• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/freezer.h>
65 
66 #include <asm/futex.h>
67 
68 #include "rtmutex_common.h"
69 
70 int __read_mostly futex_cmpxchg_enabled;
71 
72 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
73 
74 /*
75  * Futex flags used to encode options to functions and preserve them across
76  * restarts.
77  */
78 #define FLAGS_SHARED		0x01
79 #define FLAGS_CLOCKRT		0x02
80 #define FLAGS_HAS_TIMEOUT	0x04
81 
82 /*
83  * Priority Inheritance state:
84  */
85 struct futex_pi_state {
86 	/*
87 	 * list of 'owned' pi_state instances - these have to be
88 	 * cleaned up in do_exit() if the task exits prematurely:
89 	 */
90 	struct list_head list;
91 
92 	/*
93 	 * The PI object:
94 	 */
95 	struct rt_mutex pi_mutex;
96 
97 	struct task_struct *owner;
98 	atomic_t refcount;
99 
100 	union futex_key key;
101 };
102 
103 /**
104  * struct futex_q - The hashed futex queue entry, one per waiting task
105  * @list:		priority-sorted list of tasks waiting on this futex
106  * @task:		the task waiting on the futex
107  * @lock_ptr:		the hash bucket lock
108  * @key:		the key the futex is hashed on
109  * @pi_state:		optional priority inheritance state
110  * @rt_waiter:		rt_waiter storage for use with requeue_pi
111  * @requeue_pi_key:	the requeue_pi target futex key
112  * @bitset:		bitset for the optional bitmasked wakeup
113  *
114  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
115  * we can wake only the relevant ones (hashed queues may be shared).
116  *
117  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
118  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
119  * The order of wakeup is always to make the first condition true, then
120  * the second.
121  *
122  * PI futexes are typically woken before they are removed from the hash list via
123  * the rt_mutex code. See unqueue_me_pi().
124  */
125 struct futex_q {
126 	struct plist_node list;
127 
128 	struct task_struct *task;
129 	spinlock_t *lock_ptr;
130 	union futex_key key;
131 	struct futex_pi_state *pi_state;
132 	struct rt_mutex_waiter *rt_waiter;
133 	union futex_key *requeue_pi_key;
134 	u32 bitset;
135 };
136 
137 static const struct futex_q futex_q_init = {
138 	/* list gets initialized in queue_me()*/
139 	.key = FUTEX_KEY_INIT,
140 	.bitset = FUTEX_BITSET_MATCH_ANY
141 };
142 
143 /*
144  * Hash buckets are shared by all the futex_keys that hash to the same
145  * location.  Each key may have multiple futex_q structures, one for each task
146  * waiting on a futex.
147  */
148 struct futex_hash_bucket {
149 	spinlock_t lock;
150 	struct plist_head chain;
151 };
152 
153 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
154 
155 /*
156  * We hash on the keys returned from get_futex_key (see below).
157  */
hash_futex(union futex_key * key)158 static struct futex_hash_bucket *hash_futex(union futex_key *key)
159 {
160 	u32 hash = jhash2((u32*)&key->both.word,
161 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
162 			  key->both.offset);
163 	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
164 }
165 
166 /*
167  * Return 1 if two futex_keys are equal, 0 otherwise.
168  */
match_futex(union futex_key * key1,union futex_key * key2)169 static inline int match_futex(union futex_key *key1, union futex_key *key2)
170 {
171 	return (key1 && key2
172 		&& key1->both.word == key2->both.word
173 		&& key1->both.ptr == key2->both.ptr
174 		&& key1->both.offset == key2->both.offset);
175 }
176 
177 /*
178  * Take a reference to the resource addressed by a key.
179  * Can be called while holding spinlocks.
180  *
181  */
get_futex_key_refs(union futex_key * key)182 static void get_futex_key_refs(union futex_key *key)
183 {
184 	if (!key->both.ptr)
185 		return;
186 
187 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188 	case FUT_OFF_INODE:
189 		ihold(key->shared.inode);
190 		break;
191 	case FUT_OFF_MMSHARED:
192 		atomic_inc(&key->private.mm->mm_count);
193 		break;
194 	}
195 }
196 
197 /*
198  * Drop a reference to the resource addressed by a key.
199  * The hash bucket spinlock must not be held.
200  */
drop_futex_key_refs(union futex_key * key)201 static void drop_futex_key_refs(union futex_key *key)
202 {
203 	if (!key->both.ptr) {
204 		/* If we're here then we tried to put a key we failed to get */
205 		WARN_ON_ONCE(1);
206 		return;
207 	}
208 
209 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
210 	case FUT_OFF_INODE:
211 		iput(key->shared.inode);
212 		break;
213 	case FUT_OFF_MMSHARED:
214 		mmdrop(key->private.mm);
215 		break;
216 	}
217 }
218 
219 /**
220  * get_futex_key() - Get parameters which are the keys for a futex
221  * @uaddr:	virtual address of the futex
222  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
223  * @key:	address where result is stored.
224  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
225  *              VERIFY_WRITE)
226  *
227  * Return: a negative error code or 0
228  *
229  * The key words are stored in *key on success.
230  *
231  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
232  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
233  * We can usually work out the index without swapping in the page.
234  *
235  * lock_page() might sleep, the caller should not hold a spinlock.
236  */
237 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)238 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
239 {
240 	unsigned long address = (unsigned long)uaddr;
241 	struct mm_struct *mm = current->mm;
242 	struct page *page, *page_head;
243 	int err, ro = 0;
244 
245 	/*
246 	 * The futex address must be "naturally" aligned.
247 	 */
248 	key->both.offset = address % PAGE_SIZE;
249 	if (unlikely((address % sizeof(u32)) != 0))
250 		return -EINVAL;
251 	address -= key->both.offset;
252 
253 	/*
254 	 * PROCESS_PRIVATE futexes are fast.
255 	 * As the mm cannot disappear under us and the 'key' only needs
256 	 * virtual address, we dont even have to find the underlying vma.
257 	 * Note : We do have to check 'uaddr' is a valid user address,
258 	 *        but access_ok() should be faster than find_vma()
259 	 */
260 	if (!fshared) {
261 		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
262 			return -EFAULT;
263 		key->private.mm = mm;
264 		key->private.address = address;
265 		get_futex_key_refs(key);
266 		return 0;
267 	}
268 
269 again:
270 	err = get_user_pages_fast(address, 1, 1, &page);
271 	/*
272 	 * If write access is not required (eg. FUTEX_WAIT), try
273 	 * and get read-only access.
274 	 */
275 	if (err == -EFAULT && rw == VERIFY_READ) {
276 		err = get_user_pages_fast(address, 1, 0, &page);
277 		ro = 1;
278 	}
279 	if (err < 0)
280 		return err;
281 	else
282 		err = 0;
283 
284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
285 	page_head = page;
286 	if (unlikely(PageTail(page))) {
287 		put_page(page);
288 		/* serialize against __split_huge_page_splitting() */
289 		local_irq_disable();
290 		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
291 			page_head = compound_head(page);
292 			/*
293 			 * page_head is valid pointer but we must pin
294 			 * it before taking the PG_lock and/or
295 			 * PG_compound_lock. The moment we re-enable
296 			 * irqs __split_huge_page_splitting() can
297 			 * return and the head page can be freed from
298 			 * under us. We can't take the PG_lock and/or
299 			 * PG_compound_lock on a page that could be
300 			 * freed from under us.
301 			 */
302 			if (page != page_head) {
303 				get_page(page_head);
304 				put_page(page);
305 			}
306 			local_irq_enable();
307 		} else {
308 			local_irq_enable();
309 			goto again;
310 		}
311 	}
312 #else
313 	page_head = compound_head(page);
314 	if (page != page_head) {
315 		get_page(page_head);
316 		put_page(page);
317 	}
318 #endif
319 
320 	lock_page(page_head);
321 
322 	/*
323 	 * If page_head->mapping is NULL, then it cannot be a PageAnon
324 	 * page; but it might be the ZERO_PAGE or in the gate area or
325 	 * in a special mapping (all cases which we are happy to fail);
326 	 * or it may have been a good file page when get_user_pages_fast
327 	 * found it, but truncated or holepunched or subjected to
328 	 * invalidate_complete_page2 before we got the page lock (also
329 	 * cases which we are happy to fail).  And we hold a reference,
330 	 * so refcount care in invalidate_complete_page's remove_mapping
331 	 * prevents drop_caches from setting mapping to NULL beneath us.
332 	 *
333 	 * The case we do have to guard against is when memory pressure made
334 	 * shmem_writepage move it from filecache to swapcache beneath us:
335 	 * an unlikely race, but we do need to retry for page_head->mapping.
336 	 */
337 	if (!page_head->mapping) {
338 		int shmem_swizzled = PageSwapCache(page_head);
339 		unlock_page(page_head);
340 		put_page(page_head);
341 		if (shmem_swizzled)
342 			goto again;
343 		return -EFAULT;
344 	}
345 
346 	/*
347 	 * Private mappings are handled in a simple way.
348 	 *
349 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
350 	 * it's a read-only handle, it's expected that futexes attach to
351 	 * the object not the particular process.
352 	 */
353 	if (PageAnon(page_head)) {
354 		/*
355 		 * A RO anonymous page will never change and thus doesn't make
356 		 * sense for futex operations.
357 		 */
358 		if (ro) {
359 			err = -EFAULT;
360 			goto out;
361 		}
362 
363 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
364 		key->private.mm = mm;
365 		key->private.address = address;
366 	} else {
367 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
368 		key->shared.inode = page_head->mapping->host;
369 		key->shared.pgoff = page_head->index;
370 	}
371 
372 	get_futex_key_refs(key);
373 
374 out:
375 	unlock_page(page_head);
376 	put_page(page_head);
377 	return err;
378 }
379 
put_futex_key(union futex_key * key)380 static inline void put_futex_key(union futex_key *key)
381 {
382 	drop_futex_key_refs(key);
383 }
384 
385 /**
386  * fault_in_user_writeable() - Fault in user address and verify RW access
387  * @uaddr:	pointer to faulting user space address
388  *
389  * Slow path to fixup the fault we just took in the atomic write
390  * access to @uaddr.
391  *
392  * We have no generic implementation of a non-destructive write to the
393  * user address. We know that we faulted in the atomic pagefault
394  * disabled section so we can as well avoid the #PF overhead by
395  * calling get_user_pages() right away.
396  */
fault_in_user_writeable(u32 __user * uaddr)397 static int fault_in_user_writeable(u32 __user *uaddr)
398 {
399 	struct mm_struct *mm = current->mm;
400 	int ret;
401 
402 	down_read(&mm->mmap_sem);
403 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
404 			       FAULT_FLAG_WRITE);
405 	up_read(&mm->mmap_sem);
406 
407 	return ret < 0 ? ret : 0;
408 }
409 
410 /**
411  * futex_top_waiter() - Return the highest priority waiter on a futex
412  * @hb:		the hash bucket the futex_q's reside in
413  * @key:	the futex key (to distinguish it from other futex futex_q's)
414  *
415  * Must be called with the hb lock held.
416  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)417 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
418 					union futex_key *key)
419 {
420 	struct futex_q *this;
421 
422 	plist_for_each_entry(this, &hb->chain, list) {
423 		if (match_futex(&this->key, key))
424 			return this;
425 	}
426 	return NULL;
427 }
428 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)429 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
430 				      u32 uval, u32 newval)
431 {
432 	int ret;
433 
434 	pagefault_disable();
435 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
436 	pagefault_enable();
437 
438 	return ret;
439 }
440 
get_futex_value_locked(u32 * dest,u32 __user * from)441 static int get_futex_value_locked(u32 *dest, u32 __user *from)
442 {
443 	int ret;
444 
445 	pagefault_disable();
446 	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
447 	pagefault_enable();
448 
449 	return ret ? -EFAULT : 0;
450 }
451 
452 
453 /*
454  * PI code:
455  */
refill_pi_state_cache(void)456 static int refill_pi_state_cache(void)
457 {
458 	struct futex_pi_state *pi_state;
459 
460 	if (likely(current->pi_state_cache))
461 		return 0;
462 
463 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
464 
465 	if (!pi_state)
466 		return -ENOMEM;
467 
468 	INIT_LIST_HEAD(&pi_state->list);
469 	/* pi_mutex gets initialized later */
470 	pi_state->owner = NULL;
471 	atomic_set(&pi_state->refcount, 1);
472 	pi_state->key = FUTEX_KEY_INIT;
473 
474 	current->pi_state_cache = pi_state;
475 
476 	return 0;
477 }
478 
alloc_pi_state(void)479 static struct futex_pi_state * alloc_pi_state(void)
480 {
481 	struct futex_pi_state *pi_state = current->pi_state_cache;
482 
483 	WARN_ON(!pi_state);
484 	current->pi_state_cache = NULL;
485 
486 	return pi_state;
487 }
488 
free_pi_state(struct futex_pi_state * pi_state)489 static void free_pi_state(struct futex_pi_state *pi_state)
490 {
491 	if (!atomic_dec_and_test(&pi_state->refcount))
492 		return;
493 
494 	/*
495 	 * If pi_state->owner is NULL, the owner is most probably dying
496 	 * and has cleaned up the pi_state already
497 	 */
498 	if (pi_state->owner) {
499 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
500 		list_del_init(&pi_state->list);
501 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
502 
503 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
504 	}
505 
506 	if (current->pi_state_cache)
507 		kfree(pi_state);
508 	else {
509 		/*
510 		 * pi_state->list is already empty.
511 		 * clear pi_state->owner.
512 		 * refcount is at 0 - put it back to 1.
513 		 */
514 		pi_state->owner = NULL;
515 		atomic_set(&pi_state->refcount, 1);
516 		current->pi_state_cache = pi_state;
517 	}
518 }
519 
520 /*
521  * Look up the task based on what TID userspace gave us.
522  * We dont trust it.
523  */
futex_find_get_task(pid_t pid)524 static struct task_struct * futex_find_get_task(pid_t pid)
525 {
526 	struct task_struct *p;
527 
528 	rcu_read_lock();
529 	p = find_task_by_vpid(pid);
530 	if (p)
531 		get_task_struct(p);
532 
533 	rcu_read_unlock();
534 
535 	return p;
536 }
537 
538 /*
539  * This task is holding PI mutexes at exit time => bad.
540  * Kernel cleans up PI-state, but userspace is likely hosed.
541  * (Robust-futex cleanup is separate and might save the day for userspace.)
542  */
exit_pi_state_list(struct task_struct * curr)543 void exit_pi_state_list(struct task_struct *curr)
544 {
545 	struct list_head *next, *head = &curr->pi_state_list;
546 	struct futex_pi_state *pi_state;
547 	struct futex_hash_bucket *hb;
548 	union futex_key key = FUTEX_KEY_INIT;
549 
550 	if (!futex_cmpxchg_enabled)
551 		return;
552 	/*
553 	 * We are a ZOMBIE and nobody can enqueue itself on
554 	 * pi_state_list anymore, but we have to be careful
555 	 * versus waiters unqueueing themselves:
556 	 */
557 	raw_spin_lock_irq(&curr->pi_lock);
558 	while (!list_empty(head)) {
559 
560 		next = head->next;
561 		pi_state = list_entry(next, struct futex_pi_state, list);
562 		key = pi_state->key;
563 		hb = hash_futex(&key);
564 		raw_spin_unlock_irq(&curr->pi_lock);
565 
566 		spin_lock(&hb->lock);
567 
568 		raw_spin_lock_irq(&curr->pi_lock);
569 		/*
570 		 * We dropped the pi-lock, so re-check whether this
571 		 * task still owns the PI-state:
572 		 */
573 		if (head->next != next) {
574 			spin_unlock(&hb->lock);
575 			continue;
576 		}
577 
578 		WARN_ON(pi_state->owner != curr);
579 		WARN_ON(list_empty(&pi_state->list));
580 		list_del_init(&pi_state->list);
581 		pi_state->owner = NULL;
582 		raw_spin_unlock_irq(&curr->pi_lock);
583 
584 		rt_mutex_unlock(&pi_state->pi_mutex);
585 
586 		spin_unlock(&hb->lock);
587 
588 		raw_spin_lock_irq(&curr->pi_lock);
589 	}
590 	raw_spin_unlock_irq(&curr->pi_lock);
591 }
592 
593 /*
594  * We need to check the following states:
595  *
596  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
597  *
598  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
599  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
600  *
601  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
602  *
603  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
604  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
605  *
606  * [6]  Found  | Found    | task      | 0         | 1      | Valid
607  *
608  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
609  *
610  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
611  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
612  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
613  *
614  * [1]	Indicates that the kernel can acquire the futex atomically. We
615  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
616  *
617  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
618  *      thread is found then it indicates that the owner TID has died.
619  *
620  * [3]	Invalid. The waiter is queued on a non PI futex
621  *
622  * [4]	Valid state after exit_robust_list(), which sets the user space
623  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
624  *
625  * [5]	The user space value got manipulated between exit_robust_list()
626  *	and exit_pi_state_list()
627  *
628  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
629  *	the pi_state but cannot access the user space value.
630  *
631  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
632  *
633  * [8]	Owner and user space value match
634  *
635  * [9]	There is no transient state which sets the user space TID to 0
636  *	except exit_robust_list(), but this is indicated by the
637  *	FUTEX_OWNER_DIED bit. See [4]
638  *
639  * [10] There is no transient state which leaves owner and user space
640  *	TID out of sync.
641  */
642 static int
lookup_pi_state(u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)643 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
644 		union futex_key *key, struct futex_pi_state **ps)
645 {
646 	struct futex_pi_state *pi_state = NULL;
647 	struct futex_q *this, *next;
648 	struct plist_head *head;
649 	struct task_struct *p;
650 	pid_t pid = uval & FUTEX_TID_MASK;
651 
652 	head = &hb->chain;
653 
654 	plist_for_each_entry_safe(this, next, head, list) {
655 		if (match_futex(&this->key, key)) {
656 			/*
657 			 * Sanity check the waiter before increasing
658 			 * the refcount and attaching to it.
659 			 */
660 			pi_state = this->pi_state;
661 			/*
662 			 * Userspace might have messed up non-PI and
663 			 * PI futexes [3]
664 			 */
665 			if (unlikely(!pi_state))
666 				return -EINVAL;
667 
668 			WARN_ON(!atomic_read(&pi_state->refcount));
669 
670 			/*
671 			 * Handle the owner died case:
672 			 */
673 			if (uval & FUTEX_OWNER_DIED) {
674 				/*
675 				 * exit_pi_state_list sets owner to NULL and
676 				 * wakes the topmost waiter. The task which
677 				 * acquires the pi_state->rt_mutex will fixup
678 				 * owner.
679 				 */
680 				if (!pi_state->owner) {
681 					/*
682 					 * No pi state owner, but the user
683 					 * space TID is not 0. Inconsistent
684 					 * state. [5]
685 					 */
686 					if (pid)
687 						return -EINVAL;
688 					/*
689 					 * Take a ref on the state and
690 					 * return. [4]
691 					 */
692 					goto out_state;
693 				}
694 
695 				/*
696 				 * If TID is 0, then either the dying owner
697 				 * has not yet executed exit_pi_state_list()
698 				 * or some waiter acquired the rtmutex in the
699 				 * pi state, but did not yet fixup the TID in
700 				 * user space.
701 				 *
702 				 * Take a ref on the state and return. [6]
703 				 */
704 				if (!pid)
705 					goto out_state;
706 			} else {
707 				/*
708 				 * If the owner died bit is not set,
709 				 * then the pi_state must have an
710 				 * owner. [7]
711 				 */
712 				if (!pi_state->owner)
713 					return -EINVAL;
714 			}
715 
716 			/*
717 			 * Bail out if user space manipulated the
718 			 * futex value. If pi state exists then the
719 			 * owner TID must be the same as the user
720 			 * space TID. [9/10]
721 			 */
722 			if (pid != task_pid_vnr(pi_state->owner))
723 				return -EINVAL;
724 
725 		out_state:
726 			atomic_inc(&pi_state->refcount);
727 			*ps = pi_state;
728 			return 0;
729 		}
730 	}
731 
732 	/*
733 	 * We are the first waiter - try to look up the real owner and attach
734 	 * the new pi_state to it, but bail out when TID = 0 [1]
735 	 */
736 	if (!pid)
737 		return -ESRCH;
738 	p = futex_find_get_task(pid);
739 	if (!p)
740 		return -ESRCH;
741 
742 	/*
743 	 * We need to look at the task state flags to figure out,
744 	 * whether the task is exiting. To protect against the do_exit
745 	 * change of the task flags, we do this protected by
746 	 * p->pi_lock:
747 	 */
748 	raw_spin_lock_irq(&p->pi_lock);
749 	if (unlikely(p->flags & PF_EXITING)) {
750 		/*
751 		 * The task is on the way out. When PF_EXITPIDONE is
752 		 * set, we know that the task has finished the
753 		 * cleanup:
754 		 */
755 		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
756 
757 		raw_spin_unlock_irq(&p->pi_lock);
758 		put_task_struct(p);
759 		return ret;
760 	}
761 
762 	/*
763 	 * No existing pi state. First waiter. [2]
764 	 */
765 	pi_state = alloc_pi_state();
766 
767 	/*
768 	 * Initialize the pi_mutex in locked state and make 'p'
769 	 * the owner of it:
770 	 */
771 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
772 
773 	/* Store the key for possible exit cleanups: */
774 	pi_state->key = *key;
775 
776 	WARN_ON(!list_empty(&pi_state->list));
777 	list_add(&pi_state->list, &p->pi_state_list);
778 	pi_state->owner = p;
779 	raw_spin_unlock_irq(&p->pi_lock);
780 
781 	put_task_struct(p);
782 
783 	*ps = pi_state;
784 
785 	return 0;
786 }
787 
788 /**
789  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
790  * @uaddr:		the pi futex user address
791  * @hb:			the pi futex hash bucket
792  * @key:		the futex key associated with uaddr and hb
793  * @ps:			the pi_state pointer where we store the result of the
794  *			lookup
795  * @task:		the task to perform the atomic lock work for.  This will
796  *			be "current" except in the case of requeue pi.
797  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
798  *
799  * Return:
800  *  0 - ready to wait;
801  *  1 - acquired the lock;
802  * <0 - error
803  *
804  * The hb->lock and futex_key refs shall be held by the caller.
805  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)806 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
807 				union futex_key *key,
808 				struct futex_pi_state **ps,
809 				struct task_struct *task, int set_waiters)
810 {
811 	int lock_taken, ret, force_take = 0;
812 	u32 uval, newval, curval, vpid = task_pid_vnr(task);
813 
814 retry:
815 	ret = lock_taken = 0;
816 
817 	/*
818 	 * To avoid races, we attempt to take the lock here again
819 	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
820 	 * the locks. It will most likely not succeed.
821 	 */
822 	newval = vpid;
823 	if (set_waiters)
824 		newval |= FUTEX_WAITERS;
825 
826 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
827 		return -EFAULT;
828 
829 	/*
830 	 * Detect deadlocks.
831 	 */
832 	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
833 		return -EDEADLK;
834 
835 	/*
836 	 * Surprise - we got the lock, but we do not trust user space at all.
837 	 */
838 	if (unlikely(!curval)) {
839 		/*
840 		 * We verify whether there is kernel state for this
841 		 * futex. If not, we can safely assume, that the 0 ->
842 		 * TID transition is correct. If state exists, we do
843 		 * not bother to fixup the user space state as it was
844 		 * corrupted already.
845 		 */
846 		return futex_top_waiter(hb, key) ? -EINVAL : 1;
847 	}
848 
849 	uval = curval;
850 
851 	/*
852 	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
853 	 * to wake at the next unlock.
854 	 */
855 	newval = curval | FUTEX_WAITERS;
856 
857 	/*
858 	 * Should we force take the futex? See below.
859 	 */
860 	if (unlikely(force_take)) {
861 		/*
862 		 * Keep the OWNER_DIED and the WAITERS bit and set the
863 		 * new TID value.
864 		 */
865 		newval = (curval & ~FUTEX_TID_MASK) | vpid;
866 		force_take = 0;
867 		lock_taken = 1;
868 	}
869 
870 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
871 		return -EFAULT;
872 	if (unlikely(curval != uval))
873 		goto retry;
874 
875 	/*
876 	 * We took the lock due to forced take over.
877 	 */
878 	if (unlikely(lock_taken))
879 		return 1;
880 
881 	/*
882 	 * We dont have the lock. Look up the PI state (or create it if
883 	 * we are the first waiter):
884 	 */
885 	ret = lookup_pi_state(uval, hb, key, ps);
886 
887 	if (unlikely(ret)) {
888 		switch (ret) {
889 		case -ESRCH:
890 			/*
891 			 * We failed to find an owner for this
892 			 * futex. So we have no pi_state to block
893 			 * on. This can happen in two cases:
894 			 *
895 			 * 1) The owner died
896 			 * 2) A stale FUTEX_WAITERS bit
897 			 *
898 			 * Re-read the futex value.
899 			 */
900 			if (get_futex_value_locked(&curval, uaddr))
901 				return -EFAULT;
902 
903 			/*
904 			 * If the owner died or we have a stale
905 			 * WAITERS bit the owner TID in the user space
906 			 * futex is 0.
907 			 */
908 			if (!(curval & FUTEX_TID_MASK)) {
909 				force_take = 1;
910 				goto retry;
911 			}
912 		default:
913 			break;
914 		}
915 	}
916 
917 	return ret;
918 }
919 
920 /**
921  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
922  * @q:	The futex_q to unqueue
923  *
924  * The q->lock_ptr must not be NULL and must be held by the caller.
925  */
__unqueue_futex(struct futex_q * q)926 static void __unqueue_futex(struct futex_q *q)
927 {
928 	struct futex_hash_bucket *hb;
929 
930 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
931 	    || WARN_ON(plist_node_empty(&q->list)))
932 		return;
933 
934 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
935 	plist_del(&q->list, &hb->chain);
936 }
937 
938 /*
939  * The hash bucket lock must be held when this is called.
940  * Afterwards, the futex_q must not be accessed.
941  */
wake_futex(struct futex_q * q)942 static void wake_futex(struct futex_q *q)
943 {
944 	struct task_struct *p = q->task;
945 
946 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
947 		return;
948 
949 	/*
950 	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
951 	 * a non-futex wake up happens on another CPU then the task
952 	 * might exit and p would dereference a non-existing task
953 	 * struct. Prevent this by holding a reference on p across the
954 	 * wake up.
955 	 */
956 	get_task_struct(p);
957 
958 	__unqueue_futex(q);
959 	/*
960 	 * The waiting task can free the futex_q as soon as
961 	 * q->lock_ptr = NULL is written, without taking any locks. A
962 	 * memory barrier is required here to prevent the following
963 	 * store to lock_ptr from getting ahead of the plist_del.
964 	 */
965 	smp_wmb();
966 	q->lock_ptr = NULL;
967 
968 	wake_up_state(p, TASK_NORMAL);
969 	put_task_struct(p);
970 }
971 
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_q * this)972 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
973 {
974 	struct task_struct *new_owner;
975 	struct futex_pi_state *pi_state = this->pi_state;
976 	u32 uninitialized_var(curval), newval;
977 	int ret = 0;
978 
979 	if (!pi_state)
980 		return -EINVAL;
981 
982 	/*
983 	 * If current does not own the pi_state then the futex is
984 	 * inconsistent and user space fiddled with the futex value.
985 	 */
986 	if (pi_state->owner != current)
987 		return -EINVAL;
988 
989 	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
990 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
991 
992 	/*
993 	 * It is possible that the next waiter (the one that brought
994 	 * this owner to the kernel) timed out and is no longer
995 	 * waiting on the lock.
996 	 */
997 	if (!new_owner)
998 		new_owner = this->task;
999 
1000 	/*
1001 	 * We pass it to the next owner. The WAITERS bit is always
1002 	 * kept enabled while there is PI state around. We cleanup the
1003 	 * owner died bit, because we are the owner.
1004 	 */
1005 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1006 
1007 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1008 		ret = -EFAULT;
1009 	else if (curval != uval)
1010 		ret = -EINVAL;
1011 	if (ret) {
1012 		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1013 		return ret;
1014 	}
1015 
1016 	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1017 	WARN_ON(list_empty(&pi_state->list));
1018 	list_del_init(&pi_state->list);
1019 	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1020 
1021 	raw_spin_lock_irq(&new_owner->pi_lock);
1022 	WARN_ON(!list_empty(&pi_state->list));
1023 	list_add(&pi_state->list, &new_owner->pi_state_list);
1024 	pi_state->owner = new_owner;
1025 	raw_spin_unlock_irq(&new_owner->pi_lock);
1026 
1027 	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1028 	rt_mutex_unlock(&pi_state->pi_mutex);
1029 
1030 	return 0;
1031 }
1032 
unlock_futex_pi(u32 __user * uaddr,u32 uval)1033 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1034 {
1035 	u32 uninitialized_var(oldval);
1036 
1037 	/*
1038 	 * There is no waiter, so we unlock the futex. The owner died
1039 	 * bit has not to be preserved here. We are the owner:
1040 	 */
1041 	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1042 		return -EFAULT;
1043 	if (oldval != uval)
1044 		return -EAGAIN;
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * Express the locking dependencies for lockdep:
1051  */
1052 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1053 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1054 {
1055 	if (hb1 <= hb2) {
1056 		spin_lock(&hb1->lock);
1057 		if (hb1 < hb2)
1058 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1059 	} else { /* hb1 > hb2 */
1060 		spin_lock(&hb2->lock);
1061 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1062 	}
1063 }
1064 
1065 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1066 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1067 {
1068 	spin_unlock(&hb1->lock);
1069 	if (hb1 != hb2)
1070 		spin_unlock(&hb2->lock);
1071 }
1072 
1073 /*
1074  * Wake up waiters matching bitset queued on this futex (uaddr).
1075  */
1076 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1077 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1078 {
1079 	struct futex_hash_bucket *hb;
1080 	struct futex_q *this, *next;
1081 	struct plist_head *head;
1082 	union futex_key key = FUTEX_KEY_INIT;
1083 	int ret;
1084 
1085 	if (!bitset)
1086 		return -EINVAL;
1087 
1088 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1089 	if (unlikely(ret != 0))
1090 		goto out;
1091 
1092 	hb = hash_futex(&key);
1093 	spin_lock(&hb->lock);
1094 	head = &hb->chain;
1095 
1096 	plist_for_each_entry_safe(this, next, head, list) {
1097 		if (match_futex (&this->key, &key)) {
1098 			if (this->pi_state || this->rt_waiter) {
1099 				ret = -EINVAL;
1100 				break;
1101 			}
1102 
1103 			/* Check if one of the bits is set in both bitsets */
1104 			if (!(this->bitset & bitset))
1105 				continue;
1106 
1107 			wake_futex(this);
1108 			if (++ret >= nr_wake)
1109 				break;
1110 		}
1111 	}
1112 
1113 	spin_unlock(&hb->lock);
1114 	put_futex_key(&key);
1115 out:
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Wake up all waiters hashed on the physical page that is mapped
1121  * to this virtual address:
1122  */
1123 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1124 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1125 	      int nr_wake, int nr_wake2, int op)
1126 {
1127 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1128 	struct futex_hash_bucket *hb1, *hb2;
1129 	struct plist_head *head;
1130 	struct futex_q *this, *next;
1131 	int ret, op_ret;
1132 
1133 retry:
1134 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1135 	if (unlikely(ret != 0))
1136 		goto out;
1137 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1138 	if (unlikely(ret != 0))
1139 		goto out_put_key1;
1140 
1141 	hb1 = hash_futex(&key1);
1142 	hb2 = hash_futex(&key2);
1143 
1144 retry_private:
1145 	double_lock_hb(hb1, hb2);
1146 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1147 	if (unlikely(op_ret < 0)) {
1148 
1149 		double_unlock_hb(hb1, hb2);
1150 
1151 #ifndef CONFIG_MMU
1152 		/*
1153 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1154 		 * but we might get them from range checking
1155 		 */
1156 		ret = op_ret;
1157 		goto out_put_keys;
1158 #endif
1159 
1160 		if (unlikely(op_ret != -EFAULT)) {
1161 			ret = op_ret;
1162 			goto out_put_keys;
1163 		}
1164 
1165 		ret = fault_in_user_writeable(uaddr2);
1166 		if (ret)
1167 			goto out_put_keys;
1168 
1169 		if (!(flags & FLAGS_SHARED))
1170 			goto retry_private;
1171 
1172 		put_futex_key(&key2);
1173 		put_futex_key(&key1);
1174 		goto retry;
1175 	}
1176 
1177 	head = &hb1->chain;
1178 
1179 	plist_for_each_entry_safe(this, next, head, list) {
1180 		if (match_futex (&this->key, &key1)) {
1181 			if (this->pi_state || this->rt_waiter) {
1182 				ret = -EINVAL;
1183 				goto out_unlock;
1184 			}
1185 			wake_futex(this);
1186 			if (++ret >= nr_wake)
1187 				break;
1188 		}
1189 	}
1190 
1191 	if (op_ret > 0) {
1192 		head = &hb2->chain;
1193 
1194 		op_ret = 0;
1195 		plist_for_each_entry_safe(this, next, head, list) {
1196 			if (match_futex (&this->key, &key2)) {
1197 				if (this->pi_state || this->rt_waiter) {
1198 					ret = -EINVAL;
1199 					goto out_unlock;
1200 				}
1201 				wake_futex(this);
1202 				if (++op_ret >= nr_wake2)
1203 					break;
1204 			}
1205 		}
1206 		ret += op_ret;
1207 	}
1208 
1209 out_unlock:
1210 	double_unlock_hb(hb1, hb2);
1211 out_put_keys:
1212 	put_futex_key(&key2);
1213 out_put_key1:
1214 	put_futex_key(&key1);
1215 out:
1216 	return ret;
1217 }
1218 
1219 /**
1220  * requeue_futex() - Requeue a futex_q from one hb to another
1221  * @q:		the futex_q to requeue
1222  * @hb1:	the source hash_bucket
1223  * @hb2:	the target hash_bucket
1224  * @key2:	the new key for the requeued futex_q
1225  */
1226 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1227 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1228 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1229 {
1230 
1231 	/*
1232 	 * If key1 and key2 hash to the same bucket, no need to
1233 	 * requeue.
1234 	 */
1235 	if (likely(&hb1->chain != &hb2->chain)) {
1236 		plist_del(&q->list, &hb1->chain);
1237 		plist_add(&q->list, &hb2->chain);
1238 		q->lock_ptr = &hb2->lock;
1239 	}
1240 	get_futex_key_refs(key2);
1241 	q->key = *key2;
1242 }
1243 
1244 /**
1245  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1246  * @q:		the futex_q
1247  * @key:	the key of the requeue target futex
1248  * @hb:		the hash_bucket of the requeue target futex
1249  *
1250  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1251  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1252  * to the requeue target futex so the waiter can detect the wakeup on the right
1253  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1254  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1255  * to protect access to the pi_state to fixup the owner later.  Must be called
1256  * with both q->lock_ptr and hb->lock held.
1257  */
1258 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1259 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1260 			   struct futex_hash_bucket *hb)
1261 {
1262 	get_futex_key_refs(key);
1263 	q->key = *key;
1264 
1265 	__unqueue_futex(q);
1266 
1267 	WARN_ON(!q->rt_waiter);
1268 	q->rt_waiter = NULL;
1269 
1270 	q->lock_ptr = &hb->lock;
1271 
1272 	wake_up_state(q->task, TASK_NORMAL);
1273 }
1274 
1275 /**
1276  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1277  * @pifutex:		the user address of the to futex
1278  * @hb1:		the from futex hash bucket, must be locked by the caller
1279  * @hb2:		the to futex hash bucket, must be locked by the caller
1280  * @key1:		the from futex key
1281  * @key2:		the to futex key
1282  * @ps:			address to store the pi_state pointer
1283  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1284  *
1285  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1286  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1287  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1288  * hb1 and hb2 must be held by the caller.
1289  *
1290  * Return:
1291  *  0 - failed to acquire the lock atomically;
1292  *  1 - acquired the lock;
1293  * <0 - error
1294  */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1295 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1296 				 struct futex_hash_bucket *hb1,
1297 				 struct futex_hash_bucket *hb2,
1298 				 union futex_key *key1, union futex_key *key2,
1299 				 struct futex_pi_state **ps, int set_waiters)
1300 {
1301 	struct futex_q *top_waiter = NULL;
1302 	u32 curval;
1303 	int ret;
1304 
1305 	if (get_futex_value_locked(&curval, pifutex))
1306 		return -EFAULT;
1307 
1308 	/*
1309 	 * Find the top_waiter and determine if there are additional waiters.
1310 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1311 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1312 	 * as we have means to handle the possible fault.  If not, don't set
1313 	 * the bit unecessarily as it will force the subsequent unlock to enter
1314 	 * the kernel.
1315 	 */
1316 	top_waiter = futex_top_waiter(hb1, key1);
1317 
1318 	/* There are no waiters, nothing for us to do. */
1319 	if (!top_waiter)
1320 		return 0;
1321 
1322 	/* Ensure we requeue to the expected futex. */
1323 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1324 		return -EINVAL;
1325 
1326 	/*
1327 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1328 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1329 	 * in ps in contended cases.
1330 	 */
1331 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1332 				   set_waiters);
1333 	if (ret == 1)
1334 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1335 
1336 	return ret;
1337 }
1338 
1339 /**
1340  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1341  * @uaddr1:	source futex user address
1342  * @flags:	futex flags (FLAGS_SHARED, etc.)
1343  * @uaddr2:	target futex user address
1344  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1345  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1346  * @cmpval:	@uaddr1 expected value (or %NULL)
1347  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1348  *		pi futex (pi to pi requeue is not supported)
1349  *
1350  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1351  * uaddr2 atomically on behalf of the top waiter.
1352  *
1353  * Return:
1354  * >=0 - on success, the number of tasks requeued or woken;
1355  *  <0 - on error
1356  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1357 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1358 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1359 			 u32 *cmpval, int requeue_pi)
1360 {
1361 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1362 	int drop_count = 0, task_count = 0, ret;
1363 	struct futex_pi_state *pi_state = NULL;
1364 	struct futex_hash_bucket *hb1, *hb2;
1365 	struct plist_head *head1;
1366 	struct futex_q *this, *next;
1367 	u32 curval2;
1368 
1369 	if (requeue_pi) {
1370 		/*
1371 		 * Requeue PI only works on two distinct uaddrs. This
1372 		 * check is only valid for private futexes. See below.
1373 		 */
1374 		if (uaddr1 == uaddr2)
1375 			return -EINVAL;
1376 
1377 		/*
1378 		 * requeue_pi requires a pi_state, try to allocate it now
1379 		 * without any locks in case it fails.
1380 		 */
1381 		if (refill_pi_state_cache())
1382 			return -ENOMEM;
1383 		/*
1384 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1385 		 * + nr_requeue, since it acquires the rt_mutex prior to
1386 		 * returning to userspace, so as to not leave the rt_mutex with
1387 		 * waiters and no owner.  However, second and third wake-ups
1388 		 * cannot be predicted as they involve race conditions with the
1389 		 * first wake and a fault while looking up the pi_state.  Both
1390 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1391 		 * use nr_wake=1.
1392 		 */
1393 		if (nr_wake != 1)
1394 			return -EINVAL;
1395 	}
1396 
1397 retry:
1398 	if (pi_state != NULL) {
1399 		/*
1400 		 * We will have to lookup the pi_state again, so free this one
1401 		 * to keep the accounting correct.
1402 		 */
1403 		free_pi_state(pi_state);
1404 		pi_state = NULL;
1405 	}
1406 
1407 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1408 	if (unlikely(ret != 0))
1409 		goto out;
1410 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1411 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1412 	if (unlikely(ret != 0))
1413 		goto out_put_key1;
1414 
1415 	/*
1416 	 * The check above which compares uaddrs is not sufficient for
1417 	 * shared futexes. We need to compare the keys:
1418 	 */
1419 	if (requeue_pi && match_futex(&key1, &key2)) {
1420 		ret = -EINVAL;
1421 		goto out_put_keys;
1422 	}
1423 
1424 	hb1 = hash_futex(&key1);
1425 	hb2 = hash_futex(&key2);
1426 
1427 retry_private:
1428 	double_lock_hb(hb1, hb2);
1429 
1430 	if (likely(cmpval != NULL)) {
1431 		u32 curval;
1432 
1433 		ret = get_futex_value_locked(&curval, uaddr1);
1434 
1435 		if (unlikely(ret)) {
1436 			double_unlock_hb(hb1, hb2);
1437 
1438 			ret = get_user(curval, uaddr1);
1439 			if (ret)
1440 				goto out_put_keys;
1441 
1442 			if (!(flags & FLAGS_SHARED))
1443 				goto retry_private;
1444 
1445 			put_futex_key(&key2);
1446 			put_futex_key(&key1);
1447 			goto retry;
1448 		}
1449 		if (curval != *cmpval) {
1450 			ret = -EAGAIN;
1451 			goto out_unlock;
1452 		}
1453 	}
1454 
1455 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1456 		/*
1457 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1458 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1459 		 * bit.  We force this here where we are able to easily handle
1460 		 * faults rather in the requeue loop below.
1461 		 */
1462 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1463 						 &key2, &pi_state, nr_requeue);
1464 
1465 		/*
1466 		 * At this point the top_waiter has either taken uaddr2 or is
1467 		 * waiting on it.  If the former, then the pi_state will not
1468 		 * exist yet, look it up one more time to ensure we have a
1469 		 * reference to it.
1470 		 */
1471 		if (ret == 1) {
1472 			WARN_ON(pi_state);
1473 			drop_count++;
1474 			task_count++;
1475 			ret = get_futex_value_locked(&curval2, uaddr2);
1476 			if (!ret)
1477 				ret = lookup_pi_state(curval2, hb2, &key2,
1478 						      &pi_state);
1479 		}
1480 
1481 		switch (ret) {
1482 		case 0:
1483 			break;
1484 		case -EFAULT:
1485 			double_unlock_hb(hb1, hb2);
1486 			put_futex_key(&key2);
1487 			put_futex_key(&key1);
1488 			ret = fault_in_user_writeable(uaddr2);
1489 			if (!ret)
1490 				goto retry;
1491 			goto out;
1492 		case -EAGAIN:
1493 			/* The owner was exiting, try again. */
1494 			double_unlock_hb(hb1, hb2);
1495 			put_futex_key(&key2);
1496 			put_futex_key(&key1);
1497 			cond_resched();
1498 			goto retry;
1499 		default:
1500 			goto out_unlock;
1501 		}
1502 	}
1503 
1504 	head1 = &hb1->chain;
1505 	plist_for_each_entry_safe(this, next, head1, list) {
1506 		if (task_count - nr_wake >= nr_requeue)
1507 			break;
1508 
1509 		if (!match_futex(&this->key, &key1))
1510 			continue;
1511 
1512 		/*
1513 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1514 		 * be paired with each other and no other futex ops.
1515 		 *
1516 		 * We should never be requeueing a futex_q with a pi_state,
1517 		 * which is awaiting a futex_unlock_pi().
1518 		 */
1519 		if ((requeue_pi && !this->rt_waiter) ||
1520 		    (!requeue_pi && this->rt_waiter) ||
1521 		    this->pi_state) {
1522 			ret = -EINVAL;
1523 			break;
1524 		}
1525 
1526 		/*
1527 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1528 		 * lock, we already woke the top_waiter.  If not, it will be
1529 		 * woken by futex_unlock_pi().
1530 		 */
1531 		if (++task_count <= nr_wake && !requeue_pi) {
1532 			wake_futex(this);
1533 			continue;
1534 		}
1535 
1536 		/* Ensure we requeue to the expected futex for requeue_pi. */
1537 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1538 			ret = -EINVAL;
1539 			break;
1540 		}
1541 
1542 		/*
1543 		 * Requeue nr_requeue waiters and possibly one more in the case
1544 		 * of requeue_pi if we couldn't acquire the lock atomically.
1545 		 */
1546 		if (requeue_pi) {
1547 			/* Prepare the waiter to take the rt_mutex. */
1548 			atomic_inc(&pi_state->refcount);
1549 			this->pi_state = pi_state;
1550 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1551 							this->rt_waiter,
1552 							this->task, 1);
1553 			if (ret == 1) {
1554 				/* We got the lock. */
1555 				requeue_pi_wake_futex(this, &key2, hb2);
1556 				drop_count++;
1557 				continue;
1558 			} else if (ret) {
1559 				/* -EDEADLK */
1560 				this->pi_state = NULL;
1561 				free_pi_state(pi_state);
1562 				goto out_unlock;
1563 			}
1564 		}
1565 		requeue_futex(this, hb1, hb2, &key2);
1566 		drop_count++;
1567 	}
1568 
1569 out_unlock:
1570 	double_unlock_hb(hb1, hb2);
1571 
1572 	/*
1573 	 * drop_futex_key_refs() must be called outside the spinlocks. During
1574 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1575 	 * one at key2 and updated their key pointer.  We no longer need to
1576 	 * hold the references to key1.
1577 	 */
1578 	while (--drop_count >= 0)
1579 		drop_futex_key_refs(&key1);
1580 
1581 out_put_keys:
1582 	put_futex_key(&key2);
1583 out_put_key1:
1584 	put_futex_key(&key1);
1585 out:
1586 	if (pi_state != NULL)
1587 		free_pi_state(pi_state);
1588 	return ret ? ret : task_count;
1589 }
1590 
1591 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)1592 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1593 	__acquires(&hb->lock)
1594 {
1595 	struct futex_hash_bucket *hb;
1596 
1597 	hb = hash_futex(&q->key);
1598 	q->lock_ptr = &hb->lock;
1599 
1600 	spin_lock(&hb->lock);
1601 	return hb;
1602 }
1603 
1604 static inline void
queue_unlock(struct futex_q * q,struct futex_hash_bucket * hb)1605 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1606 	__releases(&hb->lock)
1607 {
1608 	spin_unlock(&hb->lock);
1609 }
1610 
1611 /**
1612  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1613  * @q:	The futex_q to enqueue
1614  * @hb:	The destination hash bucket
1615  *
1616  * The hb->lock must be held by the caller, and is released here. A call to
1617  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1618  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1619  * or nothing if the unqueue is done as part of the wake process and the unqueue
1620  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1621  * an example).
1622  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)1623 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1624 	__releases(&hb->lock)
1625 {
1626 	int prio;
1627 
1628 	/*
1629 	 * The priority used to register this element is
1630 	 * - either the real thread-priority for the real-time threads
1631 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1632 	 * - or MAX_RT_PRIO for non-RT threads.
1633 	 * Thus, all RT-threads are woken first in priority order, and
1634 	 * the others are woken last, in FIFO order.
1635 	 */
1636 	prio = min(current->normal_prio, MAX_RT_PRIO);
1637 
1638 	plist_node_init(&q->list, prio);
1639 	plist_add(&q->list, &hb->chain);
1640 	q->task = current;
1641 	spin_unlock(&hb->lock);
1642 }
1643 
1644 /**
1645  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1646  * @q:	The futex_q to unqueue
1647  *
1648  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1649  * be paired with exactly one earlier call to queue_me().
1650  *
1651  * Return:
1652  *   1 - if the futex_q was still queued (and we removed unqueued it);
1653  *   0 - if the futex_q was already removed by the waking thread
1654  */
unqueue_me(struct futex_q * q)1655 static int unqueue_me(struct futex_q *q)
1656 {
1657 	spinlock_t *lock_ptr;
1658 	int ret = 0;
1659 
1660 	/* In the common case we don't take the spinlock, which is nice. */
1661 retry:
1662 	lock_ptr = q->lock_ptr;
1663 	barrier();
1664 	if (lock_ptr != NULL) {
1665 		spin_lock(lock_ptr);
1666 		/*
1667 		 * q->lock_ptr can change between reading it and
1668 		 * spin_lock(), causing us to take the wrong lock.  This
1669 		 * corrects the race condition.
1670 		 *
1671 		 * Reasoning goes like this: if we have the wrong lock,
1672 		 * q->lock_ptr must have changed (maybe several times)
1673 		 * between reading it and the spin_lock().  It can
1674 		 * change again after the spin_lock() but only if it was
1675 		 * already changed before the spin_lock().  It cannot,
1676 		 * however, change back to the original value.  Therefore
1677 		 * we can detect whether we acquired the correct lock.
1678 		 */
1679 		if (unlikely(lock_ptr != q->lock_ptr)) {
1680 			spin_unlock(lock_ptr);
1681 			goto retry;
1682 		}
1683 		__unqueue_futex(q);
1684 
1685 		BUG_ON(q->pi_state);
1686 
1687 		spin_unlock(lock_ptr);
1688 		ret = 1;
1689 	}
1690 
1691 	drop_futex_key_refs(&q->key);
1692 	return ret;
1693 }
1694 
1695 /*
1696  * PI futexes can not be requeued and must remove themself from the
1697  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1698  * and dropped here.
1699  */
unqueue_me_pi(struct futex_q * q)1700 static void unqueue_me_pi(struct futex_q *q)
1701 	__releases(q->lock_ptr)
1702 {
1703 	__unqueue_futex(q);
1704 
1705 	BUG_ON(!q->pi_state);
1706 	free_pi_state(q->pi_state);
1707 	q->pi_state = NULL;
1708 
1709 	spin_unlock(q->lock_ptr);
1710 }
1711 
1712 /*
1713  * Fixup the pi_state owner with the new owner.
1714  *
1715  * Must be called with hash bucket lock held and mm->sem held for non
1716  * private futexes.
1717  */
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * newowner)1718 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1719 				struct task_struct *newowner)
1720 {
1721 	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1722 	struct futex_pi_state *pi_state = q->pi_state;
1723 	struct task_struct *oldowner = pi_state->owner;
1724 	u32 uval, uninitialized_var(curval), newval;
1725 	int ret;
1726 
1727 	/* Owner died? */
1728 	if (!pi_state->owner)
1729 		newtid |= FUTEX_OWNER_DIED;
1730 
1731 	/*
1732 	 * We are here either because we stole the rtmutex from the
1733 	 * previous highest priority waiter or we are the highest priority
1734 	 * waiter but failed to get the rtmutex the first time.
1735 	 * We have to replace the newowner TID in the user space variable.
1736 	 * This must be atomic as we have to preserve the owner died bit here.
1737 	 *
1738 	 * Note: We write the user space value _before_ changing the pi_state
1739 	 * because we can fault here. Imagine swapped out pages or a fork
1740 	 * that marked all the anonymous memory readonly for cow.
1741 	 *
1742 	 * Modifying pi_state _before_ the user space value would
1743 	 * leave the pi_state in an inconsistent state when we fault
1744 	 * here, because we need to drop the hash bucket lock to
1745 	 * handle the fault. This might be observed in the PID check
1746 	 * in lookup_pi_state.
1747 	 */
1748 retry:
1749 	if (get_futex_value_locked(&uval, uaddr))
1750 		goto handle_fault;
1751 
1752 	while (1) {
1753 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1754 
1755 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1756 			goto handle_fault;
1757 		if (curval == uval)
1758 			break;
1759 		uval = curval;
1760 	}
1761 
1762 	/*
1763 	 * We fixed up user space. Now we need to fix the pi_state
1764 	 * itself.
1765 	 */
1766 	if (pi_state->owner != NULL) {
1767 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1768 		WARN_ON(list_empty(&pi_state->list));
1769 		list_del_init(&pi_state->list);
1770 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1771 	}
1772 
1773 	pi_state->owner = newowner;
1774 
1775 	raw_spin_lock_irq(&newowner->pi_lock);
1776 	WARN_ON(!list_empty(&pi_state->list));
1777 	list_add(&pi_state->list, &newowner->pi_state_list);
1778 	raw_spin_unlock_irq(&newowner->pi_lock);
1779 	return 0;
1780 
1781 	/*
1782 	 * To handle the page fault we need to drop the hash bucket
1783 	 * lock here. That gives the other task (either the highest priority
1784 	 * waiter itself or the task which stole the rtmutex) the
1785 	 * chance to try the fixup of the pi_state. So once we are
1786 	 * back from handling the fault we need to check the pi_state
1787 	 * after reacquiring the hash bucket lock and before trying to
1788 	 * do another fixup. When the fixup has been done already we
1789 	 * simply return.
1790 	 */
1791 handle_fault:
1792 	spin_unlock(q->lock_ptr);
1793 
1794 	ret = fault_in_user_writeable(uaddr);
1795 
1796 	spin_lock(q->lock_ptr);
1797 
1798 	/*
1799 	 * Check if someone else fixed it for us:
1800 	 */
1801 	if (pi_state->owner != oldowner)
1802 		return 0;
1803 
1804 	if (ret)
1805 		return ret;
1806 
1807 	goto retry;
1808 }
1809 
1810 static long futex_wait_restart(struct restart_block *restart);
1811 
1812 /**
1813  * fixup_owner() - Post lock pi_state and corner case management
1814  * @uaddr:	user address of the futex
1815  * @q:		futex_q (contains pi_state and access to the rt_mutex)
1816  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1817  *
1818  * After attempting to lock an rt_mutex, this function is called to cleanup
1819  * the pi_state owner as well as handle race conditions that may allow us to
1820  * acquire the lock. Must be called with the hb lock held.
1821  *
1822  * Return:
1823  *  1 - success, lock taken;
1824  *  0 - success, lock not taken;
1825  * <0 - on error (-EFAULT)
1826  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)1827 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1828 {
1829 	struct task_struct *owner;
1830 	int ret = 0;
1831 
1832 	if (locked) {
1833 		/*
1834 		 * Got the lock. We might not be the anticipated owner if we
1835 		 * did a lock-steal - fix up the PI-state in that case:
1836 		 */
1837 		if (q->pi_state->owner != current)
1838 			ret = fixup_pi_state_owner(uaddr, q, current);
1839 		goto out;
1840 	}
1841 
1842 	/*
1843 	 * Catch the rare case, where the lock was released when we were on the
1844 	 * way back before we locked the hash bucket.
1845 	 */
1846 	if (q->pi_state->owner == current) {
1847 		/*
1848 		 * Try to get the rt_mutex now. This might fail as some other
1849 		 * task acquired the rt_mutex after we removed ourself from the
1850 		 * rt_mutex waiters list.
1851 		 */
1852 		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1853 			locked = 1;
1854 			goto out;
1855 		}
1856 
1857 		/*
1858 		 * pi_state is incorrect, some other task did a lock steal and
1859 		 * we returned due to timeout or signal without taking the
1860 		 * rt_mutex. Too late.
1861 		 */
1862 		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1863 		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1864 		if (!owner)
1865 			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1866 		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1867 		ret = fixup_pi_state_owner(uaddr, q, owner);
1868 		goto out;
1869 	}
1870 
1871 	/*
1872 	 * Paranoia check. If we did not take the lock, then we should not be
1873 	 * the owner of the rt_mutex.
1874 	 */
1875 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1876 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1877 				"pi-state %p\n", ret,
1878 				q->pi_state->pi_mutex.owner,
1879 				q->pi_state->owner);
1880 
1881 out:
1882 	return ret ? ret : locked;
1883 }
1884 
1885 /**
1886  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1887  * @hb:		the futex hash bucket, must be locked by the caller
1888  * @q:		the futex_q to queue up on
1889  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1890  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)1891 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1892 				struct hrtimer_sleeper *timeout)
1893 {
1894 	/*
1895 	 * The task state is guaranteed to be set before another task can
1896 	 * wake it. set_current_state() is implemented using set_mb() and
1897 	 * queue_me() calls spin_unlock() upon completion, both serializing
1898 	 * access to the hash list and forcing another memory barrier.
1899 	 */
1900 	set_current_state(TASK_INTERRUPTIBLE);
1901 	queue_me(q, hb);
1902 
1903 	/* Arm the timer */
1904 	if (timeout) {
1905 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1906 		if (!hrtimer_active(&timeout->timer))
1907 			timeout->task = NULL;
1908 	}
1909 
1910 	/*
1911 	 * If we have been removed from the hash list, then another task
1912 	 * has tried to wake us, and we can skip the call to schedule().
1913 	 */
1914 	if (likely(!plist_node_empty(&q->list))) {
1915 		/*
1916 		 * If the timer has already expired, current will already be
1917 		 * flagged for rescheduling. Only call schedule if there
1918 		 * is no timeout, or if it has yet to expire.
1919 		 */
1920 		if (!timeout || timeout->task)
1921 			freezable_schedule();
1922 	}
1923 	__set_current_state(TASK_RUNNING);
1924 }
1925 
1926 /**
1927  * futex_wait_setup() - Prepare to wait on a futex
1928  * @uaddr:	the futex userspace address
1929  * @val:	the expected value
1930  * @flags:	futex flags (FLAGS_SHARED, etc.)
1931  * @q:		the associated futex_q
1932  * @hb:		storage for hash_bucket pointer to be returned to caller
1933  *
1934  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1935  * compare it with the expected value.  Handle atomic faults internally.
1936  * Return with the hb lock held and a q.key reference on success, and unlocked
1937  * with no q.key reference on failure.
1938  *
1939  * Return:
1940  *  0 - uaddr contains val and hb has been locked;
1941  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1942  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)1943 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1944 			   struct futex_q *q, struct futex_hash_bucket **hb)
1945 {
1946 	u32 uval;
1947 	int ret;
1948 
1949 	/*
1950 	 * Access the page AFTER the hash-bucket is locked.
1951 	 * Order is important:
1952 	 *
1953 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1954 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1955 	 *
1956 	 * The basic logical guarantee of a futex is that it blocks ONLY
1957 	 * if cond(var) is known to be true at the time of blocking, for
1958 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1959 	 * would open a race condition where we could block indefinitely with
1960 	 * cond(var) false, which would violate the guarantee.
1961 	 *
1962 	 * On the other hand, we insert q and release the hash-bucket only
1963 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1964 	 * absorb a wakeup if *uaddr does not match the desired values
1965 	 * while the syscall executes.
1966 	 */
1967 retry:
1968 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1969 	if (unlikely(ret != 0))
1970 		return ret;
1971 
1972 retry_private:
1973 	*hb = queue_lock(q);
1974 
1975 	ret = get_futex_value_locked(&uval, uaddr);
1976 
1977 	if (ret) {
1978 		queue_unlock(q, *hb);
1979 
1980 		ret = get_user(uval, uaddr);
1981 		if (ret)
1982 			goto out;
1983 
1984 		if (!(flags & FLAGS_SHARED))
1985 			goto retry_private;
1986 
1987 		put_futex_key(&q->key);
1988 		goto retry;
1989 	}
1990 
1991 	if (uval != val) {
1992 		queue_unlock(q, *hb);
1993 		ret = -EWOULDBLOCK;
1994 	}
1995 
1996 out:
1997 	if (ret)
1998 		put_futex_key(&q->key);
1999 	return ret;
2000 }
2001 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2002 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2003 		      ktime_t *abs_time, u32 bitset)
2004 {
2005 	struct hrtimer_sleeper timeout, *to = NULL;
2006 	struct restart_block *restart;
2007 	struct futex_hash_bucket *hb;
2008 	struct futex_q q = futex_q_init;
2009 	int ret;
2010 
2011 	if (!bitset)
2012 		return -EINVAL;
2013 	q.bitset = bitset;
2014 
2015 	if (abs_time) {
2016 		to = &timeout;
2017 
2018 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2019 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2020 				      HRTIMER_MODE_ABS);
2021 		hrtimer_init_sleeper(to, current);
2022 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2023 					     current->timer_slack_ns);
2024 	}
2025 
2026 retry:
2027 	/*
2028 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2029 	 * q.key refs.
2030 	 */
2031 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2032 	if (ret)
2033 		goto out;
2034 
2035 	/* queue_me and wait for wakeup, timeout, or a signal. */
2036 	futex_wait_queue_me(hb, &q, to);
2037 
2038 	/* If we were woken (and unqueued), we succeeded, whatever. */
2039 	ret = 0;
2040 	/* unqueue_me() drops q.key ref */
2041 	if (!unqueue_me(&q))
2042 		goto out;
2043 	ret = -ETIMEDOUT;
2044 	if (to && !to->task)
2045 		goto out;
2046 
2047 	/*
2048 	 * We expect signal_pending(current), but we might be the
2049 	 * victim of a spurious wakeup as well.
2050 	 */
2051 	if (!signal_pending(current))
2052 		goto retry;
2053 
2054 	ret = -ERESTARTSYS;
2055 	if (!abs_time)
2056 		goto out;
2057 
2058 	restart = &current_thread_info()->restart_block;
2059 	restart->fn = futex_wait_restart;
2060 	restart->futex.uaddr = uaddr;
2061 	restart->futex.val = val;
2062 	restart->futex.time = abs_time->tv64;
2063 	restart->futex.bitset = bitset;
2064 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2065 
2066 	ret = -ERESTART_RESTARTBLOCK;
2067 
2068 out:
2069 	if (to) {
2070 		hrtimer_cancel(&to->timer);
2071 		destroy_hrtimer_on_stack(&to->timer);
2072 	}
2073 	return ret;
2074 }
2075 
2076 
futex_wait_restart(struct restart_block * restart)2077 static long futex_wait_restart(struct restart_block *restart)
2078 {
2079 	u32 __user *uaddr = restart->futex.uaddr;
2080 	ktime_t t, *tp = NULL;
2081 
2082 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2083 		t.tv64 = restart->futex.time;
2084 		tp = &t;
2085 	}
2086 	restart->fn = do_no_restart_syscall;
2087 
2088 	return (long)futex_wait(uaddr, restart->futex.flags,
2089 				restart->futex.val, tp, restart->futex.bitset);
2090 }
2091 
2092 
2093 /*
2094  * Userspace tried a 0 -> TID atomic transition of the futex value
2095  * and failed. The kernel side here does the whole locking operation:
2096  * if there are waiters then it will block, it does PI, etc. (Due to
2097  * races the kernel might see a 0 value of the futex too.)
2098  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,int detect,ktime_t * time,int trylock)2099 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2100 			 ktime_t *time, int trylock)
2101 {
2102 	struct hrtimer_sleeper timeout, *to = NULL;
2103 	struct futex_hash_bucket *hb;
2104 	struct futex_q q = futex_q_init;
2105 	int res, ret;
2106 
2107 	if (refill_pi_state_cache())
2108 		return -ENOMEM;
2109 
2110 	if (time) {
2111 		to = &timeout;
2112 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2113 				      HRTIMER_MODE_ABS);
2114 		hrtimer_init_sleeper(to, current);
2115 		hrtimer_set_expires(&to->timer, *time);
2116 	}
2117 
2118 retry:
2119 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2120 	if (unlikely(ret != 0))
2121 		goto out;
2122 
2123 retry_private:
2124 	hb = queue_lock(&q);
2125 
2126 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2127 	if (unlikely(ret)) {
2128 		switch (ret) {
2129 		case 1:
2130 			/* We got the lock. */
2131 			ret = 0;
2132 			goto out_unlock_put_key;
2133 		case -EFAULT:
2134 			goto uaddr_faulted;
2135 		case -EAGAIN:
2136 			/*
2137 			 * Task is exiting and we just wait for the
2138 			 * exit to complete.
2139 			 */
2140 			queue_unlock(&q, hb);
2141 			put_futex_key(&q.key);
2142 			cond_resched();
2143 			goto retry;
2144 		default:
2145 			goto out_unlock_put_key;
2146 		}
2147 	}
2148 
2149 	/*
2150 	 * Only actually queue now that the atomic ops are done:
2151 	 */
2152 	queue_me(&q, hb);
2153 
2154 	WARN_ON(!q.pi_state);
2155 	/*
2156 	 * Block on the PI mutex:
2157 	 */
2158 	if (!trylock)
2159 		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2160 	else {
2161 		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2162 		/* Fixup the trylock return value: */
2163 		ret = ret ? 0 : -EWOULDBLOCK;
2164 	}
2165 
2166 	spin_lock(q.lock_ptr);
2167 	/*
2168 	 * Fixup the pi_state owner and possibly acquire the lock if we
2169 	 * haven't already.
2170 	 */
2171 	res = fixup_owner(uaddr, &q, !ret);
2172 	/*
2173 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2174 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2175 	 */
2176 	if (res)
2177 		ret = (res < 0) ? res : 0;
2178 
2179 	/*
2180 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2181 	 * it and return the fault to userspace.
2182 	 */
2183 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2184 		rt_mutex_unlock(&q.pi_state->pi_mutex);
2185 
2186 	/* Unqueue and drop the lock */
2187 	unqueue_me_pi(&q);
2188 
2189 	goto out_put_key;
2190 
2191 out_unlock_put_key:
2192 	queue_unlock(&q, hb);
2193 
2194 out_put_key:
2195 	put_futex_key(&q.key);
2196 out:
2197 	if (to)
2198 		destroy_hrtimer_on_stack(&to->timer);
2199 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2200 
2201 uaddr_faulted:
2202 	queue_unlock(&q, hb);
2203 
2204 	ret = fault_in_user_writeable(uaddr);
2205 	if (ret)
2206 		goto out_put_key;
2207 
2208 	if (!(flags & FLAGS_SHARED))
2209 		goto retry_private;
2210 
2211 	put_futex_key(&q.key);
2212 	goto retry;
2213 }
2214 
2215 /*
2216  * Userspace attempted a TID -> 0 atomic transition, and failed.
2217  * This is the in-kernel slowpath: we look up the PI state (if any),
2218  * and do the rt-mutex unlock.
2219  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2220 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2221 {
2222 	struct futex_hash_bucket *hb;
2223 	struct futex_q *this, *next;
2224 	struct plist_head *head;
2225 	union futex_key key = FUTEX_KEY_INIT;
2226 	u32 uval, vpid = task_pid_vnr(current);
2227 	int ret;
2228 
2229 retry:
2230 	if (get_user(uval, uaddr))
2231 		return -EFAULT;
2232 	/*
2233 	 * We release only a lock we actually own:
2234 	 */
2235 	if ((uval & FUTEX_TID_MASK) != vpid)
2236 		return -EPERM;
2237 
2238 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2239 	if (unlikely(ret != 0))
2240 		goto out;
2241 
2242 	hb = hash_futex(&key);
2243 	spin_lock(&hb->lock);
2244 
2245 	/*
2246 	 * To avoid races, try to do the TID -> 0 atomic transition
2247 	 * again. If it succeeds then we can return without waking
2248 	 * anyone else up. We only try this if neither the waiters nor
2249 	 * the owner died bit are set.
2250 	 */
2251 	if (!(uval & ~FUTEX_TID_MASK) &&
2252 	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2253 		goto pi_faulted;
2254 	/*
2255 	 * Rare case: we managed to release the lock atomically,
2256 	 * no need to wake anyone else up:
2257 	 */
2258 	if (unlikely(uval == vpid))
2259 		goto out_unlock;
2260 
2261 	/*
2262 	 * Ok, other tasks may need to be woken up - check waiters
2263 	 * and do the wakeup if necessary:
2264 	 */
2265 	head = &hb->chain;
2266 
2267 	plist_for_each_entry_safe(this, next, head, list) {
2268 		if (!match_futex (&this->key, &key))
2269 			continue;
2270 		ret = wake_futex_pi(uaddr, uval, this);
2271 		/*
2272 		 * The atomic access to the futex value
2273 		 * generated a pagefault, so retry the
2274 		 * user-access and the wakeup:
2275 		 */
2276 		if (ret == -EFAULT)
2277 			goto pi_faulted;
2278 		goto out_unlock;
2279 	}
2280 	/*
2281 	 * No waiters - kernel unlocks the futex:
2282 	 */
2283 	ret = unlock_futex_pi(uaddr, uval);
2284 	if (ret == -EFAULT)
2285 		goto pi_faulted;
2286 
2287 out_unlock:
2288 	spin_unlock(&hb->lock);
2289 	put_futex_key(&key);
2290 
2291 out:
2292 	return ret;
2293 
2294 pi_faulted:
2295 	spin_unlock(&hb->lock);
2296 	put_futex_key(&key);
2297 
2298 	ret = fault_in_user_writeable(uaddr);
2299 	if (!ret)
2300 		goto retry;
2301 
2302 	return ret;
2303 }
2304 
2305 /**
2306  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2307  * @hb:		the hash_bucket futex_q was original enqueued on
2308  * @q:		the futex_q woken while waiting to be requeued
2309  * @key2:	the futex_key of the requeue target futex
2310  * @timeout:	the timeout associated with the wait (NULL if none)
2311  *
2312  * Detect if the task was woken on the initial futex as opposed to the requeue
2313  * target futex.  If so, determine if it was a timeout or a signal that caused
2314  * the wakeup and return the appropriate error code to the caller.  Must be
2315  * called with the hb lock held.
2316  *
2317  * Return:
2318  *  0 = no early wakeup detected;
2319  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2320  */
2321 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)2322 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2323 				   struct futex_q *q, union futex_key *key2,
2324 				   struct hrtimer_sleeper *timeout)
2325 {
2326 	int ret = 0;
2327 
2328 	/*
2329 	 * With the hb lock held, we avoid races while we process the wakeup.
2330 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2331 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2332 	 * It can't be requeued from uaddr2 to something else since we don't
2333 	 * support a PI aware source futex for requeue.
2334 	 */
2335 	if (!match_futex(&q->key, key2)) {
2336 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2337 		/*
2338 		 * We were woken prior to requeue by a timeout or a signal.
2339 		 * Unqueue the futex_q and determine which it was.
2340 		 */
2341 		plist_del(&q->list, &hb->chain);
2342 
2343 		/* Handle spurious wakeups gracefully */
2344 		ret = -EWOULDBLOCK;
2345 		if (timeout && !timeout->task)
2346 			ret = -ETIMEDOUT;
2347 		else if (signal_pending(current))
2348 			ret = -ERESTARTNOINTR;
2349 	}
2350 	return ret;
2351 }
2352 
2353 /**
2354  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2355  * @uaddr:	the futex we initially wait on (non-pi)
2356  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2357  * 		the same type, no requeueing from private to shared, etc.
2358  * @val:	the expected value of uaddr
2359  * @abs_time:	absolute timeout
2360  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2361  * @uaddr2:	the pi futex we will take prior to returning to user-space
2362  *
2363  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2364  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2365  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2366  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2367  * without one, the pi logic would not know which task to boost/deboost, if
2368  * there was a need to.
2369  *
2370  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2371  * via the following--
2372  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2373  * 2) wakeup on uaddr2 after a requeue
2374  * 3) signal
2375  * 4) timeout
2376  *
2377  * If 3, cleanup and return -ERESTARTNOINTR.
2378  *
2379  * If 2, we may then block on trying to take the rt_mutex and return via:
2380  * 5) successful lock
2381  * 6) signal
2382  * 7) timeout
2383  * 8) other lock acquisition failure
2384  *
2385  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2386  *
2387  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2388  *
2389  * Return:
2390  *  0 - On success;
2391  * <0 - On error
2392  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)2393 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2394 				 u32 val, ktime_t *abs_time, u32 bitset,
2395 				 u32 __user *uaddr2)
2396 {
2397 	struct hrtimer_sleeper timeout, *to = NULL;
2398 	struct rt_mutex_waiter rt_waiter;
2399 	struct rt_mutex *pi_mutex = NULL;
2400 	struct futex_hash_bucket *hb;
2401 	union futex_key key2 = FUTEX_KEY_INIT;
2402 	struct futex_q q = futex_q_init;
2403 	int res, ret;
2404 
2405 	if (uaddr == uaddr2)
2406 		return -EINVAL;
2407 
2408 	if (!bitset)
2409 		return -EINVAL;
2410 
2411 	if (abs_time) {
2412 		to = &timeout;
2413 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2414 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2415 				      HRTIMER_MODE_ABS);
2416 		hrtimer_init_sleeper(to, current);
2417 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2418 					     current->timer_slack_ns);
2419 	}
2420 
2421 	/*
2422 	 * The waiter is allocated on our stack, manipulated by the requeue
2423 	 * code while we sleep on uaddr.
2424 	 */
2425 	debug_rt_mutex_init_waiter(&rt_waiter);
2426 	rt_waiter.task = NULL;
2427 
2428 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2429 	if (unlikely(ret != 0))
2430 		goto out;
2431 
2432 	q.bitset = bitset;
2433 	q.rt_waiter = &rt_waiter;
2434 	q.requeue_pi_key = &key2;
2435 
2436 	/*
2437 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2438 	 * count.
2439 	 */
2440 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2441 	if (ret)
2442 		goto out_key2;
2443 
2444 	/*
2445 	 * The check above which compares uaddrs is not sufficient for
2446 	 * shared futexes. We need to compare the keys:
2447 	 */
2448 	if (match_futex(&q.key, &key2)) {
2449 		ret = -EINVAL;
2450 		goto out_put_keys;
2451 	}
2452 
2453 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2454 	futex_wait_queue_me(hb, &q, to);
2455 
2456 	spin_lock(&hb->lock);
2457 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2458 	spin_unlock(&hb->lock);
2459 	if (ret)
2460 		goto out_put_keys;
2461 
2462 	/*
2463 	 * In order for us to be here, we know our q.key == key2, and since
2464 	 * we took the hb->lock above, we also know that futex_requeue() has
2465 	 * completed and we no longer have to concern ourselves with a wakeup
2466 	 * race with the atomic proxy lock acquisition by the requeue code. The
2467 	 * futex_requeue dropped our key1 reference and incremented our key2
2468 	 * reference count.
2469 	 */
2470 
2471 	/* Check if the requeue code acquired the second futex for us. */
2472 	if (!q.rt_waiter) {
2473 		/*
2474 		 * Got the lock. We might not be the anticipated owner if we
2475 		 * did a lock-steal - fix up the PI-state in that case.
2476 		 */
2477 		if (q.pi_state && (q.pi_state->owner != current)) {
2478 			spin_lock(q.lock_ptr);
2479 			ret = fixup_pi_state_owner(uaddr2, &q, current);
2480 			spin_unlock(q.lock_ptr);
2481 		}
2482 	} else {
2483 		/*
2484 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2485 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2486 		 * the pi_state.
2487 		 */
2488 		WARN_ON(!q.pi_state);
2489 		pi_mutex = &q.pi_state->pi_mutex;
2490 		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2491 		debug_rt_mutex_free_waiter(&rt_waiter);
2492 
2493 		spin_lock(q.lock_ptr);
2494 		/*
2495 		 * Fixup the pi_state owner and possibly acquire the lock if we
2496 		 * haven't already.
2497 		 */
2498 		res = fixup_owner(uaddr2, &q, !ret);
2499 		/*
2500 		 * If fixup_owner() returned an error, proprogate that.  If it
2501 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2502 		 */
2503 		if (res)
2504 			ret = (res < 0) ? res : 0;
2505 
2506 		/* Unqueue and drop the lock. */
2507 		unqueue_me_pi(&q);
2508 	}
2509 
2510 	/*
2511 	 * If fixup_pi_state_owner() faulted and was unable to handle the
2512 	 * fault, unlock the rt_mutex and return the fault to userspace.
2513 	 */
2514 	if (ret == -EFAULT) {
2515 		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2516 			rt_mutex_unlock(pi_mutex);
2517 	} else if (ret == -EINTR) {
2518 		/*
2519 		 * We've already been requeued, but cannot restart by calling
2520 		 * futex_lock_pi() directly. We could restart this syscall, but
2521 		 * it would detect that the user space "val" changed and return
2522 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2523 		 * -EWOULDBLOCK directly.
2524 		 */
2525 		ret = -EWOULDBLOCK;
2526 	}
2527 
2528 out_put_keys:
2529 	put_futex_key(&q.key);
2530 out_key2:
2531 	put_futex_key(&key2);
2532 
2533 out:
2534 	if (to) {
2535 		hrtimer_cancel(&to->timer);
2536 		destroy_hrtimer_on_stack(&to->timer);
2537 	}
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Support for robust futexes: the kernel cleans up held futexes at
2543  * thread exit time.
2544  *
2545  * Implementation: user-space maintains a per-thread list of locks it
2546  * is holding. Upon do_exit(), the kernel carefully walks this list,
2547  * and marks all locks that are owned by this thread with the
2548  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2549  * always manipulated with the lock held, so the list is private and
2550  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2551  * field, to allow the kernel to clean up if the thread dies after
2552  * acquiring the lock, but just before it could have added itself to
2553  * the list. There can only be one such pending lock.
2554  */
2555 
2556 /**
2557  * sys_set_robust_list() - Set the robust-futex list head of a task
2558  * @head:	pointer to the list-head
2559  * @len:	length of the list-head, as userspace expects
2560  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)2561 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2562 		size_t, len)
2563 {
2564 	if (!futex_cmpxchg_enabled)
2565 		return -ENOSYS;
2566 	/*
2567 	 * The kernel knows only one size for now:
2568 	 */
2569 	if (unlikely(len != sizeof(*head)))
2570 		return -EINVAL;
2571 
2572 	current->robust_list = head;
2573 
2574 	return 0;
2575 }
2576 
2577 /**
2578  * sys_get_robust_list() - Get the robust-futex list head of a task
2579  * @pid:	pid of the process [zero for current task]
2580  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2581  * @len_ptr:	pointer to a length field, the kernel fills in the header size
2582  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)2583 SYSCALL_DEFINE3(get_robust_list, int, pid,
2584 		struct robust_list_head __user * __user *, head_ptr,
2585 		size_t __user *, len_ptr)
2586 {
2587 	struct robust_list_head __user *head;
2588 	unsigned long ret;
2589 	struct task_struct *p;
2590 
2591 	if (!futex_cmpxchg_enabled)
2592 		return -ENOSYS;
2593 
2594 	rcu_read_lock();
2595 
2596 	ret = -ESRCH;
2597 	if (!pid)
2598 		p = current;
2599 	else {
2600 		p = find_task_by_vpid(pid);
2601 		if (!p)
2602 			goto err_unlock;
2603 	}
2604 
2605 	ret = -EPERM;
2606 	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2607 		goto err_unlock;
2608 
2609 	head = p->robust_list;
2610 	rcu_read_unlock();
2611 
2612 	if (put_user(sizeof(*head), len_ptr))
2613 		return -EFAULT;
2614 	return put_user(head, head_ptr);
2615 
2616 err_unlock:
2617 	rcu_read_unlock();
2618 
2619 	return ret;
2620 }
2621 
2622 /*
2623  * Process a futex-list entry, check whether it's owned by the
2624  * dying task, and do notification if so:
2625  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)2626 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2627 {
2628 	u32 uval, uninitialized_var(nval), mval;
2629 
2630 retry:
2631 	if (get_user(uval, uaddr))
2632 		return -1;
2633 
2634 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2635 		/*
2636 		 * Ok, this dying thread is truly holding a futex
2637 		 * of interest. Set the OWNER_DIED bit atomically
2638 		 * via cmpxchg, and if the value had FUTEX_WAITERS
2639 		 * set, wake up a waiter (if any). (We have to do a
2640 		 * futex_wake() even if OWNER_DIED is already set -
2641 		 * to handle the rare but possible case of recursive
2642 		 * thread-death.) The rest of the cleanup is done in
2643 		 * userspace.
2644 		 */
2645 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2646 		/*
2647 		 * We are not holding a lock here, but we want to have
2648 		 * the pagefault_disable/enable() protection because
2649 		 * we want to handle the fault gracefully. If the
2650 		 * access fails we try to fault in the futex with R/W
2651 		 * verification via get_user_pages. get_user() above
2652 		 * does not guarantee R/W access. If that fails we
2653 		 * give up and leave the futex locked.
2654 		 */
2655 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2656 			if (fault_in_user_writeable(uaddr))
2657 				return -1;
2658 			goto retry;
2659 		}
2660 		if (nval != uval)
2661 			goto retry;
2662 
2663 		/*
2664 		 * Wake robust non-PI futexes here. The wakeup of
2665 		 * PI futexes happens in exit_pi_state():
2666 		 */
2667 		if (!pi && (uval & FUTEX_WAITERS))
2668 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2669 	}
2670 	return 0;
2671 }
2672 
2673 /*
2674  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2675  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)2676 static inline int fetch_robust_entry(struct robust_list __user **entry,
2677 				     struct robust_list __user * __user *head,
2678 				     unsigned int *pi)
2679 {
2680 	unsigned long uentry;
2681 
2682 	if (get_user(uentry, (unsigned long __user *)head))
2683 		return -EFAULT;
2684 
2685 	*entry = (void __user *)(uentry & ~1UL);
2686 	*pi = uentry & 1;
2687 
2688 	return 0;
2689 }
2690 
2691 /*
2692  * Walk curr->robust_list (very carefully, it's a userspace list!)
2693  * and mark any locks found there dead, and notify any waiters.
2694  *
2695  * We silently return on any sign of list-walking problem.
2696  */
exit_robust_list(struct task_struct * curr)2697 void exit_robust_list(struct task_struct *curr)
2698 {
2699 	struct robust_list_head __user *head = curr->robust_list;
2700 	struct robust_list __user *entry, *next_entry, *pending;
2701 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2702 	unsigned int uninitialized_var(next_pi);
2703 	unsigned long futex_offset;
2704 	int rc;
2705 
2706 	if (!futex_cmpxchg_enabled)
2707 		return;
2708 
2709 	/*
2710 	 * Fetch the list head (which was registered earlier, via
2711 	 * sys_set_robust_list()):
2712 	 */
2713 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2714 		return;
2715 	/*
2716 	 * Fetch the relative futex offset:
2717 	 */
2718 	if (get_user(futex_offset, &head->futex_offset))
2719 		return;
2720 	/*
2721 	 * Fetch any possibly pending lock-add first, and handle it
2722 	 * if it exists:
2723 	 */
2724 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2725 		return;
2726 
2727 	next_entry = NULL;	/* avoid warning with gcc */
2728 	while (entry != &head->list) {
2729 		/*
2730 		 * Fetch the next entry in the list before calling
2731 		 * handle_futex_death:
2732 		 */
2733 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2734 		/*
2735 		 * A pending lock might already be on the list, so
2736 		 * don't process it twice:
2737 		 */
2738 		if (entry != pending)
2739 			if (handle_futex_death((void __user *)entry + futex_offset,
2740 						curr, pi))
2741 				return;
2742 		if (rc)
2743 			return;
2744 		entry = next_entry;
2745 		pi = next_pi;
2746 		/*
2747 		 * Avoid excessively long or circular lists:
2748 		 */
2749 		if (!--limit)
2750 			break;
2751 
2752 		cond_resched();
2753 	}
2754 
2755 	if (pending)
2756 		handle_futex_death((void __user *)pending + futex_offset,
2757 				   curr, pip);
2758 }
2759 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)2760 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2761 		u32 __user *uaddr2, u32 val2, u32 val3)
2762 {
2763 	int cmd = op & FUTEX_CMD_MASK;
2764 	unsigned int flags = 0;
2765 
2766 	if (!(op & FUTEX_PRIVATE_FLAG))
2767 		flags |= FLAGS_SHARED;
2768 
2769 	if (op & FUTEX_CLOCK_REALTIME) {
2770 		flags |= FLAGS_CLOCKRT;
2771 		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2772 			return -ENOSYS;
2773 	}
2774 
2775 	switch (cmd) {
2776 	case FUTEX_LOCK_PI:
2777 	case FUTEX_UNLOCK_PI:
2778 	case FUTEX_TRYLOCK_PI:
2779 	case FUTEX_WAIT_REQUEUE_PI:
2780 	case FUTEX_CMP_REQUEUE_PI:
2781 		if (!futex_cmpxchg_enabled)
2782 			return -ENOSYS;
2783 	}
2784 
2785 	switch (cmd) {
2786 	case FUTEX_WAIT:
2787 		val3 = FUTEX_BITSET_MATCH_ANY;
2788 	case FUTEX_WAIT_BITSET:
2789 		return futex_wait(uaddr, flags, val, timeout, val3);
2790 	case FUTEX_WAKE:
2791 		val3 = FUTEX_BITSET_MATCH_ANY;
2792 	case FUTEX_WAKE_BITSET:
2793 		return futex_wake(uaddr, flags, val, val3);
2794 	case FUTEX_REQUEUE:
2795 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2796 	case FUTEX_CMP_REQUEUE:
2797 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2798 	case FUTEX_WAKE_OP:
2799 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2800 	case FUTEX_LOCK_PI:
2801 		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2802 	case FUTEX_UNLOCK_PI:
2803 		return futex_unlock_pi(uaddr, flags);
2804 	case FUTEX_TRYLOCK_PI:
2805 		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2806 	case FUTEX_WAIT_REQUEUE_PI:
2807 		val3 = FUTEX_BITSET_MATCH_ANY;
2808 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2809 					     uaddr2);
2810 	case FUTEX_CMP_REQUEUE_PI:
2811 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2812 	}
2813 	return -ENOSYS;
2814 }
2815 
2816 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)2817 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2818 		struct timespec __user *, utime, u32 __user *, uaddr2,
2819 		u32, val3)
2820 {
2821 	struct timespec ts;
2822 	ktime_t t, *tp = NULL;
2823 	u32 val2 = 0;
2824 	int cmd = op & FUTEX_CMD_MASK;
2825 
2826 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2827 		      cmd == FUTEX_WAIT_BITSET ||
2828 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2829 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2830 			return -EFAULT;
2831 		if (!timespec_valid(&ts))
2832 			return -EINVAL;
2833 
2834 		t = timespec_to_ktime(ts);
2835 		if (cmd == FUTEX_WAIT)
2836 			t = ktime_add_safe(ktime_get(), t);
2837 		tp = &t;
2838 	}
2839 	/*
2840 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2841 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2842 	 */
2843 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2844 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2845 		val2 = (u32) (unsigned long) utime;
2846 
2847 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2848 }
2849 
futex_init(void)2850 static int __init futex_init(void)
2851 {
2852 	u32 curval;
2853 	int i;
2854 
2855 	/*
2856 	 * This will fail and we want it. Some arch implementations do
2857 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2858 	 * functionality. We want to know that before we call in any
2859 	 * of the complex code paths. Also we want to prevent
2860 	 * registration of robust lists in that case. NULL is
2861 	 * guaranteed to fault and we get -EFAULT on functional
2862 	 * implementation, the non-functional ones will return
2863 	 * -ENOSYS.
2864 	 */
2865 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2866 		futex_cmpxchg_enabled = 1;
2867 
2868 	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2869 		plist_head_init(&futex_queues[i].chain);
2870 		spin_lock_init(&futex_queues[i].lock);
2871 	}
2872 
2873 	return 0;
2874 }
2875 __initcall(futex_init);
2876