
270 
271 /* for_each_active_root() allows you to iterate across the active hierarchies */
272 #define for_each_active_root(_root) \
273 list_for_each_entry(_root, &roots, root_list)
274 
__d_cgrp(struct dentry * dentry)275 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
276 {
277 	return dentry->d_fsdata;
278 }
279 
__d_cfe(struct dentry * dentry)280 static inline struct cfent *__d_cfe(struct dentry *dentry)
281 {
282 	return dentry->d_fsdata;
283 }
284 
__d_cft(struct dentry * dentry)285 static inline struct cftype *__d_cft(struct dentry *dentry)
286 {
287 	return __d_cfe(dentry)->type;
288 }
289 
290 /**
291  * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
292  * @cgrp: the cgroup to be checked for liveness
293  *
294  * On success, returns true; the mutex should be later unlocked.  On
295  * failure returns false with no lock held.
296  */
cgroup_lock_live_group(struct cgroup * cgrp)297 static bool cgroup_lock_live_group(struct cgroup *cgrp)
298 {
299 	mutex_lock(&cgroup_mutex);
300 	if (cgroup_is_removed(cgrp)) {
301 		mutex_unlock(&cgroup_mutex);
302 		return false;
303 	}
304 	return true;
305 }
306 
307 /* the list of cgroups eligible for automatic release. Protected by
308  * release_list_lock */
309 static LIST_HEAD(release_list);
310 static DEFINE_RAW_SPINLOCK(release_list_lock);
311 static void cgroup_release_agent(struct work_struct *work);
312 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
313 static void check_for_release(struct cgroup *cgrp);
314 
315 /* Link structure for associating css_set objects with cgroups */
316 struct cg_cgroup_link {
317 	/*
318 	 * List running through cg_cgroup_links associated with a
319 	 * cgroup, anchored on cgroup->css_sets
320 	 */
321 	struct list_head cgrp_link_list;
322 	struct cgroup *cgrp;
323 	/*
324 	 * List running through cg_cgroup_links pointing at a
325 	 * single css_set object, anchored on css_set->cg_links
326 	 */
327 	struct list_head cg_link_list;
328 	struct css_set *cg;
329 };
330 
331 /* The default css_set - used by init and its children prior to any
332  * hierarchies being mounted. It contains a pointer to the root state
333  * for each subsystem. Also used to anchor the list of css_sets. Not
334  * reference-counted, to improve performance when child cgroups
335  * haven't been created.
336  */
337 
338 static struct css_set init_css_set;
339 static struct cg_cgroup_link init_css_set_link;
340 
341 static int cgroup_init_idr(struct cgroup_subsys *ss,
342 			   struct cgroup_subsys_state *css);
343 
344 /* css_set_lock protects the list of css_set objects, and the
345  * chain of tasks off each css_set.  Nests outside task->alloc_lock
346  * due to cgroup_iter_start() */
347 static DEFINE_RWLOCK(css_set_lock);
348 static int css_set_count;
349 
350 /*
351  * hash table for cgroup groups. This improves the performance to find
352  * an existing css_set. This hash doesn't (currently) take into
353  * account cgroups in empty hierarchies.
354  */
355 #define CSS_SET_HASH_BITS	7
356 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
357 
css_set_hash(struct cgroup_subsys_state * css[])358 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
359 {
360 	int i;
361 	unsigned long key = 0UL;
362 
363 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
364 		key += (unsigned long)css[i];
365 	key = (key >> 16) ^ key;
366 
367 	return key;
368 }
369 
370 /* We don't maintain the lists running through each css_set to its
371  * task until after the first call to cgroup_iter_start(). This
372  * reduces the fork()/exit() overhead for people who have cgroups
373  * compiled into their kernel but not actually in use */
374 static int use_task_css_set_links __read_mostly;
375 
__put_css_set(struct css_set * cg,int taskexit)376 static void __put_css_set(struct css_set *cg, int taskexit)
377 {
378 	struct cg_cgroup_link *link;
379 	struct cg_cgroup_link *saved_link;
380 	/*
381 	 * Ensure that the refcount doesn't hit zero while any readers
382 	 * can see it. Similar to atomic_dec_and_lock(), but for an
383 	 * rwlock
384 	 */
385 	if (atomic_add_unless(&cg->refcount, -1, 1))
386 		return;
387 	write_lock(&css_set_lock);
388 	if (!atomic_dec_and_test(&cg->refcount)) {
389 		write_unlock(&css_set_lock);
390 		return;
391 	}
392 
393 	/* This css_set is dead. unlink it and release cgroup refcounts */
394 	hash_del(&cg->hlist);
395 	css_set_count--;
396 
397 	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
398 				 cg_link_list) {
399 		struct cgroup *cgrp = link->cgrp;
400 		list_del(&link->cg_link_list);
401 		list_del(&link->cgrp_link_list);
402 
403 		/*
404 		 * We may not be holding cgroup_mutex, and if cgrp->count is
405 		 * dropped to 0 the cgroup can be destroyed at any time, hence
406 		 * rcu_read_lock is used to keep it alive.
407 		 */
408 		rcu_read_lock();
409 		if (atomic_dec_and_test(&cgrp->count) &&
410 		    notify_on_release(cgrp)) {
411 			if (taskexit)
412 				set_bit(CGRP_RELEASABLE, &cgrp->flags);
413 			check_for_release(cgrp);
414 		}
415 		rcu_read_unlock();
416 
417 		kfree(link);
418 	}
419 
420 	write_unlock(&css_set_lock);
421 	kfree_rcu(cg, rcu_head);
422 }
423 
424 /*
425  * refcounted get/put for css_set objects
426  */
get_css_set(struct css_set * cg)427 static inline void get_css_set(struct css_set *cg)
428 {
429 	atomic_inc(&cg->refcount);
430 }
431 
put_css_set(struct css_set * cg)432 static inline void put_css_set(struct css_set *cg)
433 {
434 	__put_css_set(cg, 0);
435 }
436 
put_css_set_taskexit(struct css_set * cg)437 static inline void put_css_set_taskexit(struct css_set *cg)
438 {
439 	__put_css_set(cg, 1);
440 }
441 
442 /*
443  * compare_css_sets - helper function for find_existing_css_set().
444  * @cg: candidate css_set being tested
445  * @old_cg: existing css_set for a task
446  * @new_cgrp: cgroup that's being entered by the task
447  * @template: desired set of css pointers in css_set (pre-calculated)
448  *
449  * Returns true if "cg" matches "old_cg" except for the hierarchy
450  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
451  */
compare_css_sets(struct css_set * cg,struct css_set * old_cg,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])452 static bool compare_css_sets(struct css_set *cg,
453 			     struct css_set *old_cg,
454 			     struct cgroup *new_cgrp,
455 			     struct cgroup_subsys_state *template[])
456 {
457 	struct list_head *l1, *l2;
458 
459 	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
460 		/* Not all subsystems matched */
461 		return false;
462 	}
463 
464 	/*
465 	 * Compare cgroup pointers in order to distinguish between
466 	 * different cgroups in heirarchies with no subsystems. We
467 	 * could get by with just this check alone (and skip the
468 	 * memcmp above) but on most setups the memcmp check will
469 	 * avoid the need for this more expensive check on almost all
470 	 * candidates.
471 	 */
472 
473 	l1 = &cg->cg_links;
474 	l2 = &old_cg->cg_links;
475 	while (1) {
476 		struct cg_cgroup_link *cgl1, *cgl2;
477 		struct cgroup *cg1, *cg2;
478 
479 		l1 = l1->next;
480 		l2 = l2->next;
481 		/* See if we reached the end - both lists are equal length. */
482 		if (l1 == &cg->cg_links) {
483 			BUG_ON(l2 != &old_cg->cg_links);
484 			break;
485 		} else {
486 			BUG_ON(l2 == &old_cg->cg_links);
487 		}
488 		/* Locate the cgroups associated with these links. */
489 		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
490 		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
491 		cg1 = cgl1->cgrp;
492 		cg2 = cgl2->cgrp;
493 		/* Hierarchies should be linked in the same order. */
494 		BUG_ON(cg1->root != cg2->root);
495 
496 		/*
497 		 * If this hierarchy is the hierarchy of the cgroup
498 		 * that's changing, then we need to check that this
499 		 * css_set points to the new cgroup; if it's any other
500 		 * hierarchy, then this css_set should point to the
501 		 * same cgroup as the old css_set.
502 		 */
503 		if (cg1->root == new_cgrp->root) {
504 			if (cg1 != new_cgrp)
505 				return false;
506 		} else {
507 			if (cg1 != cg2)
508 				return false;
509 		}
510 	}
511 	return true;
512 }
513 
514 /*
515  * find_existing_css_set() is a helper for
516  * find_css_set(), and checks to see whether an existing
517  * css_set is suitable.
518  *
519  * oldcg: the cgroup group that we're using before the cgroup
520  * transition
521  *
522  * cgrp: the cgroup that we're moving into
523  *
524  * template: location in which to build the desired set of subsystem
525  * state objects for the new cgroup group
526  */
find_existing_css_set(struct css_set * oldcg,struct cgroup * cgrp,struct cgroup_subsys_state * template[])527 static struct css_set *find_existing_css_set(
528 	struct css_set *oldcg,
529 	struct cgroup *cgrp,
530 	struct cgroup_subsys_state *template[])
531 {
532 	int i;
533 	struct cgroupfs_root *root = cgrp->root;
534 	struct css_set *cg;
535 	unsigned long key;
536 
537 	/*
538 	 * Build the set of subsystem state objects that we want to see in the
539 	 * new css_set. while subsystems can change globally, the entries here
540 	 * won't change, so no need for locking.
541 	 */
542 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
543 		if (root->subsys_mask & (1UL << i)) {
544 			/* Subsystem is in this hierarchy. So we want
545 			 * the subsystem state from the new
546 			 * cgroup */
547 			template[i] = cgrp->subsys[i];
548 		} else {
549 			/* Subsystem is not in this hierarchy, so we
550 			 * don't want to change the subsystem state */
551 			template[i] = oldcg->subsys[i];
552 		}
553 	}
554 
555 	key = css_set_hash(template);
556 	hash_for_each_possible(css_set_table, cg, hlist, key) {
557 		if (!compare_css_sets(cg, oldcg, cgrp, template))
558 			continue;
559 
560 		/* This css_set matches what we need */
561 		return cg;
562 	}
563 
564 	/* No existing cgroup group matched */
565 	return NULL;
566 }
567 
free_cg_links(struct list_head * tmp)568 static void free_cg_links(struct list_head *tmp)
569 {
570 	struct cg_cgroup_link *link;
571 	struct cg_cgroup_link *saved_link;
572 
573 	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
574 		list_del(&link->cgrp_link_list);
575 		kfree(link);
576 	}
577 }
578 
579 /*
580  * allocate_cg_links() allocates "count" cg_cgroup_link structures
581  * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
582  * success or a negative error
583  */
allocate_cg_links(int count,struct list_head * tmp)584 static int allocate_cg_links(int count, struct list_head *tmp)
585 {
586 	struct cg_cgroup_link *link;
587 	int i;
588 	INIT_LIST_HEAD(tmp);
589 	for (i = 0; i < count; i++) {
590 		link = kmalloc(sizeof(*link), GFP_KERNEL);
591 		if (!link) {
592 			free_cg_links(tmp);
593 			return -ENOMEM;
594 		}
595 		list_add(&link->cgrp_link_list, tmp);
596 	}
597 	return 0;
598 }
599 
600 /**
601  * link_css_set - a helper function to link a css_set to a cgroup
602  * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
603  * @cg: the css_set to be linked
604  * @cgrp: the destination cgroup
605  */
link_css_set(struct list_head * tmp_cg_links,struct css_set * cg,struct cgroup * cgrp)606 static void link_css_set(struct list_head *tmp_cg_links,
607 			 struct css_set *cg, struct cgroup *cgrp)
608 {
609 	struct cg_cgroup_link *link;
610 
611 	BUG_ON(list_empty(tmp_cg_links));
612 	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
613 				cgrp_link_list);
614 	link->cg = cg;
615 	link->cgrp = cgrp;
616 	atomic_inc(&cgrp->count);
617 	list_move(&link->cgrp_link_list, &cgrp->css_sets);
618 	/*
619 	 * Always add links to the tail of the list so that the list
620 	 * is sorted by order of hierarchy creation
621 	 */
622 	list_add_tail(&link->cg_link_list, &cg->cg_links);
623 }
624 
625 /*
626  * find_css_set() takes an existing cgroup group and a
627  * cgroup object, and returns a css_set object that's
628  * equivalent to the old group, but with the given cgroup
629  * substituted into the appropriate hierarchy. Must be called with
630  * cgroup_mutex held
631  */
find_css_set(struct css_set * oldcg,struct cgroup * cgrp)632 static struct css_set *find_css_set(
633 	struct css_set *oldcg, struct cgroup *cgrp)
634 {
635 	struct css_set *res;
636 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
637 
638 	struct list_head tmp_cg_links;
639 
640 	struct cg_cgroup_link *link;
641 	unsigned long key;
642 
643 	/* First see if we already have a cgroup group that matches
644 	 * the desired set */
645 	read_lock(&css_set_lock);
646 	res = find_existing_css_set(oldcg, cgrp, template);
647 	if (res)
648 		get_css_set(res);
649 	read_unlock(&css_set_lock);
650 
651 	if (res)
652 		return res;
653 
654 	res = kmalloc(sizeof(*res), GFP_KERNEL);
655 	if (!res)
656 		return NULL;
657 
658 	/* Allocate all the cg_cgroup_link objects that we'll need */
659 	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
660 		kfree(res);
661 		return NULL;
662 	}
663 
664 	atomic_set(&res->refcount, 1);
665 	INIT_LIST_HEAD(&res->cg_links);
666 	INIT_LIST_HEAD(&res->tasks);
667 	INIT_HLIST_NODE(&res->hlist);
668 
669 	/* Copy the set of subsystem state objects generated in
670 	 * find_existing_css_set() */
671 	memcpy(res->subsys, template, sizeof(res->subsys));
672 
673 	write_lock(&css_set_lock);
674 	/* Add reference counts and links from the new css_set. */
675 	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
676 		struct cgroup *c = link->cgrp;
677 		if (c->root == cgrp->root)
678 			c = cgrp;
679 		link_css_set(&tmp_cg_links, res, c);
680 	}
681 
682 	BUG_ON(!list_empty(&tmp_cg_links));
683 
684 	css_set_count++;
685 
686 	/* Add this cgroup group to the hash table */
687 	key = css_set_hash(res->subsys);
688 	hash_add(css_set_table, &res->hlist, key);
689 
690 	write_unlock(&css_set_lock);
691 
692 	return res;
693 }
694 
695 /*
696  * Return the cgroup for "task" from the given hierarchy. Must be
697  * called with cgroup_mutex held.
698  */
task_cgroup_from_root(struct task_struct * task,struct cgroupfs_root * root)699 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
700 					    struct cgroupfs_root *root)
701 {
702 	struct css_set *css;
703 	struct cgroup *res = NULL;
704 
705 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
706 	read_lock(&css_set_lock);
707 	/*
708 	 * No need to lock the task - since we hold cgroup_mutex the
709 	 * task can't change groups, so the only thing that can happen
710 	 * is that it exits and its css is set back to init_css_set.
711 	 */
712 	css = task->cgroups;
713 	if (css == &init_css_set) {
714 		res = &root->top_cgroup;
715 	} else {
716 		struct cg_cgroup_link *link;
717 		list_for_each_entry(link, &css->cg_links, cg_link_list) {
718 			struct cgroup *c = link->cgrp;
719 			if (c->root == root) {
720 				res = c;
721 				break;
722 			}
723 		}
724 	}
725 	read_unlock(&css_set_lock);
726 	BUG_ON(!res);
727 	return res;
728 }
729 
730 /*
731  * There is one global cgroup mutex. We also require taking
732  * task_lock() when dereferencing a task's cgroup subsys pointers.
733  * See "The task_lock() exception", at the end of this comment.
734  *
735  * A task must hold cgroup_mutex to modify cgroups.
736  *
737  * Any task can increment and decrement the count field without lock.
738  * So in general, code holding cgroup_mutex can't rely on the count
739  * field not changing.  However, if the count goes to zero, then only
740  * cgroup_attach_task() can increment it again.  Because a count of zero
741  * means that no tasks are currently attached, therefore there is no
742  * way a task attached to that cgroup can fork (the other way to
743  * increment the count).  So code holding cgroup_mutex can safely
744  * assume that if the count is zero, it will stay zero. Similarly, if
745  * a task holds cgroup_mutex on a cgroup with zero count, it
746  * knows that the cgroup won't be removed, as cgroup_rmdir()
747  * needs that mutex.
748  *
749  * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
750  * (usually) take cgroup_mutex.  These are the two most performance
751  * critical pieces of code here.  The exception occurs on cgroup_exit(),
752  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
753  * is taken, and if the cgroup count is zero, a usermode call made
754  * to the release agent with the name of the cgroup (path relative to
755  * the root of cgroup file system) as the argument.
756  *
757  * A cgroup can only be deleted if both its 'count' of using tasks
758  * is zero, and its list of 'children' cgroups is empty.  Since all
759  * tasks in the system use _some_ cgroup, and since there is always at
760  * least one task in the system (init, pid == 1), therefore, top_cgroup
761  * always has either children cgroups and/or using tasks.  So we don't
762  * need a special hack to ensure that top_cgroup cannot be deleted.
763  *
764  *	The task_lock() exception
765  *
766  * The need for this exception arises from the action of
767  * cgroup_attach_task(), which overwrites one task's cgroup pointer with
768  * another.  It does so using cgroup_mutex, however there are
769  * several performance critical places that need to reference
770  * task->cgroup without the expense of grabbing a system global
771  * mutex.  Therefore except as noted below, when dereferencing or, as
772  * in cgroup_attach_task(), modifying a task's cgroup pointer we use
773  * task_lock(), which acts on a spinlock (task->alloc_lock) already in
774  * the task_struct routinely used for such matters.
775  *
776  * P.S.  One more locking exception.  RCU is used to guard the
777  * update of a tasks cgroup pointer by cgroup_attach_task()
778  */
779 
780 /*
781  * A couple of forward declarations required, due to cyclic reference loop:
782  * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
783  * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
784  * -> cgroup_mkdir.
785  */
786 
787 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
788 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
789 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
790 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
791 			       unsigned long subsys_mask);
792 static const struct inode_operations cgroup_dir_inode_operations;
793 static const struct file_operations proc_cgroupstats_operations;
794 
795 static struct backing_dev_info cgroup_backing_dev_info = {
796 	.name		= "cgroup",
797 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
798 };
799 
800 static int alloc_css_id(struct cgroup_subsys *ss,
801 			struct cgroup *parent, struct cgroup *child);
802 
cgroup_new_inode(umode_t mode,struct super_block * sb)803 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
804 {
805 	struct inode *inode = new_inode(sb);
806 
807 	if (inode) {
808 		inode->i_ino = get_next_ino();
809 		inode->i_mode = mode;
810 		inode->i_uid = current_fsuid();
811 		inode->i_gid = current_fsgid();
812 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
813 		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
814 	}
815 	return inode;
816 }
817 
cgroup_alloc_name(struct dentry * dentry)818 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
819 {
820 	struct cgroup_name *name;
821 
822 	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
823 	if (!name)
824 		return NULL;
825 	strcpy(name->name, dentry->d_name.name);
826 	return name;
827 }
828 
cgroup_free_fn(struct work_struct * work)829 static void cgroup_free_fn(struct work_struct *work)
830 {
831 	struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
832 	struct cgroup_subsys *ss;
833 
834 	mutex_lock(&cgroup_mutex);
835 	/*
836 	 * Release the subsystem state objects.
837 	 */
838 	for_each_subsys(cgrp->root, ss)
839 		ss->css_free(cgrp);
840 
841 	cgrp->root->number_of_cgroups--;
842 	mutex_unlock(&cgroup_mutex);
843 
844 	/*
845 	 * We get a ref to the parent's dentry, and put the ref when
846 	 * this cgroup is being freed, so it's guaranteed that the
847 	 * parent won't be destroyed before its children.
848 	 */
849 	dput(cgrp->parent->dentry);
850 
851 	ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
852 
853 	/*
854 	 * Drop the active superblock reference that we took when we
855 	 * created the cgroup. This will free cgrp->root, if we are
856 	 * holding the last reference to @sb.
857 	 */
858 	deactivate_super(cgrp->root->sb);
859 
860 	/*
861 	 * if we're getting rid of the cgroup, refcount should ensure
862 	 * that there are no pidlists left.
863 	 */
864 	BUG_ON(!list_empty(&cgrp->pidlists));
865 
866 	simple_xattrs_free(&cgrp->xattrs);
867 
868 	kfree(rcu_dereference_raw(cgrp->name));
869 	kfree(cgrp);
870 }
871 
cgroup_free_rcu(struct rcu_head * head)872 static void cgroup_free_rcu(struct rcu_head *head)
873 {
874 	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
875 
876 	schedule_work(&cgrp->free_work);
877 }
878 
cgroup_diput(struct dentry * dentry,struct inode * inode)879 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
880 {
881 	/* is dentry a directory ? if so, kfree() associated cgroup */
882 	if (S_ISDIR(inode->i_mode)) {
883 		struct cgroup *cgrp = dentry->d_fsdata;
884 
885 		BUG_ON(!(cgroup_is_removed(cgrp)));
886 		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
887 	} else {
888 		struct cfent *cfe = __d_cfe(dentry);
889 		struct cgroup *cgrp = dentry->d_parent->d_fsdata;
890 
891 		WARN_ONCE(!list_empty(&cfe->node) &&
892 			  cgrp != &cgrp->root->top_cgroup,
893 			  "cfe still linked for %s\n", cfe->type->name);
894 		simple_xattrs_free(&cfe->xattrs);
895 		kfree(cfe);
896 	}
897 	iput(inode);
898 }
899 
cgroup_delete(const struct dentry * d)900 static int cgroup_delete(const struct dentry *d)
901 {
902 	return 1;
903 }
904 
remove_dir(struct dentry * d)905 static void remove_dir(struct dentry *d)
906 {
907 	struct dentry *parent = dget(d->d_parent);
908 
909 	d_delete(d);
910 	simple_rmdir(parent->d_inode, d);
911 	dput(parent);
912 }
913 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)914 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
915 {
916 	struct cfent *cfe;
917 
918 	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
919 	lockdep_assert_held(&cgroup_mutex);
920 
921 	/*
922 	 * If we're doing cleanup due to failure of cgroup_create(),
923 	 * the corresponding @cfe may not exist.
924 	 */
925 	list_for_each_entry(cfe, &cgrp->files, node) {
926 		struct dentry *d = cfe->dentry;
927 
928 		if (cft && cfe->type != cft)
929 			continue;
930 
931 		dget(d);
932 		d_delete(d);
933 		simple_unlink(cgrp->dentry->d_inode, d);
934 		list_del_init(&cfe->node);
935 		dput(d);
936 
937 		break;
938 	}
939 }
940 
941 /**
942  * cgroup_clear_directory - selective removal of base and subsystem files
943  * @dir: directory containing the files
944  * @base_files: true if the base files should be removed
945  * @subsys_mask: mask of the subsystem ids whose files should be removed
946  */
cgroup_clear_directory(struct dentry * dir,bool base_files,unsigned long subsys_mask)947 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
948 				   unsigned long subsys_mask)
949 {
950 	struct cgroup *cgrp = __d_cgrp(dir);
951 	struct cgroup_subsys *ss;
952 
953 	for_each_subsys(cgrp->root, ss) {
954 		struct cftype_set *set;
955 		if (!test_bit(ss->subsys_id, &subsys_mask))
956 			continue;
957 		list_for_each_entry(set, &ss->cftsets, node)
958 			cgroup_addrm_files(cgrp, NULL, set->cfts, false);
959 	}
960 	if (base_files) {
961 		while (!list_empty(&cgrp->files))
962 			cgroup_rm_file(cgrp, NULL);
963 	}
964 }
965 
966 /*
967  * NOTE : the dentry must have been dget()'ed
968  */
cgroup_d_remove_dir(struct dentry * dentry)969 static void cgroup_d_remove_dir(struct dentry *dentry)
970 {
971 	struct dentry *parent;
972 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
973 
974 	cgroup_clear_directory(dentry, true, root->subsys_mask);
975 
976 	parent = dentry->d_parent;
977 	spin_lock(&parent->d_lock);
978 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
979 	list_del_init(&dentry->d_u.d_child);
980 	spin_unlock(&dentry->d_lock);
981 	spin_unlock(&parent->d_lock);
982 	remove_dir(dentry);
983 }
984 
985 /*
986  * Call with cgroup_mutex held. Drops reference counts on modules, including
987  * any duplicate ones that parse_cgroupfs_options took. If this function
988  * returns an error, no reference counts are touched.
989  */
rebind_subsystems(struct cgroupfs_root * root,unsigned long final_subsys_mask)990 static int rebind_subsystems(struct cgroupfs_root *root,
991 			      unsigned long final_subsys_mask)
992 {
993 	unsigned long added_mask, removed_mask;
994 	struct cgroup *cgrp = &root->top_cgroup;
995 	int i;
996 
997 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
998 	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
999 
1000 	removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1001 	added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1002 	/* Check that any added subsystems are currently free */
1003 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 		unsigned long bit = 1UL << i;
1005 		struct cgroup_subsys *ss = subsys[i];
1006 		if (!(bit & added_mask))
1007 			continue;
1008 		/*
1009 		 * Nobody should tell us to do a subsys that doesn't exist:
1010 		 * parse_cgroupfs_options should catch that case and refcounts
1011 		 * ensure that subsystems won't disappear once selected.
1012 		 */
1013 		BUG_ON(ss == NULL);
1014 		if (ss->root != &rootnode) {
1015 			/* Subsystem isn't free */
1016 			return -EBUSY;
1017 		}
1018 	}
1019 
1020 	/* Currently we don't handle adding/removing subsystems when
1021 	 * any child cgroups exist. This is theoretically supportable
1022 	 * but involves complex error handling, so it's being left until
1023 	 * later */
1024 	if (root->number_of_cgroups > 1)
1025 		return -EBUSY;
1026 
1027 	/* Process each subsystem */
1028 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1029 		struct cgroup_subsys *ss = subsys[i];
1030 		unsigned long bit = 1UL << i;
1031 		if (bit & added_mask) {
1032 			/* We're binding this subsystem to this hierarchy */
1033 			BUG_ON(ss == NULL);
1034 			BUG_ON(cgrp->subsys[i]);
1035 			BUG_ON(!dummytop->subsys[i]);
1036 			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1037 			cgrp->subsys[i] = dummytop->subsys[i];
1038 			cgrp->subsys[i]->cgroup = cgrp;
1039 			list_move(&ss->sibling, &root->subsys_list);
1040 			ss->root = root;
1041 			if (ss->bind)
1042 				ss->bind(cgrp);
1043 			/* refcount was already taken, and we're keeping it */
1044 		} else if (bit & removed_mask) {
1045 			/* We're removing this subsystem */
1046 			BUG_ON(ss == NULL);
1047 			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1048 			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1049 			if (ss->bind)
1050 				ss->bind(dummytop);
1051 			dummytop->subsys[i]->cgroup = dummytop;
1052 			cgrp->subsys[i] = NULL;
1053 			subsys[i]->root = &rootnode;
1054 			list_move(&ss->sibling, &rootnode.subsys_list);
1055 			/* subsystem is now free - drop reference on module */
1056 			module_put(ss->module);
1057 		} else if (bit & final_subsys_mask) {
1058 			/* Subsystem state should already exist */
1059 			BUG_ON(ss == NULL);
1060 			BUG_ON(!cgrp->subsys[i]);
1061 			/*
1062 			 * a refcount was taken, but we already had one, so
1063 			 * drop the extra reference.
1064 			 */
1065 			module_put(ss->module);
1066 #ifdef CONFIG_MODULE_UNLOAD
1067 			BUG_ON(ss->module && !module_refcount(ss->module));
1068 #endif
1069 		} else {
1070 			/* Subsystem state shouldn't exist */
1071 			BUG_ON(cgrp->subsys[i]);
1072 		}
1073 	}
1074 	root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1075 
1076 	return 0;
1077 }
1078 
cgroup_show_options(struct seq_file * seq,struct dentry * dentry)1079 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1080 {
1081 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1082 	struct cgroup_subsys *ss;
1083 
1084 	mutex_lock(&cgroup_root_mutex);
1085 	for_each_subsys(root, ss)
1086 		seq_printf(seq, ",%s", ss->name);
1087 	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1088 		seq_puts(seq, ",sane_behavior");
1089 	if (root->flags & CGRP_ROOT_NOPREFIX)
1090 		seq_puts(seq, ",noprefix");
1091 	if (root->flags & CGRP_ROOT_XATTR)
1092 		seq_puts(seq, ",xattr");
1093 	if (strlen(root->release_agent_path))
1094 		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1095 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1096 		seq_puts(seq, ",clone_children");
1097 	if (strlen(root->name))
1098 		seq_printf(seq, ",name=%s", root->name);
1099 	mutex_unlock(&cgroup_root_mutex);
1100 	return 0;
1101 }
1102 
1103 struct cgroup_sb_opts {
1104 	unsigned long subsys_mask;
1105 	unsigned long flags;
1106 	char *release_agent;
1107 	bool cpuset_clone_children;
1108 	char *name;
1109 	/* User explicitly requested empty subsystem */
1110 	bool none;
1111 
1112 	struct cgroupfs_root *new_root;
1113 
1114 };
1115 
1116 /*
1117  * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1118  * with cgroup_mutex held to protect the subsys[] array. This function takes
1119  * refcounts on subsystems to be used, unless it returns error, in which case
1120  * no refcounts are taken.
1121  */
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1122 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1123 {
1124 	char *token, *o = data;
1125 	bool all_ss = false, one_ss = false;
1126 	unsigned long mask = (unsigned long)-1;
1127 	int i;
1128 	bool module_pin_failed = false;
1129 
1130 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1131 
1132 #ifdef CONFIG_CPUSETS
1133 	mask = ~(1UL << cpuset_subsys_id);
1134 #endif
1135 
1136 	memset(opts, 0, sizeof(*opts));
1137 
1138 	while ((token = strsep(&o, ",")) != NULL) {
1139 		if (!*token)
1140 			return -EINVAL;
1141 		if (!strcmp(token, "none")) {
1142 			/* Explicitly have no subsystems */
1143 			opts->none = true;
1144 			continue;
1145 		}
1146 		if (!strcmp(token, "all")) {
1147 			/* Mutually exclusive option 'all' + subsystem name */
1148 			if (one_ss)
1149 				return -EINVAL;
1150 			all_ss = true;
1151 			continue;
1152 		}
1153 		if (!strcmp(token, "__DEVEL__sane_behavior")) {
1154 			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1155 			continue;
1156 		}
1157 		if (!strcmp(token, "noprefix")) {
1158 			opts->flags |= CGRP_ROOT_NOPREFIX;
1159 			continue;
1160 		}
1161 		if (!strcmp(token, "clone_children")) {
1162 			opts->cpuset_clone_children = true;
1163 			continue;
1164 		}
1165 		if (!strcmp(token, "xattr")) {
1166 			opts->flags |= CGRP_ROOT_XATTR;
1167 			continue;
1168 		}
1169 		if (!strncmp(token, "release_agent=", 14)) {
1170 			/* Specifying two release agents is forbidden */
1171 			if (opts->release_agent)
1172 				return -EINVAL;
1173 			opts->release_agent =
1174 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1175 			if (!opts->release_agent)
1176 				return -ENOMEM;
1177 			continue;
1178 		}
1179 		if (!strncmp(token, "name=", 5)) {
1180 			const char *name = token + 5;
1181 			/* Can't specify an empty name */
1182 			if (!strlen(name))
1183 				return -EINVAL;
1184 			/* Must match [\w.-]+ */
1185 			for (i = 0; i < strlen(name); i++) {
1186 				char c = name[i];
1187 				if (isalnum(c))
1188 					continue;
1189 				if ((c == '.') || (c == '-') || (c == '_'))
1190 					continue;
1191 				return -EINVAL;
1192 			}
1193 			/* Specifying two names is forbidden */
1194 			if (opts->name)
1195 				return -EINVAL;
1196 			opts->name = kstrndup(name,
1197 					      MAX_CGROUP_ROOT_NAMELEN - 1,
1198 					      GFP_KERNEL);
1199 			if (!opts->name)
1200 				return -ENOMEM;
1201 
1202 			continue;
1203 		}
1204 
1205 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1206 			struct cgroup_subsys *ss = subsys[i];
1207 			if (ss == NULL)
1208 				continue;
1209 			if (strcmp(token, ss->name))
1210 				continue;
1211 			if (ss->disabled)
1212 				continue;
1213 
1214 			/* Mutually exclusive option 'all' + subsystem name */
1215 			if (all_ss)
1216 				return -EINVAL;
1217 			set_bit(i, &opts->subsys_mask);
1218 			one_ss = true;
1219 
1220 			break;
1221 		}
1222 		if (i == CGROUP_SUBSYS_COUNT)
1223 			return -ENOENT;
1224 	}
1225 
1226 	/*
1227 	 * If the 'all' option was specified select all the subsystems,
1228 	 * otherwise if 'none', 'name=' and a subsystem name options
1229 	 * were not specified, let's default to 'all'
1230 	 */
1231 	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1232 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1233 			struct cgroup_subsys *ss = subsys[i];
1234 			if (ss == NULL)
1235 				continue;
1236 			if (ss->disabled)
1237 				continue;
1238 			set_bit(i, &opts->subsys_mask);
1239 		}
1240 	}
1241 
1242 	/* Consistency checks */
1243 
1244 	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1245 		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1246 
1247 		if (opts->flags & CGRP_ROOT_NOPREFIX) {
1248 			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1249 			return -EINVAL;
1250 		}
1251 
1252 		if (opts->cpuset_clone_children) {
1253 			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1254 			return -EINVAL;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Option noprefix was introduced just for backward compatibility
1260 	 * with the old cpuset, so we allow noprefix only if mounting just
1261 	 * the cpuset subsystem.
1262 	 */
1263 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1264 		return -EINVAL;
1265 
1266 
1267 	/* Can't specify "none" and some subsystems */
1268 	if (opts->subsys_mask && opts->none)
1269 		return -EINVAL;
1270 
1271 	/*
1272 	 * We either have to specify by name or by subsystems. (So all
1273 	 * empty hierarchies must have a name).
1274 	 */
1275 	if (!opts->subsys_mask && !opts->name)
1276 		return -EINVAL;
1277 
1278 	/*
1279 	 * Grab references on all the modules we'll need, so the subsystems
1280 	 * don't dance around before rebind_subsystems attaches them. This may
1281 	 * take duplicate reference counts on a subsystem that's already used,
1282 	 * but rebind_subsystems handles this case.
1283 	 */
1284 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1285 		unsigned long bit = 1UL << i;
1286 
1287 		if (!(bit & opts->subsys_mask))
1288 			continue;
1289 		if (!try_module_get(subsys[i]->module)) {
1290 			module_pin_failed = true;
1291 			break;
1292 		}
1293 	}
1294 	if (module_pin_failed) {
1295 		/*
1296 		 * oops, one of the modules was going away. this means that we
1297 		 * raced with a module_delete call, and to the user this is
1298 		 * essentially a "subsystem doesn't exist" case.
1299 		 */
1300 		for (i--; i >= 0; i--) {
1301 			/* drop refcounts only on the ones we took */
1302 			unsigned long bit = 1UL << i;
1303 
1304 			if (!(bit & opts->subsys_mask))
1305 				continue;
1306 			module_put(subsys[i]->module);
1307 		}
1308 		return -ENOENT;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
drop_parsed_module_refcounts(unsigned long subsys_mask)1314 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1315 {
1316 	int i;
1317 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1318 		unsigned long bit = 1UL << i;
1319 
1320 		if (!(bit & subsys_mask))
1321 			continue;
1322 		module_put(subsys[i]->module);
1323 	}
1324 }
1325 
cgroup_remount(struct super_block * sb,int * flags,char * data)1326 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1327 {
1328 	int ret = 0;
1329 	struct cgroupfs_root *root = sb->s_fs_info;
1330 	struct cgroup *cgrp = &root->top_cgroup;
1331 	struct cgroup_sb_opts opts;
1332 	unsigned long added_mask, removed_mask;
1333 
1334 	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1335 		pr_err("cgroup: sane_behavior: remount is not allowed\n");
1336 		return -EINVAL;
1337 	}
1338 
1339 	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1340 	mutex_lock(&cgroup_mutex);
1341 	mutex_lock(&cgroup_root_mutex);
1342 
1343 	/* See what subsystems are wanted */
1344 	ret = parse_cgroupfs_options(data, &opts);
1345 	if (ret)
1346 		goto out_unlock;
1347 
1348 	if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1349 		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1350 			   task_tgid_nr(current), current->comm);
1351 
1352 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1353 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1354 
1355 	/* Don't allow flags or name to change at remount */
1356 	if (opts.flags != root->flags ||
1357 	    (opts.name && strcmp(opts.name, root->name))) {
1358 		ret = -EINVAL;
1359 		drop_parsed_module_refcounts(opts.subsys_mask);
1360 		goto out_unlock;
1361 	}
1362 
1363 	/*
1364 	 * Clear out the files of subsystems that should be removed, do
1365 	 * this before rebind_subsystems, since rebind_subsystems may
1366 	 * change this hierarchy's subsys_list.
1367 	 */
1368 	cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1369 
1370 	ret = rebind_subsystems(root, opts.subsys_mask);
1371 	if (ret) {
1372 		/* rebind_subsystems failed, re-populate the removed files */
1373 		cgroup_populate_dir(cgrp, false, removed_mask);
1374 		drop_parsed_module_refcounts(opts.subsys_mask);
1375 		goto out_unlock;
1376 	}
1377 
1378 	/* re-populate subsystem files */
1379 	cgroup_populate_dir(cgrp, false, added_mask);
1380 
1381 	if (opts.release_agent)
1382 		strcpy(root->release_agent_path, opts.release_agent);
1383  out_unlock:
1384 	kfree(opts.release_agent);
1385 	kfree(opts.name);
1386 	mutex_unlock(&cgroup_root_mutex);
1387 	mutex_unlock(&cgroup_mutex);
1388 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1389 	return ret;
1390 }
1391 
1392 static const struct super_operations cgroup_ops = {
1393 	.statfs = simple_statfs,
1394 	.drop_inode = generic_delete_inode,
1395 	.show_options = cgroup_show_options,
1396 	.remount_fs = cgroup_remount,
1397 };
1398 
init_cgroup_housekeeping(struct cgroup * cgrp)1399 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1400 {
1401 	INIT_LIST_HEAD(&cgrp->sibling);
1402 	INIT_LIST_HEAD(&cgrp->children);
1403 	INIT_LIST_HEAD(&cgrp->files);
1404 	INIT_LIST_HEAD(&cgrp->css_sets);
1405 	INIT_LIST_HEAD(&cgrp->allcg_node);
1406 	INIT_LIST_HEAD(&cgrp->release_list);
1407 	INIT_LIST_HEAD(&cgrp->pidlists);
1408 	INIT_WORK(&cgrp->free_work, cgroup_free_fn);
1409 	mutex_init(&cgrp->pidlist_mutex);
1410 	INIT_LIST_HEAD(&cgrp->event_list);
1411 	spin_lock_init(&cgrp->event_list_lock);
1412 	simple_xattrs_init(&cgrp->xattrs);
1413 }
1414 
init_cgroup_root(struct cgroupfs_root * root)1415 static void init_cgroup_root(struct cgroupfs_root *root)
1416 {
1417 	struct cgroup *cgrp = &root->top_cgroup;
1418 
1419 	INIT_LIST_HEAD(&root->subsys_list);
1420 	INIT_LIST_HEAD(&root->root_list);
1421 	INIT_LIST_HEAD(&root->allcg_list);
1422 	root->number_of_cgroups = 1;
1423 	cgrp->root = root;
1424 	cgrp->name = &root_cgroup_name;
1425 	init_cgroup_housekeeping(cgrp);
1426 	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1427 }
1428 
init_root_id(struct cgroupfs_root * root)1429 static bool init_root_id(struct cgroupfs_root *root)
1430 {
1431 	int ret = 0;
1432 
1433 	do {
1434 		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1435 			return false;
1436 		spin_lock(&hierarchy_id_lock);
1437 		/* Try to allocate the next unused ID */
1438 		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1439 					&root->hierarchy_id);
1440 		if (ret == -ENOSPC)
1441 			/* Try again starting from 0 */
1442 			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1443 		if (!ret) {
1444 			next_hierarchy_id = root->hierarchy_id + 1;
1445 		} else if (ret != -EAGAIN) {
1446 			/* Can only get here if the 31-bit IDR is full ... */
1447 			BUG_ON(ret);
1448 		}
1449 		spin_unlock(&hierarchy_id_lock);
1450 	} while (ret);
1451 	return true;
1452 }
1453 
cgroup_test_super(struct super_block * sb,void * data)1454 static int cgroup_test_super(struct super_block *sb, void *data)
1455 {
1456 	struct cgroup_sb_opts *opts = data;
1457 	struct cgroupfs_root *root = sb->s_fs_info;
1458 
1459 	/* If we asked for a name then it must match */
1460 	if (opts->name && strcmp(opts->name, root->name))
1461 		return 0;
1462 
1463 	/*
1464 	 * If we asked for subsystems (or explicitly for no
1465 	 * subsystems) then they must match
1466 	 */
1467 	if ((opts->subsys_mask || opts->none)
1468 	    && (opts->subsys_mask != root->subsys_mask))
1469 		return 0;
1470 
1471 	return 1;
1472 }
1473 
cgroup_root_from_opts(struct cgroup_sb_opts * opts)1474 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1475 {
1476 	struct cgroupfs_root *root;
1477 
1478 	if (!opts->subsys_mask && !opts->none)
1479 		return NULL;
1480 
1481 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1482 	if (!root)
1483 		return ERR_PTR(-ENOMEM);
1484 
1485 	if (!init_root_id(root)) {
1486 		kfree(root);
1487 		return ERR_PTR(-ENOMEM);
1488 	}
1489 	init_cgroup_root(root);
1490 
1491 	root->subsys_mask = opts->subsys_mask;
1492 	root->flags = opts->flags;
1493 	ida_init(&root->cgroup_ida);
1494 	if (opts->release_agent)
1495 		strcpy(root->release_agent_path, opts->release_agent);
1496 	if (opts->name)
1497 		strcpy(root->name, opts->name);
1498 	if (opts->cpuset_clone_children)
1499 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1500 	return root;
1501 }
1502 
cgroup_drop_root(struct cgroupfs_root * root)1503 static void cgroup_drop_root(struct cgroupfs_root *root)
1504 {
1505 	if (!root)
1506 		return;
1507 
1508 	BUG_ON(!root->hierarchy_id);
1509 	spin_lock(&hierarchy_id_lock);
1510 	ida_remove(&hierarchy_ida, root->hierarchy_id);
1511 	spin_unlock(&hierarchy_id_lock);
1512 	ida_destroy(&root->cgroup_ida);
1513 	kfree(root);
1514 }
1515 
cgroup_set_super(struct super_block * sb,void * data)1516 static int cgroup_set_super(struct super_block *sb, void *data)
1517 {
1518 	int ret;
1519 	struct cgroup_sb_opts *opts = data;
1520 
1521 	/* If we don't have a new root, we can't set up a new sb */
1522 	if (!opts->new_root)
1523 		return -EINVAL;
1524 
1525 	BUG_ON(!opts->subsys_mask && !opts->none);
1526 
1527 	ret = set_anon_super(sb, NULL);
1528 	if (ret)
1529 		return ret;
1530 
1531 	sb->s_fs_info = opts->new_root;
1532 	opts->new_root->sb = sb;
1533 
1534 	sb->s_blocksize = PAGE_CACHE_SIZE;
1535 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1536 	sb->s_magic = CGROUP_SUPER_MAGIC;
1537 	sb->s_op = &cgroup_ops;
1538 
1539 	return 0;
1540 }
1541 
cgroup_get_rootdir(struct super_block * sb)1542 static int cgroup_get_rootdir(struct super_block *sb)
1543 {
1544 	static const struct dentry_operations cgroup_dops = {
1545 		.d_iput = cgroup_diput,
1546 		.d_delete = cgroup_delete,
1547 	};
1548 
1549 	struct inode *inode =
1550 		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1551 
1552 	if (!inode)
1553 		return -ENOMEM;
1554 
1555 	inode->i_fop = &simple_dir_operations;
1556 	inode->i_op = &cgroup_dir_inode_operations;
1557 	/* directories start off with i_nlink == 2 (for "." entry) */
1558 	inc_nlink(inode);
1559 	sb->s_root = d_make_root(inode);
1560 	if (!sb->s_root)
1561 		return -ENOMEM;
1562 	/* for everything else we want ->d_op set */
1563 	sb->s_d_op = &cgroup_dops;
1564 	return 0;
1565 }
1566 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1567 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1568 			 int flags, const char *unused_dev_name,
1569 			 void *data)
1570 {
1571 	struct cgroup_sb_opts opts;
1572 	struct cgroupfs_root *root;
1573 	int ret = 0;
1574 	struct super_block *sb;
1575 	struct cgroupfs_root *new_root;
1576 	struct inode *inode;
1577 
1578 	/* First find the desired set of subsystems */
1579 	mutex_lock(&cgroup_mutex);
1580 	ret = parse_cgroupfs_options(data, &opts);
1581 	mutex_unlock(&cgroup_mutex);
1582 	if (ret)
1583 		goto out_err;
1584 
1585 	/*
1586 	 * Allocate a new cgroup root. We may not need it if we're
1587 	 * reusing an existing hierarchy.
1588 	 */
1589 	new_root = cgroup_root_from_opts(&opts);
1590 	if (IS_ERR(new_root)) {
1591 		ret = PTR_ERR(new_root);
1592 		goto drop_modules;
1593 	}
1594 	opts.new_root = new_root;
1595 
1596 	/* Locate an existing or new sb for this hierarchy */
1597 	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1598 	if (IS_ERR(sb)) {
1599 		ret = PTR_ERR(sb);
1600 		cgroup_drop_root(opts.new_root);
1601 		goto drop_modules;
1602 	}
1603 
1604 	root = sb->s_fs_info;
1605 	BUG_ON(!root);
1606 	if (root == opts.new_root) {
1607 		/* We used the new root structure, so this is a new hierarchy */
1608 		struct list_head tmp_cg_links;
1609 		struct cgroup *root_cgrp = &root->top_cgroup;
1610 		struct cgroupfs_root *existing_root;
1611 		const struct cred *cred;
1612 		int i;
1613 		struct css_set *cg;
1614 
1615 		BUG_ON(sb->s_root != NULL);
1616 
1617 		ret = cgroup_get_rootdir(sb);
1618 		if (ret)
1619 			goto drop_new_super;
1620 		inode = sb->s_root->d_inode;
1621 
1622 		mutex_lock(&inode->i_mutex);
1623 		mutex_lock(&cgroup_mutex);
1624 		mutex_lock(&cgroup_root_mutex);
1625 
1626 		/* Check for name clashes with existing mounts */
1627 		ret = -EBUSY;
1628 		if (strlen(root->name))
1629 			for_each_active_root(existing_root)
1630 				if (!strcmp(existing_root->name, root->name))
1631 					goto unlock_drop;
1632 
1633 		/*
1634 		 * We're accessing css_set_count without locking
1635 		 * css_set_lock here, but that's OK - it can only be
1636 		 * increased by someone holding cgroup_lock, and
1637 		 * that's us. The worst that can happen is that we
1638 		 * have some link structures left over
1639 		 */
1640 		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1641 		if (ret)
1642 			goto unlock_drop;
1643 
1644 		ret = rebind_subsystems(root, root->subsys_mask);
1645 		if (ret == -EBUSY) {
1646 			free_cg_links(&tmp_cg_links);
1647 			goto unlock_drop;
1648 		}
1649 		/*
1650 		 * There must be no failure case after here, since rebinding
1651 		 * takes care of subsystems' refcounts, which are explicitly
1652 		 * dropped in the failure exit path.
1653 		 */
1654 
1655 		/* EBUSY should be the only error here */
1656 		BUG_ON(ret);
1657 
1658 		list_add(&root->root_list, &roots);
1659 		root_count++;
1660 
1661 		sb->s_root->d_fsdata = root_cgrp;
1662 		root->top_cgroup.dentry = sb->s_root;
1663 
1664 		/* Link the top cgroup in this hierarchy into all
1665 		 * the css_set objects */
1666 		write_lock(&css_set_lock);
1667 		hash_for_each(css_set_table, i, cg, hlist)
1668 			link_css_set(&tmp_cg_links, cg, root_cgrp);
1669 		write_unlock(&css_set_lock);
1670 
1671 		free_cg_links(&tmp_cg_links);
1672 
1673 		BUG_ON(!list_empty(&root_cgrp->children));
1674 		BUG_ON(root->number_of_cgroups != 1);
1675 
1676 		cred = override_creds(&init_cred);
1677 		cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1678 		revert_creds(cred);
1679 		mutex_unlock(&cgroup_root_mutex);
1680 		mutex_unlock(&cgroup_mutex);
1681 		mutex_unlock(&inode->i_mutex);
1682 	} else {
1683 		/*
1684 		 * We re-used an existing hierarchy - the new root (if
1685 		 * any) is not needed
1686 		 */
1687 		cgroup_drop_root(opts.new_root);
1688 
1689 		if (root->flags != opts.flags) {
1690 			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1691 				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1692 				ret = -EINVAL;
1693 				goto drop_new_super;
1694 			} else {
1695 				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1696 			}
1697 		}
1698 
1699 		/* no subsys rebinding, so refcounts don't change */
1700 		drop_parsed_module_refcounts(opts.subsys_mask);
1701 	}
1702 
1703 	kfree(opts.release_agent);
1704 	kfree(opts.name);
1705 	return dget(sb->s_root);
1706 
1707  unlock_drop:
1708 	mutex_unlock(&cgroup_root_mutex);
1709 	mutex_unlock(&cgroup_mutex);
1710 	mutex_unlock(&inode->i_mutex);
1711  drop_new_super:
1712 	deactivate_locked_super(sb);
1713  drop_modules:
1714 	drop_parsed_module_refcounts(opts.subsys_mask);
1715  out_err:
1716 	kfree(opts.release_agent);
1717 	kfree(opts.name);
1718 	return ERR_PTR(ret);
1719 }
1720 
cgroup_kill_sb(struct super_block * sb)1721 static void cgroup_kill_sb(struct super_block *sb) {
1722 	struct cgroupfs_root *root = sb->s_fs_info;
1723 	struct cgroup *cgrp = &root->top_cgroup;
1724 	int ret;
1725 	struct cg_cgroup_link *link;
1726 	struct cg_cgroup_link *saved_link;
1727 
1728 	BUG_ON(!root);
1729 
1730 	BUG_ON(root->number_of_cgroups != 1);
1731 	BUG_ON(!list_empty(&cgrp->children));
1732 
1733 	mutex_lock(&cgroup_mutex);
1734 	mutex_lock(&cgroup_root_mutex);
1735 
1736 	/* Rebind all subsystems back to the default hierarchy */
1737 	ret = rebind_subsystems(root, 0);
1738 	/* Shouldn't be able to fail ... */
1739 	BUG_ON(ret);
1740 
1741 	/*
1742 	 * Release all the links from css_sets to this hierarchy's
1743 	 * root cgroup
1744 	 */
1745 	write_lock(&css_set_lock);
1746 
1747 	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1748 				 cgrp_link_list) {
1749 		list_del(&link->cg_link_list);
1750 		list_del(&link->cgrp_link_list);
1751 		kfree(link);
1752 	}
1753 	write_unlock(&css_set_lock);
1754 
1755 	if (!list_empty(&root->root_list)) {
1756 		list_del(&root->root_list);
1757 		root_count--;
1758 	}
1759 
1760 	mutex_unlock(&cgroup_root_mutex);
1761 	mutex_unlock(&cgroup_mutex);
1762 
1763 	simple_xattrs_free(&cgrp->xattrs);
1764 
1765 	kill_litter_super(sb);
1766 	cgroup_drop_root(root);
1767 }
1768 
1769 static struct file_system_type cgroup_fs_type = {
1770 	.name = "cgroup",
1771 	.mount = cgroup_mount,
1772 	.kill_sb = cgroup_kill_sb,
1773 };
1774 
1775 static struct kobject *cgroup_kobj;
1776 
1777 /**
1778  * cgroup_path - generate the path of a cgroup
1779  * @cgrp: the cgroup in question
1780  * @buf: the buffer to write the path into
1781  * @buflen: the length of the buffer
1782  *
1783  * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
1784  *
1785  * We can't generate cgroup path using dentry->d_name, as accessing
1786  * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1787  * inode's i_mutex, while on the other hand cgroup_path() can be called
1788  * with some irq-safe spinlocks held.
1789  */
cgroup_path(const struct cgroup * cgrp,char * buf,int buflen)1790 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1791 {
1792 	int ret = -ENAMETOOLONG;
1793 	char *start;
1794 
1795 	if (!cgrp->parent) {
1796 		if (strlcpy(buf, "/", buflen) >= buflen)
1797 			return -ENAMETOOLONG;
1798 		return 0;
1799 	}
1800 
1801 	start = buf + buflen - 1;
1802 	*start = '\0';
1803 
1804 	rcu_read_lock();
1805 	do {
1806 		const char *name = cgroup_name(cgrp);
1807 		int len;
1808 
1809 		len = strlen(name);
1810 		if ((start -= len) < buf)
1811 			goto out;
1812 		memcpy(start, name, len);
1813 
1814 		if (--start < buf)
1815 			goto out;
1816 		*start = '/';
1817 
1818 		cgrp = cgrp->parent;
1819 	} while (cgrp->parent);
1820 	ret = 0;
1821 	memmove(buf, start, buf + buflen - start);
1822 out:
1823 	rcu_read_unlock();
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(cgroup_path);
1827 
1828 /*
1829  * Control Group taskset
1830  */
1831 struct task_and_cgroup {
1832 	struct task_struct	*task;
1833 	struct cgroup		*cgrp;
1834 	struct css_set		*cg;
1835 };
1836 
1837 struct cgroup_taskset {
1838 	struct task_and_cgroup	single;
1839 	struct flex_array	*tc_array;
1840 	int			tc_array_len;
1841 	int			idx;
1842 	struct cgroup		*cur_cgrp;
1843 };
1844 
1845 /**
1846  * cgroup_taskset_first - reset taskset and return the first task
1847  * @tset: taskset of interest
1848  *
1849  * @tset iteration is initialized and the first task is returned.
1850  */
cgroup_taskset_first(struct cgroup_taskset * tset)1851 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1852 {
1853 	if (tset->tc_array) {
1854 		tset->idx = 0;
1855 		return cgroup_taskset_next(tset);
1856 	} else {
1857 		tset->cur_cgrp = tset->single.cgrp;
1858 		return tset->single.task;
1859 	}
1860 }
1861 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1862 
1863 /**
1864  * cgroup_taskset_next - iterate to the next task in taskset
1865  * @tset: taskset of interest
1866  *
1867  * Return the next task in @tset.  Iteration must have been initialized
1868  * with cgroup_taskset_first().
1869  */
cgroup_taskset_next(struct cgroup_taskset * tset)1870 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1871 {
1872 	struct task_and_cgroup *tc;
1873 
1874 	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1875 		return NULL;
1876 
1877 	tc = flex_array_get(tset->tc_array, tset->idx++);
1878 	tset->cur_cgrp = tc->cgrp;
1879 	return tc->task;
1880 }
1881 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1882 
1883 /**
1884  * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1885  * @tset: taskset of interest
1886  *
1887  * Return the cgroup for the current (last returned) task of @tset.  This
1888  * function must be preceded by either cgroup_taskset_first() or
1889  * cgroup_taskset_next().
1890  */
cgroup_taskset_cur_cgroup(struct cgroup_taskset * tset)1891 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1892 {
1893 	return tset->cur_cgrp;
1894 }
1895 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1896 
1897 /**
1898  * cgroup_taskset_size - return the number of tasks in taskset
1899  * @tset: taskset of interest
1900  */
cgroup_taskset_size(struct cgroup_taskset * tset)1901 int cgroup_taskset_size(struct cgroup_taskset *tset)
1902 {
1903 	return tset->tc_array ? tset->tc_array_len : 1;
1904 }
1905 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1906 
1907 
1908 /*
1909  * cgroup_task_migrate - move a task from one cgroup to another.
1910  *
1911  * Must be called with cgroup_mutex and threadgroup locked.
1912  */
cgroup_task_migrate(struct cgroup * oldcgrp,struct task_struct * tsk,struct css_set * newcg)1913 static void cgroup_task_migrate(struct cgroup *oldcgrp,
1914 				struct task_struct *tsk, struct css_set *newcg)
1915 {
1916 	struct css_set *oldcg;
1917 
1918 	/*
1919 	 * We are synchronized through threadgroup_lock() against PF_EXITING
1920 	 * setting such that we can't race against cgroup_exit() changing the
1921 	 * css_set to init_css_set and dropping the old one.
1922 	 */
1923 	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1924 	oldcg = tsk->cgroups;
1925 
1926 	task_lock(tsk);
1927 	rcu_assign_pointer(tsk->cgroups, newcg);
1928 	task_unlock(tsk);
1929 
1930 	/* Update the css_set linked lists if we're using them */
1931 	write_lock(&css_set_lock);
1932 	if (!list_empty(&tsk->cg_list))
1933 		list_move(&tsk->cg_list, &newcg->tasks);
1934 	write_unlock(&css_set_lock);
1935 
1936 	/*
1937 	 * We just gained a reference on oldcg by taking it from the task. As
1938 	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1939 	 * it here; it will be freed under RCU.
1940 	 */
1941 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1942 	put_css_set(oldcg);
1943 }
1944 
1945 /**
1946  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1947  * @cgrp: the cgroup to attach to
1948  * @tsk: the task or the leader of the threadgroup to be attached
1949  * @threadgroup: attach the whole threadgroup?
1950  *
1951  * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1952  * task_lock of @tsk or each thread in the threadgroup individually in turn.
1953  */
cgroup_attach_task(struct cgroup * cgrp,struct task_struct * tsk,bool threadgroup)1954 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1955 			      bool threadgroup)
1956 {
1957 	int retval, i, group_size;
1958 	struct cgroup_subsys *ss, *failed_ss = NULL;
1959 	struct cgroupfs_root *root = cgrp->root;
1960 	/* threadgroup list cursor and array */
1961 	struct task_struct *leader = tsk;
1962 	struct task_and_cgroup *tc;
1963 	struct flex_array *group;
1964 	struct cgroup_taskset tset = { };
1965 
1966 	/*
1967 	 * step 0: in order to do expensive, possibly blocking operations for
1968 	 * every thread, we cannot iterate the thread group list, since it needs
1969 	 * rcu or tasklist locked. instead, build an array of all threads in the
1970 	 * group - group_rwsem prevents new threads from appearing, and if
1971 	 * threads exit, this will just be an over-estimate.
1972 	 */
1973 	if (threadgroup)
1974 		group_size = get_nr_threads(tsk);
1975 	else
1976 		group_size = 1;
1977 	/* flex_array supports very large thread-groups better than kmalloc. */
1978 	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
1979 	if (!group)
1980 		return -ENOMEM;
1981 	/* pre-allocate to guarantee space while iterating in rcu read-side. */
1982 	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1983 	if (retval)
1984 		goto out_free_group_list;
1985 
1986 	i = 0;
1987 	/*
1988 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1989 	 * already PF_EXITING could be freed from underneath us unless we
1990 	 * take an rcu_read_lock.
1991 	 */
1992 	rcu_read_lock();
1993 	do {
1994 		struct task_and_cgroup ent;
1995 
1996 		/* @tsk either already exited or can't exit until the end */
1997 		if (tsk->flags & PF_EXITING)
1998 			goto next;
1999 
2000 		/* as per above, nr_threads may decrease, but not increase. */
2001 		BUG_ON(i >= group_size);
2002 		ent.task = tsk;
2003 		ent.cgrp = task_cgroup_from_root(tsk, root);
2004 		/* nothing to do if this task is already in the cgroup */
2005 		if (ent.cgrp == cgrp)
2006 			goto next;
2007 		/*
2008 		 * saying GFP_ATOMIC has no effect here because we did prealloc
2009 		 * earlier, but it's good form to communicate our expectations.
2010 		 */
2011 		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2012 		BUG_ON(retval != 0);
2013 		i++;
2014 
2015 next:
2016 		if (!threadgroup)
2017 			break;
2018 	} while_each_thread(leader, tsk);
2019 	rcu_read_unlock();
2020 	/* remember the number of threads in the array for later. */
2021 	group_size = i;
2022 	tset.tc_array = group;
2023 	tset.tc_array_len = group_size;
2024 
2025 	/* methods shouldn't be called if no task is actually migrating */
2026 	retval = 0;
2027 	if (!group_size)
2028 		goto out_free_group_list;
2029 
2030 	/*
2031 	 * step 1: check that we can legitimately attach to the cgroup.
2032 	 */
2033 	for_each_subsys(root, ss) {
2034 		if (ss->can_attach) {
2035 			retval = ss->can_attach(cgrp, &tset);
2036 			if (retval) {
2037 				failed_ss = ss;
2038 				goto out_cancel_attach;
2039 			}
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * step 2: make sure css_sets exist for all threads to be migrated.
2045 	 * we use find_css_set, which allocates a new one if necessary.
2046 	 */
2047 	for (i = 0; i < group_size; i++) {
2048 		tc = flex_array_get(group, i);
2049 		tc->cg = find_css_set(tc->task->cgroups, cgrp);
2050 		if (!tc->cg) {
2051 			retval = -ENOMEM;
2052 			goto out_put_css_set_refs;
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * step 3: now that we're guaranteed success wrt the css_sets,
2058 	 * proceed to move all tasks to the new cgroup.  There are no
2059 	 * failure cases after here, so this is the commit point.
2060 	 */
2061 	for (i = 0; i < group_size; i++) {
2062 		tc = flex_array_get(group, i);
2063 		cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2064 	}
2065 	/* nothing is sensitive to fork() after this point. */
2066 
2067 	/*
2068 	 * step 4: do subsystem attach callbacks.
2069 	 */
2070 	for_each_subsys(root, ss) {
2071 		if (ss->attach)
2072 			ss->attach(cgrp, &tset);
2073 	}
2074 
2075 	/*
2076 	 * step 5: success! and cleanup
2077 	 */
2078 	retval = 0;
2079 out_put_css_set_refs:
2080 	if (retval) {
2081 		for (i = 0; i < group_size; i++) {
2082 			tc = flex_array_get(group, i);
2083 			if (!tc->cg)
2084 				break;
2085 			put_css_set(tc->cg);
2086 		}
2087 	}
2088 out_cancel_attach:
2089 	if (retval) {
2090 		for_each_subsys(root, ss) {
2091 			if (ss == failed_ss)
2092 				break;
2093 			if (ss->cancel_attach)
2094 				ss->cancel_attach(cgrp, &tset);
2095 		}
2096 	}
2097 out_free_group_list:
2098 	flex_array_free(group);
2099 	return retval;
2100 }
2101 
cgroup_allow_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)2102 static int cgroup_allow_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
2103 {
2104 	struct cgroup_subsys *ss;
2105 	int ret;
2106 
2107 	for_each_subsys(cgrp->root, ss) {
2108 		if (ss->allow_attach) {
2109 			ret = ss->allow_attach(cgrp, tset);
2110 			if (ret)
2111 				return ret;
2112 		} else {
2113 			return -EACCES;
2114 		}
2115 	}
2116 
2117 	return 0;
2118 }
2119 
subsys_cgroup_allow_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)2120 int subsys_cgroup_allow_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
2121 {
2122 	const struct cred *cred = current_cred(), *tcred;
2123 	struct task_struct *task;
2124 
2125 	if (capable(CAP_SYS_NICE))
2126 		return 0;
2127 
2128 	cgroup_taskset_for_each(task, cgrp, tset) {
2129 		tcred = __task_cred(task);
2130 
2131 		if (current != task && cred->euid != tcred->uid &&
2132 		    cred->euid != tcred->suid)
2133 			return -EACCES;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * Find the task_struct of the task to attach by vpid and pass it along to the
2141  * function to attach either it or all tasks in its threadgroup. Will lock
2142  * cgroup_mutex and threadgroup; may take task_lock of task.
2143  */
attach_task_by_pid(struct cgroup * cgrp,u64 pid,bool threadgroup)2144 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2145 {
2146 	struct task_struct *tsk;
2147 	const struct cred *cred = current_cred(), *tcred;
2148 	int ret;
2149 
2150 	if (!cgroup_lock_live_group(cgrp))
2151 		return -ENODEV;
2152 
2153 retry_find_task:
2154 	rcu_read_lock();
2155 	if (pid) {
2156 		tsk = find_task_by_vpid(pid);
2157 		if (!tsk) {
2158 			rcu_read_unlock();
2159 			ret= -ESRCH;
2160 			goto out_unlock_cgroup;
2161 		}
2162 		/*
2163 		 * even if we're attaching all tasks in the thread group, we
2164 		 * only need to check permissions on one of them.
2165 		 */
2166 		tcred = __task_cred(tsk);
2167 		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2168 		    !uid_eq(cred->euid, tcred->uid) &&
2169 		    !uid_eq(cred->euid, tcred->suid)) {
2170 			/*
2171 			 * if the default permission check fails, give each
2172 			 * cgroup a chance to extend the permission check
2173 			 */
2174 			struct cgroup_taskset tset = { };
2175 			tset.single.task = tsk;
2176 			tset.single.cgrp = cgrp;
2177 			ret = cgroup_allow_attach(cgrp, &tset);
2178 			if (ret) {
2179 				rcu_read_unlock();
2180 				goto out_unlock_cgroup;
2181 			}
2182 		}
2183 	} else
2184 		tsk = current;
2185 
2186 	if (threadgroup)
2187 		tsk = tsk->group_leader;
2188 
2189 	/*
2190 	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2191 	 * trapped in a cpuset, or RT worker may be born in a cgroup
2192 	 * with no rt_runtime allocated.  Just say no.
2193 	 */
2194 	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2195 		ret = -EINVAL;
2196 		rcu_read_unlock();
2197 		goto out_unlock_cgroup;
2198 	}
2199 
2200 	get_task_struct(tsk);
2201 	rcu_read_unlock();
2202 
2203 	threadgroup_lock(tsk);
2204 	if (threadgroup) {
2205 		if (!thread_group_leader(tsk)) {
2206 			/*
2207 			 * a race with de_thread from another thread's exec()
2208 			 * may strip us of our leadership, if this happens,
2209 			 * there is no choice but to throw this task away and
2210 			 * try again; this is
2211 			 * "double-double-toil-and-trouble-check locking".
2212 			 */
2213 			threadgroup_unlock(tsk);
2214 			put_task_struct(tsk);
2215 			goto retry_find_task;
2216 		}
2217 	}
2218 
2219 	ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2220 
2221 	threadgroup_unlock(tsk);
2222 
2223 	put_task_struct(tsk);
2224 out_unlock_cgroup:
2225 	mutex_unlock(&cgroup_mutex);
2226 	return ret;
2227 }
2228 
2229 /**
2230  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2231  * @from: attach to all cgroups of a given task
2232  * @tsk: the task to be attached
2233  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2234 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2235 {
2236 	struct cgroupfs_root *root;
2237 	int retval = 0;
2238 
2239 	mutex_lock(&cgroup_mutex);
2240 	for_each_active_root(root) {
2241 		struct cgroup *from_cg = task_cgroup_from_root(from, root);
2242 
2243 		retval = cgroup_attach_task(from_cg, tsk, false);
2244 		if (retval)
2245 			break;
2246 	}
2247 	mutex_unlock(&cgroup_mutex);
2248 
2249 	return retval;
2250 }
2251 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2252 
cgroup_tasks_write(struct cgroup * cgrp,struct cftype * cft,u64 pid)2253 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2254 {
2255 	return attach_task_by_pid(cgrp, pid, false);
2256 }
2257 
cgroup_procs_write(struct cgroup * cgrp,struct cftype * cft,u64 tgid)2258 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2259 {
2260 	return attach_task_by_pid(cgrp, tgid, true);
2261 }
2262 
cgroup_release_agent_write(struct cgroup * cgrp,struct cftype * cft,const char * buffer)2263 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2264 				      const char *buffer)
2265 {
2266 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2267 	if (strlen(buffer) >= PATH_MAX)
2268 		return -EINVAL;
2269 	if (!cgroup_lock_live_group(cgrp))
2270 		return -ENODEV;
2271 	mutex_lock(&cgroup_root_mutex);
2272 	strcpy(cgrp->root->release_agent_path, buffer);
2273 	mutex_unlock(&cgroup_root_mutex);
2274 	mutex_unlock(&cgroup_mutex);
2275 	return 0;
2276 }
2277 
cgroup_release_agent_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)2278 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2279 				     struct seq_file *seq)
2280 {
2281 	if (!cgroup_lock_live_group(cgrp))
2282 		return -ENODEV;
2283 	seq_puts(seq, cgrp->root->release_agent_path);
2284 	seq_putc(seq, '\n');
2285 	mutex_unlock(&cgroup_mutex);
2286 	return 0;
2287 }
2288 
cgroup_sane_behavior_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)2289 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2290 				     struct seq_file *seq)
2291 {
2292 	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2293 	return 0;
2294 }
2295 
2296 /* A buffer size big enough for numbers or short strings */
2297 #define CGROUP_LOCAL_BUFFER_SIZE 64
2298 
cgroup_write_X64(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2299 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2300 				struct file *file,
2301 				const char __user *userbuf,
2302 				size_t nbytes, loff_t *unused_ppos)
2303 {
2304 	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2305 	int retval = 0;
2306 	char *end;
2307 
2308 	if (!nbytes)
2309 		return -EINVAL;
2310 	if (nbytes >= sizeof(buffer))
2311 		return -E2BIG;
2312 	if (copy_from_user(buffer, userbuf, nbytes))
2313 		return -EFAULT;
2314 
2315 	buffer[nbytes] = 0;     /* nul-terminate */
2316 	if (cft->write_u64) {
2317 		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2318 		if (*end)
2319 			return -EINVAL;
2320 		retval = cft->write_u64(cgrp, cft, val);
2321 	} else {
2322 		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2323 		if (*end)
2324 			return -EINVAL;
2325 		retval = cft->write_s64(cgrp, cft, val);
2326 	}
2327 	if (!retval)
2328 		retval = nbytes;
2329 	return retval;
2330 }
2331 
cgroup_write_string(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2332 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2333 				   struct file *file,
2334 				   const char __user *userbuf,
2335 				   size_t nbytes, loff_t *unused_ppos)
2336 {
2337 	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2338 	int retval = 0;
2339 	size_t max_bytes = cft->max_write_len;
2340 	char *buffer = local_buffer;
2341 
2342 	if (!max_bytes)
2343 		max_bytes = sizeof(local_buffer) - 1;
2344 	if (nbytes >= max_bytes)
2345 		return -E2BIG;
2346 	/* Allocate a dynamic buffer if we need one */
2347 	if (nbytes >= sizeof(local_buffer)) {
2348 		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2349 		if (buffer == NULL)
2350 			return -ENOMEM;
2351 	}
2352 	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2353 		retval = -EFAULT;
2354 		goto out;
2355 	}
2356 
2357 	buffer[nbytes] = 0;     /* nul-terminate */
2358 	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2359 	if (!retval)
2360 		retval = nbytes;
2361 out:
2362 	if (buffer != local_buffer)
2363 		kfree(buffer);
2364 	return retval;
2365 }
2366 
cgroup_file_write(struct file * file,const char __user * buf,size_t nbytes,loff_t * ppos)2367 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2368 						size_t nbytes, loff_t *ppos)
2369 {
2370 	struct cftype *cft = __d_cft(file->f_dentry);
2371 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2372 
2373 	if (cgroup_is_removed(cgrp))
2374 		return -ENODEV;
2375 	if (cft->write)
2376 		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2377 	if (cft->write_u64 || cft->write_s64)
2378 		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2379 	if (cft->write_string)
2380 		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2381 	if (cft->trigger) {
2382 		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2383 		return ret ? ret : nbytes;
2384 	}
2385 	return -EINVAL;
2386 }
2387 
cgroup_read_u64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2388 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2389 			       struct file *file,
2390 			       char __user *buf, size_t nbytes,
2391 			       loff_t *ppos)
2392 {
2393 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2394 	u64 val = cft->read_u64(cgrp, cft);
2395 	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2396 
2397 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2398 }
2399 
cgroup_read_s64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2400 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2401 			       struct file *file,
2402 			       char __user *buf, size_t nbytes,
2403 			       loff_t *ppos)
2404 {
2405 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2406 	s64 val = cft->read_s64(cgrp, cft);
2407 	int len = sprintf(tmp, "%lld\n", (long long) val);
2408 
2409 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2410 }
2411 
cgroup_file_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2412 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2413 				   size_t nbytes, loff_t *ppos)
2414 {
2415 	struct cftype *cft = __d_cft(file->f_dentry);
2416 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2417 
2418 	if (cgroup_is_removed(cgrp))
2419 		return -ENODEV;
2420 
2421 	if (cft->read)
2422 		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2423 	if (cft->read_u64)
2424 		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2425 	if (cft->read_s64)
2426 		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2427 	return -EINVAL;
2428 }
2429 
2430 /*
2431  * seqfile ops/methods for returning structured data. Currently just
2432  * supports string->u64 maps, but can be extended in future.
2433  */
2434 
2435 struct cgroup_seqfile_state {
2436 	struct cftype *cft;
2437 	struct cgroup *cgroup;
2438 };
2439 
cgroup_map_add(struct cgroup_map_cb * cb,const char * key,u64 value)2440 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2441 {
2442 	struct seq_file *sf = cb->state;
2443 	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2444 }
2445 
cgroup_seqfile_show(struct seq_file * m,void * arg)2446 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2447 {
2448 	struct cgroup_seqfile_state *state = m->private;
2449 	struct cftype *cft = state->cft;
2450 	if (cft->read_map) {
2451 		struct cgroup_map_cb cb = {
2452 			.fill = cgroup_map_add,
2453 			.state = m,
2454 		};
2455 		return cft->read_map(state->cgroup, cft, &cb);
2456 	}
2457 	return cft->read_seq_string(state->cgroup, cft, m);
2458 }
2459 
cgroup_seqfile_release(struct inode * inode,struct file * file)2460 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2461 {
2462 	struct seq_file *seq = file->private_data;
2463 	kfree(seq->private);
2464 	return single_release(inode, file);
2465 }
2466 
2467 static const struct file_operations cgroup_seqfile_operations = {
2468 	.read = seq_read,
2469 	.write = cgroup_file_write,
2470 	.llseek = seq_lseek,
2471 	.release = cgroup_seqfile_release,
2472 };
2473 
cgroup_file_open(struct inode * inode,struct file * file)2474 static int cgroup_file_open(struct inode *inode, struct file *file)
2475 {
2476 	int err;
2477 	struct cftype *cft;
2478 
2479 	err = generic_file_open(inode, file);
2480 	if (err)
2481 		return err;
2482 	cft = __d_cft(file->f_dentry);
2483 
2484 	if (cft->read_map || cft->read_seq_string) {
2485 		struct cgroup_seqfile_state *state =
2486 			kzalloc(sizeof(*state), GFP_USER);
2487 		if (!state)
2488 			return -ENOMEM;
2489 		state->cft = cft;
2490 		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2491 		file->f_op = &cgroup_seqfile_operations;
2492 		err = single_open(file, cgroup_seqfile_show, state);
2493 		if (err < 0)
2494 			kfree(state);
2495 	} else if (cft->open)
2496 		err = cft->open(inode, file);
2497 	else
2498 		err = 0;
2499 
2500 	return err;
2501 }
2502 
cgroup_file_release(struct inode * inode,struct file * file)2503 static int cgroup_file_release(struct inode *inode, struct file *file)
2504 {
2505 	struct cftype *cft = __d_cft(file->f_dentry);
2506 	if (cft->release)
2507 		return cft->release(inode, file);
2508 	return 0;
2509 }
2510 
2511 /*
2512  * cgroup_rename - Only allow simple rename of directories in place.
2513  */
cgroup_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2514 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2515 			    struct inode *new_dir, struct dentry *new_dentry)
2516 {
2517 	int ret;
2518 	struct cgroup_name *name, *old_name;
2519 	struct cgroup *cgrp;
2520 
2521 	/*
2522 	 * It's convinient to use parent dir's i_mutex to protected
2523 	 * cgrp->name.
2524 	 */
2525 	lockdep_assert_held(&old_dir->i_mutex);
2526 
2527 	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2528 		return -ENOTDIR;
2529 	if (new_dentry->d_inode)
2530 		return -EEXIST;
2531 	if (old_dir != new_dir)
2532 		return -EIO;
2533 
2534 	cgrp = __d_cgrp(old_dentry);
2535 
2536 	name = cgroup_alloc_name(new_dentry);
2537 	if (!name)
2538 		return -ENOMEM;
2539 
2540 	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2541 	if (ret) {
2542 		kfree(name);
2543 		return ret;
2544 	}
2545 
2546 	old_name = cgrp->name;
2547 	rcu_assign_pointer(cgrp->name, name);
2548 
2549 	kfree_rcu(old_name, rcu_head);
2550 	return 0;
2551 }
2552 
__d_xattrs(struct dentry * dentry)2553 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2554 {
2555 	if (S_ISDIR(dentry->d_inode->i_mode))
2556 		return &__d_cgrp(dentry)->xattrs;
2557 	else
2558 		return &__d_cfe(dentry)->xattrs;
2559 }
2560 
xattr_enabled(struct dentry * dentry)2561 static inline int xattr_enabled(struct dentry *dentry)
2562 {
2563 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2564 	return root->flags & CGRP_ROOT_XATTR;
2565 }
2566 
is_valid_xattr(const char * name)2567 static bool is_valid_xattr(const char *name)
2568 {
2569 	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2570 	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2571 		return true;
2572 	return false;
2573 }
2574 
cgroup_setxattr(struct dentry * dentry,const char * name,const void * val,size_t size,int flags)2575 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2576 			   const void *val, size_t size, int flags)
2577 {
2578 	if (!xattr_enabled(dentry))
2579 		return -EOPNOTSUPP;
2580 	if (!is_valid_xattr(name))
2581 		return -EINVAL;
2582 	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2583 }
2584 
cgroup_removexattr(struct dentry * dentry,const char * name)2585 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2586 {
2587 	if (!xattr_enabled(dentry))
2588 		return -EOPNOTSUPP;
2589 	if (!is_valid_xattr(name))
2590 		return -EINVAL;
2591 	return simple_xattr_remove(__d_xattrs(dentry), name);
2592 }
2593 
cgroup_getxattr(struct dentry * dentry,const char * name,void * buf,size_t size)2594 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2595 			       void *buf, size_t size)
2596 {
2597 	if (!xattr_enabled(dentry))
2598 		return -EOPNOTSUPP;
2599 	if (!is_valid_xattr(name))
2600 		return -EINVAL;
2601 	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2602 }
2603 
cgroup_listxattr(struct dentry * dentry,char * buf,size_t size)2604 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2605 {
2606 	if (!xattr_enabled(dentry))
2607 		return -EOPNOTSUPP;
2608 	return simple_xattr_list(__d_xattrs(dentry), buf, size);
2609 }
2610 
2611 static const struct file_operations cgroup_file_operations = {
2612 	.read = cgroup_file_read,
2613 	.write = cgroup_file_write,
2614 	.llseek = generic_file_llseek,
2615 	.open = cgroup_file_open,
2616 	.release = cgroup_file_release,
2617 };
2618 
2619 static const struct inode_operations cgroup_file_inode_operations = {
2620 	.setxattr = cgroup_setxattr,
2621 	.getxattr = cgroup_getxattr,
2622 	.listxattr = cgroup_listxattr,
2623 	.removexattr = cgroup_removexattr,
2624 };
2625 
2626 static const struct inode_operations cgroup_dir_inode_operations = {
2627 	.lookup = cgroup_lookup,
2628 	.mkdir = cgroup_mkdir,
2629 	.rmdir = cgroup_rmdir,
2630 	.rename = cgroup_rename,
2631 	.setxattr = cgroup_setxattr,
2632 	.getxattr = cgroup_getxattr,
2633 	.listxattr = cgroup_listxattr,
2634 	.removexattr = cgroup_removexattr,
2635 };
2636 
cgroup_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2637 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2638 {
2639 	if (dentry->d_name.len > NAME_MAX)
2640 		return ERR_PTR(-ENAMETOOLONG);
2641 	d_add(dentry, NULL);
2642 	return NULL;
2643 }
2644 
2645 /*
2646  * Check if a file is a control file
2647  */
__file_cft(struct file * file)2648 static inline struct cftype *__file_cft(struct file *file)
2649 {
2650 	if (file_inode(file)->i_fop != &cgroup_file_operations)
2651 		return ERR_PTR(-EINVAL);
2652 	return __d_cft(file->f_dentry);
2653 }
2654 
cgroup_create_file(struct dentry * dentry,umode_t mode,struct super_block * sb)2655 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2656 				struct super_block *sb)
2657 {
2658 	struct inode *inode;
2659 
2660 	if (!dentry)
2661 		return -ENOENT;
2662 	if (dentry->d_inode)
2663 		return -EEXIST;
2664 
2665 	inode = cgroup_new_inode(mode, sb);
2666 	if (!inode)
2667 		return -ENOMEM;
2668 
2669 	if (S_ISDIR(mode)) {
2670 		inode->i_op = &cgroup_dir_inode_operations;
2671 		inode->i_fop = &simple_dir_operations;
2672 
2673 		/* start off with i_nlink == 2 (for "." entry) */
2674 		inc_nlink(inode);
2675 		inc_nlink(dentry->d_parent->d_inode);
2676 
2677 		/*
2678 		 * Control reaches here with cgroup_mutex held.
2679 		 * @inode->i_mutex should nest outside cgroup_mutex but we
2680 		 * want to populate it immediately without releasing
2681 		 * cgroup_mutex.  As @inode isn't visible to anyone else
2682 		 * yet, trylock will always succeed without affecting
2683 		 * lockdep checks.
2684 		 */
2685 		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2686 	} else if (S_ISREG(mode)) {
2687 		inode->i_size = 0;
2688 		inode->i_fop = &cgroup_file_operations;
2689 		inode->i_op = &cgroup_file_inode_operations;
2690 	}
2691 	d_instantiate(dentry, inode);
2692 	dget(dentry);	/* Extra count - pin the dentry in core */
2693 	return 0;
2694 }
2695 
2696 /**
2697  * cgroup_file_mode - deduce file mode of a control file
2698  * @cft: the control file in question
2699  *
2700  * returns cft->mode if ->mode is not 0
2701  * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2702  * returns S_IRUGO if it has only a read handler
2703  * returns S_IWUSR if it has only a write hander
2704  */
cgroup_file_mode(const struct cftype * cft)2705 static umode_t cgroup_file_mode(const struct cftype *cft)
2706 {
2707 	umode_t mode = 0;
2708 
2709 	if (cft->mode)
2710 		return cft->mode;
2711 
2712 	if (cft->read || cft->read_u64 || cft->read_s64 ||
2713 	    cft->read_map || cft->read_seq_string)
2714 		mode |= S_IRUGO;
2715 
2716 	if (cft->write || cft->write_u64 || cft->write_s64 ||
2717 	    cft->write_string || cft->trigger)
2718 		mode |= S_IWUSR;
2719 
2720 	return mode;
2721 }
2722 
cgroup_add_file(struct cgroup * cgrp,struct cgroup_subsys * subsys,struct cftype * cft)2723 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2724 			   struct cftype *cft)
2725 {
2726 	struct dentry *dir = cgrp->dentry;
2727 	struct cgroup *parent = __d_cgrp(dir);
2728 	struct dentry *dentry;
2729 	struct cfent *cfe;
2730 	int error;
2731 	umode_t mode;
2732 	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2733 
2734 	if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2735 		strcpy(name, subsys->name);
2736 		strcat(name, ".");
2737 	}
2738 	strcat(name, cft->name);
2739 
2740 	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2741 
2742 	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2743 	if (!cfe)
2744 		return -ENOMEM;
2745 
2746 	dentry = lookup_one_len(name, dir, strlen(name));
2747 	if (IS_ERR(dentry)) {
2748 		error = PTR_ERR(dentry);
2749 		goto out;
2750 	}
2751 
2752 	cfe->type = (void *)cft;
2753 	cfe->dentry = dentry;
2754 	dentry->d_fsdata = cfe;
2755 	simple_xattrs_init(&cfe->xattrs);
2756 
2757 	mode = cgroup_file_mode(cft);
2758 	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2759 	if (!error) {
2760 		list_add_tail(&cfe->node, &parent->files);
2761 		cfe = NULL;
2762 	}
2763 	dput(dentry);
2764 out:
2765 	kfree(cfe);
2766 	return error;
2767 }
2768 
cgroup_addrm_files(struct cgroup * cgrp,struct cgroup_subsys * subsys,struct cftype cfts[],bool is_add)2769 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2770 			      struct cftype cfts[], bool is_add)
2771 {
2772 	struct cftype *cft;
2773 	int err, ret = 0;
2774 
2775 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2776 		/* does cft->flags tell us to skip this file on @cgrp? */
2777 		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2778 			continue;
2779 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2780 			continue;
2781 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2782 			continue;
2783 
2784 		if (is_add) {
2785 			err = cgroup_add_file(cgrp, subsys, cft);
2786 			if (err)
2787 				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2788 					cft->name, err);
2789 			ret = err;
2790 		} else {
2791 			cgroup_rm_file(cgrp, cft);
2792 		}
2793 	}
2794 	return ret;
2795 }
2796 
2797 static DEFINE_MUTEX(cgroup_cft_mutex);
2798 
cgroup_cfts_prepare(void)2799 static void cgroup_cfts_prepare(void)
2800 	__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2801 {
2802 	/*
2803 	 * Thanks to the entanglement with vfs inode locking, we can't walk
2804 	 * the existing cgroups under cgroup_mutex and create files.
2805 	 * Instead, we increment reference on all cgroups and build list of
2806 	 * them using @cgrp->cft_q_node.  Grab cgroup_cft_mutex to ensure
2807 	 * exclusive access to the field.
2808 	 */
2809 	mutex_lock(&cgroup_cft_mutex);
2810 	mutex_lock(&cgroup_mutex);
2811 }
2812 
cgroup_cfts_commit(struct cgroup_subsys * ss,struct cftype * cfts,bool is_add)2813 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2814 			       struct cftype *cfts, bool is_add)
2815 	__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2816 {
2817 	LIST_HEAD(pending);
2818 	struct cgroup *cgrp, *n;
2819 
2820 	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2821 	if (cfts && ss->root != &rootnode) {
2822 		list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2823 			dget(cgrp->dentry);
2824 			list_add_tail(&cgrp->cft_q_node, &pending);
2825 		}
2826 	}
2827 
2828 	mutex_unlock(&cgroup_mutex);
2829 
2830 	/*
2831 	 * All new cgroups will see @cfts update on @ss->cftsets.  Add/rm
2832 	 * files for all cgroups which were created before.
2833 	 */
2834 	list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2835 		struct inode *inode = cgrp->dentry->d_inode;
2836 
2837 		mutex_lock(&inode->i_mutex);
2838 		mutex_lock(&cgroup_mutex);
2839 		if (!cgroup_is_removed(cgrp))
2840 			cgroup_addrm_files(cgrp, ss, cfts, is_add);
2841 		mutex_unlock(&cgroup_mutex);
2842 		mutex_unlock(&inode->i_mutex);
2843 
2844 		list_del_init(&cgrp->cft_q_node);
2845 		dput(cgrp->dentry);
2846 	}
2847 
2848 	mutex_unlock(&cgroup_cft_mutex);
2849 }
2850 
2851 /**
2852  * cgroup_add_cftypes - add an array of cftypes to a subsystem
2853  * @ss: target cgroup subsystem
2854  * @cfts: zero-length name terminated array of cftypes
2855  *
2856  * Register @cfts to @ss.  Files described by @cfts are created for all
2857  * existing cgroups to which @ss is attached and all future cgroups will
2858  * have them too.  This function can be called anytime whether @ss is
2859  * attached or not.
2860  *
2861  * Returns 0 on successful registration, -errno on failure.  Note that this
2862  * function currently returns 0 as long as @cfts registration is successful
2863  * even if some file creation attempts on existing cgroups fail.
2864  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)2865 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2866 {
2867 	struct cftype_set *set;
2868 
2869 	set = kzalloc(sizeof(*set), GFP_KERNEL);
2870 	if (!set)
2871 		return -ENOMEM;
2872 
2873 	cgroup_cfts_prepare();
2874 	set->cfts = cfts;
2875 	list_add_tail(&set->node, &ss->cftsets);
2876 	cgroup_cfts_commit(ss, cfts, true);
2877 
2878 	return 0;
2879 }
2880 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2881 
2882 /**
2883  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2884  * @ss: target cgroup subsystem
2885  * @cfts: zero-length name terminated array of cftypes
2886  *
2887  * Unregister @cfts from @ss.  Files described by @cfts are removed from
2888  * all existing cgroups to which @ss is attached and all future cgroups
2889  * won't have them either.  This function can be called anytime whether @ss
2890  * is attached or not.
2891  *
2892  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2893  * registered with @ss.
2894  */
cgroup_rm_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)2895 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2896 {
2897 	struct cftype_set *set;
2898 
2899 	cgroup_cfts_prepare();
2900 
2901 	list_for_each_entry(set, &ss->cftsets, node) {
2902 		if (set->cfts == cfts) {
2903 			list_del_init(&set->node);
2904 			cgroup_cfts_commit(ss, cfts, false);
2905 			return 0;
2906 		}
2907 	}
2908 
2909 	cgroup_cfts_commit(ss, NULL, false);
2910 	return -ENOENT;
2911 }
2912 
2913 /**
2914  * cgroup_task_count - count the number of tasks in a cgroup.
2915  * @cgrp: the cgroup in question
2916  *
2917  * Return the number of tasks in the cgroup.
2918  */
cgroup_task_count(const struct cgroup * cgrp)2919 int cgroup_task_count(const struct cgroup *cgrp)
2920 {
2921 	int count = 0;
2922 	struct cg_cgroup_link *link;
2923 
2924 	read_lock(&css_set_lock);
2925 	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2926 		count += atomic_read(&link->cg->refcount);
2927 	}
2928 	read_unlock(&css_set_lock);
2929 	return count;
2930 }
2931 
2932 /*
2933  * Advance a list_head iterator.  The iterator should be positioned at
2934  * the start of a css_set
2935  */
cgroup_advance_iter(struct cgroup * cgrp,struct cgroup_iter * it)2936 static void cgroup_advance_iter(struct cgroup *cgrp,
2937 				struct cgroup_iter *it)
2938 {
2939 	struct list_head *l = it->cg_link;
2940 	struct cg_cgroup_link *link;
2941 	struct css_set *cg;
2942 
2943 	/* Advance to the next non-empty css_set */
2944 	do {
2945 		l = l->next;
2946 		if (l == &cgrp->css_sets) {
2947 			it->cg_link = NULL;
2948 			return;
2949 		}
2950 		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2951 		cg = link->cg;
2952 	} while (list_empty(&cg->tasks));
2953 	it->cg_link = l;
2954 	it->task = cg->tasks.next;
2955 }
2956 
2957 /*
2958  * To reduce the fork() overhead for systems that are not actually
2959  * using their cgroups capability, we don't maintain the lists running
2960  * through each css_set to its tasks until we see the list actually
2961  * used - in other words after the first call to cgroup_iter_start().
2962  */
cgroup_enable_task_cg_lists(void)2963 static void cgroup_enable_task_cg_lists(void)
2964 {
2965 	struct task_struct *p, *g;
2966 	write_lock(&css_set_lock);
2967 	use_task_css_set_links = 1;
2968 	/*
2969 	 * We need tasklist_lock because RCU is not safe against
2970 	 * while_each_thread(). Besides, a forking task that has passed
2971 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2972 	 * is not guaranteed to have its child immediately visible in the
2973 	 * tasklist if we walk through it with RCU.
2974 	 */
2975 	read_lock(&tasklist_lock);
2976 	do_each_thread(g, p) {
2977 		task_lock(p);
2978 		/*
2979 		 * We should check if the process is exiting, otherwise
2980 		 * it will race with cgroup_exit() in that the list
2981 		 * entry won't be deleted though the process has exited.
2982 		 */
2983 		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2984 			list_add(&p->cg_list, &p->cgroups->tasks);
2985 		task_unlock(p);
2986 	} while_each_thread(g, p);
2987 	read_unlock(&tasklist_lock);
2988 	write_unlock(&css_set_lock);
2989 }
2990 
2991 /**
2992  * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2993  * @pos: the current position (%NULL to initiate traversal)
2994  * @cgroup: cgroup whose descendants to walk
2995  *
2996  * To be used by cgroup_for_each_descendant_pre().  Find the next
2997  * descendant to visit for pre-order traversal of @cgroup's descendants.
2998  */
cgroup_next_descendant_pre(struct cgroup * pos,struct cgroup * cgroup)2999 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3000 					  struct cgroup *cgroup)
3001 {
3002 	struct cgroup *next;
3003 
3004 	WARN_ON_ONCE(!rcu_read_lock_held());
3005 
3006 	/* if first iteration, pretend we just visited @cgroup */
3007 	if (!pos)
3008 		pos = cgroup;
3009 
3010 	/* visit the first child if exists */
3011 	next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3012 	if (next)
3013 		return next;
3014 
3015 	/* no child, visit my or the closest ancestor's next sibling */
3016 	while (pos != cgroup) {
3017 		next = list_entry_rcu(pos->sibling.next, struct cgroup,
3018 				      sibling);
3019 		if (&next->sibling != &pos->parent->children)
3020 			return next;
3021 
3022 		pos = pos->parent;
3023 	}
3024 
3025 	return NULL;
3026 }
3027 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3028 
3029 /**
3030  * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3031  * @pos: cgroup of interest
3032  *
3033  * Return the rightmost descendant of @pos.  If there's no descendant,
3034  * @pos is returned.  This can be used during pre-order traversal to skip
3035  * subtree of @pos.
3036  */
cgroup_rightmost_descendant(struct cgroup * pos)3037 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3038 {
3039 	struct cgroup *last, *tmp;
3040 
3041 	WARN_ON_ONCE(!rcu_read_lock_held());
3042 
3043 	do {
3044 		last = pos;
3045 		/* ->prev isn't RCU safe, walk ->next till the end */
3046 		pos = NULL;
3047 		list_for_each_entry_rcu(tmp, &last->children, sibling)
3048 			pos = tmp;
3049 	} while (pos);
3050 
3051 	return last;
3052 }
3053 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3054 
cgroup_leftmost_descendant(struct cgroup * pos)3055 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3056 {
3057 	struct cgroup *last;
3058 
3059 	do {
3060 		last = pos;
3061 		pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3062 					     sibling);
3063 	} while (pos);
3064 
3065 	return last;
3066 }
3067 
3068 /**
3069  * cgroup_next_descendant_post - find the next descendant for post-order walk
3070  * @pos: the current position (%NULL to initiate traversal)
3071  * @cgroup: cgroup whose descendants to walk
3072  *
3073  * To be used by cgroup_for_each_descendant_post().  Find the next
3074  * descendant to visit for post-order traversal of @cgroup's descendants.
3075  */
cgroup_next_descendant_post(struct cgroup * pos,struct cgroup * cgroup)3076 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3077 					   struct cgroup *cgroup)
3078 {
3079 	struct cgroup *next;
3080 
3081 	WARN_ON_ONCE(!rcu_read_lock_held());
3082 
3083 	/* if first iteration, visit the leftmost descendant */
3084 	if (!pos) {
3085 		next = cgroup_leftmost_descendant(cgroup);
3086 		return next != cgroup ? next : NULL;
3087 	}
3088 
3089 	/* if there's an unvisited sibling, visit its leftmost descendant */
3090 	next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3091 	if (&next->sibling != &pos->parent->children)
3092 		return cgroup_leftmost_descendant(next);
3093 
3094 	/* no sibling left, visit parent */
3095 	next = pos->parent;
3096 	return next != cgroup ? next : NULL;
3097 }
3098 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3099 
cgroup_iter_start(struct cgroup * cgrp,struct cgroup_iter * it)3100 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3101 	__acquires(css_set_lock)
3102 {
3103 	/*
3104 	 * The first time anyone tries to iterate across a cgroup,
3105 	 * we need to enable the list linking each css_set to its
3106 	 * tasks, and fix up all existing tasks.
3107 	 */
3108 	if (!use_task_css_set_links)
3109 		cgroup_enable_task_cg_lists();
3110 
3111 	read_lock(&css_set_lock);
3112 	it->cg_link = &cgrp->css_sets;
3113 	cgroup_advance_iter(cgrp, it);
3114 }
3115 
cgroup_iter_next(struct cgroup * cgrp,struct cgroup_iter * it)3116 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3117 					struct cgroup_iter *it)
3118 {
3119 	struct task_struct *res;
3120 	struct list_head *l = it->task;
3121 	struct cg_cgroup_link *link;
3122 
3123 	/* If the iterator cg is NULL, we have no tasks */
3124 	if (!it->cg_link)
3125 		return NULL;
3126 	res = list_entry(l, struct task_struct, cg_list);
3127 	/* Advance iterator to find next entry */
3128 	l = l->next;
3129 	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3130 	if (l == &link->cg->tasks) {
3131 		/* We reached the end of this task list - move on to
3132 		 * the next cg_cgroup_link */
3133 		cgroup_advance_iter(cgrp, it);
3134 	} else {
3135 		it->task = l;
3136 	}
3137 	return res;
3138 }
3139 
cgroup_iter_end(struct cgroup * cgrp,struct cgroup_iter * it)3140 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3141 	__releases(css_set_lock)
3142 {
3143 	read_unlock(&css_set_lock);
3144 }
3145 
started_after_time(struct task_struct * t1,struct timespec * time,struct task_struct * t2)3146 static inline int started_after_time(struct task_struct *t1,
3147 				     struct timespec *time,
3148 				     struct task_struct *t2)
3149 {
3150 	int start_diff = timespec_compare(&t1->start_time, time);
3151 	if (start_diff > 0) {
3152 		return 1;
3153 	} else if (start_diff < 0) {
3154 		return 0;
3155 	} else {
3156 		/*
3157 		 * Arbitrarily, if two processes started at the same
3158 		 * time, we'll say that the lower pointer value
3159 		 * started first. Note that t2 may have exited by now
3160 		 * so this may not be a valid pointer any longer, but
3161 		 * that's fine - it still serves to distinguish
3162 		 * between two tasks started (effectively) simultaneously.
3163 		 */
3164 		return t1 > t2;
3165 	}
3166 }
3167 
3168 /*
3169  * This function is a callback from heap_insert() and is used to order
3170  * the heap.
3171  * In this case we order the heap in descending task start time.
3172  */
started_after(void * p1,void * p2)3173 static inline int started_after(void *p1, void *p2)
3174 {
3175 	struct task_struct *t1 = p1;
3176 	struct task_struct *t2 = p2;
3177 	return started_after_time(t1, &t2->start_time, t2);
3178 }
3179 
3180 /**
3181  * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3182  * @scan: struct cgroup_scanner containing arguments for the scan
3183  *
3184  * Arguments include pointers to callback functions test_task() and
3185  * process_task().
3186  * Iterate through all the tasks in a cgroup, calling test_task() for each,
3187  * and if it returns true, call process_task() for it also.
3188  * The test_task pointer may be NULL, meaning always true (select all tasks).
3189  * Effectively duplicates cgroup_iter_{start,next,end}()
3190  * but does not lock css_set_lock for the call to process_task().
3191  * The struct cgroup_scanner may be embedded in any structure of the caller's
3192  * creation.
3193  * It is guaranteed that process_task() will act on every task that
3194  * is a member of the cgroup for the duration of this call. This
3195  * function may or may not call process_task() for tasks that exit
3196  * or move to a different cgroup during the call, or are forked or
3197  * move into the cgroup during the call.
3198  *
3199  * Note that test_task() may be called with locks held, and may in some
3200  * situations be called multiple times for the same task, so it should
3201  * be cheap.
3202  * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3203  * pre-allocated and will be used for heap operations (and its "gt" member will
3204  * be overwritten), else a temporary heap will be used (allocation of which
3205  * may cause this function to fail).
3206  */
cgroup_scan_tasks(struct cgroup_scanner * scan)3207 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3208 {
3209 	int retval, i;
3210 	struct cgroup_iter it;
3211 	struct task_struct *p, *dropped;
3212 	/* Never dereference latest_task, since it's not refcounted */
3213 	struct task_struct *latest_task = NULL;
3214 	struct ptr_heap tmp_heap;
3215 	struct ptr_heap *heap;
3216 	struct timespec latest_time = { 0, 0 };
3217 
3218 	if (scan->heap) {
3219 		/* The caller supplied our heap and pre-allocated its memory */
3220 		heap = scan->heap;
3221 		heap->gt = &started_after;
3222 	} else {
3223 		/* We need to allocate our own heap memory */
3224 		heap = &tmp_heap;
3225 		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3226 		if (retval)
3227 			/* cannot allocate the heap */
3228 			return retval;
3229 	}
3230 
3231  again:
3232 	/*
3233 	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3234 	 * to determine which are of interest, and using the scanner's
3235 	 * "process_task" callback to process any of them that need an update.
3236 	 * Since we don't want to hold any locks during the task updates,
3237 	 * gather tasks to be processed in a heap structure.
3238 	 * The heap is sorted by descending task start time.
3239 	 * If the statically-sized heap fills up, we overflow tasks that
3240 	 * started later, and in future iterations only consider tasks that
3241 	 * started after the latest task in the previous pass. This
3242 	 * guarantees forward progress and that we don't miss any tasks.
3243 	 */
3244 	heap->size = 0;
3245 	cgroup_iter_start(scan->cg, &it);
3246 	while ((p = cgroup_iter_next(scan->cg, &it))) {
3247 		/*
3248 		 * Only affect tasks that qualify per the caller's callback,
3249 		 * if he provided one
3250 		 */
3251 		if (scan->test_task && !scan->test_task(p, scan))
3252 			continue;
3253 		/*
3254 		 * Only process tasks that started after the last task
3255 		 * we processed
3256 		 */
3257 		if (!started_after_time(p, &latest_time, latest_task))
3258 			continue;
3259 		dropped = heap_insert(heap, p);
3260 		if (dropped == NULL) {
3261 			/*
3262 			 * The new task was inserted; the heap wasn't
3263 			 * previously full
3264 			 */
3265 			get_task_struct(p);
3266 		} else if (dropped != p) {
3267 			/*
3268 			 * The new task was inserted, and pushed out a
3269 			 * different task
3270 			 */
3271 			get_task_struct(p);
3272 			put_task_struct(dropped);
3273 		}
3274 		/*
3275 		 * Else the new task was newer than anything already in
3276 		 * the heap and wasn't inserted
3277 		 */
3278 	}
3279 	cgroup_iter_end(scan->cg, &it);
3280 
3281 	if (heap->size) {
3282 		for (i = 0; i < heap->size; i++) {
3283 			struct task_struct *q = heap->ptrs[i];
3284 			if (i == 0) {
3285 				latest_time = q->start_time;
3286 				latest_task = q;
3287 			}
3288 			/* Process the task per the caller's callback */
3289 			scan->process_task(q, scan);
3290 			put_task_struct(q);
3291 		}
3292 		/*
3293 		 * If we had to process any tasks at all, scan again
3294 		 * in case some of them were in the middle of forking
3295 		 * children that didn't get processed.
3296 		 * Not the most efficient way to do it, but it avoids
3297 		 * having to take callback_mutex in the fork path
3298 		 */
3299 		goto again;
3300 	}
3301 	if (heap == &tmp_heap)
3302 		heap_free(&tmp_heap);
3303 	return 0;
3304 }
3305 
cgroup_transfer_one_task(struct task_struct * task,struct cgroup_scanner * scan)3306 static void cgroup_transfer_one_task(struct task_struct *task,
3307 				     struct cgroup_scanner *scan)
3308 {
3309 	struct cgroup *new_cgroup = scan->data;
3310 
3311 	mutex_lock(&cgroup_mutex);
3312 	cgroup_attach_task(new_cgroup, task, false);
3313 	mutex_unlock(&cgroup_mutex);
3314 }
3315 
3316 /**
3317  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3318  * @to: cgroup to which the tasks will be moved
3319  * @from: cgroup in which the tasks currently reside
3320  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)3321 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3322 {
3323 	struct cgroup_scanner scan;
3324 
3325 	scan.cg = from;
3326 	scan.test_task = NULL; /* select all tasks in cgroup */
3327 	scan.process_task = cgroup_transfer_one_task;
3328 	scan.heap = NULL;
3329 	scan.data = to;
3330 
3331 	return cgroup_scan_tasks(&scan);
3332 }
3333 
3334 /*
3335  * Stuff for reading the 'tasks'/'procs' files.
3336  *
3337  * Reading this file can return large amounts of data if a cgroup has
3338  * *lots* of attached tasks. So it may need several calls to read(),
3339  * but we cannot guarantee that the information we produce is correct
3340  * unless we produce it entirely atomically.
3341  *
3342  */
3343 
3344 /* which pidlist file are we talking about? */
3345 enum cgroup_filetype {
3346 	CGROUP_FILE_PROCS,
3347 	CGROUP_FILE_TASKS,
3348 };
3349 
3350 /*
3351  * A pidlist is a list of pids that virtually represents the contents of one
3352  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3353  * a pair (one each for procs, tasks) for each pid namespace that's relevant
3354  * to the cgroup.
3355  */
3356 struct cgroup_pidlist {
3357 	/*
3358 	 * used to find which pidlist is wanted. doesn't change as long as
3359 	 * this particular list stays in the list.
3360 	*/
3361 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3362 	/* array of xids */
3363 	pid_t *list;
3364 	/* how many elements the above list has */
3365 	int length;
3366 	/* how many files are using the current array */
3367 	int use_count;
3368 	/* each of these stored in a list by its cgroup */
3369 	struct list_head links;
3370 	/* pointer to the cgroup we belong to, for list removal purposes */
3371 	struct cgroup *owner;
3372 	/* protects the other fields */
3373 	struct rw_semaphore mutex;
3374 };
3375 
3376 /*
3377  * The following two functions "fix" the issue where there are more pids
3378  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3379  * TODO: replace with a kernel-wide solution to this problem
3380  */
3381 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)3382 static void *pidlist_allocate(int count)
3383 {
3384 	if (PIDLIST_TOO_LARGE(count))
3385 		return vmalloc(count * sizeof(pid_t));
3386 	else
3387 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3388 }
pidlist_free(void * p)3389 static void pidlist_free(void *p)
3390 {
3391 	if (is_vmalloc_addr(p))
3392 		vfree(p);
3393 	else
3394 		kfree(p);
3395 }
3396 
3397 /*
3398  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3399  * Returns the number of unique elements.
3400  */
pidlist_uniq(pid_t * list,int length)3401 static int pidlist_uniq(pid_t *list, int length)
3402 {
3403 	int src, dest = 1;
3404 
3405 	/*
3406 	 * we presume the 0th element is unique, so i starts at 1. trivial
3407 	 * edge cases first; no work needs to be done for either
3408 	 */
3409 	if (length == 0 || length == 1)
3410 		return length;
3411 	/* src and dest walk down the list; dest counts unique elements */
3412 	for (src = 1; src < length; src++) {
3413 		/* find next unique element */
3414 		while (list[src] == list[src-1]) {
3415 			src++;
3416 			if (src == length)
3417 				goto after;
3418 		}
3419 		/* dest always points to where the next unique element goes */
3420 		list[dest] = list[src];
3421 		dest++;
3422 	}
3423 after:
3424 	return dest;
3425 }
3426 
cmppid(const void * a,const void * b)3427 static int cmppid(const void *a, const void *b)
3428 {
3429 	return *(pid_t *)a - *(pid_t *)b;
3430 }
3431 
3432 /*
3433  * find the appropriate pidlist for our purpose (given procs vs tasks)
3434  * returns with the lock on that pidlist already held, and takes care
3435  * of the use count, or returns NULL with no locks held if we're out of
3436  * memory.
3437  */
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)3438 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3439 						  enum cgroup_filetype type)
3440 {
3441 	struct cgroup_pidlist *l;
3442 	/* don't need task_nsproxy() if we're looking at ourself */
3443 	struct pid_namespace *ns = task_active_pid_ns(current);
3444 
3445 	/*
3446 	 * We can't drop the pidlist_mutex before taking the l->mutex in case
3447 	 * the last ref-holder is trying to remove l from the list at the same
3448 	 * time. Holding the pidlist_mutex precludes somebody taking whichever
3449 	 * list we find out from under us - compare release_pid_array().
3450 	 */
3451 	mutex_lock(&cgrp->pidlist_mutex);
3452 	list_for_each_entry(l, &cgrp->pidlists, links) {
3453 		if (l->key.type == type && l->key.ns == ns) {
3454 			/* make sure l doesn't vanish out from under us */
3455 			down_write(&l->mutex);
3456 			mutex_unlock(&cgrp->pidlist_mutex);
3457 			return l;
3458 		}
3459 	}
3460 	/* entry not found; create a new one */
3461 	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3462 	if (!l) {
3463 		mutex_unlock(&cgrp->pidlist_mutex);
3464 		return l;
3465 	}
3466 	init_rwsem(&l->mutex);
3467 	down_write(&l->mutex);
3468 	l->key.type = type;
3469 	l->key.ns = get_pid_ns(ns);
3470 	l->use_count = 0; /* don't increment here */
3471 	l->list = NULL;
3472 	l->owner = cgrp;
3473 	list_add(&l->links, &cgrp->pidlists);
3474 	mutex_unlock(&cgrp->pidlist_mutex);
3475 	return l;
3476 }
3477 
3478 /*
3479  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3480  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)3481 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3482 			      struct cgroup_pidlist **lp)
3483 {
3484 	pid_t *array;
3485 	int length;
3486 	int pid, n = 0; /* used for populating the array */
3487 	struct cgroup_iter it;
3488 	struct task_struct *tsk;
3489 	struct cgroup_pidlist *l;
3490 
3491 	/*
3492 	 * If cgroup gets more users after we read count, we won't have
3493 	 * enough space - tough.  This race is indistinguishable to the
3494 	 * caller from the case that the additional cgroup users didn't
3495 	 * show up until sometime later on.
3496 	 */
3497 	length = cgroup_task_count(cgrp);
3498 	array = pidlist_allocate(length);
3499 	if (!array)
3500 		return -ENOMEM;
3501 	/* now, populate the array */
3502 	cgroup_iter_start(cgrp, &it);
3503 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3504 		if (unlikely(n == length))
3505 			break;
3506 		/* get tgid or pid for procs or tasks file respectively */
3507 		if (type == CGROUP_FILE_PROCS)
3508 			pid = task_tgid_vnr(tsk);
3509 		else
3510 			pid = task_pid_vnr(tsk);
3511 		if (pid > 0) /* make sure to only use valid results */
3512 			array[n++] = pid;
3513 	}
3514 	cgroup_iter_end(cgrp, &it);
3515 	length = n;
3516 	/* now sort & (if procs) strip out duplicates */
3517 	sort(array, length, sizeof(pid_t), cmppid, NULL);
3518 	if (type == CGROUP_FILE_PROCS)
3519 		length = pidlist_uniq(array, length);
3520 	l = cgroup_pidlist_find(cgrp, type);
3521 	if (!l) {
3522 		pidlist_free(array);
3523 		return -ENOMEM;
3524 	}
3525 	/* store array, freeing old if necessary - lock already held */
3526 	pidlist_free(l->list);
3527 	l->list = array;
3528 	l->length = length;
3529 	l->use_count++;
3530 	up_write(&l->mutex);
3531 	*lp = l;
3532 	return 0;
3533 }
3534 
3535 /**
3536  * cgroupstats_build - build and fill cgroupstats
3537  * @stats: cgroupstats to fill information into
3538  * @dentry: A dentry entry belonging to the cgroup for which stats have
3539  * been requested.
3540  *
3541  * Build and fill cgroupstats so that taskstats can export it to user
3542  * space.
3543  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)3544 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3545 {
3546 	int ret = -EINVAL;
3547 	struct cgroup *cgrp;
3548 	struct cgroup_iter it;
3549 	struct task_struct *tsk;
3550 
3551 	/*
3552 	 * Validate dentry by checking the superblock operations,
3553 	 * and make sure it's a directory.
3554 	 */
3555 	if (dentry->d_sb->s_op != &cgroup_ops ||
3556 	    !S_ISDIR(dentry->d_inode->i_mode))
3557 		 goto err;
3558 
3559 	ret = 0;
3560 	cgrp = dentry->d_fsdata;
3561 
3562 	cgroup_iter_start(cgrp, &it);
3563 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3564 		switch (tsk->state) {
3565 		case TASK_RUNNING:
3566 			stats->nr_running++;
3567 			break;
3568 		case TASK_INTERRUPTIBLE:
3569 			stats->nr_sleeping++;
3570 			break;
3571 		case TASK_UNINTERRUPTIBLE:
3572 			stats->nr_uninterruptible++;
3573 			break;
3574 		case TASK_STOPPED:
3575 			stats->nr_stopped++;
3576 			break;
3577 		default:
3578 			if (delayacct_is_task_waiting_on_io(tsk))
3579 				stats->nr_io_wait++;
3580 			break;
3581 		}
3582 	}
3583 	cgroup_iter_end(cgrp, &it);
3584 
3585 err:
3586 	return ret;
3587 }
3588 
3589 
3590 /*
3591  * seq_file methods for the tasks/procs files. The seq_file position is the
3592  * next pid to display; the seq_file iterator is a pointer to the pid
3593  * in the cgroup->l->list array.
3594  */
3595 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)3596 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3597 {
3598 	/*
3599 	 * Initially we receive a position value that corresponds to
3600 	 * one more than the last pid shown (or 0 on the first call or
3601 	 * after a seek to the start). Use a binary-search to find the
3602 	 * next pid to display, if any
3603 	 */
3604 	struct cgroup_pidlist *l = s->private;
3605 	int index = 0, pid = *pos;
3606 	int *iter;
3607 
3608 	down_read(&l->mutex);
3609 	if (pid) {
3610 		int end = l->length;
3611 
3612 		while (index < end) {
3613 			int mid = (index + end) / 2;
3614 			if (l->list[mid] == pid) {
3615 				index = mid;
3616 				break;
3617 			} else if (l->list[mid] <= pid)
3618 				index = mid + 1;
3619 			else
3620 				end = mid;
3621 		}
3622 	}
3623 	/* If we're off the end of the array, we're done */
3624 	if (index >= l->length)
3625 		return NULL;
3626 	/* Update the abstract position to be the actual pid that we found */
3627 	iter = l->list + index;
3628 	*pos = *iter;
3629 	return iter;
3630 }
3631 
cgroup_pidlist_stop(struct seq_file * s,void * v)3632 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3633 {
3634 	struct cgroup_pidlist *l = s->private;
3635 	up_read(&l->mutex);
3636 }
3637 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)3638 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3639 {
3640 	struct cgroup_pidlist *l = s->private;
3641 	pid_t *p = v;
3642 	pid_t *end = l->list + l->length;
3643 	/*
3644 	 * Advance to the next pid in the array. If this goes off the
3645 	 * end, we're done
3646 	 */
3647 	p++;
3648 	if (p >= end) {
3649 		return NULL;
3650 	} else {
3651 		*pos = *p;
3652 		return p;
3653 	}
3654 }
3655 
cgroup_pidlist_show(struct seq_file * s,void * v)3656 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3657 {
3658 	return seq_printf(s, "%d\n", *(int *)v);
3659 }
3660 
3661 /*
3662  * seq_operations functions for iterating on pidlists through seq_file -
3663  * independent of whether it's tasks or procs
3664  */
3665 static const struct seq_operations cgroup_pidlist_seq_operations = {
3666 	.start = cgroup_pidlist_start,
3667 	.stop = cgroup_pidlist_stop,
3668 	.next = cgroup_pidlist_next,
3669 	.show = cgroup_pidlist_show,
3670 };
3671 
cgroup_release_pid_array(struct cgroup_pidlist * l)3672 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3673 {
3674 	/*
3675 	 * the case where we're the last user of this particular pidlist will
3676 	 * have us remove it from the cgroup's list, which entails taking the
3677 	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3678 	 * pidlist_mutex, we have to take pidlist_mutex first.
3679 	 */
3680 	mutex_lock(&l->owner->pidlist_mutex);
3681 	down_write(&l->mutex);
3682 	BUG_ON(!l->use_count);
3683 	if (!--l->use_count) {
3684 		/* we're the last user if refcount is 0; remove and free */
3685 		list_del(&l->links);
3686 		mutex_unlock(&l->owner->pidlist_mutex);
3687 		pidlist_free(l->list);
3688 		put_pid_ns(l->key.ns);
3689 		up_write(&l->mutex);
3690 		kfree(l);
3691 		return;
3692 	}
3693 	mutex_unlock(&l->owner->pidlist_mutex);
3694 	up_write(&l->mutex);
3695 }
3696 
cgroup_pidlist_release(struct inode * inode,struct file * file)3697 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3698 {
3699 	struct cgroup_pidlist *l;
3700 	if (!(file->f_mode & FMODE_READ))
3701 		return 0;
3702 	/*
3703 	 * the seq_file will only be initialized if the file was opened for
3704 	 * reading; hence we check if it's not null only in that case.
3705 	 */
3706 	l = ((struct seq_file *)file->private_data)->private;
3707 	cgroup_release_pid_array(l);
3708 	return seq_release(inode, file);
3709 }
3710 
3711 static const struct file_operations cgroup_pidlist_operations = {
3712 	.read = seq_read,
3713 	.llseek = seq_lseek,
3714 	.write = cgroup_file_write,
3715 	.release = cgroup_pidlist_release,
3716 };
3717 
3718 /*
3719  * The following functions handle opens on a file that displays a pidlist
3720  * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3721  * in the cgroup.
3722  */
3723 /* helper function for the two below it */
cgroup_pidlist_open(struct file * file,enum cgroup_filetype type)3724 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3725 {
3726 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3727 	struct cgroup_pidlist *l;
3728 	int retval;
3729 
3730 	/* Nothing to do for write-only files */
3731 	if (!(file->f_mode & FMODE_READ))
3732 		return 0;
3733 
3734 	/* have the array populated */
3735 	retval = pidlist_array_load(cgrp, type, &l);
3736 	if (retval)
3737 		return retval;
3738 	/* configure file information */
3739 	file->f_op = &cgroup_pidlist_operations;
3740 
3741 	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3742 	if (retval) {
3743 		cgroup_release_pid_array(l);
3744 		return retval;
3745 	}
3746 	((struct seq_file *)file->private_data)->private = l;
3747 	return 0;
3748 }
cgroup_tasks_open(struct inode * unused,struct file * file)3749 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3750 {
3751 	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3752 }
cgroup_procs_open(struct inode * unused,struct file * file)3753 static int cgroup_procs_open(struct inode *unused, struct file *file)
3754 {
3755 	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3756 }
3757 
cgroup_read_notify_on_release(struct cgroup * cgrp,struct cftype * cft)3758 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3759 					    struct cftype *cft)
3760 {
3761 	return notify_on_release(cgrp);
3762 }
3763 
cgroup_write_notify_on_release(struct cgroup * cgrp,struct cftype * cft,u64 val)3764 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3765 					  struct cftype *cft,
3766 					  u64 val)
3767 {
3768 	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3769 	if (val)
3770 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3771 	else
3772 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Unregister event and free resources.
3778  *
3779  * Gets called from workqueue.
3780  */
cgroup_event_remove(struct work_struct * work)3781 static void cgroup_event_remove(struct work_struct *work)
3782 {
3783 	struct cgroup_event *event = container_of(work, struct cgroup_event,
3784 			remove);
3785 	struct cgroup *cgrp = event->cgrp;
3786 
3787 	remove_wait_queue(event->wqh, &event->wait);
3788 
3789 	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3790 
3791 	/* Notify userspace the event is going away. */
3792 	eventfd_signal(event->eventfd, 1);
3793 
3794 	eventfd_ctx_put(event->eventfd);
3795 	kfree(event);
3796 	dput(cgrp->dentry);
3797 }
3798 
3799 /*
3800  * Gets called on POLLHUP on eventfd when user closes it.
3801  *
3802  * Called with wqh->lock held and interrupts disabled.
3803  */
cgroup_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3804 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3805 		int sync, void *key)
3806 {
3807 	struct cgroup_event *event = container_of(wait,
3808 			struct cgroup_event, wait);
3809 	struct cgroup *cgrp = event->cgrp;
3810 	unsigned long flags = (unsigned long)key;
3811 
3812 	if (flags & POLLHUP) {
3813 		/*
3814 		 * If the event has been detached at cgroup removal, we
3815 		 * can simply return knowing the other side will cleanup
3816 		 * for us.
3817 		 *
3818 		 * We can't race against event freeing since the other
3819 		 * side will require wqh->lock via remove_wait_queue(),
3820 		 * which we hold.
3821 		 */
3822 		spin_lock(&cgrp->event_list_lock);
3823 		if (!list_empty(&event->list)) {
3824 			list_del_init(&event->list);
3825 			/*
3826 			 * We are in atomic context, but cgroup_event_remove()
3827 			 * may sleep, so we have to call it in workqueue.
3828 			 */
3829 			schedule_work(&event->remove);
3830 		}
3831 		spin_unlock(&cgrp->event_list_lock);
3832 	}
3833 
3834 	return 0;
3835 }
3836 
cgroup_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3837 static void cgroup_event_ptable_queue_proc(struct file *file,
3838 		wait_queue_head_t *wqh, poll_table *pt)
3839 {
3840 	struct cgroup_event *event = container_of(pt,
3841 			struct cgroup_event, pt);
3842 
3843 	event->wqh = wqh;
3844 	add_wait_queue(wqh, &event->wait);
3845 }
3846 
3847 /*
3848  * Parse input and register new cgroup event handler.
3849  *
3850  * Input must be in format '<event_fd> <control_fd> <args>'.
3851  * Interpretation of args is defined by control file implementation.
3852  */
cgroup_write_event_control(struct cgroup * cgrp,struct cftype * cft,const char * buffer)3853 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3854 				      const char *buffer)
3855 {
3856 	struct cgroup_event *event = NULL;
3857 	struct cgroup *cgrp_cfile;
3858 	unsigned int efd, cfd;
3859 	struct file *efile = NULL;
3860 	struct file *cfile = NULL;
3861 	char *endp;
3862 	int ret;
3863 
3864 	efd = simple_strtoul(buffer, &endp, 10);
3865 	if (*endp != ' ')
3866 		return -EINVAL;
3867 	buffer = endp + 1;
3868 
3869 	cfd = simple_strtoul(buffer, &endp, 10);
3870 	if ((*endp != ' ') && (*endp != '\0'))
3871 		return -EINVAL;
3872 	buffer = endp + 1;
3873 
3874 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3875 	if (!event)
3876 		return -ENOMEM;
3877 	event->cgrp = cgrp;
3878 	INIT_LIST_HEAD(&event->list);
3879 	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3880 	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3881 	INIT_WORK(&event->remove, cgroup_event_remove);
3882 
3883 	efile = eventfd_fget(efd);
3884 	if (IS_ERR(efile)) {
3885 		ret = PTR_ERR(efile);
3886 		goto fail;
3887 	}
3888 
3889 	event->eventfd = eventfd_ctx_fileget(efile);
3890 	if (IS_ERR(event->eventfd)) {
3891 		ret = PTR_ERR(event->eventfd);
3892 		goto fail;
3893 	}
3894 
3895 	cfile = fget(cfd);
3896 	if (!cfile) {
3897 		ret = -EBADF;
3898 		goto fail;
3899 	}
3900 
3901 	/* the process need read permission on control file */
3902 	/* AV: shouldn't we check that it's been opened for read instead? */
3903 	ret = inode_permission(file_inode(cfile), MAY_READ);
3904 	if (ret < 0)
3905 		goto fail;
3906 
3907 	event->cft = __file_cft(cfile);
3908 	if (IS_ERR(event->cft)) {
3909 		ret = PTR_ERR(event->cft);
3910 		goto fail;
3911 	}
3912 
3913 	/*
3914 	 * The file to be monitored must be in the same cgroup as
3915 	 * cgroup.event_control is.
3916 	 */
3917 	cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3918 	if (cgrp_cfile != cgrp) {
3919 		ret = -EINVAL;
3920 		goto fail;
3921 	}
3922 
3923 	if (!event->cft->register_event || !event->cft->unregister_event) {
3924 		ret = -EINVAL;
3925 		goto fail;
3926 	}
3927 
3928 	ret = event->cft->register_event(cgrp, event->cft,
3929 			event->eventfd, buffer);
3930 	if (ret)
3931 		goto fail;
3932 
3933 	efile->f_op->poll(efile, &event->pt);
3934 
3935 	/*
3936 	 * Events should be removed after rmdir of cgroup directory, but before
3937 	 * destroying subsystem state objects. Let's take reference to cgroup
3938 	 * directory dentry to do that.
3939 	 */
3940 	dget(cgrp->dentry);
3941 
3942 	spin_lock(&cgrp->event_list_lock);
3943 	list_add(&event->list, &cgrp->event_list);
3944 	spin_unlock(&cgrp->event_list_lock);
3945 
3946 	fput(cfile);
3947 	fput(efile);
3948 
3949 	return 0;
3950 
3951 fail:
3952 	if (cfile)
3953 		fput(cfile);
3954 
3955 	if (event && event->eventfd && !IS_ERR(event->eventfd))
3956 		eventfd_ctx_put(event->eventfd);
3957 
3958 	if (!IS_ERR_OR_NULL(efile))
3959 		fput(efile);
3960 
3961 	kfree(event);
3962 
3963 	return ret;
3964 }
3965 
cgroup_clone_children_read(struct cgroup * cgrp,struct cftype * cft)3966 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3967 				    struct cftype *cft)
3968 {
3969 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3970 }
3971 
cgroup_clone_children_write(struct cgroup * cgrp,struct cftype * cft,u64 val)3972 static int cgroup_clone_children_write(struct cgroup *cgrp,
3973 				     struct cftype *cft,
3974 				     u64 val)
3975 {
3976 	if (val)
3977 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3978 	else
3979 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3980 	return 0;
3981 }
3982 
3983 /*
3984  * for the common functions, 'private' gives the type of file
3985  */
3986 /* for hysterical raisins, we can't put this on the older files */
3987 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3988 static struct cftype files[] = {
3989 	{
3990 		.name = "tasks",
3991 		.open = cgroup_tasks_open,
3992 		.write_u64 = cgroup_tasks_write,
3993 		.release = cgroup_pidlist_release,
3994 		.mode = S_IRUGO | S_IWUSR,
3995 	},
3996 	{
3997 		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3998 		.open = cgroup_procs_open,
3999 		.write_u64 = cgroup_procs_write,
4000 		.release = cgroup_pidlist_release,
4001 		.mode = S_IRUGO | S_IWUSR,
4002 	},
4003 	{
4004 		.name = "notify_on_release",
4005 		.read_u64 = cgroup_read_notify_on_release,
4006 		.write_u64 = cgroup_write_notify_on_release,
4007 	},
4008 	{
4009 		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
4010 		.write_string = cgroup_write_event_control,
4011 		.mode = S_IWUGO,
4012 	},
4013 	{
4014 		.name = "cgroup.clone_children",
4015 		.flags = CFTYPE_INSANE,
4016 		.read_u64 = cgroup_clone_children_read,
4017 		.write_u64 = cgroup_clone_children_write,
4018 	},
4019 	{
4020 		.name = "cgroup.sane_behavior",
4021 		.flags = CFTYPE_ONLY_ON_ROOT,
4022 		.read_seq_string = cgroup_sane_behavior_show,
4023 	},
4024 	{
4025 		.name = "release_agent",
4026 		.flags = CFTYPE_ONLY_ON_ROOT,
4027 		.read_seq_string = cgroup_release_agent_show,
4028 		.write_string = cgroup_release_agent_write,
4029 		.max_write_len = PATH_MAX,
4030 	},
4031 	{ }	/* terminate */
4032 };
4033 
4034 /**
4035  * cgroup_populate_dir - selectively creation of files in a directory
4036  * @cgrp: target cgroup
4037  * @base_files: true if the base files should be added
4038  * @subsys_mask: mask of the subsystem ids whose files should be added
4039  */
cgroup_populate_dir(struct cgroup * cgrp,bool base_files,unsigned long subsys_mask)4040 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4041 			       unsigned long subsys_mask)
4042 {
4043 	int err;
4044 	struct cgroup_subsys *ss;
4045 
4046 	if (base_files) {
4047 		err = cgroup_addrm_files(cgrp, NULL, files, true);
4048 		if (err < 0)
4049 			return err;
4050 	}
4051 
4052 	/* process cftsets of each subsystem */
4053 	for_each_subsys(cgrp->root, ss) {
4054 		struct cftype_set *set;
4055 		if (!test_bit(ss->subsys_id, &subsys_mask))
4056 			continue;
4057 
4058 		list_for_each_entry(set, &ss->cftsets, node)
4059 			cgroup_addrm_files(cgrp, ss, set->cfts, true);
4060 	}
4061 
4062 	/* This cgroup is ready now */
4063 	for_each_subsys(cgrp->root, ss) {
4064 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4065 		/*
4066 		 * Update id->css pointer and make this css visible from
4067 		 * CSS ID functions. This pointer will be dereferened
4068 		 * from RCU-read-side without locks.
4069 		 */
4070 		if (css->id)
4071 			rcu_assign_pointer(css->id->css, css);
4072 	}
4073 
4074 	return 0;
4075 }
4076 
css_dput_fn(struct work_struct * work)4077 static void css_dput_fn(struct work_struct *work)
4078 {
4079 	struct cgroup_subsys_state *css =
4080 		container_of(work, struct cgroup_subsys_state, dput_work);
4081 	struct dentry *dentry = css->cgroup->dentry;
4082 	struct super_block *sb = dentry->d_sb;
4083 
4084 	atomic_inc(&sb->s_active);
4085 	dput(dentry);
4086 	deactivate_super(sb);
4087 }
4088 
init_cgroup_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4089 static void init_cgroup_css(struct cgroup_subsys_state *css,
4090 			       struct cgroup_subsys *ss,
4091 			       struct cgroup *cgrp)
4092 {
4093 	css->cgroup = cgrp;
4094 	atomic_set(&css->refcnt, 1);
4095 	css->flags = 0;
4096 	css->id = NULL;
4097 	if (cgrp == dummytop)
4098 		css->flags |= CSS_ROOT;
4099 	BUG_ON(cgrp->subsys[ss->subsys_id]);
4100 	cgrp->subsys[ss->subsys_id] = css;
4101 
4102 	/*
4103 	 * css holds an extra ref to @cgrp->dentry which is put on the last
4104 	 * css_put().  dput() requires process context, which css_put() may
4105 	 * be called without.  @css->dput_work will be used to invoke
4106 	 * dput() asynchronously from css_put().
4107 	 */
4108 	INIT_WORK(&css->dput_work, css_dput_fn);
4109 }
4110 
4111 /* invoke ->post_create() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys * ss,struct cgroup * cgrp)4112 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4113 {
4114 	int ret = 0;
4115 
4116 	lockdep_assert_held(&cgroup_mutex);
4117 
4118 	if (ss->css_online)
4119 		ret = ss->css_online(cgrp);
4120 	if (!ret)
4121 		cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4122 	return ret;
4123 }
4124 
4125 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
offline_css(struct cgroup_subsys * ss,struct cgroup * cgrp)4126 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4127 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4128 {
4129 	struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4130 
4131 	lockdep_assert_held(&cgroup_mutex);
4132 
4133 	if (!(css->flags & CSS_ONLINE))
4134 		return;
4135 
4136 	if (ss->css_offline)
4137 		ss->css_offline(cgrp);
4138 
4139 	cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4140 }
4141 
4142 /*
4143  * cgroup_create - create a cgroup
4144  * @parent: cgroup that will be parent of the new cgroup
4145  * @dentry: dentry of the new cgroup
4146  * @mode: mode to set on new inode
4147  *
4148  * Must be called with the mutex on the parent inode held
4149  */
cgroup_create(struct cgroup * parent,struct dentry * dentry,umode_t mode)4150 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4151 			     umode_t mode)
4152 {
4153 	struct cgroup *cgrp;
4154 	struct cgroup_name *name;
4155 	struct cgroupfs_root *root = parent->root;
4156 	int err = 0;
4157 	struct cgroup_subsys *ss;
4158 	struct super_block *sb = root->sb;
4159 
4160 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4161 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4162 	if (!cgrp)
4163 		return -ENOMEM;
4164 
4165 	name = cgroup_alloc_name(dentry);
4166 	if (!name)
4167 		goto err_free_cgrp;
4168 	rcu_assign_pointer(cgrp->name, name);
4169 
4170 	cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4171 	if (cgrp->id < 0)
4172 		goto err_free_name;
4173 
4174 	/*
4175 	 * Only live parents can have children.  Note that the liveliness
4176 	 * check isn't strictly necessary because cgroup_mkdir() and
4177 	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4178 	 * anyway so that locking is contained inside cgroup proper and we
4179 	 * don't get nasty surprises if we ever grow another caller.
4180 	 */
4181 	if (!cgroup_lock_live_group(parent)) {
4182 		err = -ENODEV;
4183 		goto err_free_id;
4184 	}
4185 
4186 	/* Grab a reference on the superblock so the hierarchy doesn't
4187 	 * get deleted on unmount if there are child cgroups.  This
4188 	 * can be done outside cgroup_mutex, since the sb can't
4189 	 * disappear while someone has an open control file on the
4190 	 * fs */
4191 	atomic_inc(&sb->s_active);
4192 
4193 	init_cgroup_housekeeping(cgrp);
4194 
4195 	dentry->d_fsdata = cgrp;
4196 	cgrp->dentry = dentry;
4197 
4198 	cgrp->parent = parent;
4199 	cgrp->root = parent->root;
4200 
4201 	if (notify_on_release(parent))
4202 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4203 
4204 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4205 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4206 
4207 	for_each_subsys(root, ss) {
4208 		struct cgroup_subsys_state *css;
4209 
4210 		css = ss->css_alloc(cgrp);
4211 		if (IS_ERR(css)) {
4212 			err = PTR_ERR(css);
4213 			goto err_free_all;
4214 		}
4215 		init_cgroup_css(css, ss, cgrp);
4216 		if (ss->use_id) {
4217 			err = alloc_css_id(ss, parent, cgrp);
4218 			if (err)
4219 				goto err_free_all;
4220 		}
4221 	}
4222 
4223 	/*
4224 	 * Create directory.  cgroup_create_file() returns with the new
4225 	 * directory locked on success so that it can be populated without
4226 	 * dropping cgroup_mutex.
4227 	 */
4228 	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4229 	if (err < 0)
4230 		goto err_free_all;
4231 	lockdep_assert_held(&dentry->d_inode->i_mutex);
4232 
4233 	/* allocation complete, commit to creation */
4234 	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4235 	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4236 	root->number_of_cgroups++;
4237 
4238 	/* each css holds a ref to the cgroup's dentry */
4239 	for_each_subsys(root, ss)
4240 		dget(dentry);
4241 
4242 	/* hold a ref to the parent's dentry */
4243 	dget(parent->dentry);
4244 
4245 	/* creation succeeded, notify subsystems */
4246 	for_each_subsys(root, ss) {
4247 		err = online_css(ss, cgrp);
4248 		if (err)
4249 			goto err_destroy;
4250 
4251 		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4252 		    parent->parent) {
4253 			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4254 				   current->comm, current->pid, ss->name);
4255 			if (!strcmp(ss->name, "memory"))
4256 				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4257 			ss->warned_broken_hierarchy = true;
4258 		}
4259 	}
4260 
4261 	err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4262 	if (err)
4263 		goto err_destroy;
4264 
4265 	mutex_unlock(&cgroup_mutex);
4266 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4267 
4268 	return 0;
4269 
4270 err_free_all:
4271 	for_each_subsys(root, ss) {
4272 		if (cgrp->subsys[ss->subsys_id])
4273 			ss->css_free(cgrp);
4274 	}
4275 	mutex_unlock(&cgroup_mutex);
4276 	/* Release the reference count that we took on the superblock */
4277 	deactivate_super(sb);
4278 err_free_id:
4279 	ida_simple_remove(&root->cgroup_ida, cgrp->id);
4280 err_free_name:
4281 	kfree(rcu_dereference_raw(cgrp->name));
4282 err_free_cgrp:
4283 	kfree(cgrp);
4284 	return err;
4285 
4286 err_destroy:
4287 	cgroup_destroy_locked(cgrp);
4288 	mutex_unlock(&cgroup_mutex);
4289 	mutex_unlock(&dentry->d_inode->i_mutex);
4290 	return err;
4291 }
4292 
cgroup_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)4293 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4294 {
4295 	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4296 
4297 	/* the vfs holds inode->i_mutex already */
4298 	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4299 }
4300 
cgroup_destroy_locked(struct cgroup * cgrp)4301 static int cgroup_destroy_locked(struct cgroup *cgrp)
4302 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4303 {
4304 	struct dentry *d = cgrp->dentry;
4305 	struct cgroup *parent = cgrp->parent;
4306 	struct cgroup_event *event, *tmp;
4307 	struct cgroup_subsys *ss;
4308 
4309 	lockdep_assert_held(&d->d_inode->i_mutex);
4310 	lockdep_assert_held(&cgroup_mutex);
4311 
4312 	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4313 		return -EBUSY;
4314 
4315 	/*
4316 	 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4317 	 * removed.  This makes future css_tryget() and child creation
4318 	 * attempts fail thus maintaining the removal conditions verified
4319 	 * above.
4320 	 */
4321 	for_each_subsys(cgrp->root, ss) {
4322 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4323 
4324 		WARN_ON(atomic_read(&css->refcnt) < 0);
4325 		atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4326 	}
4327 	set_bit(CGRP_REMOVED, &cgrp->flags);
4328 
4329 	/* tell subsystems to initate destruction */
4330 	for_each_subsys(cgrp->root, ss)
4331 		offline_css(ss, cgrp);
4332 
4333 	/*
4334 	 * Put all the base refs.  Each css holds an extra reference to the
4335 	 * cgroup's dentry and cgroup removal proceeds regardless of css
4336 	 * refs.  On the last put of each css, whenever that may be, the
4337 	 * extra dentry ref is put so that dentry destruction happens only
4338 	 * after all css's are released.
4339 	 */
4340 	for_each_subsys(cgrp->root, ss)
4341 		css_put(cgrp->subsys[ss->subsys_id]);
4342 
4343 	raw_spin_lock(&release_list_lock);
4344 	if (!list_empty(&cgrp->release_list))
4345 		list_del_init(&cgrp->release_list);
4346 	raw_spin_unlock(&release_list_lock);
4347 
4348 	/* delete this cgroup from parent->children */
4349 	list_del_rcu(&cgrp->sibling);
4350 	list_del_init(&cgrp->allcg_node);
4351 
4352 	dget(d);
4353 	cgroup_d_remove_dir(d);
4354 	dput(d);
4355 
4356 	set_bit(CGRP_RELEASABLE, &parent->flags);
4357 	check_for_release(parent);
4358 
4359 	/*
4360 	 * Unregister events and notify userspace.
4361 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4362 	 * directory to avoid race between userspace and kernelspace.
4363 	 */
4364 	spin_lock(&cgrp->event_list_lock);
4365 	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4366 		list_del_init(&event->list);
4367 		schedule_work(&event->remove);
4368 	}
4369 	spin_unlock(&cgrp->event_list_lock);
4370 
4371 	return 0;
4372 }
4373 
cgroup_rmdir(struct inode * unused_dir,struct dentry * dentry)4374 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4375 {
4376 	int ret;
4377 
4378 	mutex_lock(&cgroup_mutex);
4379 	ret = cgroup_destroy_locked(dentry->d_fsdata);
4380 	mutex_unlock(&cgroup_mutex);
4381 
4382 	return ret;
4383 }
4384 
cgroup_init_cftsets(struct cgroup_subsys * ss)4385 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4386 {
4387 	INIT_LIST_HEAD(&ss->cftsets);
4388 
4389 	/*
4390 	 * base_cftset is embedded in subsys itself, no need to worry about
4391 	 * deregistration.
4392 	 */
4393 	if (ss->base_cftypes) {
4394 		ss->base_cftset.cfts = ss->base_cftypes;
4395 		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4396 	}
4397 }
4398 
cgroup_init_subsys(struct cgroup_subsys * ss)4399 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4400 {
4401 	struct cgroup_subsys_state *css;
4402 
4403 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4404 
4405 	mutex_lock(&cgroup_mutex);
4406 
4407 	/* init base cftset */
4408 	cgroup_init_cftsets(ss);
4409 
4410 	/* Create the top cgroup state for this subsystem */
4411 	list_add(&ss->sibling, &rootnode.subsys_list);
4412 	ss->root = &rootnode;
4413 	css = ss->css_alloc(dummytop);
4414 	/* We don't handle early failures gracefully */
4415 	BUG_ON(IS_ERR(css));
4416 	init_cgroup_css(css, ss, dummytop);
4417 
4418 	/* Update the init_css_set to contain a subsys
4419 	 * pointer to this state - since the subsystem is
4420 	 * newly registered, all tasks and hence the
4421 	 * init_css_set is in the subsystem's top cgroup. */
4422 	init_css_set.subsys[ss->subsys_id] = css;
4423 
4424 	need_forkexit_callback |= ss->fork || ss->exit;
4425 
4426 	/* At system boot, before all subsystems have been
4427 	 * registered, no tasks have been forked, so we don't
4428 	 * need to invoke fork callbacks here. */
4429 	BUG_ON(!list_empty(&init_task.tasks));
4430 
4431 	BUG_ON(online_css(ss, dummytop));
4432 
4433 	mutex_unlock(&cgroup_mutex);
4434 
4435 	/* this function shouldn't be used with modular subsystems, since they
4436 	 * need to register a subsys_id, among other things */
4437 	BUG_ON(ss->module);
4438 }
4439 
4440 /**
4441  * cgroup_load_subsys: load and register a modular subsystem at runtime
4442  * @ss: the subsystem to load
4443  *
4444  * This function should be called in a modular subsystem's initcall. If the
4445  * subsystem is built as a module, it will be assigned a new subsys_id and set
4446  * up for use. If the subsystem is built-in anyway, work is delegated to the
4447  * simpler cgroup_init_subsys.
4448  */
cgroup_load_subsys(struct cgroup_subsys * ss)4449 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4450 {
4451 	struct cgroup_subsys_state *css;
4452 	int i, ret;
4453 	struct hlist_node *tmp;
4454 	struct css_set *cg;
4455 	unsigned long key;
4456 
4457 	/* check name and function validity */
4458 	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4459 	    ss->css_alloc == NULL || ss->css_free == NULL)
4460 		return -EINVAL;
4461 
4462 	/*
4463 	 * we don't support callbacks in modular subsystems. this check is
4464 	 * before the ss->module check for consistency; a subsystem that could
4465 	 * be a module should still have no callbacks even if the user isn't
4466 	 * compiling it as one.
4467 	 */
4468 	if (ss->fork || ss->exit)
4469 		return -EINVAL;
4470 
4471 	/*
4472 	 * an optionally modular subsystem is built-in: we want to do nothing,
4473 	 * since cgroup_init_subsys will have already taken care of it.
4474 	 */
4475 	if (ss->module == NULL) {
4476 		/* a sanity check */
4477 		BUG_ON(subsys[ss->subsys_id] != ss);
4478 		return 0;
4479 	}
4480 
4481 	/* init base cftset */
4482 	cgroup_init_cftsets(ss);
4483 
4484 	mutex_lock(&cgroup_mutex);
4485 	subsys[ss->subsys_id] = ss;
4486 
4487 	/*
4488 	 * no ss->css_alloc seems to need anything important in the ss
4489 	 * struct, so this can happen first (i.e. before the rootnode
4490 	 * attachment).
4491 	 */
4492 	css = ss->css_alloc(dummytop);
4493 	if (IS_ERR(css)) {
4494 		/* failure case - need to deassign the subsys[] slot. */
4495 		subsys[ss->subsys_id] = NULL;
4496 		mutex_unlock(&cgroup_mutex);
4497 		return PTR_ERR(css);
4498 	}
4499 
4500 	list_add(&ss->sibling, &rootnode.subsys_list);
4501 	ss->root = &rootnode;
4502 
4503 	/* our new subsystem will be attached to the dummy hierarchy. */
4504 	init_cgroup_css(css, ss, dummytop);
4505 	/* init_idr must be after init_cgroup_css because it sets css->id. */
4506 	if (ss->use_id) {
4507 		ret = cgroup_init_idr(ss, css);
4508 		if (ret)
4509 			goto err_unload;
4510 	}
4511 
4512 	/*
4513 	 * Now we need to entangle the css into the existing css_sets. unlike
4514 	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4515 	 * will need a new pointer to it; done by iterating the css_set_table.
4516 	 * furthermore, modifying the existing css_sets will corrupt the hash
4517 	 * table state, so each changed css_set will need its hash recomputed.
4518 	 * this is all done under the css_set_lock.
4519 	 */
4520 	write_lock(&css_set_lock);
4521 	hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
4522 		/* skip entries that we already rehashed */
4523 		if (cg->subsys[ss->subsys_id])
4524 			continue;
4525 		/* remove existing entry */
4526 		hash_del(&cg->hlist);
4527 		/* set new value */
4528 		cg->subsys[ss->subsys_id] = css;
4529 		/* recompute hash and restore entry */
4530 		key = css_set_hash(cg->subsys);
4531 		hash_add(css_set_table, &cg->hlist, key);
4532 	}
4533 	write_unlock(&css_set_lock);
4534 
4535 	ret = online_css(ss, dummytop);
4536 	if (ret)
4537 		goto err_unload;
4538 
4539 	/* success! */
4540 	mutex_unlock(&cgroup_mutex);
4541 	return 0;
4542 
4543 err_unload:
4544 	mutex_unlock(&cgroup_mutex);
4545 	/* @ss can't be mounted here as try_module_get() would fail */
4546 	cgroup_unload_subsys(ss);
4547 	return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4550 
4551 /**
4552  * cgroup_unload_subsys: unload a modular subsystem
4553  * @ss: the subsystem to unload
4554  *
4555  * This function should be called in a modular subsystem's exitcall. When this
4556  * function is invoked, the refcount on the subsystem's module will be 0, so
4557  * the subsystem will not be attached to any hierarchy.
4558  */
cgroup_unload_subsys(struct cgroup_subsys * ss)4559 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4560 {
4561 	struct cg_cgroup_link *link;
4562 
4563 	BUG_ON(ss->module == NULL);
4564 
4565 	/*
4566 	 * we shouldn't be called if the subsystem is in use, and the use of
4567 	 * try_module_get in parse_cgroupfs_options should ensure that it
4568 	 * doesn't start being used while we're killing it off.
4569 	 */
4570 	BUG_ON(ss->root != &rootnode);
4571 
4572 	mutex_lock(&cgroup_mutex);
4573 
4574 	offline_css(ss, dummytop);
4575 
4576 	if (ss->use_id)
4577 		idr_destroy(&ss->idr);
4578 
4579 	/* deassign the subsys_id */
4580 	subsys[ss->subsys_id] = NULL;
4581 
4582 	/* remove subsystem from rootnode's list of subsystems */
4583 	list_del_init(&ss->sibling);
4584 
4585 	/*
4586 	 * disentangle the css from all css_sets attached to the dummytop. as
4587 	 * in loading, we need to pay our respects to the hashtable gods.
4588 	 */
4589 	write_lock(&css_set_lock);
4590 	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4591 		struct css_set *cg = link->cg;
4592 		unsigned long key;
4593 
4594 		hash_del(&cg->hlist);
4595 		cg->subsys[ss->subsys_id] = NULL;
4596 		key = css_set_hash(cg->subsys);
4597 		hash_add(css_set_table, &cg->hlist, key);
4598 	}
4599 	write_unlock(&css_set_lock);
4600 
4601 	/*
4602 	 * remove subsystem's css from the dummytop and free it - need to
4603 	 * free before marking as null because ss->css_free needs the
4604 	 * cgrp->subsys pointer to find their state. note that this also
4605 	 * takes care of freeing the css_id.
4606 	 */
4607 	ss->css_free(dummytop);
4608 	dummytop->subsys[ss->subsys_id] = NULL;
4609 
4610 	mutex_unlock(&cgroup_mutex);
4611 }
4612 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4613 
4614 /**
4615  * cgroup_init_early - cgroup initialization at system boot
4616  *
4617  * Initialize cgroups at system boot, and initialize any
4618  * subsystems that request early init.
4619  */
cgroup_init_early(void)4620 int __init cgroup_init_early(void)
4621 {
4622 	int i;
4623 	atomic_set(&init_css_set.refcount, 1);
4624 	INIT_LIST_HEAD(&init_css_set.cg_links);
4625 	INIT_LIST_HEAD(&init_css_set.tasks);
4626 	INIT_HLIST_NODE(&init_css_set.hlist);
4627 	css_set_count = 1;
4628 	init_cgroup_root(&rootnode);
4629 	root_count = 1;
4630 	init_task.cgroups = &init_css_set;
4631 
4632 	init_css_set_link.cg = &init_css_set;
4633 	init_css_set_link.cgrp = dummytop;
4634 	list_add(&init_css_set_link.cgrp_link_list,
4635 		 &rootnode.top_cgroup.css_sets);
4636 	list_add(&init_css_set_link.cg_link_list,
4637 		 &init_css_set.cg_links);
4638 
4639 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4640 		struct cgroup_subsys *ss = subsys[i];
4641 
4642 		/* at bootup time, we don't worry about modular subsystems */
4643 		if (!ss || ss->module)
4644 			continue;
4645 
4646 		BUG_ON(!ss->name);
4647 		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4648 		BUG_ON(!ss->css_alloc);
4649 		BUG_ON(!ss->css_free);
4650 		if (ss->subsys_id != i) {
4651 			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4652 			       ss->name, ss->subsys_id);
4653 			BUG();
4654 		}
4655 
4656 		if (ss->early_init)
4657 			cgroup_init_subsys(ss);
4658 	}
4659 	return 0;
4660 }
4661 
4662 /**
4663  * cgroup_init - cgroup initialization
4664  *
4665  * Register cgroup filesystem and /proc file, and initialize
4666  * any subsystems that didn't request early init.
4667  */
cgroup_init(void)4668 int __init cgroup_init(void)
4669 {
4670 	int err;
4671 	int i;
4672 	unsigned long key;
4673 
4674 	err = bdi_init(&cgroup_backing_dev_info);
4675 	if (err)
4676 		return err;
4677 
4678 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4679 		struct cgroup_subsys *ss = subsys[i];
4680 
4681 		/* at bootup time, we don't worry about modular subsystems */
4682 		if (!ss || ss->module)
4683 			continue;
4684 		if (!ss->early_init)
4685 			cgroup_init_subsys(ss);
4686 		if (ss->use_id)
4687 			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4688 	}
4689 
4690 	/* Add init_css_set to the hash table */
4691 	key = css_set_hash(init_css_set.subsys);
4692 	hash_add(css_set_table, &init_css_set.hlist, key);
4693 	BUG_ON(!init_root_id(&rootnode));
4694 
4695 	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4696 	if (!cgroup_kobj) {
4697 		err = -ENOMEM;
4698 		goto out;
4699 	}
4700 
4701 	err = register_filesystem(&cgroup_fs_type);
4702 	if (err < 0) {
4703 		kobject_put(cgroup_kobj);
4704 		goto out;
4705 	}
4706 
4707 	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4708 
4709 out:
4710 	if (err)
4711 		bdi_destroy(&cgroup_backing_dev_info);
4712 
4713 	return err;
4714 }
4715 
4716 /*
4717  * proc_cgroup_show()
4718  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4719  *  - Used for /proc/<pid>/cgroup.
4720  *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4721  *    doesn't really matter if tsk->cgroup changes after we read it,
4722  *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4723  *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4724  *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4725  *    cgroup to top_cgroup.
4726  */
4727 
4728 /* TODO: Use a proper seq_file iterator */
proc_cgroup_show(struct seq_file * m,void * v)4729 int proc_cgroup_show(struct seq_file *m, void *v)
4730 {
4731 	struct pid *pid;
4732 	struct task_struct *tsk;
4733 	char *buf;
4734 	int retval;
4735 	struct cgroupfs_root *root;
4736 
4737 	retval = -ENOMEM;
4738 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4739 	if (!buf)
4740 		goto out;
4741 
4742 	retval = -ESRCH;
4743 	pid = m->private;
4744 	tsk = get_pid_task(pid, PIDTYPE_PID);
4745 	if (!tsk)
4746 		goto out_free;
4747 
4748 	retval = 0;
4749 
4750 	mutex_lock(&cgroup_mutex);
4751 
4752 	for_each_active_root(root) {
4753 		struct cgroup_subsys *ss;
4754 		struct cgroup *cgrp;
4755 		int count = 0;
4756 
4757 		seq_printf(m, "%d:", root->hierarchy_id);
4758 		for_each_subsys(root, ss)
4759 			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4760 		if (strlen(root->name))
4761 			seq_printf(m, "%sname=%s", count ? "," : "",
4762 				   root->name);
4763 		seq_putc(m, ':');
4764 		cgrp = task_cgroup_from_root(tsk, root);
4765 		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4766 		if (retval < 0)
4767 			goto out_unlock;
4768 		seq_puts(m, buf);
4769 		seq_putc(m, '\n');
4770 	}
4771 
4772 out_unlock:
4773 	mutex_unlock(&cgroup_mutex);
4774 	put_task_struct(tsk);
4775 out_free:
4776 	kfree(buf);
4777 out:
4778 	return retval;
4779 }
4780 
4781 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)4782 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4783 {
4784 	int i;
4785 
4786 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4787 	/*
4788 	 * ideally we don't want subsystems moving around while we do this.
4789 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4790 	 * subsys/hierarchy state.
4791 	 */
4792 	mutex_lock(&cgroup_mutex);
4793 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4794 		struct cgroup_subsys *ss = subsys[i];
4795 		if (ss == NULL)
4796 			continue;
4797 		seq_printf(m, "%s\t%d\t%d\t%d\n",
4798 			   ss->name, ss->root->hierarchy_id,
4799 			   ss->root->number_of_cgroups, !ss->disabled);
4800 	}
4801 	mutex_unlock(&cgroup_mutex);
4802 	return 0;
4803 }
4804 
cgroupstats_open(struct inode * inode,struct file * file)4805 static int cgroupstats_open(struct inode *inode, struct file *file)
4806 {
4807 	return single_open(file, proc_cgroupstats_show, NULL);
4808 }
4809 
4810 static const struct file_operations proc_cgroupstats_operations = {
4811 	.open = cgroupstats_open,
4812 	.read = seq_read,
4813 	.llseek = seq_lseek,
4814 	.release = single_release,
4815 };
4816 
4817 /**
4818  * cgroup_fork - attach newly forked task to its parents cgroup.
4819  * @child: pointer to task_struct of forking parent process.
4820  *
4821  * Description: A task inherits its parent's cgroup at fork().
4822  *
4823  * A pointer to the shared css_set was automatically copied in
4824  * fork.c by dup_task_struct().  However, we ignore that copy, since
4825  * it was not made under the protection of RCU or cgroup_mutex, so
4826  * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4827  * have already changed current->cgroups, allowing the previously
4828  * referenced cgroup group to be removed and freed.
4829  *
4830  * At the point that cgroup_fork() is called, 'current' is the parent
4831  * task, and the passed argument 'child' points to the child task.
4832  */
cgroup_fork(struct task_struct * child)4833 void cgroup_fork(struct task_struct *child)
4834 {
4835 	task_lock(current);
4836 	child->cgroups = current->cgroups;
4837 	get_css_set(child->cgroups);
4838 	task_unlock(current);
4839 	INIT_LIST_HEAD(&child->cg_list);
4840 }
4841 
4842 /**
4843  * cgroup_post_fork - called on a new task after adding it to the task list
4844  * @child: the task in question
4845  *
4846  * Adds the task to the list running through its css_set if necessary and
4847  * call the subsystem fork() callbacks.  Has to be after the task is
4848  * visible on the task list in case we race with the first call to
4849  * cgroup_iter_start() - to guarantee that the new task ends up on its
4850  * list.
4851  */
cgroup_post_fork(struct task_struct * child)4852 void cgroup_post_fork(struct task_struct *child)
4853 {
4854 	int i;
4855 
4856 	/*
4857 	 * use_task_css_set_links is set to 1 before we walk the tasklist
4858 	 * under the tasklist_lock and we read it here after we added the child
4859 	 * to the tasklist under the tasklist_lock as well. If the child wasn't
4860 	 * yet in the tasklist when we walked through it from
4861 	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4862 	 * should be visible now due to the paired locking and barriers implied
4863 	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4864 	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4865 	 * lock on fork.
4866 	 */
4867 	if (use_task_css_set_links) {
4868 		write_lock(&css_set_lock);
4869 		task_lock(child);
4870 		if (list_empty(&child->cg_list))
4871 			list_add(&child->cg_list, &child->cgroups->tasks);
4872 		task_unlock(child);
4873 		write_unlock(&css_set_lock);
4874 	}
4875 
4876 	/*
4877 	 * Call ss->fork().  This must happen after @child is linked on
4878 	 * css_set; otherwise, @child might change state between ->fork()
4879 	 * and addition to css_set.
4880 	 */
4881 	if (need_forkexit_callback) {
4882 		/*
4883 		 * fork/exit callbacks are supported only for builtin
4884 		 * subsystems, and the builtin section of the subsys
4885 		 * array is immutable, so we don't need to lock the
4886 		 * subsys array here. On the other hand, modular section
4887 		 * of the array can be freed at module unload, so we
4888 		 * can't touch that.
4889 		 */
4890 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4891 			struct cgroup_subsys *ss = subsys[i];
4892 
4893 			if (ss->fork)
4894 				ss->fork(child);
4895 		}
4896 	}
4897 }
4898 
4899 /**
4900  * cgroup_exit - detach cgroup from exiting task
4901  * @tsk: pointer to task_struct of exiting process
4902  * @run_callback: run exit callbacks?
4903  *
4904  * Description: Detach cgroup from @tsk and release it.
4905  *
4906  * Note that cgroups marked notify_on_release force every task in
4907  * them to take the global cgroup_mutex mutex when exiting.
4908  * This could impact scaling on very large systems.  Be reluctant to
4909  * use notify_on_release cgroups where very high task exit scaling
4910  * is required on large systems.
4911  *
4912  * the_top_cgroup_hack:
4913  *
4914  *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4915  *
4916  *    We call cgroup_exit() while the task is still competent to
4917  *    handle notify_on_release(), then leave the task attached to the
4918  *    root cgroup in each hierarchy for the remainder of its exit.
4919  *
4920  *    To do this properly, we would increment the reference count on
4921  *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4922  *    code we would add a second cgroup function call, to drop that
4923  *    reference.  This would just create an unnecessary hot spot on
4924  *    the top_cgroup reference count, to no avail.
4925  *
4926  *    Normally, holding a reference to a cgroup without bumping its
4927  *    count is unsafe.   The cgroup could go away, or someone could
4928  *    attach us to a different cgroup, decrementing the count on
4929  *    the first cgroup that we never incremented.  But in this case,
4930  *    top_cgroup isn't going away, and either task has PF_EXITING set,
4931  *    which wards off any cgroup_attach_task() attempts, or task is a failed
4932  *    fork, never visible to cgroup_attach_task.
4933  */
cgroup_exit(struct task_struct * tsk,int run_callbacks)4934 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4935 {
4936 	struct css_set *cg;
4937 	int i;
4938 
4939 	/*
4940 	 * Unlink from the css_set task list if necessary.
4941 	 * Optimistically check cg_list before taking
4942 	 * css_set_lock
4943 	 */
4944 	if (!list_empty(&tsk->cg_list)) {
4945 		write_lock(&css_set_lock);
4946 		if (!list_empty(&tsk->cg_list))
4947 			list_del_init(&tsk->cg_list);
4948 		write_unlock(&css_set_lock);
4949 	}
4950 
4951 	/* Reassign the task to the init_css_set. */
4952 	task_lock(tsk);
4953 	cg = tsk->cgroups;
4954 	tsk->cgroups = &init_css_set;
4955 
4956 	if (run_callbacks && need_forkexit_callback) {
4957 		/*
4958 		 * fork/exit callbacks are supported only for builtin
4959 		 * subsystems, see cgroup_post_fork() for details.
4960 		 */
4961 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4962 			struct cgroup_subsys *ss = subsys[i];
4963 
4964 			if (ss->exit) {
4965 				struct cgroup *old_cgrp =
4966 					rcu_dereference_raw(cg->subsys[i])->cgroup;
4967 				struct cgroup *cgrp = task_cgroup(tsk, i);
4968 				ss->exit(cgrp, old_cgrp, tsk);
4969 			}
4970 		}
4971 	}
4972 	task_unlock(tsk);
4973 
4974 	put_css_set_taskexit(cg);
4975 }
4976 
check_for_release(struct cgroup * cgrp)4977 static void check_for_release(struct cgroup *cgrp)
4978 {
4979 	/* All of these checks rely on RCU to keep the cgroup
4980 	 * structure alive */
4981 	if (cgroup_is_releasable(cgrp) &&
4982 	    !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4983 		/*
4984 		 * Control Group is currently removeable. If it's not
4985 		 * already queued for a userspace notification, queue
4986 		 * it now
4987 		 */
4988 		int need_schedule_work = 0;
4989 
4990 		raw_spin_lock(&release_list_lock);
4991 		if (!cgroup_is_removed(cgrp) &&
4992 		    list_empty(&cgrp->release_list)) {
4993 			list_add(&cgrp->release_list, &release_list);
4994 			need_schedule_work = 1;
4995 		}
4996 		raw_spin_unlock(&release_list_lock);
4997 		if (need_schedule_work)
4998 			schedule_work(&release_agent_work);
4999 	}
5000 }
5001 
5002 /* Caller must verify that the css is not for root cgroup */
__css_tryget(struct cgroup_subsys_state * css)5003 bool __css_tryget(struct cgroup_subsys_state *css)
5004 {
5005 	while (true) {
5006 		int t, v;
5007 
5008 		v = css_refcnt(css);
5009 		t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5010 		if (likely(t == v))
5011 			return true;
5012 		else if (t < 0)
5013 			return false;
5014 		cpu_relax();
5015 	}
5016 }
5017 EXPORT_SYMBOL_GPL(__css_tryget);
5018 
5019 /* Caller must verify that the css is not for root cgroup */
__css_put(struct cgroup_subsys_state * css)5020 void __css_put(struct cgroup_subsys_state *css)
5021 {
5022 	int v;
5023 
5024 	v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5025 	if (v == 0)
5026 		schedule_work(&css->dput_work);
5027 }
5028 EXPORT_SYMBOL_GPL(__css_put);
5029 
5030 /*
5031  * Notify userspace when a cgroup is released, by running the
5032  * configured release agent with the name of the cgroup (path
5033  * relative to the root of cgroup file system) as the argument.
5034  *
5035  * Most likely, this user command will try to rmdir this cgroup.
5036  *
5037  * This races with the possibility that some other task will be
5038  * attached to this cgroup before it is removed, or that some other
5039  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
5040  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5041  * unused, and this cgroup will be reprieved from its death sentence,
5042  * to continue to serve a useful existence.  Next time it's released,
5043  * we will get notified again, if it still has 'notify_on_release' set.
5044  *
5045  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5046  * means only wait until the task is successfully execve()'d.  The
5047  * separate release agent task is forked by call_usermodehelper(),
5048  * then control in this thread returns here, without waiting for the
5049  * release agent task.  We don't bother to wait because the caller of
5050  * this routine has no use for the exit status of the release agent
5051  * task, so no sense holding our caller up for that.
5052  */
cgroup_release_agent(struct work_struct * work)5053 static void cgroup_release_agent(struct work_struct *work)
5054 {
5055 	BUG_ON(work != &release_agent_work);
5056 	mutex_lock(&cgroup_mutex);
5057 	raw_spin_lock(&release_list_lock);
5058 	while (!list_empty(&release_list)) {
5059 		char *argv[3], *envp[3];
5060 		int i;
5061 		char *pathbuf = NULL, *agentbuf = NULL;
5062 		struct cgroup *cgrp = list_entry(release_list.next,
5063 						    struct cgroup,
5064 						    release_list);
5065 		list_del_init(&cgrp->release_list);
5066 		raw_spin_unlock(&release_list_lock);
5067 		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5068 		if (!pathbuf)
5069 			goto continue_free;
5070 		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5071 			goto continue_free;
5072 		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5073 		if (!agentbuf)
5074 			goto continue_free;
5075 
5076 		i = 0;
5077 		argv[i++] = agentbuf;
5078 		argv[i++] = pathbuf;
5079 		argv[i] = NULL;
5080 
5081 		i = 0;
5082 		/* minimal command environment */
5083 		envp[i++] = "HOME=/";
5084 		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5085 		envp[i] = NULL;
5086 
5087 		/* Drop the lock while we invoke the usermode helper,
5088 		 * since the exec could involve hitting disk and hence
5089 		 * be a slow process */
5090 		mutex_unlock(&cgroup_mutex);
5091 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5092 		mutex_lock(&cgroup_mutex);
5093  continue_free:
5094 		kfree(pathbuf);
5095 		kfree(agentbuf);
5096 		raw_spin_lock(&release_list_lock);
5097 	}
5098 	raw_spin_unlock(&release_list_lock);
5099 	mutex_unlock(&cgroup_mutex);
5100 }
5101 
cgroup_disable(char * str)5102 static int __init cgroup_disable(char *str)
5103 {
5104 	int i;
5105 	char *token;
5106 
5107 	while ((token = strsep(&str, ",")) != NULL) {
5108 		if (!*token)
5109 			continue;
5110 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5111 			struct cgroup_subsys *ss = subsys[i];
5112 
5113 			/*
5114 			 * cgroup_disable, being at boot time, can't
5115 			 * know about module subsystems, so we don't
5116 			 * worry about them.
5117 			 */
5118 			if (!ss || ss->module)
5119 				continue;
5120 
5121 			if (!strcmp(token, ss->name)) {
5122 				ss->disabled = 1;
5123 				printk(KERN_INFO "Disabling %s control group"
5124 					" subsystem\n", ss->name);
5125 				break;
5126 			}
5127 		}
5128 	}
5129 	return 1;
5130 }
5131 __setup("cgroup_disable=", cgroup_disable);
5132 
5133 /*
5134  * Functons for CSS ID.
5135  */
5136 
5137 /*
5138  *To get ID other than 0, this should be called when !cgroup_is_removed().
5139  */
css_id(struct cgroup_subsys_state * css)5140 unsigned short css_id(struct cgroup_subsys_state *css)
5141 {
5142 	struct css_id *cssid;
5143 
5144 	/*
5145 	 * This css_id() can return correct value when somone has refcnt
5146 	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5147 	 * it's unchanged until freed.
5148 	 */
5149 	cssid = rcu_dereference_check(css->id, css_refcnt(css));
5150 
5151 	if (cssid)
5152 		return cssid->id;
5153 	return 0;
5154 }
5155 EXPORT_SYMBOL_GPL(css_id);
5156 
css_depth(struct cgroup_subsys_state * css)5157 unsigned short css_depth(struct cgroup_subsys_state *css)
5158 {
5159 	struct css_id *cssid;
5160 
5161 	cssid = rcu_dereference_check(css->id, css_refcnt(css));
5162 
5163 	if (cssid)
5164 		return cssid->depth;
5165 	return 0;
5166 }
5167 EXPORT_SYMBOL_GPL(css_depth);
5168 
5169 /**
5170  *  css_is_ancestor - test "root" css is an ancestor of "child"
5171  * @child: the css to be tested.
5172  * @root: the css supporsed to be an ancestor of the child.
5173  *
5174  * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5175  * this function reads css->id, the caller must hold rcu_read_lock().
5176  * But, considering usual usage, the csses should be valid objects after test.
5177  * Assuming that the caller will do some action to the child if this returns
5178  * returns true, the caller must take "child";s reference count.
5179  * If "child" is valid object and this returns true, "root" is valid, too.
5180  */
5181 
css_is_ancestor(struct cgroup_subsys_state * child,const struct cgroup_subsys_state * root)5182 bool css_is_ancestor(struct cgroup_subsys_state *child,
5183 		    const struct cgroup_subsys_state *root)
5184 {
5185 	struct css_id *child_id;
5186 	struct css_id *root_id;
5187 
5188 	child_id  = rcu_dereference(child->id);
5189 	if (!child_id)
5190 		return false;
5191 	root_id = rcu_dereference(root->id);
5192 	if (!root_id)
5193 		return false;
5194 	if (child_id->depth < root_id->depth)
5195 		return false;
5196 	if (child_id->stack[root_id->depth] != root_id->id)
5197 		return false;
5198 	return true;
5199 }
5200 
free_css_id(struct cgroup_subsys * ss,struct cgroup_subsys_state * css)5201 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5202 {
5203 	struct css_id *id = css->id;
5204 	/* When this is called before css_id initialization, id can be NULL */
5205 	if (!id)
5206 		return;
5207 
5208 	BUG_ON(!ss->use_id);
5209 
5210 	rcu_assign_pointer(id->css, NULL);
5211 	rcu_assign_pointer(css->id, NULL);
5212 	spin_lock(&ss->id_lock);
5213 	idr_remove(&ss->idr, id->id);
5214 	spin_unlock(&ss->id_lock);
5215 	kfree_rcu(id, rcu_head);
5216 }
5217 EXPORT_SYMBOL_GPL(free_css_id);
5218 
5219 /*
5220  * This is called by init or create(). Then, calls to this function are
5221  * always serialized (By cgroup_mutex() at create()).
5222  */
5223 
get_new_cssid(struct cgroup_subsys * ss,int depth)5224 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5225 {
5226 	struct css_id *newid;
5227 	int ret, size;
5228 
5229 	BUG_ON(!ss->use_id);
5230 
5231 	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5232 	newid = kzalloc(size, GFP_KERNEL);
5233 	if (!newid)
5234 		return ERR_PTR(-ENOMEM);
5235 
5236 	idr_preload(GFP_KERNEL);
5237 	spin_lock(&ss->id_lock);
5238 	/* Don't use 0. allocates an ID of 1-65535 */
5239 	ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5240 	spin_unlock(&ss->id_lock);
5241 	idr_preload_end();
5242 
5243 	/* Returns error when there are no free spaces for new ID.*/
5244 	if (ret < 0)
5245 		goto err_out;
5246 
5247 	newid->id = ret;
5248 	newid->depth = depth;
5249 	return newid;
5250 err_out:
5251 	kfree(newid);
5252 	return ERR_PTR(ret);
5253 
5254 }
5255 
cgroup_init_idr(struct cgroup_subsys * ss,struct cgroup_subsys_state * rootcss)5256 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5257 					    struct cgroup_subsys_state *rootcss)
5258 {
5259 	struct css_id *newid;
5260 
5261 	spin_lock_init(&ss->id_lock);
5262 	idr_init(&ss->idr);
5263 
5264 	newid = get_new_cssid(ss, 0);
5265 	if (IS_ERR(newid))
5266 		return PTR_ERR(newid);
5267 
5268 	newid->stack[0] = newid->id;
5269 	newid->css = rootcss;
5270 	rootcss->id = newid;
5271 	return 0;
5272 }
5273 
alloc_css_id(struct cgroup_subsys * ss,struct cgroup * parent,struct cgroup * child)5274 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5275 			struct cgroup *child)
5276 {
5277 	int subsys_id, i, depth = 0;
5278 	struct cgroup_subsys_state *parent_css, *child_css;
5279 	struct css_id *child_id, *parent_id;
5280 
5281 	subsys_id = ss->subsys_id;
5282 	parent_css = parent->subsys[subsys_id];
5283 	child_css = child->subsys[subsys_id];
5284 	parent_id = parent_css->id;
5285 	depth = parent_id->depth + 1;
5286 
5287 	child_id = get_new_cssid(ss, depth);
5288 	if (IS_ERR(child_id))
5289 		return PTR_ERR(child_id);
5290 
5291 	for (i = 0; i < depth; i++)
5292 		child_id->stack[i] = parent_id->stack[i];
5293 	child_id->stack[depth] = child_id->id;
5294 	/*
5295 	 * child_id->css pointer will be set after this cgroup is available
5296 	 * see cgroup_populate_dir()
5297 	 */
5298 	rcu_assign_pointer(child_css->id, child_id);
5299 
5300 	return 0;
5301 }
5302 
5303 /**
5304  * css_lookup - lookup css by id
5305  * @ss: cgroup subsys to be looked into.
5306  * @id: the id
5307  *
5308  * Returns pointer to cgroup_subsys_state if there is valid one with id.
5309  * NULL if not. Should be called under rcu_read_lock()
5310  */
css_lookup(struct cgroup_subsys * ss,int id)5311 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5312 {
5313 	struct css_id *cssid = NULL;
5314 
5315 	BUG_ON(!ss->use_id);
5316 	cssid = idr_find(&ss->idr, id);
5317 
5318 	if (unlikely(!cssid))
5319 		return NULL;
5320 
5321 	return rcu_dereference(cssid->css);
5322 }
5323 EXPORT_SYMBOL_GPL(css_lookup);
5324 
5325 /*
5326  * get corresponding css from file open on cgroupfs directory
5327  */
cgroup_css_from_dir(struct file * f,int id)5328 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5329 {
5330 	struct cgroup *cgrp;
5331 	struct inode *inode;
5332 	struct cgroup_subsys_state *css;
5333 
5334 	inode = file_inode(f);
5335 	/* check in cgroup filesystem dir */
5336 	if (inode->i_op != &cgroup_dir_inode_operations)
5337 		return ERR_PTR(-EBADF);
5338 
5339 	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5340 		return ERR_PTR(-EINVAL);
5341 
5342 	/* get cgroup */
5343 	cgrp = __d_cgrp(f->f_dentry);
5344 	css = cgrp->subsys[id];
5345 	return css ? css : ERR_PTR(-ENOENT);
5346 }
5347 
5348 #ifdef CONFIG_CGROUP_DEBUG
debug_css_alloc(struct cgroup * cont)5349 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5350 {
5351 	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5352 
5353 	if (!css)
5354 		return ERR_PTR(-ENOMEM);
5355 
5356 	return css;
5357 }
5358 
debug_css_free(struct cgroup * cont)5359 static void debug_css_free(struct cgroup *cont)
5360 {
5361 	kfree(cont->subsys[debug_subsys_id]);
5362 }
5363 
cgroup_refcount_read(struct cgroup * cont,struct cftype * cft)5364 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5365 {
5366 	return atomic_read(&cont->count);
5367 }
5368 
debug_taskcount_read(struct cgroup * cont,struct cftype * cft)5369 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5370 {
5371 	return cgroup_task_count(cont);
5372 }
5373 
current_css_set_read(struct cgroup * cont,struct cftype * cft)5374 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5375 {
5376 	return (u64)(unsigned long)current->cgroups;
5377 }
5378 
current_css_set_refcount_read(struct cgroup * cont,struct cftype * cft)5379 static u64 current_css_set_refcount_read(struct cgroup *cont,
5380 					   struct cftype *cft)
5381 {
5382 	u64 count;
5383 
5384 	rcu_read_lock();
5385 	count = atomic_read(&current->cgroups->refcount);
5386 	rcu_read_unlock();
5387 	return count;
5388 }
5389 
current_css_set_cg_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5390 static int current_css_set_cg_links_read(struct cgroup *cont,
5391 					 struct cftype *cft,
5392 					 struct seq_file *seq)
5393 {
5394 	struct cg_cgroup_link *link;
5395 	struct css_set *cg;
5396 
5397 	read_lock(&css_set_lock);
5398 	rcu_read_lock();
5399 	cg = rcu_dereference(current->cgroups);
5400 	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5401 		struct cgroup *c = link->cgrp;
5402 		const char *name;
5403 
5404 		if (c->dentry)
5405 			name = c->dentry->d_name.name;
5406 		else
5407 			name = "?";
5408 		seq_printf(seq, "Root %d group %s\n",
5409 			   c->root->hierarchy_id, name);
5410 	}
5411 	rcu_read_unlock();
5412 	read_unlock(&css_set_lock);
5413 	return 0;
5414 }
5415 
5416 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5417 static int cgroup_css_links_read(struct cgroup *cont,
5418 				 struct cftype *cft,
5419 				 struct seq_file *seq)
5420 {
5421 	struct cg_cgroup_link *link;
5422 
5423 	read_lock(&css_set_lock);
5424 	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5425 		struct css_set *cg = link->cg;
5426 		struct task_struct *task;
5427 		int count = 0;
5428 		seq_printf(seq, "css_set %p\n", cg);
5429 		list_for_each_entry(task, &cg->tasks, cg_list) {
5430 			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5431 				seq_puts(seq, "  ...\n");
5432 				break;
5433 			} else {
5434 				seq_printf(seq, "  task %d\n",
5435 					   task_pid_vnr(task));
5436 			}
5437 		}
5438 	}
5439 	read_unlock(&css_set_lock);
5440 	return 0;
5441 }
5442 
releasable_read(struct cgroup * cgrp,struct cftype * cft)5443 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5444 {
5445 	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5446 }
5447 
5448 static struct cftype debug_files[] =  {
5449 	{
5450 		.name = "cgroup_refcount",
5451 		.read_u64 = cgroup_refcount_read,
5452 	},
5453 	{
5454 		.name = "taskcount",
5455 		.read_u64 = debug_taskcount_read,
5456 	},
5457 
5458 	{
5459 		.name = "current_css_set",
5460 		.read_u64 = current_css_set_read,
5461 	},
5462 
5463 	{
5464 		.name = "current_css_set_refcount",
5465 		.read_u64 = current_css_set_refcount_read,
5466 	},
5467 
5468 	{
5469 		.name = "current_css_set_cg_links",
5470 		.read_seq_string = current_css_set_cg_links_read,
5471 	},
5472 
5473 	{
5474 		.name = "cgroup_css_links",
5475 		.read_seq_string = cgroup_css_links_read,
5476 	},
5477 
5478 	{
5479 		.name = "releasable",
5480 		.read_u64 = releasable_read,
5481 	},
5482 
5483 	{ }	/* terminate */
5484 };
5485 
5486 struct cgroup_subsys debug_subsys = {
5487 	.name = "debug",
5488 	.css_alloc = debug_css_alloc,
5489 	.css_free = debug_css_free,
5490 	.subsys_id = debug_subsys_id,
5491 	.base_cftypes = debug_files,
5492 };
5493 #endif /* CONFIG_CGROUP_DEBUG */
5494