• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
kretprobe_table_lock_ptr(unsigned long hash)84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	int nused;
116 	int ngarbage;
117 	char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots)			\
121 	(offsetof(struct kprobe_insn_page, slot_used) +	\
122 	 (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125 	struct list_head pages;	/* list of kprobe_insn_page */
126 	size_t insn_size;	/* size of instruction slot */
127 	int nr_garbage;
128 };
129 
slots_per_page(struct kprobe_insn_cache * c)130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136 	SLOT_CLEAN = 0,
137 	SLOT_DIRTY = 1,
138 	SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 	.insn_size = MAX_INSN_SIZE,
145 	.nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
__get_insn_slot(struct kprobe_insn_cache * c)153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 	struct kprobe_insn_page *kip;
156 
157  retry:
158 	list_for_each_entry(kip, &c->pages, list) {
159 		if (kip->nused < slots_per_page(c)) {
160 			int i;
161 			for (i = 0; i < slots_per_page(c); i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * c->insn_size);
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 
174 	/* If there are any garbage slots, collect it and try again. */
175 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 		goto retry;
177 
178 	/* All out of space.  Need to allocate a new page. */
179 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 	if (!kip)
181 		return NULL;
182 
183 	/*
184 	 * Use module_alloc so this page is within +/- 2GB of where the
185 	 * kernel image and loaded module images reside. This is required
186 	 * so x86_64 can correctly handle the %rip-relative fixups.
187 	 */
188 	kip->insns = module_alloc(PAGE_SIZE);
189 	if (!kip->insns) {
190 		kfree(kip);
191 		return NULL;
192 	}
193 	INIT_LIST_HEAD(&kip->list);
194 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	list_add(&kip->list, &c->pages);
199 	return kip->insns;
200 }
201 
202 
get_insn_slot(void)203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret = NULL;
206 
207 	mutex_lock(&kprobe_insn_mutex);
208 	ret = __get_insn_slot(&kprobe_insn_slots);
209 	mutex_unlock(&kprobe_insn_mutex);
210 
211 	return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 	kip->slot_used[idx] = SLOT_CLEAN;
218 	kip->nused--;
219 	if (kip->nused == 0) {
220 		/*
221 		 * Page is no longer in use.  Free it unless
222 		 * it's the last one.  We keep the last one
223 		 * so as not to have to set it up again the
224 		 * next time somebody inserts a probe.
225 		 */
226 		if (!list_is_singular(&kip->list)) {
227 			list_del(&kip->list);
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
collect_garbage_slots(struct kprobe_insn_cache * c)236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 	struct kprobe_insn_page *kip, *next;
239 
240 	/* Ensure no-one is interrupted on the garbages */
241 	synchronize_sched();
242 
243 	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 		int i;
245 		if (kip->ngarbage == 0)
246 			continue;
247 		kip->ngarbage = 0;	/* we will collect all garbages */
248 		for (i = 0; i < slots_per_page(c); i++) {
249 			if (kip->slot_used[i] == SLOT_DIRTY &&
250 			    collect_one_slot(kip, i))
251 				break;
252 		}
253 	}
254 	c->nr_garbage = 0;
255 	return 0;
256 }
257 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 				       kprobe_opcode_t *slot, int dirty)
260 {
261 	struct kprobe_insn_page *kip;
262 
263 	list_for_each_entry(kip, &c->pages, list) {
264 		long idx = ((long)slot - (long)kip->insns) /
265 				(c->insn_size * sizeof(kprobe_opcode_t));
266 		if (idx >= 0 && idx < slots_per_page(c)) {
267 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 			if (dirty) {
269 				kip->slot_used[idx] = SLOT_DIRTY;
270 				kip->ngarbage++;
271 				if (++c->nr_garbage > slots_per_page(c))
272 					collect_garbage_slots(c);
273 			} else
274 				collect_one_slot(kip, idx);
275 			return;
276 		}
277 	}
278 	/* Could not free this slot. */
279 	WARN_ON(1);
280 }
281 
free_insn_slot(kprobe_opcode_t * slot,int dirty)282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 	mutex_lock(&kprobe_insn_mutex);
285 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 	/* .insn_size is initialized later */
294 	.nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
get_optinsn_slot(void)297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 	kprobe_opcode_t *ret = NULL;
300 
301 	mutex_lock(&kprobe_optinsn_mutex);
302 	ret = __get_insn_slot(&kprobe_optinsn_slots);
303 	mutex_unlock(&kprobe_optinsn_mutex);
304 
305 	return ret;
306 }
307 
free_optinsn_slot(kprobe_opcode_t * slot,int dirty)308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 	mutex_lock(&kprobe_optinsn_mutex);
311 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 	mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 	__this_cpu_write(kprobe_instance, kp);
321 }
322 
reset_kprobe_instance(void)323 static inline void reset_kprobe_instance(void)
324 {
325 	__this_cpu_write(kprobe_instance, NULL);
326 }
327 
328 /*
329  * This routine is called either:
330  * 	- under the kprobe_mutex - during kprobe_[un]register()
331  * 				OR
332  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
get_kprobe(void * addr)334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 	struct hlist_head *head;
337 	struct kprobe *p;
338 
339 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 	hlist_for_each_entry_rcu(p, head, hlist) {
341 		if (p->addr == addr)
342 			return p;
343 	}
344 
345 	return NULL;
346 }
347 
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349 
350 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)351 static inline int kprobe_aggrprobe(struct kprobe *p)
352 {
353 	return p->pre_handler == aggr_pre_handler;
354 }
355 
356 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)357 static inline int kprobe_unused(struct kprobe *p)
358 {
359 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
360 	       list_empty(&p->list);
361 }
362 
363 /*
364  * Keep all fields in the kprobe consistent
365  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)366 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
367 {
368 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
369 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
370 }
371 
372 #ifdef CONFIG_OPTPROBES
373 /* NOTE: change this value only with kprobe_mutex held */
374 static bool kprobes_allow_optimization;
375 
376 /*
377  * Call all pre_handler on the list, but ignores its return value.
378  * This must be called from arch-dep optimized caller.
379  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)380 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
381 {
382 	struct kprobe *kp;
383 
384 	list_for_each_entry_rcu(kp, &p->list, list) {
385 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
386 			set_kprobe_instance(kp);
387 			kp->pre_handler(kp, regs);
388 		}
389 		reset_kprobe_instance();
390 	}
391 }
392 
393 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)394 static __kprobes void free_aggr_kprobe(struct kprobe *p)
395 {
396 	struct optimized_kprobe *op;
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 	arch_remove_optimized_kprobe(op);
400 	arch_remove_kprobe(p);
401 	kfree(op);
402 }
403 
404 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)405 static inline int kprobe_optready(struct kprobe *p)
406 {
407 	struct optimized_kprobe *op;
408 
409 	if (kprobe_aggrprobe(p)) {
410 		op = container_of(p, struct optimized_kprobe, kp);
411 		return arch_prepared_optinsn(&op->optinsn);
412 	}
413 
414 	return 0;
415 }
416 
417 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)418 static inline int kprobe_disarmed(struct kprobe *p)
419 {
420 	struct optimized_kprobe *op;
421 
422 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
423 	if (!kprobe_aggrprobe(p))
424 		return kprobe_disabled(p);
425 
426 	op = container_of(p, struct optimized_kprobe, kp);
427 
428 	return kprobe_disabled(p) && list_empty(&op->list);
429 }
430 
431 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)432 static int __kprobes kprobe_queued(struct kprobe *p)
433 {
434 	struct optimized_kprobe *op;
435 
436 	if (kprobe_aggrprobe(p)) {
437 		op = container_of(p, struct optimized_kprobe, kp);
438 		if (!list_empty(&op->list))
439 			return 1;
440 	}
441 	return 0;
442 }
443 
444 /*
445  * Return an optimized kprobe whose optimizing code replaces
446  * instructions including addr (exclude breakpoint).
447  */
get_optimized_kprobe(unsigned long addr)448 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
449 {
450 	int i;
451 	struct kprobe *p = NULL;
452 	struct optimized_kprobe *op;
453 
454 	/* Don't check i == 0, since that is a breakpoint case. */
455 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
456 		p = get_kprobe((void *)(addr - i));
457 
458 	if (p && kprobe_optready(p)) {
459 		op = container_of(p, struct optimized_kprobe, kp);
460 		if (arch_within_optimized_kprobe(op, addr))
461 			return p;
462 	}
463 
464 	return NULL;
465 }
466 
467 /* Optimization staging list, protected by kprobe_mutex */
468 static LIST_HEAD(optimizing_list);
469 static LIST_HEAD(unoptimizing_list);
470 static LIST_HEAD(freeing_list);
471 
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 #define OPTIMIZE_DELAY 5
475 
476 /*
477  * Optimize (replace a breakpoint with a jump) kprobes listed on
478  * optimizing_list.
479  */
do_optimize_kprobes(void)480 static __kprobes void do_optimize_kprobes(void)
481 {
482 	/* Optimization never be done when disarmed */
483 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
484 	    list_empty(&optimizing_list))
485 		return;
486 
487 	/*
488 	 * The optimization/unoptimization refers online_cpus via
489 	 * stop_machine() and cpu-hotplug modifies online_cpus.
490 	 * And same time, text_mutex will be held in cpu-hotplug and here.
491 	 * This combination can cause a deadlock (cpu-hotplug try to lock
492 	 * text_mutex but stop_machine can not be done because online_cpus
493 	 * has been changed)
494 	 * To avoid this deadlock, we need to call get_online_cpus()
495 	 * for preventing cpu-hotplug outside of text_mutex locking.
496 	 */
497 	get_online_cpus();
498 	mutex_lock(&text_mutex);
499 	arch_optimize_kprobes(&optimizing_list);
500 	mutex_unlock(&text_mutex);
501 	put_online_cpus();
502 }
503 
504 /*
505  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
506  * if need) kprobes listed on unoptimizing_list.
507  */
do_unoptimize_kprobes(void)508 static __kprobes void do_unoptimize_kprobes(void)
509 {
510 	struct optimized_kprobe *op, *tmp;
511 
512 	/* Unoptimization must be done anytime */
513 	if (list_empty(&unoptimizing_list))
514 		return;
515 
516 	/* Ditto to do_optimize_kprobes */
517 	get_online_cpus();
518 	mutex_lock(&text_mutex);
519 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
520 	/* Loop free_list for disarming */
521 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
522 		/* Disarm probes if marked disabled */
523 		if (kprobe_disabled(&op->kp))
524 			arch_disarm_kprobe(&op->kp);
525 		if (kprobe_unused(&op->kp)) {
526 			/*
527 			 * Remove unused probes from hash list. After waiting
528 			 * for synchronization, these probes are reclaimed.
529 			 * (reclaiming is done by do_free_cleaned_kprobes.)
530 			 */
531 			hlist_del_rcu(&op->kp.hlist);
532 		} else
533 			list_del_init(&op->list);
534 	}
535 	mutex_unlock(&text_mutex);
536 	put_online_cpus();
537 }
538 
539 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)540 static __kprobes void do_free_cleaned_kprobes(void)
541 {
542 	struct optimized_kprobe *op, *tmp;
543 
544 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545 		BUG_ON(!kprobe_unused(&op->kp));
546 		list_del_init(&op->list);
547 		free_aggr_kprobe(&op->kp);
548 	}
549 }
550 
551 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)552 static __kprobes void kick_kprobe_optimizer(void)
553 {
554 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555 }
556 
557 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)558 static __kprobes void kprobe_optimizer(struct work_struct *work)
559 {
560 	mutex_lock(&kprobe_mutex);
561 	/* Lock modules while optimizing kprobes */
562 	mutex_lock(&module_mutex);
563 
564 	/*
565 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566 	 * kprobes before waiting for quiesence period.
567 	 */
568 	do_unoptimize_kprobes();
569 
570 	/*
571 	 * Step 2: Wait for quiesence period to ensure all running interrupts
572 	 * are done. Because optprobe may modify multiple instructions
573 	 * there is a chance that Nth instruction is interrupted. In that
574 	 * case, running interrupt can return to 2nd-Nth byte of jump
575 	 * instruction. This wait is for avoiding it.
576 	 */
577 	synchronize_sched();
578 
579 	/* Step 3: Optimize kprobes after quiesence period */
580 	do_optimize_kprobes();
581 
582 	/* Step 4: Free cleaned kprobes after quiesence period */
583 	do_free_cleaned_kprobes();
584 
585 	mutex_unlock(&module_mutex);
586 	mutex_unlock(&kprobe_mutex);
587 
588 	/* Step 5: Kick optimizer again if needed */
589 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
590 		kick_kprobe_optimizer();
591 }
592 
593 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)594 static __kprobes void wait_for_kprobe_optimizer(void)
595 {
596 	mutex_lock(&kprobe_mutex);
597 
598 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
599 		mutex_unlock(&kprobe_mutex);
600 
601 		/* this will also make optimizing_work execute immmediately */
602 		flush_delayed_work(&optimizing_work);
603 		/* @optimizing_work might not have been queued yet, relax */
604 		cpu_relax();
605 
606 		mutex_lock(&kprobe_mutex);
607 	}
608 
609 	mutex_unlock(&kprobe_mutex);
610 }
611 
612 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)613 static __kprobes void optimize_kprobe(struct kprobe *p)
614 {
615 	struct optimized_kprobe *op;
616 
617 	/* Check if the kprobe is disabled or not ready for optimization. */
618 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
619 	    (kprobe_disabled(p) || kprobes_all_disarmed))
620 		return;
621 
622 	/* Both of break_handler and post_handler are not supported. */
623 	if (p->break_handler || p->post_handler)
624 		return;
625 
626 	op = container_of(p, struct optimized_kprobe, kp);
627 
628 	/* Check there is no other kprobes at the optimized instructions */
629 	if (arch_check_optimized_kprobe(op) < 0)
630 		return;
631 
632 	/* Check if it is already optimized. */
633 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
634 		return;
635 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
636 
637 	if (!list_empty(&op->list))
638 		/* This is under unoptimizing. Just dequeue the probe */
639 		list_del_init(&op->list);
640 	else {
641 		list_add(&op->list, &optimizing_list);
642 		kick_kprobe_optimizer();
643 	}
644 }
645 
646 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)647 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
648 {
649 	get_online_cpus();
650 	arch_unoptimize_kprobe(op);
651 	put_online_cpus();
652 	if (kprobe_disabled(&op->kp))
653 		arch_disarm_kprobe(&op->kp);
654 }
655 
656 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)657 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659 	struct optimized_kprobe *op;
660 
661 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 		return; /* This is not an optprobe nor optimized */
663 
664 	op = container_of(p, struct optimized_kprobe, kp);
665 	if (!kprobe_optimized(p)) {
666 		/* Unoptimized or unoptimizing case */
667 		if (force && !list_empty(&op->list)) {
668 			/*
669 			 * Only if this is unoptimizing kprobe and forced,
670 			 * forcibly unoptimize it. (No need to unoptimize
671 			 * unoptimized kprobe again :)
672 			 */
673 			list_del_init(&op->list);
674 			force_unoptimize_kprobe(op);
675 		}
676 		return;
677 	}
678 
679 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 	if (!list_empty(&op->list)) {
681 		/* Dequeue from the optimization queue */
682 		list_del_init(&op->list);
683 		return;
684 	}
685 	/* Optimized kprobe case */
686 	if (force)
687 		/* Forcibly update the code: this is a special case */
688 		force_unoptimize_kprobe(op);
689 	else {
690 		list_add(&op->list, &unoptimizing_list);
691 		kick_kprobe_optimizer();
692 	}
693 }
694 
695 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)696 static void reuse_unused_kprobe(struct kprobe *ap)
697 {
698 	struct optimized_kprobe *op;
699 
700 	BUG_ON(!kprobe_unused(ap));
701 	/*
702 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
703 	 * there is still a relative jump) and disabled.
704 	 */
705 	op = container_of(ap, struct optimized_kprobe, kp);
706 	if (unlikely(list_empty(&op->list)))
707 		printk(KERN_WARNING "Warning: found a stray unused "
708 			"aggrprobe@%p\n", ap->addr);
709 	/* Enable the probe again */
710 	ap->flags &= ~KPROBE_FLAG_DISABLED;
711 	/* Optimize it again (remove from op->list) */
712 	BUG_ON(!kprobe_optready(ap));
713 	optimize_kprobe(ap);
714 }
715 
716 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)717 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
718 {
719 	struct optimized_kprobe *op;
720 
721 	op = container_of(p, struct optimized_kprobe, kp);
722 	if (!list_empty(&op->list))
723 		/* Dequeue from the (un)optimization queue */
724 		list_del_init(&op->list);
725 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 
727 	if (kprobe_unused(p)) {
728 		/* Enqueue if it is unused */
729 		list_add(&op->list, &freeing_list);
730 		/*
731 		 * Remove unused probes from the hash list. After waiting
732 		 * for synchronization, this probe is reclaimed.
733 		 * (reclaiming is done by do_free_cleaned_kprobes().)
734 		 */
735 		hlist_del_rcu(&op->kp.hlist);
736 	}
737 
738 	/* Don't touch the code, because it is already freed. */
739 	arch_remove_optimized_kprobe(op);
740 }
741 
742 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)743 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
744 {
745 	struct optimized_kprobe *op;
746 
747 	op = container_of(p, struct optimized_kprobe, kp);
748 	arch_prepare_optimized_kprobe(op);
749 }
750 
751 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)752 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
753 {
754 	struct optimized_kprobe *op;
755 
756 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
757 	if (!op)
758 		return NULL;
759 
760 	INIT_LIST_HEAD(&op->list);
761 	op->kp.addr = p->addr;
762 	arch_prepare_optimized_kprobe(op);
763 
764 	return &op->kp;
765 }
766 
767 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
768 
769 /*
770  * Prepare an optimized_kprobe and optimize it
771  * NOTE: p must be a normal registered kprobe
772  */
try_to_optimize_kprobe(struct kprobe * p)773 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
774 {
775 	struct kprobe *ap;
776 	struct optimized_kprobe *op;
777 
778 	/* Impossible to optimize ftrace-based kprobe */
779 	if (kprobe_ftrace(p))
780 		return;
781 
782 	/* For preparing optimization, jump_label_text_reserved() is called */
783 	jump_label_lock();
784 	mutex_lock(&text_mutex);
785 
786 	ap = alloc_aggr_kprobe(p);
787 	if (!ap)
788 		goto out;
789 
790 	op = container_of(ap, struct optimized_kprobe, kp);
791 	if (!arch_prepared_optinsn(&op->optinsn)) {
792 		/* If failed to setup optimizing, fallback to kprobe */
793 		arch_remove_optimized_kprobe(op);
794 		kfree(op);
795 		goto out;
796 	}
797 
798 	init_aggr_kprobe(ap, p);
799 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
800 
801 out:
802 	mutex_unlock(&text_mutex);
803 	jump_label_unlock();
804 }
805 
806 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)807 static void __kprobes optimize_all_kprobes(void)
808 {
809 	struct hlist_head *head;
810 	struct kprobe *p;
811 	unsigned int i;
812 
813 	mutex_lock(&kprobe_mutex);
814 	/* If optimization is already allowed, just return */
815 	if (kprobes_allow_optimization)
816 		goto out;
817 
818 	kprobes_allow_optimization = true;
819 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
820 		head = &kprobe_table[i];
821 		hlist_for_each_entry_rcu(p, head, hlist)
822 			if (!kprobe_disabled(p))
823 				optimize_kprobe(p);
824 	}
825 	printk(KERN_INFO "Kprobes globally optimized\n");
826 out:
827 	mutex_unlock(&kprobe_mutex);
828 }
829 
unoptimize_all_kprobes(void)830 static void __kprobes unoptimize_all_kprobes(void)
831 {
832 	struct hlist_head *head;
833 	struct kprobe *p;
834 	unsigned int i;
835 
836 	mutex_lock(&kprobe_mutex);
837 	/* If optimization is already prohibited, just return */
838 	if (!kprobes_allow_optimization) {
839 		mutex_unlock(&kprobe_mutex);
840 		return;
841 	}
842 
843 	kprobes_allow_optimization = false;
844 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845 		head = &kprobe_table[i];
846 		hlist_for_each_entry_rcu(p, head, hlist) {
847 			if (!kprobe_disabled(p))
848 				unoptimize_kprobe(p, false);
849 		}
850 	}
851 	mutex_unlock(&kprobe_mutex);
852 
853 	/* Wait for unoptimizing completion */
854 	wait_for_kprobe_optimizer();
855 	printk(KERN_INFO "Kprobes globally unoptimized\n");
856 }
857 
858 static DEFINE_MUTEX(kprobe_sysctl_mutex);
859 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)860 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
861 				      void __user *buffer, size_t *length,
862 				      loff_t *ppos)
863 {
864 	int ret;
865 
866 	mutex_lock(&kprobe_sysctl_mutex);
867 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
868 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
869 
870 	if (sysctl_kprobes_optimization)
871 		optimize_all_kprobes();
872 	else
873 		unoptimize_all_kprobes();
874 	mutex_unlock(&kprobe_sysctl_mutex);
875 
876 	return ret;
877 }
878 #endif /* CONFIG_SYSCTL */
879 
880 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)881 static void __kprobes __arm_kprobe(struct kprobe *p)
882 {
883 	struct kprobe *_p;
884 
885 	/* Check collision with other optimized kprobes */
886 	_p = get_optimized_kprobe((unsigned long)p->addr);
887 	if (unlikely(_p))
888 		/* Fallback to unoptimized kprobe */
889 		unoptimize_kprobe(_p, true);
890 
891 	arch_arm_kprobe(p);
892 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
893 }
894 
895 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)896 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
897 {
898 	struct kprobe *_p;
899 
900 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
901 
902 	if (!kprobe_queued(p)) {
903 		arch_disarm_kprobe(p);
904 		/* If another kprobe was blocked, optimize it. */
905 		_p = get_optimized_kprobe((unsigned long)p->addr);
906 		if (unlikely(_p) && reopt)
907 			optimize_kprobe(_p);
908 	}
909 	/* TODO: reoptimize others after unoptimized this probe */
910 }
911 
912 #else /* !CONFIG_OPTPROBES */
913 
914 #define optimize_kprobe(p)			do {} while (0)
915 #define unoptimize_kprobe(p, f)			do {} while (0)
916 #define kill_optimized_kprobe(p)		do {} while (0)
917 #define prepare_optimized_kprobe(p)		do {} while (0)
918 #define try_to_optimize_kprobe(p)		do {} while (0)
919 #define __arm_kprobe(p)				arch_arm_kprobe(p)
920 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
921 #define kprobe_disarmed(p)			kprobe_disabled(p)
922 #define wait_for_kprobe_optimizer()		do {} while (0)
923 
924 /* There should be no unused kprobes can be reused without optimization */
reuse_unused_kprobe(struct kprobe * ap)925 static void reuse_unused_kprobe(struct kprobe *ap)
926 {
927 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
928 	BUG_ON(kprobe_unused(ap));
929 }
930 
free_aggr_kprobe(struct kprobe * p)931 static __kprobes void free_aggr_kprobe(struct kprobe *p)
932 {
933 	arch_remove_kprobe(p);
934 	kfree(p);
935 }
936 
alloc_aggr_kprobe(struct kprobe * p)937 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
938 {
939 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
940 }
941 #endif /* CONFIG_OPTPROBES */
942 
943 #ifdef CONFIG_KPROBES_ON_FTRACE
944 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
945 	.func = kprobe_ftrace_handler,
946 	.flags = FTRACE_OPS_FL_SAVE_REGS,
947 };
948 static int kprobe_ftrace_enabled;
949 
950 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)951 static int __kprobes prepare_kprobe(struct kprobe *p)
952 {
953 	if (!kprobe_ftrace(p))
954 		return arch_prepare_kprobe(p);
955 
956 	return arch_prepare_kprobe_ftrace(p);
957 }
958 
959 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)960 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
961 {
962 	int ret;
963 
964 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
965 				   (unsigned long)p->addr, 0, 0);
966 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
967 	kprobe_ftrace_enabled++;
968 	if (kprobe_ftrace_enabled == 1) {
969 		ret = register_ftrace_function(&kprobe_ftrace_ops);
970 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
971 	}
972 }
973 
974 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)975 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
976 {
977 	int ret;
978 
979 	kprobe_ftrace_enabled--;
980 	if (kprobe_ftrace_enabled == 0) {
981 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
982 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983 	}
984 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
985 			   (unsigned long)p->addr, 1, 0);
986 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
987 }
988 #else	/* !CONFIG_KPROBES_ON_FTRACE */
989 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
990 #define arm_kprobe_ftrace(p)	do {} while (0)
991 #define disarm_kprobe_ftrace(p)	do {} while (0)
992 #endif
993 
994 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)995 static void __kprobes arm_kprobe(struct kprobe *kp)
996 {
997 	if (unlikely(kprobe_ftrace(kp))) {
998 		arm_kprobe_ftrace(kp);
999 		return;
1000 	}
1001 	/*
1002 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
1003 	 * this doesn't cause deadlock on text_mutex. So, we don't
1004 	 * need get_online_cpus().
1005 	 */
1006 	mutex_lock(&text_mutex);
1007 	__arm_kprobe(kp);
1008 	mutex_unlock(&text_mutex);
1009 }
1010 
1011 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1012 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1013 {
1014 	if (unlikely(kprobe_ftrace(kp))) {
1015 		disarm_kprobe_ftrace(kp);
1016 		return;
1017 	}
1018 	/* Ditto */
1019 	mutex_lock(&text_mutex);
1020 	__disarm_kprobe(kp, reopt);
1021 	mutex_unlock(&text_mutex);
1022 }
1023 
1024 /*
1025  * Aggregate handlers for multiple kprobes support - these handlers
1026  * take care of invoking the individual kprobe handlers on p->list
1027  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1028 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1029 {
1030 	struct kprobe *kp;
1031 
1032 	list_for_each_entry_rcu(kp, &p->list, list) {
1033 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1034 			set_kprobe_instance(kp);
1035 			if (kp->pre_handler(kp, regs))
1036 				return 1;
1037 		}
1038 		reset_kprobe_instance();
1039 	}
1040 	return 0;
1041 }
1042 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1043 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1044 					unsigned long flags)
1045 {
1046 	struct kprobe *kp;
1047 
1048 	list_for_each_entry_rcu(kp, &p->list, list) {
1049 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1050 			set_kprobe_instance(kp);
1051 			kp->post_handler(kp, regs, flags);
1052 			reset_kprobe_instance();
1053 		}
1054 	}
1055 }
1056 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1057 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1058 					int trapnr)
1059 {
1060 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1061 
1062 	/*
1063 	 * if we faulted "during" the execution of a user specified
1064 	 * probe handler, invoke just that probe's fault handler
1065 	 */
1066 	if (cur && cur->fault_handler) {
1067 		if (cur->fault_handler(cur, regs, trapnr))
1068 			return 1;
1069 	}
1070 	return 0;
1071 }
1072 
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)1073 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1074 {
1075 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1076 	int ret = 0;
1077 
1078 	if (cur && cur->break_handler) {
1079 		if (cur->break_handler(cur, regs))
1080 			ret = 1;
1081 	}
1082 	reset_kprobe_instance();
1083 	return ret;
1084 }
1085 
1086 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1087 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1088 {
1089 	struct kprobe *kp;
1090 	if (!kprobe_aggrprobe(p)) {
1091 		p->nmissed++;
1092 	} else {
1093 		list_for_each_entry_rcu(kp, &p->list, list)
1094 			kp->nmissed++;
1095 	}
1096 	return;
1097 }
1098 
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1099 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1100 				struct hlist_head *head)
1101 {
1102 	struct kretprobe *rp = ri->rp;
1103 
1104 	/* remove rp inst off the rprobe_inst_table */
1105 	hlist_del(&ri->hlist);
1106 	INIT_HLIST_NODE(&ri->hlist);
1107 	if (likely(rp)) {
1108 		raw_spin_lock(&rp->lock);
1109 		hlist_add_head(&ri->hlist, &rp->free_instances);
1110 		raw_spin_unlock(&rp->lock);
1111 	} else
1112 		/* Unregistering */
1113 		hlist_add_head(&ri->hlist, head);
1114 }
1115 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1116 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1117 			 struct hlist_head **head, unsigned long *flags)
1118 __acquires(hlist_lock)
1119 {
1120 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 	raw_spinlock_t *hlist_lock;
1122 
1123 	*head = &kretprobe_inst_table[hash];
1124 	hlist_lock = kretprobe_table_lock_ptr(hash);
1125 	raw_spin_lock_irqsave(hlist_lock, *flags);
1126 }
1127 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1128 static void __kprobes kretprobe_table_lock(unsigned long hash,
1129 	unsigned long *flags)
1130 __acquires(hlist_lock)
1131 {
1132 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133 	raw_spin_lock_irqsave(hlist_lock, *flags);
1134 }
1135 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1136 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1137 	unsigned long *flags)
1138 __releases(hlist_lock)
1139 {
1140 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1141 	raw_spinlock_t *hlist_lock;
1142 
1143 	hlist_lock = kretprobe_table_lock_ptr(hash);
1144 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1145 }
1146 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1147 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1148        unsigned long *flags)
1149 __releases(hlist_lock)
1150 {
1151 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1153 }
1154 
1155 /*
1156  * This function is called from finish_task_switch when task tk becomes dead,
1157  * so that we can recycle any function-return probe instances associated
1158  * with this task. These left over instances represent probed functions
1159  * that have been called but will never return.
1160  */
kprobe_flush_task(struct task_struct * tk)1161 void __kprobes kprobe_flush_task(struct task_struct *tk)
1162 {
1163 	struct kretprobe_instance *ri;
1164 	struct hlist_head *head, empty_rp;
1165 	struct hlist_node *tmp;
1166 	unsigned long hash, flags = 0;
1167 
1168 	if (unlikely(!kprobes_initialized))
1169 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1170 		return;
1171 
1172 	INIT_HLIST_HEAD(&empty_rp);
1173 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1174 	head = &kretprobe_inst_table[hash];
1175 	kretprobe_table_lock(hash, &flags);
1176 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1177 		if (ri->task == tk)
1178 			recycle_rp_inst(ri, &empty_rp);
1179 	}
1180 	kretprobe_table_unlock(hash, &flags);
1181 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1182 		hlist_del(&ri->hlist);
1183 		kfree(ri);
1184 	}
1185 }
1186 
free_rp_inst(struct kretprobe * rp)1187 static inline void free_rp_inst(struct kretprobe *rp)
1188 {
1189 	struct kretprobe_instance *ri;
1190 	struct hlist_node *next;
1191 
1192 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1193 		hlist_del(&ri->hlist);
1194 		kfree(ri);
1195 	}
1196 }
1197 
cleanup_rp_inst(struct kretprobe * rp)1198 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1199 {
1200 	unsigned long flags, hash;
1201 	struct kretprobe_instance *ri;
1202 	struct hlist_node *next;
1203 	struct hlist_head *head;
1204 
1205 	/* No race here */
1206 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1207 		kretprobe_table_lock(hash, &flags);
1208 		head = &kretprobe_inst_table[hash];
1209 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1210 			if (ri->rp == rp)
1211 				ri->rp = NULL;
1212 		}
1213 		kretprobe_table_unlock(hash, &flags);
1214 	}
1215 	free_rp_inst(rp);
1216 }
1217 
1218 /*
1219 * Add the new probe to ap->list. Fail if this is the
1220 * second jprobe at the address - two jprobes can't coexist
1221 */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1222 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1223 {
1224 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1225 
1226 	if (p->break_handler || p->post_handler)
1227 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1228 
1229 	if (p->break_handler) {
1230 		if (ap->break_handler)
1231 			return -EEXIST;
1232 		list_add_tail_rcu(&p->list, &ap->list);
1233 		ap->break_handler = aggr_break_handler;
1234 	} else
1235 		list_add_rcu(&p->list, &ap->list);
1236 	if (p->post_handler && !ap->post_handler)
1237 		ap->post_handler = aggr_post_handler;
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * Fill in the required fields of the "manager kprobe". Replace the
1244  * earlier kprobe in the hlist with the manager kprobe
1245  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1246 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248 	/* Copy p's insn slot to ap */
1249 	copy_kprobe(p, ap);
1250 	flush_insn_slot(ap);
1251 	ap->addr = p->addr;
1252 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1253 	ap->pre_handler = aggr_pre_handler;
1254 	ap->fault_handler = aggr_fault_handler;
1255 	/* We don't care the kprobe which has gone. */
1256 	if (p->post_handler && !kprobe_gone(p))
1257 		ap->post_handler = aggr_post_handler;
1258 	if (p->break_handler && !kprobe_gone(p))
1259 		ap->break_handler = aggr_break_handler;
1260 
1261 	INIT_LIST_HEAD(&ap->list);
1262 	INIT_HLIST_NODE(&ap->hlist);
1263 
1264 	list_add_rcu(&p->list, &ap->list);
1265 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1266 }
1267 
1268 /*
1269  * This is the second or subsequent kprobe at the address - handle
1270  * the intricacies
1271  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1272 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1273 					  struct kprobe *p)
1274 {
1275 	int ret = 0;
1276 	struct kprobe *ap = orig_p;
1277 
1278 	/* For preparing optimization, jump_label_text_reserved() is called */
1279 	jump_label_lock();
1280 	/*
1281 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1282 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1283 	 */
1284 	get_online_cpus();
1285 	mutex_lock(&text_mutex);
1286 
1287 	if (!kprobe_aggrprobe(orig_p)) {
1288 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1289 		ap = alloc_aggr_kprobe(orig_p);
1290 		if (!ap) {
1291 			ret = -ENOMEM;
1292 			goto out;
1293 		}
1294 		init_aggr_kprobe(ap, orig_p);
1295 	} else if (kprobe_unused(ap))
1296 		/* This probe is going to die. Rescue it */
1297 		reuse_unused_kprobe(ap);
1298 
1299 	if (kprobe_gone(ap)) {
1300 		/*
1301 		 * Attempting to insert new probe at the same location that
1302 		 * had a probe in the module vaddr area which already
1303 		 * freed. So, the instruction slot has already been
1304 		 * released. We need a new slot for the new probe.
1305 		 */
1306 		ret = arch_prepare_kprobe(ap);
1307 		if (ret)
1308 			/*
1309 			 * Even if fail to allocate new slot, don't need to
1310 			 * free aggr_probe. It will be used next time, or
1311 			 * freed by unregister_kprobe.
1312 			 */
1313 			goto out;
1314 
1315 		/* Prepare optimized instructions if possible. */
1316 		prepare_optimized_kprobe(ap);
1317 
1318 		/*
1319 		 * Clear gone flag to prevent allocating new slot again, and
1320 		 * set disabled flag because it is not armed yet.
1321 		 */
1322 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1323 			    | KPROBE_FLAG_DISABLED;
1324 	}
1325 
1326 	/* Copy ap's insn slot to p */
1327 	copy_kprobe(ap, p);
1328 	ret = add_new_kprobe(ap, p);
1329 
1330 out:
1331 	mutex_unlock(&text_mutex);
1332 	put_online_cpus();
1333 	jump_label_unlock();
1334 
1335 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1336 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1337 		if (!kprobes_all_disarmed)
1338 			/* Arm the breakpoint again. */
1339 			arm_kprobe(ap);
1340 	}
1341 	return ret;
1342 }
1343 
in_kprobes_functions(unsigned long addr)1344 static int __kprobes in_kprobes_functions(unsigned long addr)
1345 {
1346 	struct kprobe_blackpoint *kb;
1347 
1348 	if (addr >= (unsigned long)__kprobes_text_start &&
1349 	    addr < (unsigned long)__kprobes_text_end)
1350 		return -EINVAL;
1351 	/*
1352 	 * If there exists a kprobe_blacklist, verify and
1353 	 * fail any probe registration in the prohibited area
1354 	 */
1355 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1356 		if (kb->start_addr) {
1357 			if (addr >= kb->start_addr &&
1358 			    addr < (kb->start_addr + kb->range))
1359 				return -EINVAL;
1360 		}
1361 	}
1362 	return 0;
1363 }
1364 
1365 /*
1366  * If we have a symbol_name argument, look it up and add the offset field
1367  * to it. This way, we can specify a relative address to a symbol.
1368  * This returns encoded errors if it fails to look up symbol or invalid
1369  * combination of parameters.
1370  */
kprobe_addr(struct kprobe * p)1371 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1372 {
1373 	kprobe_opcode_t *addr = p->addr;
1374 
1375 	if ((p->symbol_name && p->addr) ||
1376 	    (!p->symbol_name && !p->addr))
1377 		goto invalid;
1378 
1379 	if (p->symbol_name) {
1380 		kprobe_lookup_name(p->symbol_name, addr);
1381 		if (!addr)
1382 			return ERR_PTR(-ENOENT);
1383 	}
1384 
1385 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1386 	if (addr)
1387 		return addr;
1388 
1389 invalid:
1390 	return ERR_PTR(-EINVAL);
1391 }
1392 
1393 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1394 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1395 {
1396 	struct kprobe *ap, *list_p;
1397 
1398 	ap = get_kprobe(p->addr);
1399 	if (unlikely(!ap))
1400 		return NULL;
1401 
1402 	if (p != ap) {
1403 		list_for_each_entry_rcu(list_p, &ap->list, list)
1404 			if (list_p == p)
1405 			/* kprobe p is a valid probe */
1406 				goto valid;
1407 		return NULL;
1408 	}
1409 valid:
1410 	return ap;
1411 }
1412 
1413 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1414 static inline int check_kprobe_rereg(struct kprobe *p)
1415 {
1416 	int ret = 0;
1417 
1418 	mutex_lock(&kprobe_mutex);
1419 	if (__get_valid_kprobe(p))
1420 		ret = -EINVAL;
1421 	mutex_unlock(&kprobe_mutex);
1422 
1423 	return ret;
1424 }
1425 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1426 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1427 					       struct module **probed_mod)
1428 {
1429 	int ret = 0;
1430 	unsigned long ftrace_addr;
1431 
1432 	/*
1433 	 * If the address is located on a ftrace nop, set the
1434 	 * breakpoint to the following instruction.
1435 	 */
1436 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1437 	if (ftrace_addr) {
1438 #ifdef CONFIG_KPROBES_ON_FTRACE
1439 		/* Given address is not on the instruction boundary */
1440 		if ((unsigned long)p->addr != ftrace_addr)
1441 			return -EILSEQ;
1442 		p->flags |= KPROBE_FLAG_FTRACE;
1443 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1444 		return -EINVAL;
1445 #endif
1446 	}
1447 
1448 	jump_label_lock();
1449 	preempt_disable();
1450 
1451 	/* Ensure it is not in reserved area nor out of text */
1452 	if (!kernel_text_address((unsigned long) p->addr) ||
1453 	    in_kprobes_functions((unsigned long) p->addr) ||
1454 	    jump_label_text_reserved(p->addr, p->addr)) {
1455 		ret = -EINVAL;
1456 		goto out;
1457 	}
1458 
1459 	/* Check if are we probing a module */
1460 	*probed_mod = __module_text_address((unsigned long) p->addr);
1461 	if (*probed_mod) {
1462 		/*
1463 		 * We must hold a refcount of the probed module while updating
1464 		 * its code to prohibit unexpected unloading.
1465 		 */
1466 		if (unlikely(!try_module_get(*probed_mod))) {
1467 			ret = -ENOENT;
1468 			goto out;
1469 		}
1470 
1471 		/*
1472 		 * If the module freed .init.text, we couldn't insert
1473 		 * kprobes in there.
1474 		 */
1475 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1476 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1477 			module_put(*probed_mod);
1478 			*probed_mod = NULL;
1479 			ret = -ENOENT;
1480 		}
1481 	}
1482 out:
1483 	preempt_enable();
1484 	jump_label_unlock();
1485 
1486 	return ret;
1487 }
1488 
register_kprobe(struct kprobe * p)1489 int __kprobes register_kprobe(struct kprobe *p)
1490 {
1491 	int ret;
1492 	struct kprobe *old_p;
1493 	struct module *probed_mod;
1494 	kprobe_opcode_t *addr;
1495 
1496 	/* Adjust probe address from symbol */
1497 	addr = kprobe_addr(p);
1498 	if (IS_ERR(addr))
1499 		return PTR_ERR(addr);
1500 	p->addr = addr;
1501 
1502 	ret = check_kprobe_rereg(p);
1503 	if (ret)
1504 		return ret;
1505 
1506 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1507 	p->flags &= KPROBE_FLAG_DISABLED;
1508 	p->nmissed = 0;
1509 	INIT_LIST_HEAD(&p->list);
1510 
1511 	ret = check_kprobe_address_safe(p, &probed_mod);
1512 	if (ret)
1513 		return ret;
1514 
1515 	mutex_lock(&kprobe_mutex);
1516 
1517 	old_p = get_kprobe(p->addr);
1518 	if (old_p) {
1519 		/* Since this may unoptimize old_p, locking text_mutex. */
1520 		ret = register_aggr_kprobe(old_p, p);
1521 		goto out;
1522 	}
1523 
1524 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1525 	ret = prepare_kprobe(p);
1526 	mutex_unlock(&text_mutex);
1527 	if (ret)
1528 		goto out;
1529 
1530 	INIT_HLIST_NODE(&p->hlist);
1531 	hlist_add_head_rcu(&p->hlist,
1532 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1533 
1534 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1535 		arm_kprobe(p);
1536 
1537 	/* Try to optimize kprobe */
1538 	try_to_optimize_kprobe(p);
1539 
1540 out:
1541 	mutex_unlock(&kprobe_mutex);
1542 
1543 	if (probed_mod)
1544 		module_put(probed_mod);
1545 
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(register_kprobe);
1549 
1550 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1551 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1552 {
1553 	struct kprobe *kp;
1554 
1555 	list_for_each_entry_rcu(kp, &ap->list, list)
1556 		if (!kprobe_disabled(kp))
1557 			/*
1558 			 * There is an active probe on the list.
1559 			 * We can't disable this ap.
1560 			 */
1561 			return 0;
1562 
1563 	return 1;
1564 }
1565 
1566 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1567 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1568 {
1569 	struct kprobe *orig_p;
1570 
1571 	/* Get an original kprobe for return */
1572 	orig_p = __get_valid_kprobe(p);
1573 	if (unlikely(orig_p == NULL))
1574 		return NULL;
1575 
1576 	if (!kprobe_disabled(p)) {
1577 		/* Disable probe if it is a child probe */
1578 		if (p != orig_p)
1579 			p->flags |= KPROBE_FLAG_DISABLED;
1580 
1581 		/* Try to disarm and disable this/parent probe */
1582 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1583 			disarm_kprobe(orig_p, true);
1584 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1585 		}
1586 	}
1587 
1588 	return orig_p;
1589 }
1590 
1591 /*
1592  * Unregister a kprobe without a scheduler synchronization.
1593  */
__unregister_kprobe_top(struct kprobe * p)1594 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1595 {
1596 	struct kprobe *ap, *list_p;
1597 
1598 	/* Disable kprobe. This will disarm it if needed. */
1599 	ap = __disable_kprobe(p);
1600 	if (ap == NULL)
1601 		return -EINVAL;
1602 
1603 	if (ap == p)
1604 		/*
1605 		 * This probe is an independent(and non-optimized) kprobe
1606 		 * (not an aggrprobe). Remove from the hash list.
1607 		 */
1608 		goto disarmed;
1609 
1610 	/* Following process expects this probe is an aggrprobe */
1611 	WARN_ON(!kprobe_aggrprobe(ap));
1612 
1613 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1614 		/*
1615 		 * !disarmed could be happen if the probe is under delayed
1616 		 * unoptimizing.
1617 		 */
1618 		goto disarmed;
1619 	else {
1620 		/* If disabling probe has special handlers, update aggrprobe */
1621 		if (p->break_handler && !kprobe_gone(p))
1622 			ap->break_handler = NULL;
1623 		if (p->post_handler && !kprobe_gone(p)) {
1624 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1625 				if ((list_p != p) && (list_p->post_handler))
1626 					goto noclean;
1627 			}
1628 			ap->post_handler = NULL;
1629 		}
1630 noclean:
1631 		/*
1632 		 * Remove from the aggrprobe: this path will do nothing in
1633 		 * __unregister_kprobe_bottom().
1634 		 */
1635 		list_del_rcu(&p->list);
1636 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1637 			/*
1638 			 * Try to optimize this probe again, because post
1639 			 * handler may have been changed.
1640 			 */
1641 			optimize_kprobe(ap);
1642 	}
1643 	return 0;
1644 
1645 disarmed:
1646 	BUG_ON(!kprobe_disarmed(ap));
1647 	hlist_del_rcu(&ap->hlist);
1648 	return 0;
1649 }
1650 
__unregister_kprobe_bottom(struct kprobe * p)1651 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1652 {
1653 	struct kprobe *ap;
1654 
1655 	if (list_empty(&p->list))
1656 		/* This is an independent kprobe */
1657 		arch_remove_kprobe(p);
1658 	else if (list_is_singular(&p->list)) {
1659 		/* This is the last child of an aggrprobe */
1660 		ap = list_entry(p->list.next, struct kprobe, list);
1661 		list_del(&p->list);
1662 		free_aggr_kprobe(ap);
1663 	}
1664 	/* Otherwise, do nothing. */
1665 }
1666 
register_kprobes(struct kprobe ** kps,int num)1667 int __kprobes register_kprobes(struct kprobe **kps, int num)
1668 {
1669 	int i, ret = 0;
1670 
1671 	if (num <= 0)
1672 		return -EINVAL;
1673 	for (i = 0; i < num; i++) {
1674 		ret = register_kprobe(kps[i]);
1675 		if (ret < 0) {
1676 			if (i > 0)
1677 				unregister_kprobes(kps, i);
1678 			break;
1679 		}
1680 	}
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(register_kprobes);
1684 
unregister_kprobe(struct kprobe * p)1685 void __kprobes unregister_kprobe(struct kprobe *p)
1686 {
1687 	unregister_kprobes(&p, 1);
1688 }
1689 EXPORT_SYMBOL_GPL(unregister_kprobe);
1690 
unregister_kprobes(struct kprobe ** kps,int num)1691 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1692 {
1693 	int i;
1694 
1695 	if (num <= 0)
1696 		return;
1697 	mutex_lock(&kprobe_mutex);
1698 	for (i = 0; i < num; i++)
1699 		if (__unregister_kprobe_top(kps[i]) < 0)
1700 			kps[i]->addr = NULL;
1701 	mutex_unlock(&kprobe_mutex);
1702 
1703 	synchronize_sched();
1704 	for (i = 0; i < num; i++)
1705 		if (kps[i]->addr)
1706 			__unregister_kprobe_bottom(kps[i]);
1707 }
1708 EXPORT_SYMBOL_GPL(unregister_kprobes);
1709 
1710 static struct notifier_block kprobe_exceptions_nb = {
1711 	.notifier_call = kprobe_exceptions_notify,
1712 	.priority = 0x7fffffff /* we need to be notified first */
1713 };
1714 
arch_deref_entry_point(void * entry)1715 unsigned long __weak arch_deref_entry_point(void *entry)
1716 {
1717 	return (unsigned long)entry;
1718 }
1719 
register_jprobes(struct jprobe ** jps,int num)1720 int __kprobes register_jprobes(struct jprobe **jps, int num)
1721 {
1722 	struct jprobe *jp;
1723 	int ret = 0, i;
1724 
1725 	if (num <= 0)
1726 		return -EINVAL;
1727 	for (i = 0; i < num; i++) {
1728 		unsigned long addr, offset;
1729 		jp = jps[i];
1730 		addr = arch_deref_entry_point(jp->entry);
1731 
1732 		/* Verify probepoint is a function entry point */
1733 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1734 		    offset == 0) {
1735 			jp->kp.pre_handler = setjmp_pre_handler;
1736 			jp->kp.break_handler = longjmp_break_handler;
1737 			ret = register_kprobe(&jp->kp);
1738 		} else
1739 			ret = -EINVAL;
1740 
1741 		if (ret < 0) {
1742 			if (i > 0)
1743 				unregister_jprobes(jps, i);
1744 			break;
1745 		}
1746 	}
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(register_jprobes);
1750 
register_jprobe(struct jprobe * jp)1751 int __kprobes register_jprobe(struct jprobe *jp)
1752 {
1753 	return register_jprobes(&jp, 1);
1754 }
1755 EXPORT_SYMBOL_GPL(register_jprobe);
1756 
unregister_jprobe(struct jprobe * jp)1757 void __kprobes unregister_jprobe(struct jprobe *jp)
1758 {
1759 	unregister_jprobes(&jp, 1);
1760 }
1761 EXPORT_SYMBOL_GPL(unregister_jprobe);
1762 
unregister_jprobes(struct jprobe ** jps,int num)1763 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1764 {
1765 	int i;
1766 
1767 	if (num <= 0)
1768 		return;
1769 	mutex_lock(&kprobe_mutex);
1770 	for (i = 0; i < num; i++)
1771 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1772 			jps[i]->kp.addr = NULL;
1773 	mutex_unlock(&kprobe_mutex);
1774 
1775 	synchronize_sched();
1776 	for (i = 0; i < num; i++) {
1777 		if (jps[i]->kp.addr)
1778 			__unregister_kprobe_bottom(&jps[i]->kp);
1779 	}
1780 }
1781 EXPORT_SYMBOL_GPL(unregister_jprobes);
1782 
1783 #ifdef CONFIG_KRETPROBES
1784 /*
1785  * This kprobe pre_handler is registered with every kretprobe. When probe
1786  * hits it will set up the return probe.
1787  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1788 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1789 					   struct pt_regs *regs)
1790 {
1791 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1792 	unsigned long hash, flags = 0;
1793 	struct kretprobe_instance *ri;
1794 
1795 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1796 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1797 	raw_spin_lock_irqsave(&rp->lock, flags);
1798 	if (!hlist_empty(&rp->free_instances)) {
1799 		ri = hlist_entry(rp->free_instances.first,
1800 				struct kretprobe_instance, hlist);
1801 		hlist_del(&ri->hlist);
1802 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1803 
1804 		ri->rp = rp;
1805 		ri->task = current;
1806 
1807 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1808 			raw_spin_lock_irqsave(&rp->lock, flags);
1809 			hlist_add_head(&ri->hlist, &rp->free_instances);
1810 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1811 			return 0;
1812 		}
1813 
1814 		arch_prepare_kretprobe(ri, regs);
1815 
1816 		/* XXX(hch): why is there no hlist_move_head? */
1817 		INIT_HLIST_NODE(&ri->hlist);
1818 		kretprobe_table_lock(hash, &flags);
1819 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1820 		kretprobe_table_unlock(hash, &flags);
1821 	} else {
1822 		rp->nmissed++;
1823 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1824 	}
1825 	return 0;
1826 }
1827 
register_kretprobe(struct kretprobe * rp)1828 int __kprobes register_kretprobe(struct kretprobe *rp)
1829 {
1830 	int ret = 0;
1831 	struct kretprobe_instance *inst;
1832 	int i;
1833 	void *addr;
1834 
1835 	if (kretprobe_blacklist_size) {
1836 		addr = kprobe_addr(&rp->kp);
1837 		if (IS_ERR(addr))
1838 			return PTR_ERR(addr);
1839 
1840 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1841 			if (kretprobe_blacklist[i].addr == addr)
1842 				return -EINVAL;
1843 		}
1844 	}
1845 
1846 	rp->kp.pre_handler = pre_handler_kretprobe;
1847 	rp->kp.post_handler = NULL;
1848 	rp->kp.fault_handler = NULL;
1849 	rp->kp.break_handler = NULL;
1850 
1851 	/* Pre-allocate memory for max kretprobe instances */
1852 	if (rp->maxactive <= 0) {
1853 #ifdef CONFIG_PREEMPT
1854 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1855 #else
1856 		rp->maxactive = num_possible_cpus();
1857 #endif
1858 	}
1859 	raw_spin_lock_init(&rp->lock);
1860 	INIT_HLIST_HEAD(&rp->free_instances);
1861 	for (i = 0; i < rp->maxactive; i++) {
1862 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1863 			       rp->data_size, GFP_KERNEL);
1864 		if (inst == NULL) {
1865 			free_rp_inst(rp);
1866 			return -ENOMEM;
1867 		}
1868 		INIT_HLIST_NODE(&inst->hlist);
1869 		hlist_add_head(&inst->hlist, &rp->free_instances);
1870 	}
1871 
1872 	rp->nmissed = 0;
1873 	/* Establish function entry probe point */
1874 	ret = register_kprobe(&rp->kp);
1875 	if (ret != 0)
1876 		free_rp_inst(rp);
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL_GPL(register_kretprobe);
1880 
register_kretprobes(struct kretprobe ** rps,int num)1881 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1882 {
1883 	int ret = 0, i;
1884 
1885 	if (num <= 0)
1886 		return -EINVAL;
1887 	for (i = 0; i < num; i++) {
1888 		ret = register_kretprobe(rps[i]);
1889 		if (ret < 0) {
1890 			if (i > 0)
1891 				unregister_kretprobes(rps, i);
1892 			break;
1893 		}
1894 	}
1895 	return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(register_kretprobes);
1898 
unregister_kretprobe(struct kretprobe * rp)1899 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1900 {
1901 	unregister_kretprobes(&rp, 1);
1902 }
1903 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1904 
unregister_kretprobes(struct kretprobe ** rps,int num)1905 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1906 {
1907 	int i;
1908 
1909 	if (num <= 0)
1910 		return;
1911 	mutex_lock(&kprobe_mutex);
1912 	for (i = 0; i < num; i++)
1913 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1914 			rps[i]->kp.addr = NULL;
1915 	mutex_unlock(&kprobe_mutex);
1916 
1917 	synchronize_sched();
1918 	for (i = 0; i < num; i++) {
1919 		if (rps[i]->kp.addr) {
1920 			__unregister_kprobe_bottom(&rps[i]->kp);
1921 			cleanup_rp_inst(rps[i]);
1922 		}
1923 	}
1924 }
1925 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1926 
1927 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)1928 int __kprobes register_kretprobe(struct kretprobe *rp)
1929 {
1930 	return -ENOSYS;
1931 }
1932 EXPORT_SYMBOL_GPL(register_kretprobe);
1933 
register_kretprobes(struct kretprobe ** rps,int num)1934 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1935 {
1936 	return -ENOSYS;
1937 }
1938 EXPORT_SYMBOL_GPL(register_kretprobes);
1939 
unregister_kretprobe(struct kretprobe * rp)1940 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1941 {
1942 }
1943 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1944 
unregister_kretprobes(struct kretprobe ** rps,int num)1945 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1946 {
1947 }
1948 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1949 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1950 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1951 					   struct pt_regs *regs)
1952 {
1953 	return 0;
1954 }
1955 
1956 #endif /* CONFIG_KRETPROBES */
1957 
1958 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)1959 static void __kprobes kill_kprobe(struct kprobe *p)
1960 {
1961 	struct kprobe *kp;
1962 
1963 	p->flags |= KPROBE_FLAG_GONE;
1964 	if (kprobe_aggrprobe(p)) {
1965 		/*
1966 		 * If this is an aggr_kprobe, we have to list all the
1967 		 * chained probes and mark them GONE.
1968 		 */
1969 		list_for_each_entry_rcu(kp, &p->list, list)
1970 			kp->flags |= KPROBE_FLAG_GONE;
1971 		p->post_handler = NULL;
1972 		p->break_handler = NULL;
1973 		kill_optimized_kprobe(p);
1974 	}
1975 	/*
1976 	 * Here, we can remove insn_slot safely, because no thread calls
1977 	 * the original probed function (which will be freed soon) any more.
1978 	 */
1979 	arch_remove_kprobe(p);
1980 }
1981 
1982 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)1983 int __kprobes disable_kprobe(struct kprobe *kp)
1984 {
1985 	int ret = 0;
1986 
1987 	mutex_lock(&kprobe_mutex);
1988 
1989 	/* Disable this kprobe */
1990 	if (__disable_kprobe(kp) == NULL)
1991 		ret = -EINVAL;
1992 
1993 	mutex_unlock(&kprobe_mutex);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(disable_kprobe);
1997 
1998 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)1999 int __kprobes enable_kprobe(struct kprobe *kp)
2000 {
2001 	int ret = 0;
2002 	struct kprobe *p;
2003 
2004 	mutex_lock(&kprobe_mutex);
2005 
2006 	/* Check whether specified probe is valid. */
2007 	p = __get_valid_kprobe(kp);
2008 	if (unlikely(p == NULL)) {
2009 		ret = -EINVAL;
2010 		goto out;
2011 	}
2012 
2013 	if (kprobe_gone(kp)) {
2014 		/* This kprobe has gone, we couldn't enable it. */
2015 		ret = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	if (p != kp)
2020 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2021 
2022 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2023 		p->flags &= ~KPROBE_FLAG_DISABLED;
2024 		arm_kprobe(p);
2025 	}
2026 out:
2027 	mutex_unlock(&kprobe_mutex);
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(enable_kprobe);
2031 
dump_kprobe(struct kprobe * kp)2032 void __kprobes dump_kprobe(struct kprobe *kp)
2033 {
2034 	printk(KERN_WARNING "Dumping kprobe:\n");
2035 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2036 	       kp->symbol_name, kp->addr, kp->offset);
2037 }
2038 
2039 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2040 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2041 					     unsigned long val, void *data)
2042 {
2043 	struct module *mod = data;
2044 	struct hlist_head *head;
2045 	struct kprobe *p;
2046 	unsigned int i;
2047 	int checkcore = (val == MODULE_STATE_GOING);
2048 
2049 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2050 		return NOTIFY_DONE;
2051 
2052 	/*
2053 	 * When MODULE_STATE_GOING was notified, both of module .text and
2054 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2055 	 * notified, only .init.text section would be freed. We need to
2056 	 * disable kprobes which have been inserted in the sections.
2057 	 */
2058 	mutex_lock(&kprobe_mutex);
2059 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2060 		head = &kprobe_table[i];
2061 		hlist_for_each_entry_rcu(p, head, hlist)
2062 			if (within_module_init((unsigned long)p->addr, mod) ||
2063 			    (checkcore &&
2064 			     within_module_core((unsigned long)p->addr, mod))) {
2065 				/*
2066 				 * The vaddr this probe is installed will soon
2067 				 * be vfreed buy not synced to disk. Hence,
2068 				 * disarming the breakpoint isn't needed.
2069 				 */
2070 				kill_kprobe(p);
2071 			}
2072 	}
2073 	mutex_unlock(&kprobe_mutex);
2074 	return NOTIFY_DONE;
2075 }
2076 
2077 static struct notifier_block kprobe_module_nb = {
2078 	.notifier_call = kprobes_module_callback,
2079 	.priority = 0
2080 };
2081 
init_kprobes(void)2082 static int __init init_kprobes(void)
2083 {
2084 	int i, err = 0;
2085 	unsigned long offset = 0, size = 0;
2086 	char *modname, namebuf[128];
2087 	const char *symbol_name;
2088 	void *addr;
2089 	struct kprobe_blackpoint *kb;
2090 
2091 	/* FIXME allocate the probe table, currently defined statically */
2092 	/* initialize all list heads */
2093 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2094 		INIT_HLIST_HEAD(&kprobe_table[i]);
2095 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2096 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2097 	}
2098 
2099 	/*
2100 	 * Lookup and populate the kprobe_blacklist.
2101 	 *
2102 	 * Unlike the kretprobe blacklist, we'll need to determine
2103 	 * the range of addresses that belong to the said functions,
2104 	 * since a kprobe need not necessarily be at the beginning
2105 	 * of a function.
2106 	 */
2107 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2108 		kprobe_lookup_name(kb->name, addr);
2109 		if (!addr)
2110 			continue;
2111 
2112 		kb->start_addr = (unsigned long)addr;
2113 		symbol_name = kallsyms_lookup(kb->start_addr,
2114 				&size, &offset, &modname, namebuf);
2115 		if (!symbol_name)
2116 			kb->range = 0;
2117 		else
2118 			kb->range = size;
2119 	}
2120 
2121 	if (kretprobe_blacklist_size) {
2122 		/* lookup the function address from its name */
2123 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2124 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2125 					   kretprobe_blacklist[i].addr);
2126 			if (!kretprobe_blacklist[i].addr)
2127 				printk("kretprobe: lookup failed: %s\n",
2128 				       kretprobe_blacklist[i].name);
2129 		}
2130 	}
2131 
2132 #if defined(CONFIG_OPTPROBES)
2133 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2134 	/* Init kprobe_optinsn_slots */
2135 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2136 #endif
2137 	/* By default, kprobes can be optimized */
2138 	kprobes_allow_optimization = true;
2139 #endif
2140 
2141 	/* By default, kprobes are armed */
2142 	kprobes_all_disarmed = false;
2143 
2144 	err = arch_init_kprobes();
2145 	if (!err)
2146 		err = register_die_notifier(&kprobe_exceptions_nb);
2147 	if (!err)
2148 		err = register_module_notifier(&kprobe_module_nb);
2149 
2150 	kprobes_initialized = (err == 0);
2151 
2152 	if (!err)
2153 		init_test_probes();
2154 	return err;
2155 }
2156 
2157 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2158 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2159 		const char *sym, int offset, char *modname, struct kprobe *pp)
2160 {
2161 	char *kprobe_type;
2162 
2163 	if (p->pre_handler == pre_handler_kretprobe)
2164 		kprobe_type = "r";
2165 	else if (p->pre_handler == setjmp_pre_handler)
2166 		kprobe_type = "j";
2167 	else
2168 		kprobe_type = "k";
2169 
2170 	if (sym)
2171 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2172 			p->addr, kprobe_type, sym, offset,
2173 			(modname ? modname : " "));
2174 	else
2175 		seq_printf(pi, "%p  %s  %p ",
2176 			p->addr, kprobe_type, p->addr);
2177 
2178 	if (!pp)
2179 		pp = p;
2180 	seq_printf(pi, "%s%s%s%s\n",
2181 		(kprobe_gone(p) ? "[GONE]" : ""),
2182 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2183 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2184 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2185 }
2186 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2187 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2188 {
2189 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2190 }
2191 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2192 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2193 {
2194 	(*pos)++;
2195 	if (*pos >= KPROBE_TABLE_SIZE)
2196 		return NULL;
2197 	return pos;
2198 }
2199 
kprobe_seq_stop(struct seq_file * f,void * v)2200 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2201 {
2202 	/* Nothing to do */
2203 }
2204 
show_kprobe_addr(struct seq_file * pi,void * v)2205 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2206 {
2207 	struct hlist_head *head;
2208 	struct kprobe *p, *kp;
2209 	const char *sym = NULL;
2210 	unsigned int i = *(loff_t *) v;
2211 	unsigned long offset = 0;
2212 	char *modname, namebuf[128];
2213 
2214 	head = &kprobe_table[i];
2215 	preempt_disable();
2216 	hlist_for_each_entry_rcu(p, head, hlist) {
2217 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2218 					&offset, &modname, namebuf);
2219 		if (kprobe_aggrprobe(p)) {
2220 			list_for_each_entry_rcu(kp, &p->list, list)
2221 				report_probe(pi, kp, sym, offset, modname, p);
2222 		} else
2223 			report_probe(pi, p, sym, offset, modname, NULL);
2224 	}
2225 	preempt_enable();
2226 	return 0;
2227 }
2228 
2229 static const struct seq_operations kprobes_seq_ops = {
2230 	.start = kprobe_seq_start,
2231 	.next  = kprobe_seq_next,
2232 	.stop  = kprobe_seq_stop,
2233 	.show  = show_kprobe_addr
2234 };
2235 
kprobes_open(struct inode * inode,struct file * filp)2236 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2237 {
2238 	return seq_open(filp, &kprobes_seq_ops);
2239 }
2240 
2241 static const struct file_operations debugfs_kprobes_operations = {
2242 	.open           = kprobes_open,
2243 	.read           = seq_read,
2244 	.llseek         = seq_lseek,
2245 	.release        = seq_release,
2246 };
2247 
arm_all_kprobes(void)2248 static void __kprobes arm_all_kprobes(void)
2249 {
2250 	struct hlist_head *head;
2251 	struct kprobe *p;
2252 	unsigned int i;
2253 
2254 	mutex_lock(&kprobe_mutex);
2255 
2256 	/* If kprobes are armed, just return */
2257 	if (!kprobes_all_disarmed)
2258 		goto already_enabled;
2259 
2260 	/* Arming kprobes doesn't optimize kprobe itself */
2261 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2262 		head = &kprobe_table[i];
2263 		hlist_for_each_entry_rcu(p, head, hlist)
2264 			if (!kprobe_disabled(p))
2265 				arm_kprobe(p);
2266 	}
2267 
2268 	kprobes_all_disarmed = false;
2269 	printk(KERN_INFO "Kprobes globally enabled\n");
2270 
2271 already_enabled:
2272 	mutex_unlock(&kprobe_mutex);
2273 	return;
2274 }
2275 
disarm_all_kprobes(void)2276 static void __kprobes disarm_all_kprobes(void)
2277 {
2278 	struct hlist_head *head;
2279 	struct kprobe *p;
2280 	unsigned int i;
2281 
2282 	mutex_lock(&kprobe_mutex);
2283 
2284 	/* If kprobes are already disarmed, just return */
2285 	if (kprobes_all_disarmed) {
2286 		mutex_unlock(&kprobe_mutex);
2287 		return;
2288 	}
2289 
2290 	kprobes_all_disarmed = true;
2291 	printk(KERN_INFO "Kprobes globally disabled\n");
2292 
2293 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2294 		head = &kprobe_table[i];
2295 		hlist_for_each_entry_rcu(p, head, hlist) {
2296 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2297 				disarm_kprobe(p, false);
2298 		}
2299 	}
2300 	mutex_unlock(&kprobe_mutex);
2301 
2302 	/* Wait for disarming all kprobes by optimizer */
2303 	wait_for_kprobe_optimizer();
2304 }
2305 
2306 /*
2307  * XXX: The debugfs bool file interface doesn't allow for callbacks
2308  * when the bool state is switched. We can reuse that facility when
2309  * available
2310  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2311 static ssize_t read_enabled_file_bool(struct file *file,
2312 	       char __user *user_buf, size_t count, loff_t *ppos)
2313 {
2314 	char buf[3];
2315 
2316 	if (!kprobes_all_disarmed)
2317 		buf[0] = '1';
2318 	else
2319 		buf[0] = '0';
2320 	buf[1] = '\n';
2321 	buf[2] = 0x00;
2322 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2323 }
2324 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2325 static ssize_t write_enabled_file_bool(struct file *file,
2326 	       const char __user *user_buf, size_t count, loff_t *ppos)
2327 {
2328 	char buf[32];
2329 	size_t buf_size;
2330 
2331 	buf_size = min(count, (sizeof(buf)-1));
2332 	if (copy_from_user(buf, user_buf, buf_size))
2333 		return -EFAULT;
2334 
2335 	switch (buf[0]) {
2336 	case 'y':
2337 	case 'Y':
2338 	case '1':
2339 		arm_all_kprobes();
2340 		break;
2341 	case 'n':
2342 	case 'N':
2343 	case '0':
2344 		disarm_all_kprobes();
2345 		break;
2346 	}
2347 
2348 	return count;
2349 }
2350 
2351 static const struct file_operations fops_kp = {
2352 	.read =         read_enabled_file_bool,
2353 	.write =        write_enabled_file_bool,
2354 	.llseek =	default_llseek,
2355 };
2356 
debugfs_kprobe_init(void)2357 static int __kprobes debugfs_kprobe_init(void)
2358 {
2359 	struct dentry *dir, *file;
2360 	unsigned int value = 1;
2361 
2362 	dir = debugfs_create_dir("kprobes", NULL);
2363 	if (!dir)
2364 		return -ENOMEM;
2365 
2366 	file = debugfs_create_file("list", 0444, dir, NULL,
2367 				&debugfs_kprobes_operations);
2368 	if (!file) {
2369 		debugfs_remove(dir);
2370 		return -ENOMEM;
2371 	}
2372 
2373 	file = debugfs_create_file("enabled", 0600, dir,
2374 					&value, &fops_kp);
2375 	if (!file) {
2376 		debugfs_remove(dir);
2377 		return -ENOMEM;
2378 	}
2379 
2380 	return 0;
2381 }
2382 
2383 late_initcall(debugfs_kprobe_init);
2384 #endif /* CONFIG_DEBUG_FS */
2385 
2386 module_init(init_kprobes);
2387 
2388 /* defined in arch/.../kernel/kprobes.c */
2389 EXPORT_SYMBOL_GPL(jprobe_return);
2390