• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50 #include <linux/freezer.h>
51 
52 #include <asm/uaccess.h>
53 
54 #include <trace/events/timer.h>
55 
56 /*
57  * The timer bases:
58  *
59  * There are more clockids then hrtimer bases. Thus, we index
60  * into the timer bases by the hrtimer_base_type enum. When trying
61  * to reach a base using a clockid, hrtimer_clockid_to_base()
62  * is used to convert from clockid to the proper hrtimer_base_type.
63  */
64 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 {
66 
67 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
68 	.clock_base =
69 	{
70 		{
71 			.index = HRTIMER_BASE_MONOTONIC,
72 			.clockid = CLOCK_MONOTONIC,
73 			.get_time = &ktime_get,
74 			.resolution = KTIME_LOW_RES,
75 		},
76 		{
77 			.index = HRTIMER_BASE_REALTIME,
78 			.clockid = CLOCK_REALTIME,
79 			.get_time = &ktime_get_real,
80 			.resolution = KTIME_LOW_RES,
81 		},
82 		{
83 			.index = HRTIMER_BASE_BOOTTIME,
84 			.clockid = CLOCK_BOOTTIME,
85 			.get_time = &ktime_get_boottime,
86 			.resolution = KTIME_LOW_RES,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 			.resolution = KTIME_LOW_RES,
93 		},
94 	}
95 };
96 
97 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
98 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
99 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
100 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
101 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
102 };
103 
hrtimer_clockid_to_base(clockid_t clock_id)104 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
105 {
106 	return hrtimer_clock_to_base_table[clock_id];
107 }
108 
109 
110 /*
111  * Get the coarse grained time at the softirq based on xtime and
112  * wall_to_monotonic.
113  */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)114 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
115 {
116 	ktime_t xtim, mono, boot;
117 	struct timespec xts, tom, slp;
118 	s32 tai_offset;
119 
120 	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
121 	tai_offset = timekeeping_get_tai_offset();
122 
123 	xtim = timespec_to_ktime(xts);
124 	mono = ktime_add(xtim, timespec_to_ktime(tom));
125 	boot = ktime_add(mono, timespec_to_ktime(slp));
126 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
127 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
128 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
129 	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
130 				ktime_add(xtim,	ktime_set(tai_offset, 0));
131 }
132 
133 /*
134  * Functions and macros which are different for UP/SMP systems are kept in a
135  * single place
136  */
137 #ifdef CONFIG_SMP
138 
139 /*
140  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141  * means that all timers which are tied to this base via timer->base are
142  * locked, and the base itself is locked too.
143  *
144  * So __run_timers/migrate_timers can safely modify all timers which could
145  * be found on the lists/queues.
146  *
147  * When the timer's base is locked, and the timer removed from list, it is
148  * possible to set timer->base = NULL and drop the lock: the timer remains
149  * locked.
150  */
151 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 					     unsigned long *flags)
154 {
155 	struct hrtimer_clock_base *base;
156 
157 	for (;;) {
158 		base = timer->base;
159 		if (likely(base != NULL)) {
160 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 			if (likely(base == timer->base))
162 				return base;
163 			/* The timer has migrated to another CPU: */
164 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 		}
166 		cpu_relax();
167 	}
168 }
169 
170 
171 /*
172  * Get the preferred target CPU for NOHZ
173  */
hrtimer_get_target(int this_cpu,int pinned)174 static int hrtimer_get_target(int this_cpu, int pinned)
175 {
176 #ifdef CONFIG_NO_HZ_COMMON
177 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
178 		return get_nohz_timer_target();
179 #endif
180 	return this_cpu;
181 }
182 
183 /*
184  * With HIGHRES=y we do not migrate the timer when it is expiring
185  * before the next event on the target cpu because we cannot reprogram
186  * the target cpu hardware and we would cause it to fire late.
187  *
188  * Called with cpu_base->lock of target cpu held.
189  */
190 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)191 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
192 {
193 #ifdef CONFIG_HIGH_RES_TIMERS
194 	ktime_t expires;
195 
196 	if (!new_base->cpu_base->hres_active)
197 		return 0;
198 
199 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
201 #else
202 	return 0;
203 #endif
204 }
205 
206 /*
207  * Switch the timer base to the current CPU when possible.
208  */
209 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)210 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
211 		    int pinned)
212 {
213 	struct hrtimer_clock_base *new_base;
214 	struct hrtimer_cpu_base *new_cpu_base;
215 	int this_cpu = smp_processor_id();
216 	int cpu = hrtimer_get_target(this_cpu, pinned);
217 	int basenum = base->index;
218 
219 again:
220 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_timer_base() */
237 		timer->base = NULL;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
242 			cpu = this_cpu;
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			timer->base = base;
246 			goto again;
247 		}
248 		timer->base = new_base;
249 	}
250 	return new_base;
251 }
252 
253 #else /* CONFIG_SMP */
254 
255 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)256 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
257 {
258 	struct hrtimer_clock_base *base = timer->base;
259 
260 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
261 
262 	return base;
263 }
264 
265 # define switch_hrtimer_base(t, b, p)	(b)
266 
267 #endif	/* !CONFIG_SMP */
268 
269 /*
270  * Functions for the union type storage format of ktime_t which are
271  * too large for inlining:
272  */
273 #if BITS_PER_LONG < 64
274 # ifndef CONFIG_KTIME_SCALAR
275 /**
276  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
277  * @kt:		addend
278  * @nsec:	the scalar nsec value to add
279  *
280  * Returns the sum of kt and nsec in ktime_t format
281  */
ktime_add_ns(const ktime_t kt,u64 nsec)282 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
283 {
284 	ktime_t tmp;
285 
286 	if (likely(nsec < NSEC_PER_SEC)) {
287 		tmp.tv64 = nsec;
288 	} else {
289 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
290 
291 		/* Make sure nsec fits into long */
292 		if (unlikely(nsec > KTIME_SEC_MAX))
293 			return (ktime_t){ .tv64 = KTIME_MAX };
294 
295 		tmp = ktime_set((long)nsec, rem);
296 	}
297 
298 	return ktime_add(kt, tmp);
299 }
300 
301 EXPORT_SYMBOL_GPL(ktime_add_ns);
302 
303 /**
304  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
305  * @kt:		minuend
306  * @nsec:	the scalar nsec value to subtract
307  *
308  * Returns the subtraction of @nsec from @kt in ktime_t format
309  */
ktime_sub_ns(const ktime_t kt,u64 nsec)310 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
311 {
312 	ktime_t tmp;
313 
314 	if (likely(nsec < NSEC_PER_SEC)) {
315 		tmp.tv64 = nsec;
316 	} else {
317 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
318 
319 		tmp = ktime_set((long)nsec, rem);
320 	}
321 
322 	return ktime_sub(kt, tmp);
323 }
324 
325 EXPORT_SYMBOL_GPL(ktime_sub_ns);
326 # endif /* !CONFIG_KTIME_SCALAR */
327 
328 /*
329  * Divide a ktime value by a nanosecond value
330  */
ktime_divns(const ktime_t kt,s64 div)331 u64 ktime_divns(const ktime_t kt, s64 div)
332 {
333 	u64 dclc;
334 	int sft = 0;
335 
336 	dclc = ktime_to_ns(kt);
337 	/* Make sure the divisor is less than 2^32: */
338 	while (div >> 32) {
339 		sft++;
340 		div >>= 1;
341 	}
342 	dclc >>= sft;
343 	do_div(dclc, (unsigned long) div);
344 
345 	return dclc;
346 }
347 #endif /* BITS_PER_LONG >= 64 */
348 
349 /*
350  * Add two ktime values and do a safety check for overflow:
351  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)352 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
353 {
354 	ktime_t res = ktime_add(lhs, rhs);
355 
356 	/*
357 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
358 	 * return to user space in a timespec:
359 	 */
360 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
361 		res = ktime_set(KTIME_SEC_MAX, 0);
362 
363 	return res;
364 }
365 
366 EXPORT_SYMBOL_GPL(ktime_add_safe);
367 
368 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
369 
370 static struct debug_obj_descr hrtimer_debug_descr;
371 
hrtimer_debug_hint(void * addr)372 static void *hrtimer_debug_hint(void *addr)
373 {
374 	return ((struct hrtimer *) addr)->function;
375 }
376 
377 /*
378  * fixup_init is called when:
379  * - an active object is initialized
380  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)381 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
382 {
383 	struct hrtimer *timer = addr;
384 
385 	switch (state) {
386 	case ODEBUG_STATE_ACTIVE:
387 		hrtimer_cancel(timer);
388 		debug_object_init(timer, &hrtimer_debug_descr);
389 		return 1;
390 	default:
391 		return 0;
392 	}
393 }
394 
395 /*
396  * fixup_activate is called when:
397  * - an active object is activated
398  * - an unknown object is activated (might be a statically initialized object)
399  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)400 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
401 {
402 	switch (state) {
403 
404 	case ODEBUG_STATE_NOTAVAILABLE:
405 		WARN_ON_ONCE(1);
406 		return 0;
407 
408 	case ODEBUG_STATE_ACTIVE:
409 		WARN_ON(1);
410 
411 	default:
412 		return 0;
413 	}
414 }
415 
416 /*
417  * fixup_free is called when:
418  * - an active object is freed
419  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)420 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
421 {
422 	struct hrtimer *timer = addr;
423 
424 	switch (state) {
425 	case ODEBUG_STATE_ACTIVE:
426 		hrtimer_cancel(timer);
427 		debug_object_free(timer, &hrtimer_debug_descr);
428 		return 1;
429 	default:
430 		return 0;
431 	}
432 }
433 
434 static struct debug_obj_descr hrtimer_debug_descr = {
435 	.name		= "hrtimer",
436 	.debug_hint	= hrtimer_debug_hint,
437 	.fixup_init	= hrtimer_fixup_init,
438 	.fixup_activate	= hrtimer_fixup_activate,
439 	.fixup_free	= hrtimer_fixup_free,
440 };
441 
debug_hrtimer_init(struct hrtimer * timer)442 static inline void debug_hrtimer_init(struct hrtimer *timer)
443 {
444 	debug_object_init(timer, &hrtimer_debug_descr);
445 }
446 
debug_hrtimer_activate(struct hrtimer * timer)447 static inline void debug_hrtimer_activate(struct hrtimer *timer)
448 {
449 	debug_object_activate(timer, &hrtimer_debug_descr);
450 }
451 
debug_hrtimer_deactivate(struct hrtimer * timer)452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
453 {
454 	debug_object_deactivate(timer, &hrtimer_debug_descr);
455 }
456 
debug_hrtimer_free(struct hrtimer * timer)457 static inline void debug_hrtimer_free(struct hrtimer *timer)
458 {
459 	debug_object_free(timer, &hrtimer_debug_descr);
460 }
461 
462 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
463 			   enum hrtimer_mode mode);
464 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)465 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
466 			   enum hrtimer_mode mode)
467 {
468 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
469 	__hrtimer_init(timer, clock_id, mode);
470 }
471 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
472 
destroy_hrtimer_on_stack(struct hrtimer * timer)473 void destroy_hrtimer_on_stack(struct hrtimer *timer)
474 {
475 	debug_object_free(timer, &hrtimer_debug_descr);
476 }
477 
478 #else
debug_hrtimer_init(struct hrtimer * timer)479 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)480 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)481 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
482 #endif
483 
484 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)485 debug_init(struct hrtimer *timer, clockid_t clockid,
486 	   enum hrtimer_mode mode)
487 {
488 	debug_hrtimer_init(timer);
489 	trace_hrtimer_init(timer, clockid, mode);
490 }
491 
debug_activate(struct hrtimer * timer)492 static inline void debug_activate(struct hrtimer *timer)
493 {
494 	debug_hrtimer_activate(timer);
495 	trace_hrtimer_start(timer);
496 }
497 
debug_deactivate(struct hrtimer * timer)498 static inline void debug_deactivate(struct hrtimer *timer)
499 {
500 	debug_hrtimer_deactivate(timer);
501 	trace_hrtimer_cancel(timer);
502 }
503 
504 /* High resolution timer related functions */
505 #ifdef CONFIG_HIGH_RES_TIMERS
506 
507 /*
508  * High resolution timer enabled ?
509  */
510 static int hrtimer_hres_enabled __read_mostly  = 1;
511 
512 /*
513  * Enable / Disable high resolution mode
514  */
setup_hrtimer_hres(char * str)515 static int __init setup_hrtimer_hres(char *str)
516 {
517 	if (!strcmp(str, "off"))
518 		hrtimer_hres_enabled = 0;
519 	else if (!strcmp(str, "on"))
520 		hrtimer_hres_enabled = 1;
521 	else
522 		return 0;
523 	return 1;
524 }
525 
526 __setup("highres=", setup_hrtimer_hres);
527 
528 /*
529  * hrtimer_high_res_enabled - query, if the highres mode is enabled
530  */
hrtimer_is_hres_enabled(void)531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 	return hrtimer_hres_enabled;
534 }
535 
536 /*
537  * Is the high resolution mode active ?
538  */
hrtimer_hres_active(void)539 static inline int hrtimer_hres_active(void)
540 {
541 	return __this_cpu_read(hrtimer_bases.hres_active);
542 }
543 
544 /*
545  * Reprogram the event source with checking both queues for the
546  * next event
547  * Called with interrupts disabled and base->lock held
548  */
549 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)550 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
551 {
552 	int i;
553 	struct hrtimer_clock_base *base = cpu_base->clock_base;
554 	ktime_t expires, expires_next;
555 
556 	expires_next.tv64 = KTIME_MAX;
557 
558 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
559 		struct hrtimer *timer;
560 		struct timerqueue_node *next;
561 
562 		next = timerqueue_getnext(&base->active);
563 		if (!next)
564 			continue;
565 		timer = container_of(next, struct hrtimer, node);
566 
567 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
568 		/*
569 		 * clock_was_set() has changed base->offset so the
570 		 * result might be negative. Fix it up to prevent a
571 		 * false positive in clockevents_program_event()
572 		 */
573 		if (expires.tv64 < 0)
574 			expires.tv64 = 0;
575 		if (expires.tv64 < expires_next.tv64)
576 			expires_next = expires;
577 	}
578 
579 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
580 		return;
581 
582 	cpu_base->expires_next.tv64 = expires_next.tv64;
583 
584 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
585 		tick_program_event(cpu_base->expires_next, 1);
586 }
587 
588 /*
589  * Shared reprogramming for clock_realtime and clock_monotonic
590  *
591  * When a timer is enqueued and expires earlier than the already enqueued
592  * timers, we have to check, whether it expires earlier than the timer for
593  * which the clock event device was armed.
594  *
595  * Called with interrupts disabled and base->cpu_base.lock held
596  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)597 static int hrtimer_reprogram(struct hrtimer *timer,
598 			     struct hrtimer_clock_base *base)
599 {
600 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
601 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 	int res;
603 
604 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
605 
606 	/*
607 	 * When the callback is running, we do not reprogram the clock event
608 	 * device. The timer callback is either running on a different CPU or
609 	 * the callback is executed in the hrtimer_interrupt context. The
610 	 * reprogramming is handled either by the softirq, which called the
611 	 * callback or at the end of the hrtimer_interrupt.
612 	 */
613 	if (hrtimer_callback_running(timer))
614 		return 0;
615 
616 	/*
617 	 * CLOCK_REALTIME timer might be requested with an absolute
618 	 * expiry time which is less than base->offset. Nothing wrong
619 	 * about that, just avoid to call into the tick code, which
620 	 * has now objections against negative expiry values.
621 	 */
622 	if (expires.tv64 < 0)
623 		return -ETIME;
624 
625 	if (expires.tv64 >= cpu_base->expires_next.tv64)
626 		return 0;
627 
628 	/*
629 	 * If a hang was detected in the last timer interrupt then we
630 	 * do not schedule a timer which is earlier than the expiry
631 	 * which we enforced in the hang detection. We want the system
632 	 * to make progress.
633 	 */
634 	if (cpu_base->hang_detected)
635 		return 0;
636 
637 	/*
638 	 * Clockevents returns -ETIME, when the event was in the past.
639 	 */
640 	res = tick_program_event(expires, 0);
641 	if (!IS_ERR_VALUE(res))
642 		cpu_base->expires_next = expires;
643 	return res;
644 }
645 
646 /*
647  * Initialize the high resolution related parts of cpu_base
648  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)649 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
650 {
651 	base->expires_next.tv64 = KTIME_MAX;
652 	base->hres_active = 0;
653 }
654 
655 /*
656  * When High resolution timers are active, try to reprogram. Note, that in case
657  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
658  * check happens. The timer gets enqueued into the rbtree. The reprogramming
659  * and expiry check is done in the hrtimer_interrupt or in the softirq.
660  */
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)661 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
662 					    struct hrtimer_clock_base *base)
663 {
664 	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
665 }
666 
hrtimer_update_base(struct hrtimer_cpu_base * base)667 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
668 {
669 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
670 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
671 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
672 
673 	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
674 }
675 
676 /*
677  * Retrigger next event is called after clock was set
678  *
679  * Called with interrupts disabled via on_each_cpu()
680  */
retrigger_next_event(void * arg)681 static void retrigger_next_event(void *arg)
682 {
683 	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
684 
685 	if (!hrtimer_hres_active())
686 		return;
687 
688 	raw_spin_lock(&base->lock);
689 	hrtimer_update_base(base);
690 	hrtimer_force_reprogram(base, 0);
691 	raw_spin_unlock(&base->lock);
692 }
693 
694 /*
695  * Switch to high resolution mode
696  */
hrtimer_switch_to_hres(void)697 static int hrtimer_switch_to_hres(void)
698 {
699 	int i, cpu = smp_processor_id();
700 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
701 	unsigned long flags;
702 
703 	if (base->hres_active)
704 		return 1;
705 
706 	local_irq_save(flags);
707 
708 	if (tick_init_highres()) {
709 		local_irq_restore(flags);
710 		printk(KERN_WARNING "Could not switch to high resolution "
711 				    "mode on CPU %d\n", cpu);
712 		return 0;
713 	}
714 	base->hres_active = 1;
715 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
716 		base->clock_base[i].resolution = KTIME_HIGH_RES;
717 
718 	tick_setup_sched_timer();
719 	/* "Retrigger" the interrupt to get things going */
720 	retrigger_next_event(NULL);
721 	local_irq_restore(flags);
722 	return 1;
723 }
724 
725 /*
726  * Called from timekeeping code to reprogramm the hrtimer interrupt
727  * device. If called from the timer interrupt context we defer it to
728  * softirq context.
729  */
clock_was_set_delayed(void)730 void clock_was_set_delayed(void)
731 {
732 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
733 
734 	cpu_base->clock_was_set = 1;
735 	__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
736 }
737 
738 #else
739 
hrtimer_hres_active(void)740 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)741 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)742 static inline int hrtimer_switch_to_hres(void) { return 0; }
743 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)744 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)745 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
746 					    struct hrtimer_clock_base *base)
747 {
748 	return 0;
749 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)750 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)751 static inline void retrigger_next_event(void *arg) { }
752 
753 #endif /* CONFIG_HIGH_RES_TIMERS */
754 
755 /*
756  * Clock realtime was set
757  *
758  * Change the offset of the realtime clock vs. the monotonic
759  * clock.
760  *
761  * We might have to reprogram the high resolution timer interrupt. On
762  * SMP we call the architecture specific code to retrigger _all_ high
763  * resolution timer interrupts. On UP we just disable interrupts and
764  * call the high resolution interrupt code.
765  */
clock_was_set(void)766 void clock_was_set(void)
767 {
768 #ifdef CONFIG_HIGH_RES_TIMERS
769 	/* Retrigger the CPU local events everywhere */
770 	on_each_cpu(retrigger_next_event, NULL, 1);
771 #endif
772 	timerfd_clock_was_set();
773 }
774 
775 /*
776  * During resume we might have to reprogram the high resolution timer
777  * interrupt (on the local CPU):
778  */
hrtimers_resume(void)779 void hrtimers_resume(void)
780 {
781 	WARN_ONCE(!irqs_disabled(),
782 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
783 
784 	retrigger_next_event(NULL);
785 	timerfd_clock_was_set();
786 }
787 
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)788 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
789 {
790 #ifdef CONFIG_TIMER_STATS
791 	if (timer->start_site)
792 		return;
793 	timer->start_site = __builtin_return_address(0);
794 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
795 	timer->start_pid = current->pid;
796 #endif
797 }
798 
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)799 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
800 {
801 #ifdef CONFIG_TIMER_STATS
802 	timer->start_site = NULL;
803 #endif
804 }
805 
timer_stats_account_hrtimer(struct hrtimer * timer)806 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
807 {
808 #ifdef CONFIG_TIMER_STATS
809 	if (likely(!timer_stats_active))
810 		return;
811 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
812 				 timer->function, timer->start_comm, 0);
813 #endif
814 }
815 
816 /*
817  * Counterpart to lock_hrtimer_base above:
818  */
819 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)820 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
821 {
822 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
823 }
824 
825 /**
826  * hrtimer_forward - forward the timer expiry
827  * @timer:	hrtimer to forward
828  * @now:	forward past this time
829  * @interval:	the interval to forward
830  *
831  * Forward the timer expiry so it will expire in the future.
832  * Returns the number of overruns.
833  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)834 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
835 {
836 	u64 orun = 1;
837 	ktime_t delta;
838 
839 	delta = ktime_sub(now, hrtimer_get_expires(timer));
840 
841 	if (delta.tv64 < 0)
842 		return 0;
843 
844 	if (interval.tv64 < timer->base->resolution.tv64)
845 		interval.tv64 = timer->base->resolution.tv64;
846 
847 	if (unlikely(delta.tv64 >= interval.tv64)) {
848 		s64 incr = ktime_to_ns(interval);
849 
850 		orun = ktime_divns(delta, incr);
851 		hrtimer_add_expires_ns(timer, incr * orun);
852 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
853 			return orun;
854 		/*
855 		 * This (and the ktime_add() below) is the
856 		 * correction for exact:
857 		 */
858 		orun++;
859 	}
860 	hrtimer_add_expires(timer, interval);
861 
862 	return orun;
863 }
864 EXPORT_SYMBOL_GPL(hrtimer_forward);
865 
866 /*
867  * enqueue_hrtimer - internal function to (re)start a timer
868  *
869  * The timer is inserted in expiry order. Insertion into the
870  * red black tree is O(log(n)). Must hold the base lock.
871  *
872  * Returns 1 when the new timer is the leftmost timer in the tree.
873  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)874 static int enqueue_hrtimer(struct hrtimer *timer,
875 			   struct hrtimer_clock_base *base)
876 {
877 	debug_activate(timer);
878 
879 	timerqueue_add(&base->active, &timer->node);
880 	base->cpu_base->active_bases |= 1 << base->index;
881 
882 	/*
883 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
884 	 * state of a possibly running callback.
885 	 */
886 	timer->state |= HRTIMER_STATE_ENQUEUED;
887 
888 	return (&timer->node == base->active.next);
889 }
890 
891 /*
892  * __remove_hrtimer - internal function to remove a timer
893  *
894  * Caller must hold the base lock.
895  *
896  * High resolution timer mode reprograms the clock event device when the
897  * timer is the one which expires next. The caller can disable this by setting
898  * reprogram to zero. This is useful, when the context does a reprogramming
899  * anyway (e.g. timer interrupt)
900  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)901 static void __remove_hrtimer(struct hrtimer *timer,
902 			     struct hrtimer_clock_base *base,
903 			     unsigned long newstate, int reprogram)
904 {
905 	struct timerqueue_node *next_timer;
906 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
907 		goto out;
908 
909 	next_timer = timerqueue_getnext(&base->active);
910 	timerqueue_del(&base->active, &timer->node);
911 	if (&timer->node == next_timer) {
912 #ifdef CONFIG_HIGH_RES_TIMERS
913 		/* Reprogram the clock event device. if enabled */
914 		if (reprogram && hrtimer_hres_active()) {
915 			ktime_t expires;
916 
917 			expires = ktime_sub(hrtimer_get_expires(timer),
918 					    base->offset);
919 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
920 				hrtimer_force_reprogram(base->cpu_base, 1);
921 		}
922 #endif
923 	}
924 	if (!timerqueue_getnext(&base->active))
925 		base->cpu_base->active_bases &= ~(1 << base->index);
926 out:
927 	timer->state = newstate;
928 }
929 
930 /*
931  * remove hrtimer, called with base lock held
932  */
933 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)934 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
935 {
936 	if (hrtimer_is_queued(timer)) {
937 		unsigned long state;
938 		int reprogram;
939 
940 		/*
941 		 * Remove the timer and force reprogramming when high
942 		 * resolution mode is active and the timer is on the current
943 		 * CPU. If we remove a timer on another CPU, reprogramming is
944 		 * skipped. The interrupt event on this CPU is fired and
945 		 * reprogramming happens in the interrupt handler. This is a
946 		 * rare case and less expensive than a smp call.
947 		 */
948 		debug_deactivate(timer);
949 		timer_stats_hrtimer_clear_start_info(timer);
950 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
951 		/*
952 		 * We must preserve the CALLBACK state flag here,
953 		 * otherwise we could move the timer base in
954 		 * switch_hrtimer_base.
955 		 */
956 		state = timer->state & HRTIMER_STATE_CALLBACK;
957 		__remove_hrtimer(timer, base, state, reprogram);
958 		return 1;
959 	}
960 	return 0;
961 }
962 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode,int wakeup)963 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
964 		unsigned long delta_ns, const enum hrtimer_mode mode,
965 		int wakeup)
966 {
967 	struct hrtimer_clock_base *base, *new_base;
968 	unsigned long flags;
969 	int ret, leftmost;
970 
971 	base = lock_hrtimer_base(timer, &flags);
972 
973 	/* Remove an active timer from the queue: */
974 	ret = remove_hrtimer(timer, base);
975 
976 	/* Switch the timer base, if necessary: */
977 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
978 
979 	if (mode & HRTIMER_MODE_REL) {
980 		tim = ktime_add_safe(tim, new_base->get_time());
981 		/*
982 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
983 		 * to signal that they simply return xtime in
984 		 * do_gettimeoffset(). In this case we want to round up by
985 		 * resolution when starting a relative timer, to avoid short
986 		 * timeouts. This will go away with the GTOD framework.
987 		 */
988 #ifdef CONFIG_TIME_LOW_RES
989 		tim = ktime_add_safe(tim, base->resolution);
990 #endif
991 	}
992 
993 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
994 
995 	timer_stats_hrtimer_set_start_info(timer);
996 
997 	leftmost = enqueue_hrtimer(timer, new_base);
998 
999 	/*
1000 	 * Only allow reprogramming if the new base is on this CPU.
1001 	 * (it might still be on another CPU if the timer was pending)
1002 	 *
1003 	 * XXX send_remote_softirq() ?
1004 	 */
1005 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1006 		&& hrtimer_enqueue_reprogram(timer, new_base)) {
1007 		if (wakeup) {
1008 			/*
1009 			 * We need to drop cpu_base->lock to avoid a
1010 			 * lock ordering issue vs. rq->lock.
1011 			 */
1012 			raw_spin_unlock(&new_base->cpu_base->lock);
1013 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1014 			local_irq_restore(flags);
1015 			return ret;
1016 		} else {
1017 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1018 		}
1019 	}
1020 
1021 	unlock_hrtimer_base(timer, &flags);
1022 
1023 	return ret;
1024 }
1025 
1026 /**
1027  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1028  * @timer:	the timer to be added
1029  * @tim:	expiry time
1030  * @delta_ns:	"slack" range for the timer
1031  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1032  *		relative (HRTIMER_MODE_REL)
1033  *
1034  * Returns:
1035  *  0 on success
1036  *  1 when the timer was active
1037  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)1038 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1039 		unsigned long delta_ns, const enum hrtimer_mode mode)
1040 {
1041 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1042 }
1043 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1044 
1045 /**
1046  * hrtimer_start - (re)start an hrtimer on the current CPU
1047  * @timer:	the timer to be added
1048  * @tim:	expiry time
1049  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1050  *		relative (HRTIMER_MODE_REL)
1051  *
1052  * Returns:
1053  *  0 on success
1054  *  1 when the timer was active
1055  */
1056 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1057 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1058 {
1059 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1060 }
1061 EXPORT_SYMBOL_GPL(hrtimer_start);
1062 
1063 
1064 /**
1065  * hrtimer_try_to_cancel - try to deactivate a timer
1066  * @timer:	hrtimer to stop
1067  *
1068  * Returns:
1069  *  0 when the timer was not active
1070  *  1 when the timer was active
1071  * -1 when the timer is currently excuting the callback function and
1072  *    cannot be stopped
1073  */
hrtimer_try_to_cancel(struct hrtimer * timer)1074 int hrtimer_try_to_cancel(struct hrtimer *timer)
1075 {
1076 	struct hrtimer_clock_base *base;
1077 	unsigned long flags;
1078 	int ret = -1;
1079 
1080 	base = lock_hrtimer_base(timer, &flags);
1081 
1082 	if (!hrtimer_callback_running(timer))
1083 		ret = remove_hrtimer(timer, base);
1084 
1085 	unlock_hrtimer_base(timer, &flags);
1086 
1087 	return ret;
1088 
1089 }
1090 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1091 
1092 /**
1093  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1094  * @timer:	the timer to be cancelled
1095  *
1096  * Returns:
1097  *  0 when the timer was not active
1098  *  1 when the timer was active
1099  */
hrtimer_cancel(struct hrtimer * timer)1100 int hrtimer_cancel(struct hrtimer *timer)
1101 {
1102 	for (;;) {
1103 		int ret = hrtimer_try_to_cancel(timer);
1104 
1105 		if (ret >= 0)
1106 			return ret;
1107 		cpu_relax();
1108 	}
1109 }
1110 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1111 
1112 /**
1113  * hrtimer_get_remaining - get remaining time for the timer
1114  * @timer:	the timer to read
1115  */
hrtimer_get_remaining(const struct hrtimer * timer)1116 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1117 {
1118 	unsigned long flags;
1119 	ktime_t rem;
1120 
1121 	lock_hrtimer_base(timer, &flags);
1122 	rem = hrtimer_expires_remaining(timer);
1123 	unlock_hrtimer_base(timer, &flags);
1124 
1125 	return rem;
1126 }
1127 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1128 
1129 #ifdef CONFIG_NO_HZ_COMMON
1130 /**
1131  * hrtimer_get_next_event - get the time until next expiry event
1132  *
1133  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1134  * is pending.
1135  */
hrtimer_get_next_event(void)1136 ktime_t hrtimer_get_next_event(void)
1137 {
1138 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1139 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1140 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1141 	unsigned long flags;
1142 	int i;
1143 
1144 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1145 
1146 	if (!hrtimer_hres_active()) {
1147 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1148 			struct hrtimer *timer;
1149 			struct timerqueue_node *next;
1150 
1151 			next = timerqueue_getnext(&base->active);
1152 			if (!next)
1153 				continue;
1154 
1155 			timer = container_of(next, struct hrtimer, node);
1156 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1157 			delta = ktime_sub(delta, base->get_time());
1158 			if (delta.tv64 < mindelta.tv64)
1159 				mindelta.tv64 = delta.tv64;
1160 		}
1161 	}
1162 
1163 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1164 
1165 	if (mindelta.tv64 < 0)
1166 		mindelta.tv64 = 0;
1167 	return mindelta;
1168 }
1169 #endif
1170 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1171 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1172 			   enum hrtimer_mode mode)
1173 {
1174 	struct hrtimer_cpu_base *cpu_base;
1175 	int base;
1176 
1177 	memset(timer, 0, sizeof(struct hrtimer));
1178 
1179 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1180 
1181 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1182 		clock_id = CLOCK_MONOTONIC;
1183 
1184 	base = hrtimer_clockid_to_base(clock_id);
1185 	timer->base = &cpu_base->clock_base[base];
1186 	timerqueue_init(&timer->node);
1187 
1188 #ifdef CONFIG_TIMER_STATS
1189 	timer->start_site = NULL;
1190 	timer->start_pid = -1;
1191 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1192 #endif
1193 }
1194 
1195 /**
1196  * hrtimer_init - initialize a timer to the given clock
1197  * @timer:	the timer to be initialized
1198  * @clock_id:	the clock to be used
1199  * @mode:	timer mode abs/rel
1200  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1201 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1202 		  enum hrtimer_mode mode)
1203 {
1204 	debug_init(timer, clock_id, mode);
1205 	__hrtimer_init(timer, clock_id, mode);
1206 }
1207 EXPORT_SYMBOL_GPL(hrtimer_init);
1208 
1209 /**
1210  * hrtimer_get_res - get the timer resolution for a clock
1211  * @which_clock: which clock to query
1212  * @tp:		 pointer to timespec variable to store the resolution
1213  *
1214  * Store the resolution of the clock selected by @which_clock in the
1215  * variable pointed to by @tp.
1216  */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1217 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1218 {
1219 	struct hrtimer_cpu_base *cpu_base;
1220 	int base = hrtimer_clockid_to_base(which_clock);
1221 
1222 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1223 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1224 
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1228 
__run_hrtimer(struct hrtimer * timer,ktime_t * now)1229 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1230 {
1231 	struct hrtimer_clock_base *base = timer->base;
1232 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1233 	enum hrtimer_restart (*fn)(struct hrtimer *);
1234 	int restart;
1235 
1236 	WARN_ON(!irqs_disabled());
1237 
1238 	debug_deactivate(timer);
1239 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1240 	timer_stats_account_hrtimer(timer);
1241 	fn = timer->function;
1242 
1243 	/*
1244 	 * Because we run timers from hardirq context, there is no chance
1245 	 * they get migrated to another cpu, therefore its safe to unlock
1246 	 * the timer base.
1247 	 */
1248 	raw_spin_unlock(&cpu_base->lock);
1249 	trace_hrtimer_expire_entry(timer, now);
1250 	restart = fn(timer);
1251 	trace_hrtimer_expire_exit(timer);
1252 	raw_spin_lock(&cpu_base->lock);
1253 
1254 	/*
1255 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1256 	 * we do not reprogramm the event hardware. Happens either in
1257 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1258 	 */
1259 	if (restart != HRTIMER_NORESTART) {
1260 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1261 		enqueue_hrtimer(timer, base);
1262 	}
1263 
1264 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1265 
1266 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1267 }
1268 
1269 #ifdef CONFIG_HIGH_RES_TIMERS
1270 
1271 /*
1272  * High resolution timer interrupt
1273  * Called with interrupts disabled
1274  */
hrtimer_interrupt(struct clock_event_device * dev)1275 void hrtimer_interrupt(struct clock_event_device *dev)
1276 {
1277 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1278 	ktime_t expires_next, now, entry_time, delta;
1279 	int i, retries = 0;
1280 
1281 	BUG_ON(!cpu_base->hres_active);
1282 	cpu_base->nr_events++;
1283 	dev->next_event.tv64 = KTIME_MAX;
1284 
1285 	raw_spin_lock(&cpu_base->lock);
1286 	entry_time = now = hrtimer_update_base(cpu_base);
1287 retry:
1288 	expires_next.tv64 = KTIME_MAX;
1289 	/*
1290 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1291 	 * held to prevent that a timer is enqueued in our queue via
1292 	 * the migration code. This does not affect enqueueing of
1293 	 * timers which run their callback and need to be requeued on
1294 	 * this CPU.
1295 	 */
1296 	cpu_base->expires_next.tv64 = KTIME_MAX;
1297 
1298 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1299 		struct hrtimer_clock_base *base;
1300 		struct timerqueue_node *node;
1301 		ktime_t basenow;
1302 
1303 		if (!(cpu_base->active_bases & (1 << i)))
1304 			continue;
1305 
1306 		base = cpu_base->clock_base + i;
1307 		basenow = ktime_add(now, base->offset);
1308 
1309 		while ((node = timerqueue_getnext(&base->active))) {
1310 			struct hrtimer *timer;
1311 
1312 			timer = container_of(node, struct hrtimer, node);
1313 
1314 			/*
1315 			 * The immediate goal for using the softexpires is
1316 			 * minimizing wakeups, not running timers at the
1317 			 * earliest interrupt after their soft expiration.
1318 			 * This allows us to avoid using a Priority Search
1319 			 * Tree, which can answer a stabbing querry for
1320 			 * overlapping intervals and instead use the simple
1321 			 * BST we already have.
1322 			 * We don't add extra wakeups by delaying timers that
1323 			 * are right-of a not yet expired timer, because that
1324 			 * timer will have to trigger a wakeup anyway.
1325 			 */
1326 
1327 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1328 				ktime_t expires;
1329 
1330 				expires = ktime_sub(hrtimer_get_expires(timer),
1331 						    base->offset);
1332 				if (expires.tv64 < 0)
1333 					expires.tv64 = KTIME_MAX;
1334 				if (expires.tv64 < expires_next.tv64)
1335 					expires_next = expires;
1336 				break;
1337 			}
1338 
1339 			__run_hrtimer(timer, &basenow);
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * Store the new expiry value so the migration code can verify
1345 	 * against it.
1346 	 */
1347 	cpu_base->expires_next = expires_next;
1348 	raw_spin_unlock(&cpu_base->lock);
1349 
1350 	/* Reprogramming necessary ? */
1351 	if (expires_next.tv64 == KTIME_MAX ||
1352 	    !tick_program_event(expires_next, 0)) {
1353 		cpu_base->hang_detected = 0;
1354 		return;
1355 	}
1356 
1357 	/*
1358 	 * The next timer was already expired due to:
1359 	 * - tracing
1360 	 * - long lasting callbacks
1361 	 * - being scheduled away when running in a VM
1362 	 *
1363 	 * We need to prevent that we loop forever in the hrtimer
1364 	 * interrupt routine. We give it 3 attempts to avoid
1365 	 * overreacting on some spurious event.
1366 	 *
1367 	 * Acquire base lock for updating the offsets and retrieving
1368 	 * the current time.
1369 	 */
1370 	raw_spin_lock(&cpu_base->lock);
1371 	now = hrtimer_update_base(cpu_base);
1372 	cpu_base->nr_retries++;
1373 	if (++retries < 3)
1374 		goto retry;
1375 	/*
1376 	 * Give the system a chance to do something else than looping
1377 	 * here. We stored the entry time, so we know exactly how long
1378 	 * we spent here. We schedule the next event this amount of
1379 	 * time away.
1380 	 */
1381 	cpu_base->nr_hangs++;
1382 	cpu_base->hang_detected = 1;
1383 	raw_spin_unlock(&cpu_base->lock);
1384 	delta = ktime_sub(now, entry_time);
1385 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1386 		cpu_base->max_hang_time = delta;
1387 	/*
1388 	 * Limit it to a sensible value as we enforce a longer
1389 	 * delay. Give the CPU at least 100ms to catch up.
1390 	 */
1391 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1392 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1393 	else
1394 		expires_next = ktime_add(now, delta);
1395 	tick_program_event(expires_next, 1);
1396 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1397 		    ktime_to_ns(delta));
1398 }
1399 
1400 /*
1401  * local version of hrtimer_peek_ahead_timers() called with interrupts
1402  * disabled.
1403  */
__hrtimer_peek_ahead_timers(void)1404 static void __hrtimer_peek_ahead_timers(void)
1405 {
1406 	struct tick_device *td;
1407 
1408 	if (!hrtimer_hres_active())
1409 		return;
1410 
1411 	td = &__get_cpu_var(tick_cpu_device);
1412 	if (td && td->evtdev)
1413 		hrtimer_interrupt(td->evtdev);
1414 }
1415 
1416 /**
1417  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1418  *
1419  * hrtimer_peek_ahead_timers will peek at the timer queue of
1420  * the current cpu and check if there are any timers for which
1421  * the soft expires time has passed. If any such timers exist,
1422  * they are run immediately and then removed from the timer queue.
1423  *
1424  */
hrtimer_peek_ahead_timers(void)1425 void hrtimer_peek_ahead_timers(void)
1426 {
1427 	unsigned long flags;
1428 
1429 	local_irq_save(flags);
1430 	__hrtimer_peek_ahead_timers();
1431 	local_irq_restore(flags);
1432 }
1433 
run_hrtimer_softirq(struct softirq_action * h)1434 static void run_hrtimer_softirq(struct softirq_action *h)
1435 {
1436 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1437 
1438 	if (cpu_base->clock_was_set) {
1439 		cpu_base->clock_was_set = 0;
1440 		clock_was_set();
1441 	}
1442 
1443 	hrtimer_peek_ahead_timers();
1444 }
1445 
1446 #else /* CONFIG_HIGH_RES_TIMERS */
1447 
__hrtimer_peek_ahead_timers(void)1448 static inline void __hrtimer_peek_ahead_timers(void) { }
1449 
1450 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1451 
1452 /*
1453  * Called from timer softirq every jiffy, expire hrtimers:
1454  *
1455  * For HRT its the fall back code to run the softirq in the timer
1456  * softirq context in case the hrtimer initialization failed or has
1457  * not been done yet.
1458  */
hrtimer_run_pending(void)1459 void hrtimer_run_pending(void)
1460 {
1461 	if (hrtimer_hres_active())
1462 		return;
1463 
1464 	/*
1465 	 * This _is_ ugly: We have to check in the softirq context,
1466 	 * whether we can switch to highres and / or nohz mode. The
1467 	 * clocksource switch happens in the timer interrupt with
1468 	 * xtime_lock held. Notification from there only sets the
1469 	 * check bit in the tick_oneshot code, otherwise we might
1470 	 * deadlock vs. xtime_lock.
1471 	 */
1472 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1473 		hrtimer_switch_to_hres();
1474 }
1475 
1476 /*
1477  * Called from hardirq context every jiffy
1478  */
hrtimer_run_queues(void)1479 void hrtimer_run_queues(void)
1480 {
1481 	struct timerqueue_node *node;
1482 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1483 	struct hrtimer_clock_base *base;
1484 	int index, gettime = 1;
1485 
1486 	if (hrtimer_hres_active())
1487 		return;
1488 
1489 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1490 		base = &cpu_base->clock_base[index];
1491 		if (!timerqueue_getnext(&base->active))
1492 			continue;
1493 
1494 		if (gettime) {
1495 			hrtimer_get_softirq_time(cpu_base);
1496 			gettime = 0;
1497 		}
1498 
1499 		raw_spin_lock(&cpu_base->lock);
1500 
1501 		while ((node = timerqueue_getnext(&base->active))) {
1502 			struct hrtimer *timer;
1503 
1504 			timer = container_of(node, struct hrtimer, node);
1505 			if (base->softirq_time.tv64 <=
1506 					hrtimer_get_expires_tv64(timer))
1507 				break;
1508 
1509 			__run_hrtimer(timer, &base->softirq_time);
1510 		}
1511 		raw_spin_unlock(&cpu_base->lock);
1512 	}
1513 }
1514 
1515 /*
1516  * Sleep related functions:
1517  */
hrtimer_wakeup(struct hrtimer * timer)1518 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1519 {
1520 	struct hrtimer_sleeper *t =
1521 		container_of(timer, struct hrtimer_sleeper, timer);
1522 	struct task_struct *task = t->task;
1523 
1524 	t->task = NULL;
1525 	if (task)
1526 		wake_up_process(task);
1527 
1528 	return HRTIMER_NORESTART;
1529 }
1530 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1531 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1532 {
1533 	sl->timer.function = hrtimer_wakeup;
1534 	sl->task = task;
1535 }
1536 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1537 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1538 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1539 {
1540 	hrtimer_init_sleeper(t, current);
1541 
1542 	do {
1543 		set_current_state(TASK_INTERRUPTIBLE);
1544 		hrtimer_start_expires(&t->timer, mode);
1545 		if (!hrtimer_active(&t->timer))
1546 			t->task = NULL;
1547 
1548 		if (likely(t->task))
1549 			freezable_schedule();
1550 
1551 		hrtimer_cancel(&t->timer);
1552 		mode = HRTIMER_MODE_ABS;
1553 
1554 	} while (t->task && !signal_pending(current));
1555 
1556 	__set_current_state(TASK_RUNNING);
1557 
1558 	return t->task == NULL;
1559 }
1560 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1561 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1562 {
1563 	struct timespec rmt;
1564 	ktime_t rem;
1565 
1566 	rem = hrtimer_expires_remaining(timer);
1567 	if (rem.tv64 <= 0)
1568 		return 0;
1569 	rmt = ktime_to_timespec(rem);
1570 
1571 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1572 		return -EFAULT;
1573 
1574 	return 1;
1575 }
1576 
hrtimer_nanosleep_restart(struct restart_block * restart)1577 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1578 {
1579 	struct hrtimer_sleeper t;
1580 	struct timespec __user  *rmtp;
1581 	int ret = 0;
1582 
1583 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1584 				HRTIMER_MODE_ABS);
1585 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1586 
1587 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1588 		goto out;
1589 
1590 	rmtp = restart->nanosleep.rmtp;
1591 	if (rmtp) {
1592 		ret = update_rmtp(&t.timer, rmtp);
1593 		if (ret <= 0)
1594 			goto out;
1595 	}
1596 
1597 	/* The other values in restart are already filled in */
1598 	ret = -ERESTART_RESTARTBLOCK;
1599 out:
1600 	destroy_hrtimer_on_stack(&t.timer);
1601 	return ret;
1602 }
1603 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1604 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1605 		       const enum hrtimer_mode mode, const clockid_t clockid)
1606 {
1607 	struct restart_block *restart;
1608 	struct hrtimer_sleeper t;
1609 	int ret = 0;
1610 	unsigned long slack;
1611 
1612 	slack = current->timer_slack_ns;
1613 	if (rt_task(current))
1614 		slack = 0;
1615 
1616 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1617 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1618 	if (do_nanosleep(&t, mode))
1619 		goto out;
1620 
1621 	/* Absolute timers do not update the rmtp value and restart: */
1622 	if (mode == HRTIMER_MODE_ABS) {
1623 		ret = -ERESTARTNOHAND;
1624 		goto out;
1625 	}
1626 
1627 	if (rmtp) {
1628 		ret = update_rmtp(&t.timer, rmtp);
1629 		if (ret <= 0)
1630 			goto out;
1631 	}
1632 
1633 	restart = &current_thread_info()->restart_block;
1634 	restart->fn = hrtimer_nanosleep_restart;
1635 	restart->nanosleep.clockid = t.timer.base->clockid;
1636 	restart->nanosleep.rmtp = rmtp;
1637 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1638 
1639 	ret = -ERESTART_RESTARTBLOCK;
1640 out:
1641 	destroy_hrtimer_on_stack(&t.timer);
1642 	return ret;
1643 }
1644 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1645 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1646 		struct timespec __user *, rmtp)
1647 {
1648 	struct timespec tu;
1649 
1650 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1651 		return -EFAULT;
1652 
1653 	if (!timespec_valid(&tu))
1654 		return -EINVAL;
1655 
1656 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1657 }
1658 
1659 /*
1660  * Functions related to boot-time initialization:
1661  */
init_hrtimers_cpu(int cpu)1662 static void __cpuinit init_hrtimers_cpu(int cpu)
1663 {
1664 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1665 	int i;
1666 
1667 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1668 		cpu_base->clock_base[i].cpu_base = cpu_base;
1669 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1670 	}
1671 
1672 	hrtimer_init_hres(cpu_base);
1673 }
1674 
1675 #ifdef CONFIG_HOTPLUG_CPU
1676 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1677 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1678 				struct hrtimer_clock_base *new_base)
1679 {
1680 	struct hrtimer *timer;
1681 	struct timerqueue_node *node;
1682 
1683 	while ((node = timerqueue_getnext(&old_base->active))) {
1684 		timer = container_of(node, struct hrtimer, node);
1685 		BUG_ON(hrtimer_callback_running(timer));
1686 		debug_deactivate(timer);
1687 
1688 		/*
1689 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1690 		 * timer could be seen as !active and just vanish away
1691 		 * under us on another CPU
1692 		 */
1693 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1694 		timer->base = new_base;
1695 		/*
1696 		 * Enqueue the timers on the new cpu. This does not
1697 		 * reprogram the event device in case the timer
1698 		 * expires before the earliest on this CPU, but we run
1699 		 * hrtimer_interrupt after we migrated everything to
1700 		 * sort out already expired timers and reprogram the
1701 		 * event device.
1702 		 */
1703 		enqueue_hrtimer(timer, new_base);
1704 
1705 		/* Clear the migration state bit */
1706 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1707 	}
1708 }
1709 
migrate_hrtimers(int scpu)1710 static void migrate_hrtimers(int scpu)
1711 {
1712 	struct hrtimer_cpu_base *old_base, *new_base;
1713 	int i;
1714 
1715 	BUG_ON(cpu_online(scpu));
1716 	tick_cancel_sched_timer(scpu);
1717 
1718 	local_irq_disable();
1719 	old_base = &per_cpu(hrtimer_bases, scpu);
1720 	new_base = &__get_cpu_var(hrtimer_bases);
1721 	/*
1722 	 * The caller is globally serialized and nobody else
1723 	 * takes two locks at once, deadlock is not possible.
1724 	 */
1725 	raw_spin_lock(&new_base->lock);
1726 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1727 
1728 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1729 		migrate_hrtimer_list(&old_base->clock_base[i],
1730 				     &new_base->clock_base[i]);
1731 	}
1732 
1733 	raw_spin_unlock(&old_base->lock);
1734 	raw_spin_unlock(&new_base->lock);
1735 
1736 	/* Check, if we got expired work to do */
1737 	__hrtimer_peek_ahead_timers();
1738 	local_irq_enable();
1739 }
1740 
1741 #endif /* CONFIG_HOTPLUG_CPU */
1742 
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1743 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1744 					unsigned long action, void *hcpu)
1745 {
1746 	int scpu = (long)hcpu;
1747 
1748 	switch (action) {
1749 
1750 	case CPU_UP_PREPARE:
1751 	case CPU_UP_PREPARE_FROZEN:
1752 		init_hrtimers_cpu(scpu);
1753 		break;
1754 
1755 #ifdef CONFIG_HOTPLUG_CPU
1756 	case CPU_DYING:
1757 	case CPU_DYING_FROZEN:
1758 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1759 		break;
1760 	case CPU_DEAD:
1761 	case CPU_DEAD_FROZEN:
1762 	{
1763 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1764 		migrate_hrtimers(scpu);
1765 		break;
1766 	}
1767 #endif
1768 
1769 	default:
1770 		break;
1771 	}
1772 
1773 	return NOTIFY_OK;
1774 }
1775 
1776 static struct notifier_block __cpuinitdata hrtimers_nb = {
1777 	.notifier_call = hrtimer_cpu_notify,
1778 };
1779 
hrtimers_init(void)1780 void __init hrtimers_init(void)
1781 {
1782 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1783 			  (void *)(long)smp_processor_id());
1784 	register_cpu_notifier(&hrtimers_nb);
1785 #ifdef CONFIG_HIGH_RES_TIMERS
1786 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1787 #endif
1788 }
1789 
1790 /**
1791  * schedule_hrtimeout_range_clock - sleep until timeout
1792  * @expires:	timeout value (ktime_t)
1793  * @delta:	slack in expires timeout (ktime_t)
1794  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1796  */
1797 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode,int clock)1798 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1799 			       const enum hrtimer_mode mode, int clock)
1800 {
1801 	struct hrtimer_sleeper t;
1802 
1803 	/*
1804 	 * Optimize when a zero timeout value is given. It does not
1805 	 * matter whether this is an absolute or a relative time.
1806 	 */
1807 	if (expires && !expires->tv64) {
1808 		__set_current_state(TASK_RUNNING);
1809 		return 0;
1810 	}
1811 
1812 	/*
1813 	 * A NULL parameter means "infinite"
1814 	 */
1815 	if (!expires) {
1816 		schedule();
1817 		__set_current_state(TASK_RUNNING);
1818 		return -EINTR;
1819 	}
1820 
1821 	hrtimer_init_on_stack(&t.timer, clock, mode);
1822 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1823 
1824 	hrtimer_init_sleeper(&t, current);
1825 
1826 	hrtimer_start_expires(&t.timer, mode);
1827 	if (!hrtimer_active(&t.timer))
1828 		t.task = NULL;
1829 
1830 	if (likely(t.task))
1831 		schedule();
1832 
1833 	hrtimer_cancel(&t.timer);
1834 	destroy_hrtimer_on_stack(&t.timer);
1835 
1836 	__set_current_state(TASK_RUNNING);
1837 
1838 	return !t.task ? 0 : -EINTR;
1839 }
1840 
1841 /**
1842  * schedule_hrtimeout_range - sleep until timeout
1843  * @expires:	timeout value (ktime_t)
1844  * @delta:	slack in expires timeout (ktime_t)
1845  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1846  *
1847  * Make the current task sleep until the given expiry time has
1848  * elapsed. The routine will return immediately unless
1849  * the current task state has been set (see set_current_state()).
1850  *
1851  * The @delta argument gives the kernel the freedom to schedule the
1852  * actual wakeup to a time that is both power and performance friendly.
1853  * The kernel give the normal best effort behavior for "@expires+@delta",
1854  * but may decide to fire the timer earlier, but no earlier than @expires.
1855  *
1856  * You can set the task state as follows -
1857  *
1858  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1859  * pass before the routine returns.
1860  *
1861  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1862  * delivered to the current task.
1863  *
1864  * The current task state is guaranteed to be TASK_RUNNING when this
1865  * routine returns.
1866  *
1867  * Returns 0 when the timer has expired otherwise -EINTR
1868  */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1869 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1870 				     const enum hrtimer_mode mode)
1871 {
1872 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1873 					      CLOCK_MONOTONIC);
1874 }
1875 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1876 
1877 /**
1878  * schedule_hrtimeout - sleep until timeout
1879  * @expires:	timeout value (ktime_t)
1880  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1881  *
1882  * Make the current task sleep until the given expiry time has
1883  * elapsed. The routine will return immediately unless
1884  * the current task state has been set (see set_current_state()).
1885  *
1886  * You can set the task state as follows -
1887  *
1888  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1889  * pass before the routine returns.
1890  *
1891  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1892  * delivered to the current task.
1893  *
1894  * The current task state is guaranteed to be TASK_RUNNING when this
1895  * routine returns.
1896  *
1897  * Returns 0 when the timer has expired otherwise -EINTR
1898  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1899 int __sched schedule_hrtimeout(ktime_t *expires,
1900 			       const enum hrtimer_mode mode)
1901 {
1902 	return schedule_hrtimeout_range(expires, 0, mode);
1903 }
1904 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1905