1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 /*
51 * kmod_thread_locker is used for deadlock avoidance. There is no explicit
52 * locking to protect this global - it is private to the singleton khelper
53 * thread and should only ever be modified by that thread.
54 */
55 static const struct task_struct *kmod_thread_locker;
56
57 #define CAP_BSET (void *)1
58 #define CAP_PI (void *)2
59
60 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
61 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
62 static DEFINE_SPINLOCK(umh_sysctl_lock);
63 static DECLARE_RWSEM(umhelper_sem);
64
65 #ifdef CONFIG_MODULES
66
67 /*
68 modprobe_path is set via /proc/sys.
69 */
70 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
71
free_modprobe_argv(struct subprocess_info * info)72 static void free_modprobe_argv(struct subprocess_info *info)
73 {
74 kfree(info->argv[3]); /* check call_modprobe() */
75 kfree(info->argv);
76 }
77
call_modprobe(char * module_name,int wait)78 static int call_modprobe(char *module_name, int wait)
79 {
80 struct subprocess_info *info;
81 static char *envp[] = {
82 "HOME=/",
83 "TERM=linux",
84 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
85 NULL
86 };
87
88 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
89 if (!argv)
90 goto out;
91
92 module_name = kstrdup(module_name, GFP_KERNEL);
93 if (!module_name)
94 goto free_argv;
95
96 argv[0] = modprobe_path;
97 argv[1] = "-q";
98 argv[2] = "--";
99 argv[3] = module_name; /* check free_modprobe_argv() */
100 argv[4] = NULL;
101
102 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
103 NULL, free_modprobe_argv, NULL);
104 if (!info)
105 goto free_module_name;
106
107 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
108
109 free_module_name:
110 kfree(module_name);
111 free_argv:
112 kfree(argv);
113 out:
114 return -ENOMEM;
115 }
116
117 /**
118 * __request_module - try to load a kernel module
119 * @wait: wait (or not) for the operation to complete
120 * @fmt: printf style format string for the name of the module
121 * @...: arguments as specified in the format string
122 *
123 * Load a module using the user mode module loader. The function returns
124 * zero on success or a negative errno code on failure. Note that a
125 * successful module load does not mean the module did not then unload
126 * and exit on an error of its own. Callers must check that the service
127 * they requested is now available not blindly invoke it.
128 *
129 * If module auto-loading support is disabled then this function
130 * becomes a no-operation.
131 */
__request_module(bool wait,const char * fmt,...)132 int __request_module(bool wait, const char *fmt, ...)
133 {
134 va_list args;
135 char module_name[MODULE_NAME_LEN];
136 unsigned int max_modprobes;
137 int ret;
138 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
139 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
140 static int kmod_loop_msg;
141
142 /*
143 * We don't allow synchronous module loading from async. Module
144 * init may invoke async_synchronize_full() which will end up
145 * waiting for this task which already is waiting for the module
146 * loading to complete, leading to a deadlock.
147 */
148 WARN_ON_ONCE(wait && current_is_async());
149
150 va_start(args, fmt);
151 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
152 va_end(args);
153 if (ret >= MODULE_NAME_LEN)
154 return -ENAMETOOLONG;
155
156 ret = security_kernel_module_request(module_name);
157 if (ret)
158 return ret;
159
160 /* If modprobe needs a service that is in a module, we get a recursive
161 * loop. Limit the number of running kmod threads to max_threads/2 or
162 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
163 * would be to run the parents of this process, counting how many times
164 * kmod was invoked. That would mean accessing the internals of the
165 * process tables to get the command line, proc_pid_cmdline is static
166 * and it is not worth changing the proc code just to handle this case.
167 * KAO.
168 *
169 * "trace the ppid" is simple, but will fail if someone's
170 * parent exits. I think this is as good as it gets. --RR
171 */
172 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
173 atomic_inc(&kmod_concurrent);
174 if (atomic_read(&kmod_concurrent) > max_modprobes) {
175 /* We may be blaming an innocent here, but unlikely */
176 if (kmod_loop_msg < 5) {
177 printk(KERN_ERR
178 "request_module: runaway loop modprobe %s\n",
179 module_name);
180 kmod_loop_msg++;
181 }
182 atomic_dec(&kmod_concurrent);
183 return -ENOMEM;
184 }
185
186 trace_module_request(module_name, wait, _RET_IP_);
187
188 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
189
190 atomic_dec(&kmod_concurrent);
191 return ret;
192 }
193 EXPORT_SYMBOL(__request_module);
194 #endif /* CONFIG_MODULES */
195
196 /*
197 * This is the task which runs the usermode application
198 */
____call_usermodehelper(void * data)199 static int ____call_usermodehelper(void *data)
200 {
201 struct subprocess_info *sub_info = data;
202 struct cred *new;
203 int retval;
204
205 spin_lock_irq(¤t->sighand->siglock);
206 flush_signal_handlers(current, 1);
207 spin_unlock_irq(¤t->sighand->siglock);
208
209 /* We can run anywhere, unlike our parent keventd(). */
210 set_cpus_allowed_ptr(current, cpu_all_mask);
211
212 /*
213 * Our parent is keventd, which runs with elevated scheduling priority.
214 * Avoid propagating that into the userspace child.
215 */
216 set_user_nice(current, 0);
217
218 retval = -ENOMEM;
219 new = prepare_kernel_cred(current);
220 if (!new)
221 goto fail;
222
223 spin_lock(&umh_sysctl_lock);
224 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
225 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
226 new->cap_inheritable);
227 spin_unlock(&umh_sysctl_lock);
228
229 if (sub_info->init) {
230 retval = sub_info->init(sub_info, new);
231 if (retval) {
232 abort_creds(new);
233 goto fail;
234 }
235 }
236
237 commit_creds(new);
238
239 retval = do_execve(sub_info->path,
240 (const char __user *const __user *)sub_info->argv,
241 (const char __user *const __user *)sub_info->envp);
242 if (!retval)
243 return 0;
244
245 /* Exec failed? */
246 fail:
247 sub_info->retval = retval;
248 do_exit(0);
249 }
250
call_helper(void * data)251 static int call_helper(void *data)
252 {
253 /* Worker thread started blocking khelper thread. */
254 kmod_thread_locker = current;
255 return ____call_usermodehelper(data);
256 }
257
call_usermodehelper_freeinfo(struct subprocess_info * info)258 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
259 {
260 if (info->cleanup)
261 (*info->cleanup)(info);
262 kfree(info);
263 }
264
umh_complete(struct subprocess_info * sub_info)265 static void umh_complete(struct subprocess_info *sub_info)
266 {
267 struct completion *comp = xchg(&sub_info->complete, NULL);
268 /*
269 * See call_usermodehelper_exec(). If xchg() returns NULL
270 * we own sub_info, the UMH_KILLABLE caller has gone away.
271 */
272 if (comp)
273 complete(comp);
274 else
275 call_usermodehelper_freeinfo(sub_info);
276 }
277
278 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)279 static int wait_for_helper(void *data)
280 {
281 struct subprocess_info *sub_info = data;
282 pid_t pid;
283
284 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
285 spin_lock_irq(¤t->sighand->siglock);
286 current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
287 spin_unlock_irq(¤t->sighand->siglock);
288
289 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
290 if (pid < 0) {
291 sub_info->retval = pid;
292 } else {
293 int ret = -ECHILD;
294 /*
295 * Normally it is bogus to call wait4() from in-kernel because
296 * wait4() wants to write the exit code to a userspace address.
297 * But wait_for_helper() always runs as keventd, and put_user()
298 * to a kernel address works OK for kernel threads, due to their
299 * having an mm_segment_t which spans the entire address space.
300 *
301 * Thus the __user pointer cast is valid here.
302 */
303 sys_wait4(pid, (int __user *)&ret, 0, NULL);
304
305 /*
306 * If ret is 0, either ____call_usermodehelper failed and the
307 * real error code is already in sub_info->retval or
308 * sub_info->retval is 0 anyway, so don't mess with it then.
309 */
310 if (ret)
311 sub_info->retval = ret;
312 }
313
314 umh_complete(sub_info);
315 do_exit(0);
316 }
317
318 /* This is run by khelper thread */
__call_usermodehelper(struct work_struct * work)319 static void __call_usermodehelper(struct work_struct *work)
320 {
321 struct subprocess_info *sub_info =
322 container_of(work, struct subprocess_info, work);
323 int wait = sub_info->wait & ~UMH_KILLABLE;
324 pid_t pid;
325
326 /* CLONE_VFORK: wait until the usermode helper has execve'd
327 * successfully We need the data structures to stay around
328 * until that is done. */
329 if (wait == UMH_WAIT_PROC)
330 pid = kernel_thread(wait_for_helper, sub_info,
331 CLONE_FS | CLONE_FILES | SIGCHLD);
332 else {
333 pid = kernel_thread(call_helper, sub_info,
334 CLONE_VFORK | SIGCHLD);
335 /* Worker thread stopped blocking khelper thread. */
336 kmod_thread_locker = NULL;
337 }
338
339 switch (wait) {
340 case UMH_NO_WAIT:
341 call_usermodehelper_freeinfo(sub_info);
342 break;
343
344 case UMH_WAIT_PROC:
345 if (pid > 0)
346 break;
347 /* FALLTHROUGH */
348 case UMH_WAIT_EXEC:
349 if (pid < 0)
350 sub_info->retval = pid;
351 umh_complete(sub_info);
352 }
353 }
354
355 /*
356 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
357 * (used for preventing user land processes from being created after the user
358 * land has been frozen during a system-wide hibernation or suspend operation).
359 * Should always be manipulated under umhelper_sem acquired for write.
360 */
361 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
362
363 /* Number of helpers running */
364 static atomic_t running_helpers = ATOMIC_INIT(0);
365
366 /*
367 * Wait queue head used by usermodehelper_disable() to wait for all running
368 * helpers to finish.
369 */
370 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
371
372 /*
373 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
374 * to become 'false'.
375 */
376 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
377
378 /*
379 * Time to wait for running_helpers to become zero before the setting of
380 * usermodehelper_disabled in usermodehelper_disable() fails
381 */
382 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
383
usermodehelper_read_trylock(void)384 int usermodehelper_read_trylock(void)
385 {
386 DEFINE_WAIT(wait);
387 int ret = 0;
388
389 down_read(&umhelper_sem);
390 for (;;) {
391 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
392 TASK_INTERRUPTIBLE);
393 if (!usermodehelper_disabled)
394 break;
395
396 if (usermodehelper_disabled == UMH_DISABLED)
397 ret = -EAGAIN;
398
399 up_read(&umhelper_sem);
400
401 if (ret)
402 break;
403
404 schedule();
405 try_to_freeze();
406
407 down_read(&umhelper_sem);
408 }
409 finish_wait(&usermodehelper_disabled_waitq, &wait);
410 return ret;
411 }
412 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
413
usermodehelper_read_lock_wait(long timeout)414 long usermodehelper_read_lock_wait(long timeout)
415 {
416 DEFINE_WAIT(wait);
417
418 if (timeout < 0)
419 return -EINVAL;
420
421 down_read(&umhelper_sem);
422 for (;;) {
423 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
424 TASK_UNINTERRUPTIBLE);
425 if (!usermodehelper_disabled)
426 break;
427
428 up_read(&umhelper_sem);
429
430 timeout = schedule_timeout(timeout);
431 if (!timeout)
432 break;
433
434 down_read(&umhelper_sem);
435 }
436 finish_wait(&usermodehelper_disabled_waitq, &wait);
437 return timeout;
438 }
439 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
440
usermodehelper_read_unlock(void)441 void usermodehelper_read_unlock(void)
442 {
443 up_read(&umhelper_sem);
444 }
445 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
446
447 /**
448 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
449 * @depth: New value to assign to usermodehelper_disabled.
450 *
451 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
452 * writing) and wakeup tasks waiting for it to change.
453 */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)454 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
455 {
456 down_write(&umhelper_sem);
457 usermodehelper_disabled = depth;
458 wake_up(&usermodehelper_disabled_waitq);
459 up_write(&umhelper_sem);
460 }
461
462 /**
463 * __usermodehelper_disable - Prevent new helpers from being started.
464 * @depth: New value to assign to usermodehelper_disabled.
465 *
466 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
467 */
__usermodehelper_disable(enum umh_disable_depth depth)468 int __usermodehelper_disable(enum umh_disable_depth depth)
469 {
470 long retval;
471
472 if (!depth)
473 return -EINVAL;
474
475 down_write(&umhelper_sem);
476 usermodehelper_disabled = depth;
477 up_write(&umhelper_sem);
478
479 /*
480 * From now on call_usermodehelper_exec() won't start any new
481 * helpers, so it is sufficient if running_helpers turns out to
482 * be zero at one point (it may be increased later, but that
483 * doesn't matter).
484 */
485 retval = wait_event_timeout(running_helpers_waitq,
486 atomic_read(&running_helpers) == 0,
487 RUNNING_HELPERS_TIMEOUT);
488 if (retval)
489 return 0;
490
491 __usermodehelper_set_disable_depth(UMH_ENABLED);
492 return -EAGAIN;
493 }
494
helper_lock(void)495 static void helper_lock(void)
496 {
497 atomic_inc(&running_helpers);
498 smp_mb__after_atomic_inc();
499 }
500
helper_unlock(void)501 static void helper_unlock(void)
502 {
503 if (atomic_dec_and_test(&running_helpers))
504 wake_up(&running_helpers_waitq);
505 }
506
507 /**
508 * call_usermodehelper_setup - prepare to call a usermode helper
509 * @path: path to usermode executable
510 * @argv: arg vector for process
511 * @envp: environment for process
512 * @gfp_mask: gfp mask for memory allocation
513 * @cleanup: a cleanup function
514 * @init: an init function
515 * @data: arbitrary context sensitive data
516 *
517 * Returns either %NULL on allocation failure, or a subprocess_info
518 * structure. This should be passed to call_usermodehelper_exec to
519 * exec the process and free the structure.
520 *
521 * The init function is used to customize the helper process prior to
522 * exec. A non-zero return code causes the process to error out, exit,
523 * and return the failure to the calling process
524 *
525 * The cleanup function is just before ethe subprocess_info is about to
526 * be freed. This can be used for freeing the argv and envp. The
527 * Function must be runnable in either a process context or the
528 * context in which call_usermodehelper_exec is called.
529 */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)530 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
531 char **envp, gfp_t gfp_mask,
532 int (*init)(struct subprocess_info *info, struct cred *new),
533 void (*cleanup)(struct subprocess_info *info),
534 void *data)
535 {
536 struct subprocess_info *sub_info;
537 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
538 if (!sub_info)
539 goto out;
540
541 INIT_WORK(&sub_info->work, __call_usermodehelper);
542 sub_info->path = path;
543 sub_info->argv = argv;
544 sub_info->envp = envp;
545
546 sub_info->cleanup = cleanup;
547 sub_info->init = init;
548 sub_info->data = data;
549 out:
550 return sub_info;
551 }
552 EXPORT_SYMBOL(call_usermodehelper_setup);
553
554 /**
555 * call_usermodehelper_exec - start a usermode application
556 * @sub_info: information about the subprocessa
557 * @wait: wait for the application to finish and return status.
558 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
559 * when the program couldn't be exec'ed. This makes it safe to call
560 * from interrupt context.
561 *
562 * Runs a user-space application. The application is started
563 * asynchronously if wait is not set, and runs as a child of keventd.
564 * (ie. it runs with full root capabilities).
565 */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)566 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
567 {
568 DECLARE_COMPLETION_ONSTACK(done);
569 int retval = 0;
570
571 helper_lock();
572 if (!sub_info->path) {
573 retval = -EINVAL;
574 goto out;
575 }
576
577 if (sub_info->path[0] == '\0')
578 goto out;
579
580 if (!khelper_wq || usermodehelper_disabled) {
581 retval = -EBUSY;
582 goto out;
583 }
584 /*
585 * Worker thread must not wait for khelper thread at below
586 * wait_for_completion() if the thread was created with CLONE_VFORK
587 * flag, for khelper thread is already waiting for the thread at
588 * wait_for_completion() in do_fork().
589 */
590 if (wait != UMH_NO_WAIT && current == kmod_thread_locker) {
591 retval = -EBUSY;
592 goto out;
593 }
594
595 sub_info->complete = &done;
596 sub_info->wait = wait;
597
598 queue_work(khelper_wq, &sub_info->work);
599 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
600 goto unlock;
601
602 if (wait & UMH_KILLABLE) {
603 retval = wait_for_completion_killable(&done);
604 if (!retval)
605 goto wait_done;
606
607 /* umh_complete() will see NULL and free sub_info */
608 if (xchg(&sub_info->complete, NULL))
609 goto unlock;
610 /* fallthrough, umh_complete() was already called */
611 }
612
613 wait_for_completion(&done);
614 wait_done:
615 retval = sub_info->retval;
616 out:
617 call_usermodehelper_freeinfo(sub_info);
618 unlock:
619 helper_unlock();
620 return retval;
621 }
622 EXPORT_SYMBOL(call_usermodehelper_exec);
623
624 /**
625 * call_usermodehelper() - prepare and start a usermode application
626 * @path: path to usermode executable
627 * @argv: arg vector for process
628 * @envp: environment for process
629 * @wait: wait for the application to finish and return status.
630 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
631 * when the program couldn't be exec'ed. This makes it safe to call
632 * from interrupt context.
633 *
634 * This function is the equivalent to use call_usermodehelper_setup() and
635 * call_usermodehelper_exec().
636 */
call_usermodehelper(char * path,char ** argv,char ** envp,int wait)637 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
638 {
639 struct subprocess_info *info;
640 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
641
642 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
643 NULL, NULL, NULL);
644 if (info == NULL)
645 return -ENOMEM;
646
647 return call_usermodehelper_exec(info, wait);
648 }
649 EXPORT_SYMBOL(call_usermodehelper);
650
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)651 static int proc_cap_handler(struct ctl_table *table, int write,
652 void __user *buffer, size_t *lenp, loff_t *ppos)
653 {
654 struct ctl_table t;
655 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
656 kernel_cap_t new_cap;
657 int err, i;
658
659 if (write && (!capable(CAP_SETPCAP) ||
660 !capable(CAP_SYS_MODULE)))
661 return -EPERM;
662
663 /*
664 * convert from the global kernel_cap_t to the ulong array to print to
665 * userspace if this is a read.
666 */
667 spin_lock(&umh_sysctl_lock);
668 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
669 if (table->data == CAP_BSET)
670 cap_array[i] = usermodehelper_bset.cap[i];
671 else if (table->data == CAP_PI)
672 cap_array[i] = usermodehelper_inheritable.cap[i];
673 else
674 BUG();
675 }
676 spin_unlock(&umh_sysctl_lock);
677
678 t = *table;
679 t.data = &cap_array;
680
681 /*
682 * actually read or write and array of ulongs from userspace. Remember
683 * these are least significant 32 bits first
684 */
685 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
686 if (err < 0)
687 return err;
688
689 /*
690 * convert from the sysctl array of ulongs to the kernel_cap_t
691 * internal representation
692 */
693 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
694 new_cap.cap[i] = cap_array[i];
695
696 /*
697 * Drop everything not in the new_cap (but don't add things)
698 */
699 spin_lock(&umh_sysctl_lock);
700 if (write) {
701 if (table->data == CAP_BSET)
702 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
703 if (table->data == CAP_PI)
704 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
705 }
706 spin_unlock(&umh_sysctl_lock);
707
708 return 0;
709 }
710
711 struct ctl_table usermodehelper_table[] = {
712 {
713 .procname = "bset",
714 .data = CAP_BSET,
715 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
716 .mode = 0600,
717 .proc_handler = proc_cap_handler,
718 },
719 {
720 .procname = "inheritable",
721 .data = CAP_PI,
722 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
723 .mode = 0600,
724 .proc_handler = proc_cap_handler,
725 },
726 { }
727 };
728
usermodehelper_init(void)729 void __init usermodehelper_init(void)
730 {
731 khelper_wq = create_singlethread_workqueue("khelper");
732 BUG_ON(!khelper_wq);
733 }
734