• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	kmod, the new module loader (replaces kerneld)
3 	Kirk Petersen
4 
5 	Reorganized not to be a daemon by Adam Richter, with guidance
6 	from Greg Zornetzer.
7 
8 	Modified to avoid chroot and file sharing problems.
9 	Mikael Pettersson
10 
11 	Limit the concurrent number of kmod modprobes to catch loops from
12 	"modprobe needs a service that is in a module".
13 	Keith Owens <kaos@ocs.com.au> December 1999
14 
15 	Unblock all signals when we exec a usermode process.
16 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17 
18 	call_usermodehelper wait flag, and remove exec_usermodehelper.
19 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 
44 #include <trace/events/module.h>
45 
46 extern int max_threads;
47 
48 static struct workqueue_struct *khelper_wq;
49 
50 /*
51  * kmod_thread_locker is used for deadlock avoidance.  There is no explicit
52  * locking to protect this global - it is private to the singleton khelper
53  * thread and should only ever be modified by that thread.
54  */
55 static const struct task_struct *kmod_thread_locker;
56 
57 #define CAP_BSET	(void *)1
58 #define CAP_PI		(void *)2
59 
60 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
61 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
62 static DEFINE_SPINLOCK(umh_sysctl_lock);
63 static DECLARE_RWSEM(umhelper_sem);
64 
65 #ifdef CONFIG_MODULES
66 
67 /*
68 	modprobe_path is set via /proc/sys.
69 */
70 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
71 
free_modprobe_argv(struct subprocess_info * info)72 static void free_modprobe_argv(struct subprocess_info *info)
73 {
74 	kfree(info->argv[3]); /* check call_modprobe() */
75 	kfree(info->argv);
76 }
77 
call_modprobe(char * module_name,int wait)78 static int call_modprobe(char *module_name, int wait)
79 {
80 	struct subprocess_info *info;
81 	static char *envp[] = {
82 		"HOME=/",
83 		"TERM=linux",
84 		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
85 		NULL
86 	};
87 
88 	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
89 	if (!argv)
90 		goto out;
91 
92 	module_name = kstrdup(module_name, GFP_KERNEL);
93 	if (!module_name)
94 		goto free_argv;
95 
96 	argv[0] = modprobe_path;
97 	argv[1] = "-q";
98 	argv[2] = "--";
99 	argv[3] = module_name;	/* check free_modprobe_argv() */
100 	argv[4] = NULL;
101 
102 	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
103 					 NULL, free_modprobe_argv, NULL);
104 	if (!info)
105 		goto free_module_name;
106 
107 	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
108 
109 free_module_name:
110 	kfree(module_name);
111 free_argv:
112 	kfree(argv);
113 out:
114 	return -ENOMEM;
115 }
116 
117 /**
118  * __request_module - try to load a kernel module
119  * @wait: wait (or not) for the operation to complete
120  * @fmt: printf style format string for the name of the module
121  * @...: arguments as specified in the format string
122  *
123  * Load a module using the user mode module loader. The function returns
124  * zero on success or a negative errno code on failure. Note that a
125  * successful module load does not mean the module did not then unload
126  * and exit on an error of its own. Callers must check that the service
127  * they requested is now available not blindly invoke it.
128  *
129  * If module auto-loading support is disabled then this function
130  * becomes a no-operation.
131  */
__request_module(bool wait,const char * fmt,...)132 int __request_module(bool wait, const char *fmt, ...)
133 {
134 	va_list args;
135 	char module_name[MODULE_NAME_LEN];
136 	unsigned int max_modprobes;
137 	int ret;
138 	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
139 #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
140 	static int kmod_loop_msg;
141 
142 	/*
143 	 * We don't allow synchronous module loading from async.  Module
144 	 * init may invoke async_synchronize_full() which will end up
145 	 * waiting for this task which already is waiting for the module
146 	 * loading to complete, leading to a deadlock.
147 	 */
148 	WARN_ON_ONCE(wait && current_is_async());
149 
150 	va_start(args, fmt);
151 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
152 	va_end(args);
153 	if (ret >= MODULE_NAME_LEN)
154 		return -ENAMETOOLONG;
155 
156 	ret = security_kernel_module_request(module_name);
157 	if (ret)
158 		return ret;
159 
160 	/* If modprobe needs a service that is in a module, we get a recursive
161 	 * loop.  Limit the number of running kmod threads to max_threads/2 or
162 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
163 	 * would be to run the parents of this process, counting how many times
164 	 * kmod was invoked.  That would mean accessing the internals of the
165 	 * process tables to get the command line, proc_pid_cmdline is static
166 	 * and it is not worth changing the proc code just to handle this case.
167 	 * KAO.
168 	 *
169 	 * "trace the ppid" is simple, but will fail if someone's
170 	 * parent exits.  I think this is as good as it gets. --RR
171 	 */
172 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
173 	atomic_inc(&kmod_concurrent);
174 	if (atomic_read(&kmod_concurrent) > max_modprobes) {
175 		/* We may be blaming an innocent here, but unlikely */
176 		if (kmod_loop_msg < 5) {
177 			printk(KERN_ERR
178 			       "request_module: runaway loop modprobe %s\n",
179 			       module_name);
180 			kmod_loop_msg++;
181 		}
182 		atomic_dec(&kmod_concurrent);
183 		return -ENOMEM;
184 	}
185 
186 	trace_module_request(module_name, wait, _RET_IP_);
187 
188 	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
189 
190 	atomic_dec(&kmod_concurrent);
191 	return ret;
192 }
193 EXPORT_SYMBOL(__request_module);
194 #endif /* CONFIG_MODULES */
195 
196 /*
197  * This is the task which runs the usermode application
198  */
____call_usermodehelper(void * data)199 static int ____call_usermodehelper(void *data)
200 {
201 	struct subprocess_info *sub_info = data;
202 	struct cred *new;
203 	int retval;
204 
205 	spin_lock_irq(&current->sighand->siglock);
206 	flush_signal_handlers(current, 1);
207 	spin_unlock_irq(&current->sighand->siglock);
208 
209 	/* We can run anywhere, unlike our parent keventd(). */
210 	set_cpus_allowed_ptr(current, cpu_all_mask);
211 
212 	/*
213 	 * Our parent is keventd, which runs with elevated scheduling priority.
214 	 * Avoid propagating that into the userspace child.
215 	 */
216 	set_user_nice(current, 0);
217 
218 	retval = -ENOMEM;
219 	new = prepare_kernel_cred(current);
220 	if (!new)
221 		goto fail;
222 
223 	spin_lock(&umh_sysctl_lock);
224 	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
225 	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
226 					     new->cap_inheritable);
227 	spin_unlock(&umh_sysctl_lock);
228 
229 	if (sub_info->init) {
230 		retval = sub_info->init(sub_info, new);
231 		if (retval) {
232 			abort_creds(new);
233 			goto fail;
234 		}
235 	}
236 
237 	commit_creds(new);
238 
239 	retval = do_execve(sub_info->path,
240 			   (const char __user *const __user *)sub_info->argv,
241 			   (const char __user *const __user *)sub_info->envp);
242 	if (!retval)
243 		return 0;
244 
245 	/* Exec failed? */
246 fail:
247 	sub_info->retval = retval;
248 	do_exit(0);
249 }
250 
call_helper(void * data)251 static int call_helper(void *data)
252 {
253 	/* Worker thread started blocking khelper thread. */
254 	kmod_thread_locker = current;
255 	return ____call_usermodehelper(data);
256 }
257 
call_usermodehelper_freeinfo(struct subprocess_info * info)258 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
259 {
260 	if (info->cleanup)
261 		(*info->cleanup)(info);
262 	kfree(info);
263 }
264 
umh_complete(struct subprocess_info * sub_info)265 static void umh_complete(struct subprocess_info *sub_info)
266 {
267 	struct completion *comp = xchg(&sub_info->complete, NULL);
268 	/*
269 	 * See call_usermodehelper_exec(). If xchg() returns NULL
270 	 * we own sub_info, the UMH_KILLABLE caller has gone away.
271 	 */
272 	if (comp)
273 		complete(comp);
274 	else
275 		call_usermodehelper_freeinfo(sub_info);
276 }
277 
278 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)279 static int wait_for_helper(void *data)
280 {
281 	struct subprocess_info *sub_info = data;
282 	pid_t pid;
283 
284 	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
285 	spin_lock_irq(&current->sighand->siglock);
286 	current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
287 	spin_unlock_irq(&current->sighand->siglock);
288 
289 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
290 	if (pid < 0) {
291 		sub_info->retval = pid;
292 	} else {
293 		int ret = -ECHILD;
294 		/*
295 		 * Normally it is bogus to call wait4() from in-kernel because
296 		 * wait4() wants to write the exit code to a userspace address.
297 		 * But wait_for_helper() always runs as keventd, and put_user()
298 		 * to a kernel address works OK for kernel threads, due to their
299 		 * having an mm_segment_t which spans the entire address space.
300 		 *
301 		 * Thus the __user pointer cast is valid here.
302 		 */
303 		sys_wait4(pid, (int __user *)&ret, 0, NULL);
304 
305 		/*
306 		 * If ret is 0, either ____call_usermodehelper failed and the
307 		 * real error code is already in sub_info->retval or
308 		 * sub_info->retval is 0 anyway, so don't mess with it then.
309 		 */
310 		if (ret)
311 			sub_info->retval = ret;
312 	}
313 
314 	umh_complete(sub_info);
315 	do_exit(0);
316 }
317 
318 /* This is run by khelper thread  */
__call_usermodehelper(struct work_struct * work)319 static void __call_usermodehelper(struct work_struct *work)
320 {
321 	struct subprocess_info *sub_info =
322 		container_of(work, struct subprocess_info, work);
323 	int wait = sub_info->wait & ~UMH_KILLABLE;
324 	pid_t pid;
325 
326 	/* CLONE_VFORK: wait until the usermode helper has execve'd
327 	 * successfully We need the data structures to stay around
328 	 * until that is done.  */
329 	if (wait == UMH_WAIT_PROC)
330 		pid = kernel_thread(wait_for_helper, sub_info,
331 				    CLONE_FS | CLONE_FILES | SIGCHLD);
332 	else {
333 		pid = kernel_thread(call_helper, sub_info,
334 				    CLONE_VFORK | SIGCHLD);
335 		/* Worker thread stopped blocking khelper thread. */
336 		kmod_thread_locker = NULL;
337 	}
338 
339 	switch (wait) {
340 	case UMH_NO_WAIT:
341 		call_usermodehelper_freeinfo(sub_info);
342 		break;
343 
344 	case UMH_WAIT_PROC:
345 		if (pid > 0)
346 			break;
347 		/* FALLTHROUGH */
348 	case UMH_WAIT_EXEC:
349 		if (pid < 0)
350 			sub_info->retval = pid;
351 		umh_complete(sub_info);
352 	}
353 }
354 
355 /*
356  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
357  * (used for preventing user land processes from being created after the user
358  * land has been frozen during a system-wide hibernation or suspend operation).
359  * Should always be manipulated under umhelper_sem acquired for write.
360  */
361 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
362 
363 /* Number of helpers running */
364 static atomic_t running_helpers = ATOMIC_INIT(0);
365 
366 /*
367  * Wait queue head used by usermodehelper_disable() to wait for all running
368  * helpers to finish.
369  */
370 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
371 
372 /*
373  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
374  * to become 'false'.
375  */
376 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
377 
378 /*
379  * Time to wait for running_helpers to become zero before the setting of
380  * usermodehelper_disabled in usermodehelper_disable() fails
381  */
382 #define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
383 
usermodehelper_read_trylock(void)384 int usermodehelper_read_trylock(void)
385 {
386 	DEFINE_WAIT(wait);
387 	int ret = 0;
388 
389 	down_read(&umhelper_sem);
390 	for (;;) {
391 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
392 				TASK_INTERRUPTIBLE);
393 		if (!usermodehelper_disabled)
394 			break;
395 
396 		if (usermodehelper_disabled == UMH_DISABLED)
397 			ret = -EAGAIN;
398 
399 		up_read(&umhelper_sem);
400 
401 		if (ret)
402 			break;
403 
404 		schedule();
405 		try_to_freeze();
406 
407 		down_read(&umhelper_sem);
408 	}
409 	finish_wait(&usermodehelper_disabled_waitq, &wait);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
413 
usermodehelper_read_lock_wait(long timeout)414 long usermodehelper_read_lock_wait(long timeout)
415 {
416 	DEFINE_WAIT(wait);
417 
418 	if (timeout < 0)
419 		return -EINVAL;
420 
421 	down_read(&umhelper_sem);
422 	for (;;) {
423 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
424 				TASK_UNINTERRUPTIBLE);
425 		if (!usermodehelper_disabled)
426 			break;
427 
428 		up_read(&umhelper_sem);
429 
430 		timeout = schedule_timeout(timeout);
431 		if (!timeout)
432 			break;
433 
434 		down_read(&umhelper_sem);
435 	}
436 	finish_wait(&usermodehelper_disabled_waitq, &wait);
437 	return timeout;
438 }
439 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
440 
usermodehelper_read_unlock(void)441 void usermodehelper_read_unlock(void)
442 {
443 	up_read(&umhelper_sem);
444 }
445 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
446 
447 /**
448  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
449  * @depth: New value to assign to usermodehelper_disabled.
450  *
451  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
452  * writing) and wakeup tasks waiting for it to change.
453  */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)454 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
455 {
456 	down_write(&umhelper_sem);
457 	usermodehelper_disabled = depth;
458 	wake_up(&usermodehelper_disabled_waitq);
459 	up_write(&umhelper_sem);
460 }
461 
462 /**
463  * __usermodehelper_disable - Prevent new helpers from being started.
464  * @depth: New value to assign to usermodehelper_disabled.
465  *
466  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
467  */
__usermodehelper_disable(enum umh_disable_depth depth)468 int __usermodehelper_disable(enum umh_disable_depth depth)
469 {
470 	long retval;
471 
472 	if (!depth)
473 		return -EINVAL;
474 
475 	down_write(&umhelper_sem);
476 	usermodehelper_disabled = depth;
477 	up_write(&umhelper_sem);
478 
479 	/*
480 	 * From now on call_usermodehelper_exec() won't start any new
481 	 * helpers, so it is sufficient if running_helpers turns out to
482 	 * be zero at one point (it may be increased later, but that
483 	 * doesn't matter).
484 	 */
485 	retval = wait_event_timeout(running_helpers_waitq,
486 					atomic_read(&running_helpers) == 0,
487 					RUNNING_HELPERS_TIMEOUT);
488 	if (retval)
489 		return 0;
490 
491 	__usermodehelper_set_disable_depth(UMH_ENABLED);
492 	return -EAGAIN;
493 }
494 
helper_lock(void)495 static void helper_lock(void)
496 {
497 	atomic_inc(&running_helpers);
498 	smp_mb__after_atomic_inc();
499 }
500 
helper_unlock(void)501 static void helper_unlock(void)
502 {
503 	if (atomic_dec_and_test(&running_helpers))
504 		wake_up(&running_helpers_waitq);
505 }
506 
507 /**
508  * call_usermodehelper_setup - prepare to call a usermode helper
509  * @path: path to usermode executable
510  * @argv: arg vector for process
511  * @envp: environment for process
512  * @gfp_mask: gfp mask for memory allocation
513  * @cleanup: a cleanup function
514  * @init: an init function
515  * @data: arbitrary context sensitive data
516  *
517  * Returns either %NULL on allocation failure, or a subprocess_info
518  * structure.  This should be passed to call_usermodehelper_exec to
519  * exec the process and free the structure.
520  *
521  * The init function is used to customize the helper process prior to
522  * exec.  A non-zero return code causes the process to error out, exit,
523  * and return the failure to the calling process
524  *
525  * The cleanup function is just before ethe subprocess_info is about to
526  * be freed.  This can be used for freeing the argv and envp.  The
527  * Function must be runnable in either a process context or the
528  * context in which call_usermodehelper_exec is called.
529  */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)530 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
531 		char **envp, gfp_t gfp_mask,
532 		int (*init)(struct subprocess_info *info, struct cred *new),
533 		void (*cleanup)(struct subprocess_info *info),
534 		void *data)
535 {
536 	struct subprocess_info *sub_info;
537 	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
538 	if (!sub_info)
539 		goto out;
540 
541 	INIT_WORK(&sub_info->work, __call_usermodehelper);
542 	sub_info->path = path;
543 	sub_info->argv = argv;
544 	sub_info->envp = envp;
545 
546 	sub_info->cleanup = cleanup;
547 	sub_info->init = init;
548 	sub_info->data = data;
549   out:
550 	return sub_info;
551 }
552 EXPORT_SYMBOL(call_usermodehelper_setup);
553 
554 /**
555  * call_usermodehelper_exec - start a usermode application
556  * @sub_info: information about the subprocessa
557  * @wait: wait for the application to finish and return status.
558  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
559  *        when the program couldn't be exec'ed. This makes it safe to call
560  *        from interrupt context.
561  *
562  * Runs a user-space application.  The application is started
563  * asynchronously if wait is not set, and runs as a child of keventd.
564  * (ie. it runs with full root capabilities).
565  */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)566 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
567 {
568 	DECLARE_COMPLETION_ONSTACK(done);
569 	int retval = 0;
570 
571 	helper_lock();
572 	if (!sub_info->path) {
573 		retval = -EINVAL;
574 		goto out;
575 	}
576 
577 	if (sub_info->path[0] == '\0')
578 		goto out;
579 
580 	if (!khelper_wq || usermodehelper_disabled) {
581 		retval = -EBUSY;
582 		goto out;
583 	}
584 	/*
585 	 * Worker thread must not wait for khelper thread at below
586 	 * wait_for_completion() if the thread was created with CLONE_VFORK
587 	 * flag, for khelper thread is already waiting for the thread at
588 	 * wait_for_completion() in do_fork().
589 	 */
590 	if (wait != UMH_NO_WAIT && current == kmod_thread_locker) {
591 		retval = -EBUSY;
592 		goto out;
593 	}
594 
595 	sub_info->complete = &done;
596 	sub_info->wait = wait;
597 
598 	queue_work(khelper_wq, &sub_info->work);
599 	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
600 		goto unlock;
601 
602 	if (wait & UMH_KILLABLE) {
603 		retval = wait_for_completion_killable(&done);
604 		if (!retval)
605 			goto wait_done;
606 
607 		/* umh_complete() will see NULL and free sub_info */
608 		if (xchg(&sub_info->complete, NULL))
609 			goto unlock;
610 		/* fallthrough, umh_complete() was already called */
611 	}
612 
613 	wait_for_completion(&done);
614 wait_done:
615 	retval = sub_info->retval;
616 out:
617 	call_usermodehelper_freeinfo(sub_info);
618 unlock:
619 	helper_unlock();
620 	return retval;
621 }
622 EXPORT_SYMBOL(call_usermodehelper_exec);
623 
624 /**
625  * call_usermodehelper() - prepare and start a usermode application
626  * @path: path to usermode executable
627  * @argv: arg vector for process
628  * @envp: environment for process
629  * @wait: wait for the application to finish and return status.
630  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
631  *        when the program couldn't be exec'ed. This makes it safe to call
632  *        from interrupt context.
633  *
634  * This function is the equivalent to use call_usermodehelper_setup() and
635  * call_usermodehelper_exec().
636  */
call_usermodehelper(char * path,char ** argv,char ** envp,int wait)637 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
638 {
639 	struct subprocess_info *info;
640 	gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
641 
642 	info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
643 					 NULL, NULL, NULL);
644 	if (info == NULL)
645 		return -ENOMEM;
646 
647 	return call_usermodehelper_exec(info, wait);
648 }
649 EXPORT_SYMBOL(call_usermodehelper);
650 
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)651 static int proc_cap_handler(struct ctl_table *table, int write,
652 			 void __user *buffer, size_t *lenp, loff_t *ppos)
653 {
654 	struct ctl_table t;
655 	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
656 	kernel_cap_t new_cap;
657 	int err, i;
658 
659 	if (write && (!capable(CAP_SETPCAP) ||
660 		      !capable(CAP_SYS_MODULE)))
661 		return -EPERM;
662 
663 	/*
664 	 * convert from the global kernel_cap_t to the ulong array to print to
665 	 * userspace if this is a read.
666 	 */
667 	spin_lock(&umh_sysctl_lock);
668 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
669 		if (table->data == CAP_BSET)
670 			cap_array[i] = usermodehelper_bset.cap[i];
671 		else if (table->data == CAP_PI)
672 			cap_array[i] = usermodehelper_inheritable.cap[i];
673 		else
674 			BUG();
675 	}
676 	spin_unlock(&umh_sysctl_lock);
677 
678 	t = *table;
679 	t.data = &cap_array;
680 
681 	/*
682 	 * actually read or write and array of ulongs from userspace.  Remember
683 	 * these are least significant 32 bits first
684 	 */
685 	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
686 	if (err < 0)
687 		return err;
688 
689 	/*
690 	 * convert from the sysctl array of ulongs to the kernel_cap_t
691 	 * internal representation
692 	 */
693 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
694 		new_cap.cap[i] = cap_array[i];
695 
696 	/*
697 	 * Drop everything not in the new_cap (but don't add things)
698 	 */
699 	spin_lock(&umh_sysctl_lock);
700 	if (write) {
701 		if (table->data == CAP_BSET)
702 			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
703 		if (table->data == CAP_PI)
704 			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
705 	}
706 	spin_unlock(&umh_sysctl_lock);
707 
708 	return 0;
709 }
710 
711 struct ctl_table usermodehelper_table[] = {
712 	{
713 		.procname	= "bset",
714 		.data		= CAP_BSET,
715 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
716 		.mode		= 0600,
717 		.proc_handler	= proc_cap_handler,
718 	},
719 	{
720 		.procname	= "inheritable",
721 		.data		= CAP_PI,
722 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
723 		.mode		= 0600,
724 		.proc_handler	= proc_cap_handler,
725 	},
726 	{ }
727 };
728 
usermodehelper_init(void)729 void __init usermodehelper_init(void)
730 {
731 	khelper_wq = create_singlethread_workqueue("khelper");
732 	BUG_ON(!khelper_wq);
733 }
734